
ar
X

iv
:2

40
5.

00
58

9v
1 

 [
m

at
h.

R
A

] 
 1

 M
ay

 2
02

4

PRETZEL MONOIDS

DANIEL HEATH, MARK KAMBITES, AND NÓRA SZAKÁCS

Abstract. We introduce an interesting class of left adequate monoids which
we call pretzel monoids. These, on the one hand, are monoids of birooted
graphs with respect to a natural ‘glue-and-fold’ operation, and on the other
hand, are shown to be defined in the category of left adequate monoids by a
natural class of presentations. They are also shown to be the free idempotent-
pure expansions of right cancellative monoids, making them, in some sense, the
left adequate analogues of Margolis-Meakin expansions for inverse monoids.
The construction recovers the second author’s geometric model of free left
adequate monoids when the right cancellative monoid is free.

1. Introduction

Left adequate monoids (and semigroups) were introduced and first studied by
Fountain in the late 1970s [10, 11]. They are (roughly speaking - see Section 2
below for a precise definition) those monoids in which every element shares its
right cancellativity properties with an idempotent element. Although a number
of interesting things were proved about them in the decades that followed (see,
for example, [1, 2, 6, 8, 9]), their study was until relatively recently hampered
by the paucity of easy-to-understand, concrete examples. This began to change
with the discovery by the second author of a geometric representation of free left
adequate semigroups [17], and also of the two-sided analogues [16], via birooted,
edge-labelled, directed trees under a “glue-and-retract” operation. This was in-
spired by Munn’s [21] description (building on earlier work of Scheiblich [25]) of
the free inverse semigroups, with the replacement of morphisms with retractions
providing transition from inverse to adequate semigroups.

Munn’s model of free inverse semigroups as birooted trees prompted far-reaching
generalisation in inverse semigroup theory, which, rooted in the work of Stephen
[28], provides a geometric framework for the study of inverse monoid presentations,
and describes – in some sense – all inverse monoids as monoids of birooted graphs
[23]. The first step along this road was the work of Margolis and Meakin [20], who
introduced an important class of inverse monoids consisting of birooted subgraphs
of a given group Cayley graph, which is shown to be the free idempotent-pure
expansion of the group.

Given that the free objects in the category of left adequate monoids can similarly
be seen as birooted graphs, it is natural next to seek further generalizations to wider
classes of left adequate monoids. In general we believe this to be hard — we are
still very far from developing anything akin to Stephen’s methods for left adequate
monoids in general — but the main purpose of this paper is to make some first
tentative steps in this direction. Specifically we introduce a class of left adequate
monoids, consisting of a class of birooted, edge-labelled finite graphs, with respect
to certain natural combinatorial operations. We term the resulting monoids pretzel
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monoids, due to a resemblance between the diagrams we use to represent their
elements and certain baked goods. We shall show that pretzel monoids are free,
idempotent pure expansions of right cancellative monoids, and thus in some respects
provide a left adequate analogue of Margolis-Meakin expansions.

More precisely, each pretzel monoid is constructed from a choice of generators
(X , say) for a given right cancellative monoid (C, say). The geometric realisation,
described in Section 4 below, is by certain edge-labelled directed graphs under a
multiplication involving gluing two graphs together, identifying vertices which are
joined by paths whose label represents the identity in C (an operation we term
idempath identification), and then retracting in a manner similar to the second
author’s tree representation [17] of the free left adequate monoid. We also show that
the same monoid admits a presentation (as a left adequate monoid) with generating
set X , and relations declaring every word representing the identity element in C to
be idempotent. It follows that it (analogously to the Margolis-Meakin expansion in
the theory of inverse monoids) is an initial object in the category ofX-generated left
adequate monoids having maximum cancellative image C and an idempotent-pure
morphism to C.

This paper consists of 4 further sections: firstly, in Section 2, we recall some pre-
liminary definitions of left adequate monoids and deduce some new identities which
will prove useful in further study. In Section 3, we introduce our new operation
of idempath identification on labelled graphs, and establish some technical results
about it which will be needed later. In Section 4, we define our pretzel monoids as
collections of these birooted directed, edge-labelled graphs. Finally, in Section 5,
we provide a presentation for a general pretzel monoid as a presentation of left
adequate monoids, and explore the way in which pretzel monoids can be viewed as
natural expansions of right cancellative monoids.

2. Left Adequate Monoids

We first recall definitions of left adequate monoids [10, 11]. For a comprehensive
introduction to general semigroup and monoid theory, we direct the reader to [15]
and for concepts on universal algebra, we further direct the reader to [7].

2.1. Left Adequacy. Let M be a monoid. The equivalence relation R∗ is defined
on M by a R∗ b if and only if

xa = ya ⇐⇒ xb = yb

for all x, y ∈ M . A monoid is called left abundant if every R∗-class contains an
idempotent. Moreover, a monoid is called left adequate if it is left abundant and
its set of idempotents, denoted E(M), is commutative. It is quickly seen that any
idempotent in an R∗-class of a left adequate monoid M is the unique idempotent
in its class. We denote by a+ the unique idempotent in the R∗-class of an element
a ∈M .

Left adequate monoids may be considered as algebras of signature (2,1,0) with
the associative multiplication and identity element supplemented with the unary
operation +, which relates an element to the unique idempotent with which it
shares right cancellation properties. The class of left adequate monoids encompasses
the class of inverse monoids, with the + operation sending any element a to the
(unique) idempotent aa−1 in its R-class. It also encompasses the class of right
cancellative monoids, with the + operation sending every element to the identity.
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Left adequate monoids form a quasi-variety of algebras in the (2,1,0) signature,
with defining quasi-identities

x+x = x, (x+y+)+ = x+y+ = y+x+, (xy)+ = (xy+)+,

x2 = x→ x = x+ and xy = zy → xy+ = zy+

along with the associative law and the laws making the constant an identity ele-
ment. The variety generated by the class is that of the left Ehresmann monoids [5].
Accordingly, the free left adequate monoid and the free left Ehresmann monoid on
a given set coincide. This common object was given a geometric description by the
second author [17] which we build upon in this paper.

We say a left adequate monoid M is X-generated if there is a map ι : X → M
such that ι(X) generates M as a (2, 1, 0)-algebra. We do not assume ι to be an
embedding, but when it is, we sometimes naturally associate X with its image.
Given a word w ∈ X∗, we denote the image of w under ι by [w]M .

There are of course also notions of right adequate and two-sided adequate monoids
(see, for example, [11]) and also corresponding classes of semigroups, but we do not
consider these here.

2.2. X-graphs. Fix a non-empty set X . An X-graph G (or simply graph if X is
clear) is a finite birooted digraph, with vertices V(G) including a start vertex α(G),
which we represent diagrammatically by+ and end vertex ω(G), diagrammatically
×, with edges E(G) labelled by elements of X , such that any vertex is reachable via
some directed path from the start vertex. An X-tree (or simply tree) is an X-graph
whose underlying, undirected graph is a tree with all edges oriented away from the
start vertex. By the trunk of an X-tree we mean the unique (necessarily directed)
simple path from the start vertex to the end vertex. A leaf of a tree is a vertex l
for which there is no edge with initial vertex l. Figure 1 shows three examples of
{x, y}-graphs.

+

×

x

xx

x

+

×
y

y

xy

x

×+

x

x
x

x
y

Figure 1. Some examples of {x, y}-graphs. The leftmost graph
is an {x, y}-tree. The rightmost graph G has α(G) = ω(G).

For an edge e of an X-graph, we denote by α(e) the initial vertex of e, λ(e) the
X-label of e, and ω(e) terminal vertex of e. We say e is incident to a vertex v if
v = α(e) or v = ω(e). We often represent an edge e by the diagram

α(e)
λ(e)
−−−→ ω(e).

By a (directed) path in a graph, we mean a traversal of the graph by a sequence
of edges which may repeat both edges and vertices. By a simple path, we mean a
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path which does not repeat vertices. A cycle is a closed path, and a simple cycle
is a closed simple path.

We extend the maps α, λ and ω to (directed) paths in the expected way, taking
concatenation of labels for λ. We represent a path π with edges e1, e2, . . . , ek by
the diagram

α(e1)
λ(e1)
−−−→ ω(e1) = α(e2)

λ(e2)
−−−→ ω(e2) = α(e3)

e3−→ . . .
ek−→ ω(ek)

or simply by

α(π)
λ(π)
−−−→ ω(π).

We write X∗ for the set of words over X , and say a word w ∈ X∗ is readable in

G from a vertex p to a vertex q if there exists a path p
w
−→ q.

A subgraph of an X-graph G is a subset V ′ of vertices and E′ of edges such
that the digraph with vertex set V ′ and edge set E′ has some vertex α such that
all vertices are reachable via a directed path from α. A subtree is a subgraph in
which the underlying, undirected graph is a tree. We call a subgraph or subtree of
G rooted if it contains α(G), and birooted if it contains both α(G) and ω(G).

Given a vertex u of an X-tree, the cone of u in T , denoted ConeT (u), is the
largest subtree of T containing all vertices reachable from u. The height of an
X-tree T (or cone) is given by the length of a longest path in T starting from α(T ).

A morphism of X-graphs is a map between X-graphs sending edges to edges
and vertices to vertices, such that the start [resp. end] vertex is sent to the start
[resp. end] vertex, and which respect edge labellings and incidence of edges in the
expected way. An idempotent endomorphism on a graph is called a retract. A
graph is called retracted if it admits no non-identity retracts. Each finite graph G
admits a retracted image which is unique up to isomorphism (although not unique
as a birooted subgraph); this is often called the core [14] and we denote it G.

Lemma 2.1. Let S be an X-graph, T be a birooted subgraph of S and suppose there
exists a morphism φ : S → T . Then S ∼= T .

Proof. Since T is a subgraph of S, we may view φ as a map from S to itself,
and hence compose it with itself. Since S is finite, there exists an n ∈ N such
that φn is idempotent, in other words, a retract of S with image contained in T .
Moreover, it is easily seen that φn|T induces a retract on T . We now show that
φn(S) = φn(T ). Since T is a subgraph of S, clearly φn(T ) ⊆ φn(S). Conversely,
since φn is idempotent, if y ∈ φn(S), then y ∈ φ2n(S) = φnφn(S) ⊆ φn(T ).

Thus by uniqueness and confluence of retracts [14], we have that

S ∼= φn(S) ∼= φn(T ) ∼= T

as required. �

The following is the main result from [17, Theorem 3.16].

Theorem 2.2. The free left adequate monoid FLAd(X) is given by the set of all
isomorphism classes of retracted X-trees, with multiplication given by (the class
of) gluing representatives start-to-end then retracting, and +-operation given by
moving the end vertex to the start and then retracting. This structure is generated
by the set of base trees given by single-edge trees with distinct start and end vertices
labelled x for each x ∈ X (we identify this set of trees with X itself).
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For reasons hinted at by the above result, we generally work with X-graphs up
to isomorphism. For notational simplicity we will (where no possible ambiguity
arises) identify X-graphs with their isomorphism types, and hence write that two
X-graphs are equal when we mean formally only that they are isomorphic.

With this viewpoint, we may consider elements of general left adequate monoids
as classes of X-trees. Similar to our notation for words, for an X-tree T and X-
generated left adequate monoid M , we denote by [T ]M the image of T under the
surjective (2, 1, 0)-morphism FLAd(X) → M which maps x 7→ x for all x ∈ X .
We say that two trees T1 and T2 are equal in M if [T1]M = [T2]M . We may define
a multiplication and a unary operation on all (not necessarily retracted) X-trees
using the glue and + operations without retraction. Whilst the monoid obtained
in this way is not left adequate, it has the property that trees equal in this monoid
are equal in all left adequate monoids.

2.3. Identities. We list some properties of left adequate monoids which we will
use without further reference (see [16, Proposition 2.1]). We invite the reader to
view these identities geometrically using X-trees.

Lemma 2.3. LetM be a left adequate monoid and let a, b, e ∈M with e idempotent.
Then e+ = e, (ab)+ = (ab+)+, a+a = a, ea+ = (ea)+ and a+(ab)+ = (ab)+.

We now provide some new identities which will prove useful in the study of left
adequate monoids.

Lemma 2.4. Let M be a left adequate monoid and x, y, z ∈M with xy idempotent.
Then:

(i) yxyx ∈ E(M);
(ii) xy+ = xyx;
(iii) xz+y = xy(xz)+. In particular, xz+y is idempotent.

Proof. Throughout, we suppose xy idempotent, that is (xy)+ = xy = xyxy, and
recall that idempotents commute.

(i) yxyx = y(xy)x = y(xy)(xy)(xy)x = yxyxyxyx = (yxyx)(yxyx).
(ii) We have

xy+ = (xy)+(xy)+xy+ = xyxyxy+ = x(yxyx)y+ = xy+(yxyx)

= x(yxyx) = (xy)(xy)x = xyx.

(iii) First note that xz+y = xz+y+y = xy+z+y = xyxz+y by (ii). Thus

(xz+y)2 = (xz+y)xy(xz+y) = xz+(yxyx)z+y = xyxyxz+y = xyxz+y = xz+y

and hence xz+y ∈ E(M). Moreover,

(xz+y)+ = (xz+y+)+ = (xy+z+)+ = (xy+z)+ = (xyxz)+ = xy(xz)+.

where the penultimate inequality is from (ii). Since xz+y is idempotent,
we have that xz+y = (xz+y)+ = xy(xz)+.

�

In fact, a more general result than Lemma 2.4(iii) holds.
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Theorem 2.5. Let M be a left adequate monoid and x1, . . . , xk ∈ M such that
x1 · · ·xk idempotent. For any u1, u2, . . . , uk−1 ∈M , we have:

x1u1
+x2u2

+ · · ·xk−1uk−1
+xk =

(x1 · · ·xk)(x1u1)
+(x1x2u2)

+ · · · (x1 · · ·xk−1uk−1)
+

(2.1)

In particular, x1u1
+x2u2

+ · · ·xk−1uk−1
+xk is idempotent.

Proof. We proceed by strong induction. If k = 1 then there is nothing to prove. If
k = 2 then this is exactly the result of Lemma 2.4(iii).

Now suppose the identity (2.1) holds for integers 0 < k < N for some N ≥ 3.
Let x1, . . . , xN and u1, . . . , uN−1 be given such that x1 · · ·xN is an idempotent of
M . For notation, we denote Xℓ := x1x2 · · ·xℓ for 1 ≤ ℓ ≤ N .

Consider the product (x1x2)x3 · · ·xN of M . By assumption, this is an idempo-
tent product of N − 1 elements of M . Thus by our inductive assumption, we have
that

(2.2) (x1x2)u2
+x3u3

+ · · ·xN−1uN−1
+xN = (XN )(X2u2)

+ · · · (XN−1uN−1)
+

In particular, (x1x2)u2
+x3u3

+ · · ·xN−1uN−1
+xN is an idempotent of M . Firstly,

by right-multiplying (2.2) by (x1u1)
+, we have that

(x1x2)u2
+x3u3

+ · · ·xN−1uN−1
+xN (x1u1)

+ = (XN )(X2u2)
+ · · ·

(XN−1uN−1)
+(x1u1)

+.
(2.3)

By commuting idempotents on the right-hand side of (2.3), we obtain exactly the
right-hand side of (2.1).

Now, we appeal to Lemma 2.4(iii). Since the left-hand side of (2.2) is idempotent,
we may insert the idempotent u1

+ after x1 to obtain

x1u1
+x2u2

+ · · ·xN−1uN−1
+xN = (x1x2)u2

+x3u3
+ · · ·

xN−1uN−1
+xN (x1u1)

+.
(2.4)

The left-hand side of (2.4) is exactly the left-hand side of (2.1), and the right-hand
side of (2.4) is exactly the left-hand side of (2.3). Hence we have total equality:
the left-hand side of (2.1) is the left-hand side of (2.4), which is equal to the right-
hand side of (2.3), which is in turn equal to the right-hand side of (2.1). Thus our
equation (2.1) holds. The full result therefore follows by induction. �

Theorem 2.5 allows us the following important corollary.

Corollary 2.6. Let M be an X-generated left adequate monoid and T be an X-
tree. Let Θ(T ) be the birooted subtree of T consisting exactly of the trunk of T .
Then [Θ(T )]M ∈ E(M) implies [T ]M ∈ E(M).

Proof. Suppose Θ(T ) has label x1 · · ·xk with [x1 · · ·xk]M ∈ E(M). Then T may
be written in the form

T = u0
+x1u1

+x2u2
+ · · ·xk−1uk−1

+xkuk
+

for some X-trees ui. By Theorem 2.5, we have

[T ]M = [u0
+(x1 · · ·xk)(x1u1)

+(x1x2u2)
+ · · · (x1 · · ·xk−1uk−1)

+uk
+]M

which is a product of idempotents and hence idempotent. �
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We now consider anX-generated left adequate monoidM and anX-tree T . Sup-
pose T contains some path labelled by a word x1x2 · · ·xk such that [x1x2 · · ·xk]M
is an idempotent of M . Our goal is to show that [T ]M is equal to the M -value of
the tree obtained by ‘moving’ a subtree through the path.

Theorem 2.7. Let M be an X-generated left adequate monoid and T be an X-tree.
Suppose T contains a path w labelled x1x2 · · ·xk such that

[x1x2 · · ·xk]M ∈ E(M).

Suppose V is a subtree of ConeT (ω(w)), containing the vertex ω(w), whose erasure
from T would not disconnect the underlying (undirected) tree of T . Let T ′ be the
tree obtained by taking T with V erased, and gluing a copy of V to α(w) (via the
vertex ω(w) in V ). Then [T ]M = [T ′]M .

Proof. We first consider the case when V contains the endpoint. Since V contains
the endpoint and contains ω(w), we must have that w lies entirely on the trunk
of T . Hence T is of the form Ux1u1

+x2u2
+ · · ·xk−1uk−1

+xkuk
+V for some X-

trees U, u1, . . . , uk. By Corollary 2.6, [x1u1
+x2u2

+ · · ·xk−1uk−1
+xkuk

+]M is an
idempotent of M , and thus

[T ]M = [U(x1u1
+x2u2

+ · · ·xk−1uk−1
+xkuk

+)+V ]M .

The X-tree U(x1u1
+x2u2

+ · · ·xk−1uk−1
+xkuk

+)+V is exactly T ′, and so we are
done.

Now suppose that V does not contain the endpoint of T . Let xi be the label of
the first edge of w which is not on the trunk of T . Then T is of the form

Ux1u1
+x2u2

+ · · ·xi−1ui−1
+(xiui

+xi+1ui+1
+ · · ·xk−1uk−1

+xkQ
+V )+W

for some X-trees U,Q, u1, . . . , uk−1,W (note that the subtree V does not contain
the endpoint of T ). For notational simplicity, write w1 = x1u1

+x2u2
+ · · ·xiui+

and w2 = xi+1ui+1
+ · · ·xk−1uk−1

+xk. Then in M , since the retraction map and [·]
are morphisms, we have

[T ]M = [Uw1(w2Q
+V )+W ]M

= [Uw1(w2Q
+V +)+W ]M (by Lemma 2.3)

= [Uw1w2Q
+V +w1W ]M (by Lemma 2.4(ii): [w1w2Q

+V +]M ∈ E(M))

= [UV +w1w2Q
+w1W ]M (by commuting idempotents)

= [UV +w1(w2Q
+)+W ]M (by Lemma 2.4(ii): [w1w2Q

+]M ∈ E(M))

Recalling our definitions of w1 and w2, we have

[T ]M = [UV +x1u1
+x2u2

+ · · ·xiui
+(xi+1ui+1

+ · · ·xk−1uk−1
+xkQ

+)+W ]M .

This X-tree is exactly T ′. �

Theorem 2.7 tells us that we can move subtrees of cones down through paths
labelled by idempotents (provided we do not disconnect the tree) and maintain the
value of [T ]M . By noting that we may first glue an extra copies of V at ω(w) without
changing [T ]FLAd(X), a clear corollary of Theorem 2.7 is that we may similarly copy
these subtrees, up or down, through idempotent-labelled paths.
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Corollary 2.8. Suppose an X-tree T contains a path w labelled by x1x2 · · ·xk
such that [x1x2 · · ·xk]M ∈ E(M). Suppose V is a subtree of ConeT (ω(w)) [resp.
ConeT (α(w))], containing the vertex ω(w) [resp. α(w)] and not containing the
vertex α(T ), whose erasure would not disconnect the underlying tree of T . Then
[T ]M is equal in M to [T ′]M where T ′ is the tree T with V copied to α(w) [resp.
ω(w)] (including moving the endpoint if V contained it). Moreover, if V does not
contain any edge of w, we instead can move V to α(w) [resp. ω(w)] rather than
copying.

Corollary 2.9. For any X-generated left adequate monoid M and X-tree T , there
exists a tree T ′ ∈ FLAd(X) such that [T ]M = [T ′]M , and in which all paths labelled
by idempotents of M go to leaves.

Proof. For any idempotent-labelled path w in T , we may move the entire cone
rooted at ω(w) to α(w) without changing the value in M by Theorem 2.7. This
ensures that the path labelled w terminates at a leaf. We claim that continually
performing this action is a terminating process. Indeed, each move maintains the
number of vertices of T but strictly increases the number of leaf vertices of T . Since
T has finitely many vertices, this process must terminate: the result is a tree in
which idempotent-labelled paths go to leaves. Retracting this tree then yields a
tree T ′ ∈ FLAd(X) with the required properties. �

3. Idempath Identification

As in many areas of semigroup theory, understanding idempotents is critical to
understanding the structure of left adequate monoids. We now consider presenta-
tion of left adequate monoids where define our set of idempotents. This is done in a
similar spirit to that of Margolis-Meakin expansions for E-unitary inverse monoids
[20]; we explore this connection further in Section 5.

Let X be any set and let E ⊆ X∗. Consider the left adequate monoid given by
the presentation

LAd
〈
X | w+ = w for w ∈ E

〉
.

The corresponding notion for Margolis-Meakin expansions is to take E to be the
set of words representing the identity element in some fixed X-generated group. In
the left adequate setting, it is natural (see Section 5) to take E to be the words rep-
resenting the identity element in some fixed X-generated right cancellative monoid
C. This leads us to our definition of idempath identification.

3.1. Idempath Identification. LetG be anX-graph and let C be anX-generated
right cancellative monoid. A path in G is called a C-idempath (or simply an idem-
path when C is clear) if [w]C = 1. We consider the empty path (labelled ǫ) to have
[ǫ]C = 1 (and thus is always an idempath).

A (C-)idempath identification on G is the process of identifying the vertices
which are the termini of an idempath in G. Some literature refers to this action as
the fusion of the two vertices [24]. Note that this is different than the process of
contraction; we do not delete any edges of G. An idempath identification G is a
morphism of X-graphs from G to the image after the identification, and therefore
it preserves expected adjacency and connectivity properties.

A X-graph H is called a (C-idempath) descendant of an X-graph G if H is
obtainable via successive idempath identifications, starting with the graph G. We
denote by D(G) the set of all descendants of G. Formally, we consider the set of
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vertex pairs V (G)×V (G) to act by partial maps on elements of D(G) where (a, b)H
is the X-graph obtained by identifying the natural images of the vertices a, b in H ;
accordingly we specify that this action is only defined when there is an idempath
readable from natural images of a to b in H . For ease of notation, we often identify
these images of a and b with a and b themselves.

Example 3.1. Consider the group C = C3 = Mon〈x | x3 = 1〉. In an {x}-
graph, a path labelled x3 is a C-idempath. Figure 2 shows a process of successive
idempath identifications to the tree x(x2)+x ∈ FLAd({x}). Note that the second
identification is only possible once the first identification is made.

+

×

x

xx

x

+

×

x

xx

x

+

×

x

x
x

x

Figure 2. Successive C3-idempath identifications on x(x2)+x.

Our goal is to show that any X-graph G has a unique idempath identified de-
scendant, that is a graph where no non-trivial idempath identifications are possible
(equivalently if every idempath is a cycle).

Lemma 3.2. Let C be an X-generated right cancellative monoid. Let G be an
X-graph. Suppose (a, b)G is defined, (c, d)G is defined, and H ∈ D(G). Then

(i) (a, b)H is defined;
(ii) (a, b)(c, d)G = (c, d)(a, b)G;
(iii) (a, b)H ∈ D((a, b)G).

Proof. Recall that (p, q)K is only defined when there is an idempath readable from
p to q in the graph K.

(i) Since (a, b)G is defined, there is an idempath labelled by x1 · · ·xn from a
to b in G. This word is still readable in H from a to b in H . Hence (a, b)H
is defined.

(ii) By part (i), (c, d)(a, b)G and (a, b)(c, d)G are both defined. If {a, b} ∩
{c, d} = ∅, then clearly (a, b)(c, d)G = (c, d)(a, b)G. Otherwise, if {a, b} ∩
{c, d} 6= ∅, then all of a, b, c and d are identified in the graphs (a, b)(c, d)G
and (c, d)(a, b)G. Since both graphs are the unique graph obtained by
identifying all four vertices, it follows that (a, b)(c, d)G = (c, d)(a, b)G.

(iii) Since H ∈ D(G), H is of the form H = (un, vn) . . . (u1, v1)G for vertices
ui, vi. Then using part (ii) n times, we have

(a, b)H = (a, b)(un, vn) . . . (u1, v1)G = (un, vn) . . . (u1, v1)(a, b)G ∈ D((a, b)G)

as required.

�
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Theorem 3.3. Let C be an X-generated right cancellative monoid. Let G be an
X-graph. Then there is a unique graph which is an idempath identified descendant
of G.

Proof. Since G is finite, we may only apply a finitely long sequence of non-trivial
idempath identifications to G as each strictly reduces the number of vertices. By
always performing any non-trivial idempath identifications we can, we may obtain
some graph which has no non-trivial identifications. This graph must be an idem-
path identified descendant of G, and so G has some idempath identified descendant
Y ∈ D(G).

Now let H ∈ D(G). Then there exists some n ≥ 0 such that

H = (un, vn) . . . (u1, v1)G

for some vertices ui and vi of G for 1 ≤ i ≤ n. We claim that Y ∈ D(H). We
perform induction on n.

If n = 1, then H = (u1, v1)G and so by Lemma 3.2, (u1, v1)Y ∈ D(H). But Y
is idempath identified, so as this is defined, we must have u1 = v1 in Y . Hence
Y = (u1, v1)Y ∈ D(H) as required. Now suppose that the statement holds for
some integer k − 1 ≥ 1. Then suppose H = (uk, vk) . . . (u1, v1)G. By the inductive
hypothesis, Y is a descendant of (uk−1, vk−1) . . . (u1, v1)G. Hence by Lemma 3.2,
(uk, vk)Y is a descendant of (uk, vk)(uk−1, vk−1) . . . (u1, v1)G = H . As above, since
Y is idempath identified, (uk, vk)Y = Y . Hence Y is a descendant of H as required.
Our claim therefore holds by induction.

It remains to show uniqueness of Y . Indeed, if Y1 and Y2 are idempath identified
descendants of G then by the inductive argument above, Y1 is a descendant of Y2
and vice versa. Hence clearly Y1 ∼= Y2 as X-graphs. �

We denote the unique C-idempath identified descendant of G by G̃. As idempath

identifications are morphisms, the induced map ∼ : G 7→ G̃ is also a morphism of
X-graphs. Given an edge e [resp. vertex v] of any descendant of G, we denote the
image of e [resp. v] under the ∼ map by ẽ [resp. ṽ].

Lemma 3.4. Let G be an X-graph. Let w be an idempath in G traversing vertices
v0, v1, . . . , vk. Then the vertices ṽ0, ṽ1, . . . , ṽk all lie in the same strongly connected

component of G̃.

Proof. There exists a valid idempath identification (v0, vk) on G. In (v0, vk)G,
the images of the vertices vi all lie on a directed cycle, in particular in the same
strongly connected component. It follows that they remain on a directed cycle in

all descendants of (v0, vk)G, in particular in G̃. �

3.2. Constructable Semiwalks. Recall the example illustrated in Figure 2 – the
rightmost graph is the idempath identified descendant of the leftmost tree. This
example illustrates that not all pairs of ∼-identified vertices have directed paths
between; idempath identifications may generate new possible identifications. In

order to classify which vertices of a graph G are identified in G̃, we develop the
notion of n-constructable semiwalks.

Let G be an X-graph. A semiwalk s in G is a sequence of edges e1, e2, . . . , ek
with which each edge is assigned an orientation called positive or negative, such that
e1e2 . . . ek is a sequence of consecutively incident edges in the underlying, undirected
graph of G and the orientation of an edge refers to if it is traversed according to its



PRETZEL MONOIDS 11

direction in G, or in the reverse of its direction in G via the induced path on the
undirected graph. We say the semiwalk has start vertex α(s) and end vertex ω(s)
given by the start and end of this path respectively. Semiwalks may be thought of
as paths in G where direction is ignored. We introduce a set of formal symbols

X−1 =
{
x−1 | x ∈ X

}

which are disjoint from and in bijection with X . We will frequently consider words
w ∈

(
X ∪X−1

)∗
, which we call positive if w ∈ X∗ and negative if w ∈

(
X−1

)∗
.

The inverse of a word w = x1 · · ·xk ∈
(
X ∪X−1

)∗
is w−1 := xk

−1 · · ·x1−1 with

the convention that
(
x−1

)−1
= x for all x ∈ X .

A semiwalk s with edges e1, e2, . . . , ek in G has label x1 · · ·xk ∈
(
X ∪X−1

)∗
where

xi =

{
λ(ei) if ei is traversed positively by s

λ(ei)
−1 if ei is traversed negatively by s

Example 3.5. Let X = {x, y}. The graph in Figure 3 has a semiwalk from u to v
with label y−1x−1x−1y−1yxyxyyxx. The label of this semiwalk is neither positive
nor negative.

+

× u

v
x

y

x

y
x

x y

y x x

Figure 3. An X-graph with X = {x, y} .

For an X-generated right cancellative monoid C, recall that an idempath identi-
fication on G is the process of identifying the endpoints of an idempath in G. Any
idempath may be traversed by two semiwalks on G in opposite directions, with
labels w and w−1 (depending on the direction of traversal) where [w]C = 1. Our
goal for the remainder of this section is to describe which pairs of vertices in a
graph are identified, using the notion of semiwalks.

Let ℓ be a word over X ∪X−1. We say that ℓ is n-constructable (with respect to
C) if ℓ can be obtained from the empty word by successively inserting n words wi
or wi

−1 where wi ∈ X∗ and [wi]C = 1, from the empty word. We say a semiwalk
on a graph is n-constructable if its label is n-constructable. We call a semiwalk or
label constructable if it is n-constructable for some n.

The only 0-constructable word is the empty word ǫ. The 1-constructable words
are exactly those representing idempotents of M (or their formal inverses). This
notion allows us to classify vertices which will be identified under the process of
idempath identification.

Theorem 3.6. Fix an X-generated right cancellative monoid C. Two vertices u

and v of an X-graph G are identified in G̃ if and only if there exists a constructable
semiwalk between u and v in G.
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Proof. First suppose there exists an n-constructable semiwalk between u and v in
G; suppose it has label ℓ. If the word is empty then u = v so u and v are trivially
identified, so suppose it is non-empty. Consider the final word w ∈ X∗ ∪

(
X−1

)∗
inserted in an n-construction of ℓ. We may write ℓ = ℓ1wℓ2 for some words ℓ1, ℓ2 ∈(
X ∪X−1

)∗
. As w is a subword of ℓ, it corresponds to an idempath e in G. Hence

there is a valid idempath identification (w1, w2) on G where w1, w2 ∈ {α(e), ω(e)}.
Moreover, the word ℓ1ℓ2, which is (n− 1)-constructable, is the label of a semiwalk
in (w1, w2)G between the natural images of u and v. If n ≥ 2, this descendant may
not be idempath identified. But we may now repeat this argument with the last
idempotent inserted in an (n− 1)-construction of ℓ1ℓ2 to find a deeper descendant
of G in which there is an (n − 2)-constructable semiwalk between the images of u
and v, and so on. This process will eventually terminate (as n is finite) and thus it
follows that there is some descendant G′ of G in which there is a 0-constructable
semiwalk (i.e. the empty path) between the images of u and v. Thus u and v are

identified in all descendants of G′, in particular in G̃′ = G̃ as required.
For the converse, we utilise the following lemma.

Lemma 3.7. Let x, y, u, v be vertices of G. Denote the natural images of x, y, u, v
in any descendant K of G by xK , yK , uK and vK respectively. Let H be a descendant
of G and suppose (xH , yH) is a well-defined idempath identification on H. Suppose
ℓ is a label of an m-constructable semiwalk from u(x,y)H to v(x,y)H in (x, y)H for
some m ∈ N0. Then there exists an n-constructable semiwalk from uH to vH in H
for some n ∈ N0.

Proof. Suppose the semiwalk labelled ℓ traverses the edges p1, p2, . . . pk in (x, y)H .
Consider the pre-image of these pi in H . For notation, we ignore the direction of
each pi, and consider α(pi+1) = ω(pi) to be the vertex of (x, y)H traversed by the
semiwalk between pi and pi+1.

For each 1 ≤ i ≤ k − 1, if ω(pi)H and α(pi+1)H are identified in H , then define
wi = ǫ. Otherwise, ω(pi)H and α(pi+1)H are not identified in H . Since they are
identified in (x, y)H , the idempath identification (xH , yH) identified ω(pi)H with
α(pi+1)H . Hence (xH , yH) = (ω(pi)H , α(pi+1)H) or (xH , yH) = (α(pi+1)H , ω(pi)H)
and thus there is an idempath between ω(pi)H and α(pi+1)H in H . If this idempath
is oriented towards α(pi+1)H , take wi to be its label, otherwise take wi to be the
inverse of its label. Perform a similar construction with uH and α(p1)H to construct
a word w0, and with ω(pk)H and vH to construct wk.

Write ℓ = a1 · · · ak ∈ (X∪X−1)∗, such that each ai is λ(pi) or λ(pi)
−1 (depending

on direction traversed). By construction, we have a valid connected semiwalk in
H from uH to vH with label ℓ′ := w0a1w1a2w2 · · ·akwk. Since each wi labels an
idempath, ℓ′ is (m+ k + 1)-constructable via k + 1 inserts into ℓ. �

We now return to the proof of Theorem 3.6. Suppose u, v are identified in G̃.
Then there is some descendant G′ = (xm, ym) . . . (x1, y1)G in which uG′ and vG′

are identified, that is there is an (empty) 0-constructable semiwalk from uG′ to vG′

in G′. By m successive applications of Lemma 3.7, we may obtain a constructable
semiwalk from u to v in G. �

3.3. Semiwalks on Trees and Two-sided Cancellativity. We will often be
interested in how constructable semiwalks interact with trees. Let C be an X-
generated right cancellative monoid and let T be an X-tree. In the case where C is
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two-sided cancellative, we may observe properties of how constructable semiwalks
interact with the C-value of co-terminal paths.

Lemma 3.8. Let C be an X-generated two-sided cancellative monoid and T be an
X-tree. Then every retract of every descendant of T has the properties that any
cycle is an idempath and if w,w′ label co-terminal paths between distinct vertices u

to v in G, then [w]C = [w′]C . In particular, T̃ has these properties.

Proof. Since retracts are birooted subgraphs and the claimed properties are clearly
inherited by subgraphs, it clearly suffices to prove the claim for the case that G is
a descendant of T .

Write G = (xm, ym) . . . (x1, y1)T . We perform induction on m – if m = 0,
the statement is true vacuously. Suppose then that the statement holds true
in some Gk := (xk, yk) . . . (x1, y1)T . We show the properties hold in Gk+1 :=
(xk+1, yk+1)Gk.

We first show that any cycle in Gk+1 is an idempath, that is it has label equalling
1 in C. It is sufficient to show the result for simple cycles, since any non-simple
cycle may be obtained by successively composing and inserting simple cycles into
simple cycles. Thus showing each insert has label equalling 1 will ensure the label
of the full cycle also equals 1.

Suppose then that z0
p1
−→ z1

p2
−→ . . .

pn−1

−−−→ zn−1
pn
−→ z0 is a simple cycle in Gk+1

for vertices zi in Gk+1 and labels pi ∈ X . If this cycle lifts to some cycle in Gk, then
[p1p2 · · · pn]C = 1 by assumption. Otherwise, this cycle must have been created by
the identification of xk+1 and yk+1. It follows that zi = xk+1 = yk+1 in Gk+1 for
some zi. We may relabel our cycle to ensure z0 = xk+1 = yk+1 without loss of
generality. It follows that the edges of our simple cycle lifts to Gk to either a path

(3.1) xk+1
p1−→ z′1

p2−→ . . .
pn−1

−−−→ z′n−1
pn−→ yk+1

or a path

(3.2) yk+1
p1
−→ z′1

p2
−→ . . .

pn−1

−−−→ z′n−1
pn
−→ xk+1

where the vertex zj lifts to some vertex z′j in Gk.

If the cycle lifts to the path (3.1), then since the identification (xk+1, yk+1) is de-
fined on Gk, there exists some idempath from xk+1 to yk+1 in Gk. By our inductive
assumption, all paths from xk+1 to yk+1 are labelled by words defining equal ele-
ments of C. Hence the path (3.1) must be an idempath and have [p1p2 · · · pn]C = 1.
Otherwise, if the cycle lifts to the path (3.2), then as there exists an idempath from
xk+1 to yk+1, say labelled z, there exists a cycle in Gk labelled zp1 · · · pn. By
inductive assumption, 1 = [zp1 · · · pn]C = [1p1 · · · pn]C = [p1 · · · pn]C as required.

We now show the result for co-terminal paths. Suppose u, v are distinct vertices

in Gk+1 with two paths labelled u
w
−→ v and u

w′

−→ v in Gk+1. Our goal is to show
that [w]C = [w′]C . We first show our result when the paths are vertex disjoint and
simple. As u and v are distinct vertices in Gk+1, certainly their respective lifts are
still disjoint in Gk. If the paths both lift to connected co-terminal paths, then the
result follows immediately. Otherwise, the identification of xk+1 and yk+1 must
have created these paths in Gk+1. Since the paths are vertex disjoint in Gk+1,
and the identification identified exactly two vertices, at least one of the paths must
have lifted to a connected path from some pre-image of u to some pre-image of v –
without loss of generality suppose the path labelled w did so. Call these pre-images
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u′ and v′ respectively. It follows that the paths lifted in such a way that in Gk, we
observe one of the situations shown in Figure 4, where w′ ≡ w1w2 for some words
w1, w2 ∈ X∗ and an idempath labelled z ∈ X∗ from xk+1 to yk+1.

u′

v′

xk+1

yk+1

w

w1

z

w2

u′

v′

yk+1

xk+1

w

w1

z

w2

Figure 4. The lifts of the coterminal paths labelled w and w′ ≡ w1w2.

If the paths lift in such a way that the left graph of Figure 4 arises, then by
inductive assumption, we have [w]C = [w1zw2]C = [w1 · 1 ·w2]C = [w1w2]C ≡ [w′]C
and we are done.

Suppose instead the paths lift in such a way that the right graph of Figure 4
arises. Certainly, there exists some path from the start vertex of Gk to xk+1, say
labelled p, and some path from the start vertex of Gk to u

′, say labelled q. From our
inductive assumption, it follows that [p]C = [pz]C = [qw1]C and [pw2]C = [qw]C .
Thus [qw1w2]C = [qw]C and so by (left) cancellativity, [w]C = [w1w2]C ≡ [w′]C as
required.

Now note that if our paths are not simple, then they may be obtained by inserting
cycles into a simple path, which by the result for cycles above will maintain the
C-value of their labels. Moreover, if our paths are not vertex disjoint, then we use
an inductive argument on the number of times the path labelled w′ intersects the

path labelled w (the base case of 0 intersections given above). Suppose u
w′

−→ v

intersects u
w
−→ v K times. Consider the shortest, non-trivial prefix a of w′ which

labels a subpath of u
w′

−→ to a vertex r also on u
u
−→ v. Write w′ ≡ ab and w ≡ cd

where our paths split as u
a
−→ r

b
−→ v and u

c
−→ r

d
−→ v. By choice of a, the paths

u
a
−→ r and u

c
−→ r are vertex disjoint, and the path r

b
−→ v intersects r

d
−→ v at most

K − 1 times. Thus by inductive assumption, we have [a]C = [c]C and [b]C = [d]C .
Hence [w′]C = [ab]C = [cd]C = [w]C as required.

Returning to our main induction, the result now follows. �

Suppose G is an X-graph which is a retract of a descendant of some X-tree T .
Given any vertex v of G, certainly there exists a directed path from the root to v
and by Lemma 3.8 every such path has a label which evaluates to the same element
of C. Thus we may define the C-value of the vertex v, denoted [v]C , to be the value
in C of the label of any path from the root to v.

Corollary 3.9. Let C be two-sided cancellative and let G be an X-graph which
is a retract of a descendant of some X-tree. If two vertices of G are identified in
any retract of any descendant of G, then they have the same C-value. Moreover, if
there exists a directed path from u to v in any retract of any descendant of G, then
it is an idempath.
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Proof. Let u and v be vertices identified in some retract H of a descendant of G.
Let p, q ∈ X∗ be the labels of some paths in G from the root to u and v respectively,
so that [u]C = [p]C and [v]C = [q]C . Then p and q label coterminal paths in H , so
by Lemma 3.8 must have the same value in C.

Moreover, if K is a retract of a descendant of G in which there exists a directed
path from u to v, say with label z, then [u]C [z]C = [v]C or [v]C [z]C = [u]C . Since
[u]C = [v]C , we have [z]C = 1 by (left) cancellativity. �

Lemma 3.10. Let T be an X-tree and let C be two-sided cancellative. Suppose
u and v are distinct vertices of T with a constructable semiwalk labelled ℓ on T
from u to v. Let t be the unique vertex of T , closest to the root, traversed by the
semiwalk. Then there exists a constructable semiwalk between u and v in which the
last idempotent inserted to construct its label corresponds to an idempath beginning
at t.

Proof. If ℓ is 1-constructable, then t ∈ {u, v} and either ℓ or ℓ−1 labels a positively-
labelled idempath beginning at t as required. Now suppose ℓ is not 1-constructable.
Note that there exist paths in T from t to u and t to v. If t ∈ {u, v}, then u and v
are connected in T . Thus by Corollary 3.9 this path is an idempath – the positive
orientation of this path gives us our desired semiwalk. Now suppose further that
t /∈ {u, v}.

Write ℓ ≡ pxyq where p, q ∈
{
X ∪X−1

}∗
and x, y ∈ X∪X−1 such that px is the

first prefix of ℓ tracing a semiwalk ending at t. Since t is the ‘lowest’ vertex visited,
it follows that x ∈ X−1 and y ∈ X . Thus, x and y were letters from different
words inserted in any n-construction of ℓ. Now fix any n-construction. Let ex be
the inserted word containing x, and ey be the inserted word containing y. We split
into cases depending on the order in which ex and ey were inserted.

Case 1: ey was inserted after ex.
Consider the smallest subword of ℓ containing every letter of the word inserted
containing y; call this subword ℓ′. Since ey was inserted after ex, ℓ

′ consists of
letters from ey and letters from words inserted after ey. Moreover, if an inserted
word has any letter in ℓ′, then all of its letters are in ℓ′. It follows that ℓ′ is itself
K-constructable for some K < n. Since ℓ′ does not include the letter x, we may
rewrite ℓ as ℓ = pxℓ′r for some r ∈

{
X ∪X−1

}∗
. Since ey was inserted after ex, we

may find an insertion order to further see that the word pxr is (n−K)-constructable
(by inserting all of the words with letters in ℓ′ last).

By considering the semiwalk traced by ℓ′, we see that it labels a semiwalk be-
ginning at t completely in ConeT (t). Let w be the label of the unique path from
t to ω(ℓ′). Since ℓ′ is K-constructable, we must have that t is identified with the

ω(ℓ′) in T̃ ; hence w labels an idempath by Corollary 3.9. Thus the word pxwr is
(n − K + 1)-constructable. Moreover, it labels a semiwalk on T from u to v as
required.

Case 2: ey was inserted before ex.
Consider the reverse semiwalk labelled ℓ−1 = q−1y−1x−1p−1. By inverting our
construction of ℓ, we have an n-construction of ℓ−1 in which the word containing
x−1 was inserted after the word containing y−1. We may therefore use a dual
argument to that in Case 1 (considering instead the final time the vertex t is
traversed) to determine that there is a constructable semiwalk from v to u on T
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in which the final inserted word traverses an idempath beginning at t. Taking the
inverse label of this semiwalk is our desired semiwalk. �

Lemma 3.10 allows us to define the following. We call an n-constructable semi-
walk from u to v on T standard if there is an n-construction of the semiwalk in
which the final inserted word corresponds to an idempath in T starting at the low-
est vertex of T traversed by the semiwalk. Theorem 3.6 and Lemma 3.10 ensure
that such a semiwalk exists for any pair of identified vertices u and v when T is a
tree and C is two-sided cancellative.

Given an X-graph Γ, we define its condensation Cond(Γ) to be the X-graph
obtained by contracting all vertices of Γ which lie in the same strongly connected
component into a single vertex. Formally, the vertex set Cond(Γ) is {v : v ∈ V (Γ)}

with start vertex α(Γ) and end vertex ω(Γ), and edge set

{u
x
−→ v : u

x
−→ v is an edge of Γ, u 6= v}.

An X-graph is called a directed acyclic graph if it contains no directed cycle
with at least 1 edge, or equivalently, if its strongly connected components are single
vertices. In particular, all X-trees are directed acyclic graphs, and for any directed
X-graph Γ, Cond(Γ) is a directed acyclic graph.

Proposition 3.11. For any X-tree T , Cond(T̃ ) is an X-tree.

Proof. We prove the statement by induction on the number of idempath identi-

fications used to construct T̃ . Suppose Γ = T̃ and T = Γ0,Γ1, . . . ,Γn = Γ is a
sequence of X-graphs where Γk+1 is obtained from Γk by an idempath identifica-

tion, and suppose Cond(Γk) is an X-tree. Let v1
x1−→ v2

x2−→ . . .
xm−1

−−−→ vm be the

idempath in Γk that is identified to obtain Γk+1. For each edge vi
xi−→ vi+1, either

vi = vi+1 or vi
xi−→ vi+1 is an edge in Cond(Γk), so there is a (possibly empty) path

vj1 → vj2 → . . . → vjt in the X-tree Cond(Γk) such that every vi is contained in
vjk for some k.

Denote the graph morphism Γk → Γk+1 by f . Then in Γk+1, the vertices
f(v1), f(v2), . . . , f(vm) lie on a directed cycle and are therefore all in the same
strongly connected component. We furthermore claim that if u is a vertex of Γk
such that u 6= vi for any i, then f(u) 6= f(v1) = . . . = f(vm). Indeed, to show
the contrapositive, assume that there is a directed path p from f(u) → f(vi) and
a directed path q from f(vj) → f(u). Note that without loss of generality, we may
assume that p and q have no internal vertices in the set {f(v1), . . . , f(vm)}, and
therefore they must lift to paths u → vi and vj → u respectively. Then either
u = vi or u = vj , or we have a directed path vj → u → vi in Cond(Γk), but
since Cond(Γk) is an X-tree, by assumption u must then be one of the vertices
{vj+1, . . . , vi−1}, which proves the statement.

It thus follows that the graph Cond(Γk+1) is obtained from the graph Cond(Γk)
by contracting the vertices in the path vj1 → vj2 → . . . → vjt , and is therefore an
X-tree. The statement follows by induction. �

Proposition 3.12. Let C be an X-generated two-sided cancellative monoid and let
Γ be an X-graph which is a retract of a descendant of an X-tree. For any vertex
v, denote by Γv the subgraph of Γ spanned by all directed paths from α(Γ) to v.
Then there is an injective morphism of edge-labeled directed graphs from Γv into
the Cayley graph of C.
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Proof. Denote the Cayley graph of C by Cay(C;X). Recall that this is an X-

labelled directed graph with vertex set C and with edges of the form c
x
−→ cx for

each c ∈ C and x ∈ X .
Define a map φ : V (Γ) → V (Cay(C;X)) by φ(u) = [u]C . To show that this

defines a morphism of edge-labelled directed graphs, we need to show that if there

is an edge u
x
−→ u′ in Γ, then there exists an edge φ(u)

x
−→ φ(u′) in Cay(C;X).

Indeed, by Lemma 3.8, since in Γ (and particularly in the subgraph Γv) co-terminal
paths have labels with equal value in C, we have that [u]Cx = [u′]C . Thus an edge

φ(u)
x
−→ φ(u′) certainly exists in Cay(C;X). This φ extends to a graph morphism.

We claim that this morphism is injective.
Suppose u, u′ ∈ V (Γv) have [u]C = [u′]C . Note Cond(Γv) is a rooted subgraph

of Cond(Γ) – one sees it is a directed tree (in fact a directed path) with root vertex

α(Γ) and exactly one leaf vertex v. It follows that there must exist a directed path
between u and u′ in some direction in Γv, and indeed in Γ. By Lemma 3.8, it must
have label equalling 1 in C and therefore be a cycle. Thus u and u′ are the same
vertex of Γv, that is φ is injective on vertices.

Now suppose edges e and f ′ in Γv have φ(e) = φ(f). Then in particular we
must have λ(e) = λ(f), and by injectivity on the vertices, also α(e) = α(f) and
ω(e) = ω(f). Thus the edges e and f are co-terminal edges in Γv with the same
label. In particular, there exists a retraction on Γ which identifies these edges, so
as Γ is retracted, e = f indeed. �

4. Pretzel Monoids

Our aim in this section is to introduce a kind of left adequate expansion of a
given X-generated right cancellative monoid C. We do this first by a geometric
construction, and later show that the same monoid can be obtained by a natural
presentation in the category of left adequate monoids.

We shall need some basic facts about right and two-sided cancellative monoids,
which will allow us sometimes to restrict to the two-sided cancellative case. An
X-generated special right cancellative monoid is one given by a presentation of the
form RC〈X | wi = 1, i ∈ I〉, that is, where all relations have the identity on one
side of the equality. When we say X-generated special right cancellative monoid,
we mean a right cancellative monoid which is given by a special presentation with
respect to the generating set X . Given a right cancellative monoid C, if we define

C′ = RC〈X | w = 1 for all w ∈ X∗ such that [w]C = 1〉,

then it is easy to see that exactly the same words represent over X represent 1 in C
and in C′. We have the following straightforward characterisation of special right
cancellative monoids:

Theorem 4.1. Special right cancellative monoids are exactly the free products of
free monoids and groups (in the variety of monoids). In particular, they are two-
sided cancellative.

Proof. Given a free product G ∗ Y ∗, where G is generated as a monoid by X , it
has a special presentation RC〈X ∪ Y | w = 1 whenever w ∈ X∗ and [w]G = 1〉.
Conversely, given a special right cancellative monoid C = RC〈X | wi = 1, i ∈ I〉,
partition X as X = Y ∪ Z, where the letters in Y do not appear in any relator,
and the letters in Z appear in at least one. We claim that every letter z ∈ Z
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represents an invertible element in C. Assume uzv is a relator, that is, [uzv]C = 1.
Then [uzvu]C = [u]C and so [zvu]C = 1 by right cancellativity, and similarly,
[vuzv]C = [v]C and hence [vuz]C = 1 by right cancellativity. It follows that [z]C is
in the group of units of C with inverse [vu]C . In particular, Z generates a subgroup.
Since letters in Y do not appear in the relators, C splits as a free product of 〈Z〉∗Y ∗

with 〈Z〉 a group, as we needed. �

Combining with our observation above, and noting that free products of groups
and free monoids are two-sided cancellative, we have:

Corollary 4.2. For every X-generated right cancellative monoid C, there is an
X-generated two-sided cancellative monoid C′ in which exactly the same words rep-
resent the identity element.

Now fix an X-generated right cancellative monoid C (which at certain points we
may assume further to be two-sided cancellative). In the remainder of this section,
all idempath identifications are done with respect to C (or equivalently with respect
to C′, see Corollary 4.2).

We define a binary operation, called unpruned multiplication (or ‘gluing’) on the
set of all X-graphs as follows. For X-graphs G and H , the unpruned product G×H
is given by the graph G∪H with the end vertex of G identified with the start vertex
of H , with start vertex given by the start vertex of the natural embedded copy of
G, and end vertex given by the end vertex of the natural embedded copy of H .
Note that G×H is indeed itself an X-graph.

We additionally define a unary operation, denoted (+) as follows. For an X-
graph G, we let G(+) denote the graph G but with start and end vertex located at
the start vertex of G. As before, note again that G(+) is itself an X-graph.

It is clear that × is an associative operation on the set of X-graphs with a
two-sided identity given by the single-vertex, no-edge graph. Moreover, (+) is an
idempotent operation on the set of X-graphs and the subsemigroup generated by
the image of (+) is commutative under ×. These operations generalise those given
for X-trees in [16, 17].

We now recall the concept of retraction onto the core of an X-graph G [14], and
the notation given by G. Together with our process of idempath identification, we
now look at how our operations interact with the unpruned multiplication.

Lemma 4.3. Let G,H be X-graphs. Then G×H = G×H and
˜̃
G× H̃ = G̃×H.

Proof. First, suppose ρG and ρH are retracts on G and H which have images G and
H respectively. Since the amalgamated vertex in G ×H is a distinguished vertex
of both G and H , it must be fixed by both ρG and ρH . It follows that there is a
unique morphism ρ on G×H which extends the maps ρG and ρH in the expected
way. Since ρG and ρH are idempotent, it follows that ρ is idempotent. Clearly ρ
fixes the start and end vertex of G×H , hence ρ is a retract on G×H . It has image
ρ(G×H) = G ×H. By confluence of retractions (see, for example, [14]), we have

that G×H = ρ(G×H) = G×H .
Next, observe that any idempath in G is also an idempath in G×H . Similarly,

any idempath in H is an idempath in G×H . Thus we have that G̃×H̃ ∈ D(G×H).

Clearly then
˜̃
G× H̃ = G̃×H . �
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Lemma 4.4. Let G be an X-graph. Then G(+) = G
(+)

and G̃(+) = G̃(+).

Proof. Suppose ρ is a retract of G with image G. By definition, ρ defines a graph
endomorphism on G, with V (G) = V

(
G(+)

)
and E(G) = E

(
G(+)

)
. Also, ρ fixes

the start vertex of G, so certainly fixes the start and end vertex of G(+). Thus ρ

defines a retract of G(+) with image G
(+)

. By confluence of retractions, we have

that G(+) = ρ(G(+)) = G
(+)

.
Moreover, it is clear that idempath identifications are independent of the location

of the end vertex of G. Hence clearly G̃(+) = G̃(+) since G(+) and G have the same
underlying graph. �

Lemma 4.5. Let G be an X-graph. Then
˜̃
G = G̃ = G̃.

Proof. We first show the first equality, that is the pruning of a idempath identified
graph is idempath identified. Suppose there exists vertices a, b ∈ V (G) and an

idempath from a to b in G̃. Note that the vertices a, b and this idempath must exist

in G̃ since G̃ is a subgraph of G̃. But G̃ is idempath identified, so a ≡ b in G̃. Then

certainly a ≡ b in G̃. Hence G̃ is idempath identified and thus G̃ =
˜̃
G as required.

We now show the second equality. We first show that there exists graph mor-

phisms φ : G̃ →֒ G̃ and ψ : G̃ ։ G̃. Since G is a pruned subgraph of G, there
certainly exist some embedding ι : G →֒ G and some retraction ρ : G ։ G such

that ρ ◦ ι is the identity map. Moreover, there exists surjections f : G ։ G̃ and

g : G ։ G̃ given by the respective ∼ maps. A diagram of these maps can be seen
in Figure 5.

G G

G̃ G̃

ι

f

ρ

g

ϑ

ψ

Figure 5. The maps of Lemma 4.5.

We first show that g ◦ ι factors through f . Indeed, if two vertices a, b of G are
identified by f , then there is an constructable semiwalk between them in G. As ι
is an embedding, this semiwalk maps to a constructable semiwalk in G from ι(a)
to ι(b), hence (g ◦ ι)(a) = (g ◦ ι)(b). Thus ker(f) ⊆ ker(g ◦ ι). This gives rise to

a well-defined map ϑ : G̃ → G̃ given on edges/vertices by a 7→ (g ◦ ι)(A) where
f(A) = a. Moreover ϑ is a graph morphism: we note that for any edge e adjacent to

vertex a in G̃, there exists some pre-images E and A under f in which A is adjacent
to E in G. Since ι and g are graph morphisms, it follows that (g ◦ ι)(E) is adjacent

to (g ◦ ι)(A) in G̃, and hence that ϑ is a graph morphism. It remains to show that
ϑ is injective. It is sufficient to show that ker(g ◦ ι) ⊆ ker(f). Indeed, if two vertices
a, b of G are identified by g ◦ ι, then there exists a constructable semiwalk from ι(a)
to ι(b) in G. The image of this semiwalk under the retraction ρ is a constructable
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semiwalk from a to b in G, and thus f(a) = f(b). Hence ker(g ◦ ι) = ker(f) and ϑ
is an embedding.

We now similarly construct ψ. We have that f ◦ ρ factors through g, since if two
vertices a, b of G are identified by g, then the constructable semiwalk between them
maps via ρ to a constructable semiwalk between ρ(a) and ρ(b) in G. Hence ρ(a) and

ρ(b) are identified by f . As before, this gives rise to a well-defined map ψ : G̃→ G̃
given on edges/vertices by a 7→ (f ◦ ρ)(A) where g(A) = a. Via identical reasoning
to above, ψ may be seen to be a graph morphism. Moreover, as ψ ◦ g = f ◦ ρ, ψ is
surjective since g, f and ρ are surjective.

We have therefore completed the diagram in Figure 5. The map ϑ allows us to

realise G̃ as a subgraph of G̃. Since ψ is a morphism from G̃ to G̃, we have G̃ = G̃
by Lemma 2.1. �

Lemma 4.6. Let G be an X-graph. Then
˜̃
G = G̃ and G = G.

Proof. This is clear from the definitions. �

Note that unpruned multiplication and (+) do not define a left adequate struc-
ture on the set of X-graphs. Indeed, the identity G(+)G = G does not hold for
any non-trivial G (our multiplication has no requirement for retraction to be per-
formed). However, we may use these operations to define a left adequate structure
of the set of idempath identified and retracted graphs resulting from trees.

We define PT(C;X) to be the set of all (isomorphism types of) X-graphs of the
form

PT(C;X) :=
{
T̃

∣∣∣ T ∈ FLAd(X)
}
.

We call T̃ the pretzel of T . We define a multiplication and unary operation + on
PT(C;X) by

GH := G̃×H and G+ := G̃(+).

These are well-defined operations on graphs in PT(C;X):

Lemma 4.7. For any trees T, S ∈ FLAd(X), T̃ S̃ = T̃ × S and T̃
+

= T̃ (+).

Proof. Firstly,

T̃ S̃ =
˜̃
T × S̃

(1)
=

˜
T̃ × S̃

(2)
=

˜̃
T × S̃

(3)
=

˜̃
T × S̃

(4)
= T̃ × S

where (2) and (4) follow from Lemma 4.3 and (1) and (3) follow from Lemma 4.5.
Secondly,

T̃
+

=
˜
T̃

(+) (1)
=

˜
T̃

(+) (2)
=

˜̃
T (+)

(3)
=

˜
T̃ (+)

(4)
=

˜̃
T (+)

(5)
= T̃ (+)

where (2) and (3) follow from Lemma 4.4, (1) and (4) follow from Lemma 4.5 and
(5) follows from Lemma 4.6. �

Recall the definition of FLAd(X). Its operations are given by TS := T × S

and T+ := T (+) where we identify trees with their isomorphism types. Idempath
identification and retraction are well-defined processes when extended to these iso-
morphism types of trees in FLAd(X). In particular, we have the following result.
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Theorem 4.8. The map Φ : FLAd(X) → PT(C;X) defined by T 7→ T̃ is a
surjective (2, 1, 0)-morphism.

Proof. By definition, any graph in PT(C;X) is Φ(T ) for some tree T . Now let
T, S ∈ FLAd(X). We show that Φ(TS) = Φ(T )Φ(S) and Φ (T+) = (Φ(T ))+.

Now by Lemma 4.7, we have

Φ(T )Φ(S) = T̃ S̃ = T̃ × S
(†)
= T̃ × S = Φ(TS)

and

(Φ(T ))+ = T̃
+

= T̃ (+)
(†)
=

˜
T (+) = Φ

(
T (+)

)
.

where the equalities marked (†) follow from Lemma 4.5.
Finally, it is clear that the identity tree 1 has no idempath identifications or

retractions necessary, and thus Φ(1) = 1. Therefore Φ is a surjective (2, 1, 0)-
morphism. �

Corollary 4.9. The multiplication on PT(C;X) is associative, + is an idempotent
operation and PT(C;X) is X-generated (in the (2, 1, 0) signature). The subsemi-
group generated by the image of + is a semilattice.

Proof. This follows from these properties of FLAd(X). �

We note that the definition of PT(C;X) and the operations upon it depend only
on which words in C represent the identity. Hence by Corollary 4.2 we have:

Proposition 4.10. For every X-generated right cancellative monoid C, we have
that PT(C;X) is isomorphic (as a (2, 1, 0)-algebra) to PT(C′;X) for some X-
generated two-sided cancellative monoid C′.

Since the class of left adequate monoids does not form a variety, Theorem 4.8
does not allow us to immediately conclude that PT(C;X) is left adequate. For
this, a little more work is needed.

Lemma 4.11. G+G = G for any G ∈ PT(C;X).

Proof. Clearly G̃ = G. By definition of the operations and Lemma 4.5, we have

G+G =
˜

G̃(+) × G̃ =
˜

G̃(+) × G̃ =
˜

G̃(+) × G̃ =
˜̃

G(+) × G̃ = ˜G(+) ×G =
˜

G(+) ×G.

Moreover, G(+) ×G = G = G, by retracting the copy of G(+) onto the copy of G.

Hence we have G+G = G̃ = G as required. �

Lemma 4.12. Let G,H, T ∈ PT(C;X). Then GT = HT ⇐⇒ GT+ = HT+.

Proof. By Proposition 4.10, we may assume without loss of generality that C is
two-sided cancellative. Certainly if G,H, T are such that GT+ = HT+, then by
associativity and Lemma 4.11,

GT = G(T+T ) = (GT+)T = (HT+)T = H(T+T ) = HT.

Conversely, suppose GT = HT . By definition of the multiplication, we have that

G̃× T = GT = HT = H̃ × T . Let ρG and ρH be the retraction maps for G̃× T and

H̃ × T respectively, both with images isomorphic to G̃× T = GT = HT = H̃ × T .
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By definition of unpruned multiplication, G×T (+) has the same underlying graph

as G× T but with relocated end vertex. It therefore follows that ˜G× T (+) has the

same underlying graph as G̃× T , with endpoint the image of the amalgamated
vertex of G and T .

We claim that that the map ρG also defines a retract on ˜G× T (+). Clearly, it is
an idempotent morphism of labelled graphs and fixes the start vertex. To establish
the claim we need only to show that it fixes the end vertex, that is, the image of
the amalgamated vertex of G and T . Let g be the end vertex, and suppose for a
contradiction that ρG(g) = h 6= k. Let g′ be the amalgamated vertex and choose
a pre-image k′ of k in G × T (+). By Corollary 3.9, we have [g′]C = [k′]C . Also,
by Corollary 3.9, if there was a directed path (in either direction) between g′ and
k′ that path would have to be an idempath, which would mean g′ and k′ were

identified in ˜G× T (+), contradicting the assumption that g 6= k. Hence, it will
suffice to show that there is such a directed path.

If k′ comes from the embedded copy of T (+) then then there is clearly a directed
path from g′ to k′. So assume k′ comes from the embedded copy of G. Let e denote
the endpoint of T , and choose a directed path from g′ to e in G × T (+), and let p

be the label of this path. Then there is also a path labelled p in ˜G× T (+) from g
to the image of e. Since ρG is a morphism, fixes e and maps g to k, it follows that

must also be a path in ˜G× T (+) from k to e labelled p.
For this to exist, G× T (+) must have an undirected path w from k′ to e of the

form x1y2x2y2 . . . xnyn where each xi is a directed path traversed positively, and
each yi is a constructable semiwalk (and p is the label of x1 · · ·xn). This path must
pass through g′, since k′ is in G, e is in T, and g′ is the sole point of connection

between these subgraphs. Now consider the image of this path in ˜G× T (+). Clearly
x1x2 . . . xn becomes a directed path, and by Lemma 3.4, every vertex traversed by
the yi’s lies in the same strongly connected component as a vertex of this directed
path. It follows that every vertex on the path is at the end of a directed path
starting at k′.

In particular, there is a directed path in ˜G× T (+) from k′ to g′, as required.

This completes the proof of the claim that ρG defines a retract on ˜G× T (+).

A dual argument shows that ρH defines a retract on ˜H × T (+), and has image
HT = GT but with end vertex at the start of T . Therefore by confluence of retracts
and Lemma 4.5, we have that

GT+ =
˜

G× T (+) =
˜

ρG
(
G× T (+)

)
=

˜
ρH

(
H × T (+)

)
=

˜
H × T (+) = HT+

as required. �

Lemma 4.13. Let G ∈ PT(C;X). Then G is idempotent if and only if G+ = G.

Proof. The right-to-left implication follows immediately from Corollary 4.9.
Suppose G ∈ PT(C;X) has GG = G. Consider any path in G from α(G)

to ω(G), say labelled w ∈ X∗. Since ∼ and retraction are graph morphisms, in
the graph GG there exists a path from α(GG) to ω(GG) labelled w2. Since G is
idempotent, GG = G and thus there exists a path from α(G) to ω(G) labelled w2.
By Lemma 3.8, [w]C = [w2]C . Hence [w]C = 1 by right-cancellativity. Since G is
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idempath identified, it follows that the path labelled w in G is a cycle, i.e. that G
has α(G) = ω(G). In particular, G = G+. �

Corollary 4.14. PT(C;X) is an X-generated left adequate monoid.

Proof. By Corollary 4.9 and Lemma 4.13, is is enough to show that every element
T ∈ PT(C;X) is R∗-related to some idempotent. Indeed by Lemma 4.12, TR∗T+

and by Lemma 4.13, T+ is idempotent. �

We call PT(C;X) the pretzel monoid of C with respect to X .

Example 4.15. Consider the cyclic group C = C2 = Mon〈x | x2 = 1〉 of order 2.
Consider any tree T ∈ FLAd({x}) and any branch of length at least 2. Since all
edges are labelled x, the branch will contain an idempath labelled by x2 and thus
will admit a non-trivial idempath identification. By considering all possibilities, one
may see that the pretzel monoid PT(C2; {x}) consists of exactly 5 graphs, namely

the ones shown in Figure 6; that is any tree T ∈ FLAd({x}) has its pretzel T̃
appearing in Figure 6.

×+

+

×

x

×+

x

x
+

×
x

x
×+

x

Figure 6. The 5 graphs in the pretzel monoid PT(C2; {x}). From
left-to-right, the pretzels are images of (e.g.) the trees 1, x, x2, x3

and x+ ∈ FLAd(x).

5. A Presentation

The realisation of pretzel monoids described in Section 4 provides a family of
previously unknown geometrically described left adequate monoids. We encourage
the reader to choose their favourite right cancellative monoid (or even group), and
consider its pretzel monoid with a given generating set. Even small choices for C
produce interesting left adequate monoids. Recall Example 4.15: PT(C2;x) is a 5
elements left adequate monoid (in fact it is left ample [13]) which is not inverse.
One may also verify that PT(C3; {x}) has 10 elements, and is left adequate, but
neither left ample nor inverse.

Moreover, one may compute the multiplication table and verify that PT(C2; {x})
has a presentation given by

PT(C2; {x}) ∼= LAd
〈
x | (x2)+ = x2

〉
.

We shall show, more generally, that for any X-generated right cancellative monoid
C, the pretzel monoid PT(C;X) is always isomorphic to:

M(C;X) = LAd
〈
X | w+ = w for w ∈ X∗ such that [w]C = 1

〉
.

By Corollary 4.2, we may replace C with an X-generated two-sided cancellative
monoid without changing set of words which represent the identity, and hence
without changing either PT(C;X) and M(C;X).
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Assume then, that C is an X-generated two-sided cancellative monoid. For ease
of notation, we write M for M(C;X). To show that PT(C;X) and M represent
the same monoid, our proof strategy is to show that both monoids PT(C;X) and
M are quotients of each other - one of these directions is easy.

Theorem 5.1. The pretzel monoid PT(C;X) is a quotient of M.

Proof. Let w ∈ X∗ such that [w]C = 1. As a tree in FLAd(X), w is a single
idempath, and w+ is the same tree with identified start and end vertex. There are
valid idempath identifications on both w and on w+ identifying the start and end
of the path labelled w. Both of these identifications result in a graph consisting of a
cycle labelled w with identified start and end vertex and the start of w. Hence w and

w+ have a common descendant, and thus w̃ = w̃+. Thus [w]PT(C;X) = [w+]PT(C;X).
Since PT(C;X) is also left adequate, it follows that PT(C;X) satisfies all defin-

ing relations of M. Thus PT(C;X) is a quotient of M. �

The remainder of this section is devoted to showing that M is a quotient of

PT(C;X). Our goal, therefore, is to show that if two X-trees S and T have S̃ = T̃ ,
then [S]M = [T ]M.

Recall that Corollary 2.8 allows us to modify X-trees without changing their
value in M by copying cones of vertices from one end of an idempath to the other.
Notice that an idempath is a 1-constructable semiwalk; one may hope to be able
to copy cones through n-constructable semiwalks for any n ≥ 1 without changing
the value in M. Indeed we are able to do so.

Given vertices u, v of an X-tree T , define T |u→v to be the X-tree obtained as
follows. The underlying tree is obtained taking the disjoint X-tree T and an extra
copy of the subtree ConeT (u), and identifying the vertex u in the copied ConeT (u)
with the vertex v in T . Informally, we ‘glue’ a copy of ConeT (u) to v. Define φ to
be the copying map from ConeT (u) to the obvious subtree of ConeT |u→v (v). We
identify T with its natural image in the tree in T |u→v. We make T |u→v an X-tree
by defining α(T |u→v) to be α(T ), and

ω (T |u→v) =

{
ω(T ) if ω(T ) /∈ ConeT (u)

ω(φ(ConeT (u))) if ω(T ) ∈ ConeT (u)

That is, the endpoint is copied along with the cone if possible.

Example 5.2. Figure 7 shows an {x, y}-tree T with vertices u,v and T |u→v.

+

u

×

v

x

x

y

x

yx

+

×

x

x

y

x

yx

y

Figure 7. An {x, y}-tree T and the tree T |u→v.
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Theorem 5.3. Let C be an X-generated special right cancellative monoid. Let T

be an X-tree and suppose u and v are vertices of T which are identified in T̃ . Then
[T ]M = [T |u→v]M.

Proof. If u and v are the same vertex in T , then [T ]FLAd(X) = [T |u→v]FLAd(X) so
certainly the result holds. Now suppose u and v are distinct vertices of T . By
Theorem 3.6, there exists an n-constructable semiwalk s on T from u to v for some
n ≥ 1. If there exists a directed path from u to v or from v to u, then this path is
an idempath by Lemma 3.8. Hence the result follows directly from Corollary 2.8.

We show our result by induction on n. If n = 1, then s is a directed path
between u and v and the result follows as above. Assume now that the result holds
for K-constructable semiwalks for some integer K ≥ 1. Suppose that s is (K + 1)-
constructable, and moreover that there is no directed path from u to v or from v
to u in T .

By Corollary 4.2 and Lemma 3.10, we may assume that s is a standard semiwalk.
Let t denote the lowest vertex of the tree traversed by s. Note that t /∈ {u, v}, as
there exists paths from t to u and t to v. Decompose s = pwq into semiwalks p,w, q,
where λ(w) ∈ X∗∪(X−1)∗ is a final inserted word in a (K+1)-construction of λ(s)
which corresponds to an idempath w in T with α(w) = t. Note that w may traverse
w either positively or negatively. Moreover, note that λ(p)λ(q) is a K-constructable
word.

Denote ConeT (t) by A. Form the tree T |t→t, and denote by A′ the newly added
copy of A. Since there exists a morphism of T |t→t to T and T is realisable as a
birooted subtree, we have [T ]FLAd(X) = [T |t→t]FLAd(X) by Lemma 2.1.

Define the map φ : A → A′ to be the obvious isomorphism of directed graphs.
Since A contains the vertices u and v, the path w and the semiwalks p and q,
A′ contains vertices φ(u) and φ(v), the path φ(w), and semiwalks φ(p) and φ(q).
Moreover, ConeT |t→t(φ(u)) ∼= ConeT (u). Figure 8 shows the general case of T and
T |t→t, with subtrees A and A′ denoted. In both cases, the endpoint of T |t→t may
or may not be located in A′, but it is certainly not located in A.

Define the tree TA to be the tree T |t→t with the entire subtree A moved up to
ω(φ(w)). Similarly, define the tree TA′ to be the tree T |t→t with the entire subtree
A′ moved up to ω(w). In both cases, if α(T ) = t then we leave the start point
of T |t→t at t when we move, though we move the endpoint with the subtree if
applicable. By Corollary 2.8, we have both [TA]M = [T |t→t]M = [TA′ ]M.

Note that TA and TA′ have isomorphic underlying trees, only differing in the
location of endpoint, specifically when ω(T ) ∈ ConeT (t). The general idea of
the proof is as follows: in the trees TA and TA′ , we may read a K-constructable
semiwalk labelled λ(p)λ(q) from u or φ(u) to v or φ(v), and appeal to the inductive
hypothesis to copy certain cones. We then reappeal to Corollary 2.8 to move our
subtrees A or A′ back to t, and then show they may retract in our new tree. Our
upcoming splitting of cases is solely to handle the location of the endpoint in our
final tree.

Formally, we must now split into cases depending on w and the location of ω(T ).
Case 1: w is traversed positively by w and ω(T ) ∈ ConeT (u).

Note that ω(TA′) ∈ ConeTA′
(φ(u)). Since w was traversed positively, in TA′ there

is a semiwalk

φ(u)
λ(φ(p))
−−−−−→ ω(w)

λ(q)
−−−→ v
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Figure 8. The general situation of T (left) and T |t→t (right) when
w is positively traversed (top) and negatively traversed (bottom).

with label λ(φ(p))λ(q) = λ(p)λ(q). Since λ(p)λ(q) is K-constructable, our induc-
tive hypothesis applies and thus we have [TA′ ]M = [TA′ |φ(u)→v]M. In the tree
TA′ |φ(u)→v, the subgraph A′ now certainly does not contain the endpoint, as it was
copied over with ConeTA′

(φ(u)). We may now ‘undo’ our move of A′ and move it
back to t; by Corollary 2.8, our M-value is still unchanged. It follows that now A′

will retract onto A and our new copy of ConeTA′
(φ(u)) ∼= ConeT (u). This results

in exactly the tree T |u→v.
Case 2: w is traversed positively by w and ω(T ) /∈ ConeT (u).

Since w was traversed positively, in TA there is a semiwalk

u
λ(p)
−−−→ ω(φ(w))

λ(φ(q))
−−−−−→ φ(v)

with label λ(p)λ(φ(q)) = λ(p)λ(q). Since λ(p)λ(q) is K-constructable, our induc-
tive hypothesis applies and thus we have [TA]M = [TA|u→φ(v)]M. We may now
‘undo’ our move of A and move it back to t; by Corollary 2.8, our M-value is still
unchanged. It follows that A will retract onto A′ as it could have in T |t→t. This
results in exactly the tree T |u→v.

Case 3: w is traversed negatively by w and ω(T ) ∈ ConeT (u).
Note that ω(TA) ∈ ConeTA

(φ(u)). Since w was traversed negatively, in TA there is
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a semiwalk

φ(u)
λ(φ(p))
−−−−−→ α(w)

λ(q)
−−−→ v

with label λ(φ(p))λ(q) = λ(p)λ(q). Since λ(p)λ(q) isK-constructable, our inductive
hypothesis applies and thus we have [TA]M = [TA|φ(u)→v]M. In the tree TA|φ(u)→v,
the subgraph A′ now certainly does not contain the endpoint, as it was copied over
with ConeTA

(φ(u)). We may now ‘undo’ our move of A and move it back to t; by
Corollary 2.8, our M-value is still unchanged. It follows that now A′ will retract
onto A and our new copy of ConeTA

(φ(u)) ∼= ConeT (u). This results in exactly the
tree T |u→v.

Case 4: w is traversed negatively by w and ω(T ) /∈ ConeT (u).
Since w was traversed negatively, in TA′ there is a semiwalk

u
λ(p)
−−−→ ω(w)

λ(φ(q))
−−−−−→ φ(v)

with label λ(p)λ(φ(q)) = λ(p)λ(q). Since λ(p)λ(q) is K-constructable, our induc-
tive hypothesis applies and thus we have [TA′ ]M = [TA′ |u→φ(v)]M. We may now
‘undo’ our move of A′ and move it back to t; by Corollary 2.8, our M-value is still
unchanged. It follows that A will retract onto A′ as it could have in T |t→t. This
results in exactly the tree T |u→v.

In all cases, we have constructed our desired tree. The result therefore follows
by induction. �

Theorem 5.3 is our first clue that the pretzel monoid truly is M. Notice that if

u and v are identified vertices in T̃ , then the graphs T and T |u→v have isomorphic

retracts after the vertices u and v are identified; in particular T̃ = T̃ |u→v.

Our strategy for showing S̃ = T̃ implies [S]M = [T ]M involves building a tree

U depending only on the pretzel S̃ = T̃ , and showing that [S]M = [U ]M = [T ]M.

This U will be the tree of almost simple paths of S̃ (= T̃ ).

Fix a tree T and its pretzel T̃ . Suppose T̃ has n edges, and denote them by the

set E := {1, 2, . . . , n}. An almost simple path in T̃ is a directed path starting at the
root which does not repeat vertices, except possibly its final visited vertex.

In general, these are paths with label such that any subword equal to 1 in C is
a suffix. Each of these paths admit a labelling by X and also by the set E where

the label of an edge is determined by the index of the edge it was read from in T̃ .
Here, it is necessary to introduce determinisation of trees (see, for example,

[22]). An X-tree T is X-deterministic if for every X ∈ X , any subgraph of T with
equally-labelled edges e1 and e2 of the form

(5.1)

x

x

implies that the e1 and e2 are the same edge of T . The determinisation of T
with respect to the labelling X , is the deterministic tree obtained by sequentially
transforming all subgraphs of the form (5.1) to a single edge labelled x, as such
the cone of the identified vertex becomes the union of two cones. This process is
referred to as performing Stallings foldings [18, 26]. Such a graph is unique (see,
for example, [27, Theorem 4.4]).



28 DANIEL HEATH, MARK KAMBITES, AND NÓRA SZAKÁCS

The tree U is taken to be the (unrooted) tree consisting of all of the almost

simple paths of T̃ , determinised with respect to the labelling by {1, . . . , n}. Note
that U may not be deterministic with respect to X .

Each vertex or edge of U corresponds to a unique vertex or edge of T̃ with the
expected correspondence. Since ω(T ) may lie on multiple almost simple paths,
there may be multiple vertices of U which correspond to ω(T ). Because of this, we
formally define the set

U(T̃ ) := {(U , v) | v ∈ V(U) corresponds to ω(T )}.

We represent U(T̃ ) as a single tree, with multiple endpoints corresponding to each

(U , v) ∈ U(T̃ ) where we treat v as the endpoint of U . This tree admits both X-
and E-labellings via the respective labellings for U . When referring to the labelling
of edges, we will modify our λ notation to λX or λE to avoid ambiguity.

Example 5.4. Let C = Z3 × Z3 = 〈x, y〉. Figure 9 shows a pretzel Γ with an
E-labelling where E = {1, . . . , 10}. We have the three trees of almost simple paths,
shown in Figure 10. Note that U(Γ) is deterministic with this E-labelling.

+

×

x

x
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x
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×
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Figure 9. A relabelling of a pretzel.

We now proceed to show our main result, using the trees in U(T̃ ).

Lemma 5.5. Suppose S is an X-tree such that idempaths go to leaves. Then S

admits a birooted X-graph morphism to some US ∈ U(S̃).

Proof. Let E be the edge set of S̃. We may consider S as an E-tree by fixing a map

from S to S̃ and labelling each edge by its image under this map. By definition, any

(U , v) ∈ U(S̃) also has such a labelling, and under this labelling is deterministic.

For any (U , v) ∈ U(S̃), we define a map φ(U ,v) : S → (U , v) on the vertices of
S as follows. For u ∈ V (S), consider the E-label of the unique path from the start

of S to u. Since all idempaths in S go to leaves, this path is almost simple in S̃,

and hence corresponds to some path from the root in any (U , v) ∈ U(S̃) with the
same E-label. Moreover, since each (U , v) is E-deterministic, such a path is unique.
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Figure 10. The tree U(T̃ ) for the pretzel of Figure 9, shown with
both X- and E-labellings and with all possible endpoints marked.

Define φ(U ,v)(u) to be the vertex of U at the end of this path. Extend each φ(U ,v)
to edges in the natural way.

We claim that φ(U ,v) is a birooted X-graph morphism for some (U , v) ∈ U(S̃).
By definition, all such maps respects adjacency of edges and E-labels (and hence
X-labels). Each also clearly sends α(S) to α((U , v)).

Consider the image of ω(S) under each φ(U ,v). Since the trunk of S corresponds

to an almost simple path in S̃, there is some (U , v) ∈ U(S̃) whose endpoint satisfies
ω((U , v)) = φ(U ,v)(v). This particular φ(U ,v) is therefore our desired birooted graph
morphism and US := (U , v). �

Corollary 5.6. Let S and US be as in Lemma 5.5. If there exists a subgraph of S,
rooted at α(S) and containing ω(S), which is isomorphic as a birooted X-graph to

some V ∈ U(S̃), then V ∼= US .

Proof. By Lemma 5.5, there exists some birooted X-graph morphism φ : S → US .

Suppose, for a contradiction, that V ≇ US . Since US ,V ∈ U(S̃), they only differ in
the location of their endpoint. Therefore a contradiction will be reached if we show
that ω(V) is in the same location as ω(US).

Since ω(S) ∈ V , the unique path from the start vertex to the end vertex, say
E-labelled by ℓ, is also the label of trunk of V . By definition of φ, ω(U) is at the
end of the unique path in U from the start vertex labelled ℓ. But this is exactly
where the endpoint of V is, hence a contradiction. �

Lemma 5.7. Fix an X-tree T and its idempath identified descendant T̃ . Let S

be an X-tree and suppose there exists a birooted X-graph morphism φ : S → T̃ .
Then there exists a birooted X-tree TS, with [TS ]M = [T ]M, which contains an
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isomorphic copy of S rooted at α(TS), with ω(TS) located at the natural image of
the endpoint of S under this embedding.

Proof. Consider the graph morphism ∼: T → T̃ . Let e be any edge of S. Since

φ(e) is an edge of T̃ , there is a unique edge e′ of T for which ẽ′ = φ(e). Since φ
and ∼ are graph morphisms, we have that

φ(α(e)) = α
(
ẽ′
)
= α̃(e′) and φ(ω(e)) = ω̃(e′) and λX(e) = λX(e′).

Our strategy is to build a copy of S onto T by copying the primed edges into
their correct location, relying on Theorem 5.3. We do so top-down, assembling the
‘highest’ cones of S first and later moving them into position. Since we require the
endpoint to be in our built S, we first ensure that ω(T ) is in the correct location
so we can copy it later.

If ω(S) = α(S), then we must have

α̃(T ) = α
(
T̃
)
= φ(α(S)) = φ(ω(S)) = ω

(
T̃
)
= ω̃(T ).

Hence the start and end vertex of T are connected by a constructable semiwalk
by Theorem 3.6. If they are trivially connected then set T0 := T , otherwise set
T0 := T |ω(T )→α(T ).

Otherwise, if ω(S) 6= α(S), then there is some edge e of S with ω(e) = ω(S).
Via similar reasoning to the case above, we see that

ω̃(T ) = ω
(
T̃
)
= φ(ω(S)) = φ(ω(e)) = ω̃(e′).

Hence ω(e′) and ω(T ) are connected by a constructable semiwalk by Theorem 3.6.

Set T0 := T |ω(T )→ω(e′).
By Theorem 5.3, [T0]M = [T ]M. We now build a sequence of trees T1, . . . , Th−1,

where h is the height of S, where each tree Ti contains T as a subtree rooted at
α(Ti), and satisfies the following properties:

(P0) [Ti]M = [T ]M.
(P1) For any edge e of S with the height of ConeS(ω(e)) at most i, Ti contains

a copy of the ConeS(ω(e)) rooted at ω(e′), with the endpoint in place if
ω(S) ∈ ConeS(ω(e)).

(P2) If ω(S) = α(S), then ω(Ti) = α(Ti). If instead ω(S) 6= α(S), then for the
edge f of S with ω(f) = ω(S), if the height of ConeS(ω(f)) is greater than
i, then ω(Ti) = ω(f ′).

We construct our trees Ti by induction. Our base case is the tree T0 constructed
above.

By construction, T0 immediately satisfies P0. For P1, note that any edge e of
S with ConeS(ω(e)) having height at most 0, must be an edge which terminates at
leaf. Hence ConeS(ω(e)) is a single vertex, either with or without the endpoint of
S. If it doesn’t contain the endpoint, then certainly the cone of ω(e′) in T0 contains
a copy of the trivial tree. If it does contain the endpoint, then our manipulation
above ensured that ω(T0) = ω(e′) as required: hence P1 is satisfied. Moreover,
our construction of moving the endpoint ensured that P2 is satisfied by T0 as the
ω(T0) is either α(T0) (if ω(S) = α(S)), or at the end of the prime of the correct
edge. Hence our base case is satisfied.

Now suppose that we have constructed a tree Ti satisfying our three required
properties. We construct the tree Ti+1 as follows. Let e be any edge of S where



PRETZEL MONOIDS 31

ConeS(ω(e)) has height i + 1, and consider the edges f1, . . . , fk of S in this cone
which are incident with ω(e). The height of each ConeS(ω(fj)) is at most i, and so
(by inductive assumption) there is an isomorphic copy of ConeS(ω(fj)) located in
Ti at ω(fj

′), containing ω(Ti) if the respective cone in S contains ω(S).
Now for each fj , note that

α̃(fj
′) = α

(
f̃j

′
)

= α(φ(fj)) = φ(α(fj)) = φ(ω(e)) = ω̃(e′).

Hence there is a constructable semiwalk on T connecting α(fj
′) and ω(e′). This

semiwalk still exists in the embedded copy of T in Ti, and so we appeal to Theorem
5.3 to copy the Ti-cone of ω(fj

′) to ω(e′), forming Ti|ω(fj
′)→ω(e′).

Perform this operation for all of f1, . . . , fk. The new cone of ω(e′) in the resulting
tree certainly contains a copy of ConeS(ω(e)), with endpoint in place if ω(S) is in
ConeS(ω(fj)) for some j. If ω(S) = ω(e), then since Ti satisfied P2 for the edge
e (since its S-cone has height i + 1 > i), ω(Ti) = ω(e′), and we haven’t moved
it in constructing our new tree. Thus it is still located at ω(e′). This shows that
the new cone of ω(e′) contains a copy of the ConeS(ω(e)), including endpoint if
ω(S) ∈ ConeS(ω(e)).

Apply these operations for all such edges e and call the resulting tree Ti+1. By
the argument above, Ti+1 satisfies P1, and since all operations performed maintain
the M-value by Theorem 5.3, we have that [Ti+1]M = [Ti]M = [T ]M, and so
P0 is satisfied. Moreover, Ti+1 satisfies P2, since if ω(S) = α(S), then we have
ω(Ti) = α(Ti), and we haven’t moved the endpoint in our construction. Thus
ω(Ti+1) = α(Ti+1). If instead ω(S) 6= α(S), then the only case in which we had
moved the endpoint is if ω(S) ∈ ConeS(ω(fj)) for some fj , which has height at
most i. Thus Ti+1 trivially satisfies P2 if we moved the endpoint (as the cone will
have height at most i), or if we didn’t move the endpoint then Ti+1 trivially satisfies
P2 because Ti does.

Hence we may inductively construct the tree Th−1 satisfying our three properties.
We may now construct our tree TS. Let e1, . . . , el be the initial edges of S. The
height of the ConeS(ω(ei)) is at most h − 1 for each i, and thus respective copies
of these cones are located at ω(ei

′) in Th−1 by induction (including endpoint if
applicable). Then note that

α̃(ei′) = φ(α(ei)) = φ(α(S)) = α̃(T ).

Thus there are n-constructable semiwalks on T connecting α(T ) to each α(ei
′).

These semiwalks still exist in Th−1. As before, we use Theorem 5.3 to copy the
cones of each α(ei

′) to α(Th−1), moving the endpoint if the S-cone of ω(ei) contains
the endpoint of S. This constructs a copy of S rooted at the start vertex of our
new tree, with the endpoint in place if the endpoint of S is not the start vertex
of S. If the start vertex of S is the endpoint, then by inductive assumption, Th−1

had endpoint at α(Th−1), and the construction above did not move this endpoint.
Thus our endpoint of our new tree is also at the start vertex; the ‘correct’ place
in S. This is our required tree TS, which satisfies P0 by construction; that is
[TS]M = [T ]M. �

Corollary 5.8. Let T be an X-tree. Fix a (U , v) ∈ U(T̃ ). Then there exists a tree
T(U ,v), with [T(U ,v)]M = [T ]M, which contains an isomorphic copy of (U , v) rooted
at α(T ).
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Proof. The graph T̃ contains (possibly many) images of the graph T̃ ; fix one such

subgraph. The morphism (U , v) → T̃ which sends an edge to its E-label naturally

admits a morphism (U , v) → T̃ via our chosen embedded subgraph. This morphism
is also an X-graph morphism since it is a morphism of graphs labelled by E . Hence
a tree T(U ,v) exists by Lemma 5.7. �

Theorem 5.9. Let C be an X-generated right cancellative monoid and define M

as above. Suppose S and T are trees such that S̃ = T̃ . Then [S]M = [T ]M.

Proof. Let U = U(S̃) = U(T̃ ) and fix a (U , v) ∈ U. By Corollary 5.8, there
exists a tree S(U ,v) containing an embedded copy of (U , v) at the root, such that
[S(U ,v)]M = [S]M. By Corollary 2.9, there further exists a tree S′

(U ,v), constructed

from S(U ,v) with [S′
(U ,v)]M = [S(U ,v)]M, in which idempaths go to leaves. By

examining the proof of Corollary 2.9, we note that the resulting tree S′
(U ,v) still

contains a copy of (U , v) at the root, as (U , v) has the property that idempaths go

to leaves. Moreover, since [S′
(U ,v)]M = [S]M, Theorem 5.1 implies that S̃′

(U ,v) = S̃.

By Lemma 5.5 and Corollary 5.6, S′
(U ,v) admits a birooted X-graph morphism

φ to (U , v). By Lemma 2.1, it follows that the trees S′
(U ,v) and (U , v) are equal in

the free adequate monoid, and so [S]M = [S′
(U ,v)]M = [(U , v)]M.

Dually, we have that [T ]M = [(U , v)]M. Hence we have

[S]M = [(U , v)]M = [T ]M

and the result is proved. �

Corollary 5.10. Let C be an X-generated right cancellative monoid and define M
as above. Then PT(C;X) ∼= M.

Proof. Theorem 5.1 and Theorem 5.9 give that the maps induced by the generating
sets X in both directions are morphisms. �

We close by discussing the nature of pretzel monoids as expansions of right can-
cellative monoids, and in particular the extent to which they are natural analogues
of Margolis-Meakin expansions [20] in inverse semigroup theory.

First, it straightforward to check that the construction of a pretzel monoid from
a right cancellative monoid is an example of an expansion in the sense of Birget
and Rhodes [3], moreover it is the free idempotent-pure expansion in the sense of
[19].

The presentation which we show in Corollary 5.10 defines a pretzel monoid in
terms of a right cancellative monoid C is clearly the left adequate analogue of a well-
known inverse monoid presentation for Margolis-Meakin expansions [20, Corollary
2.9]. The respective geometric representation also bear a certain resemblance: ele-
ments of the Margolis-Meakin expansion of an X-generated group G are birooted
subgraphs of the Cayley graph of G with respect to X ; elements of the pretzel
monoid of an X-generated right cancellative monoid C are not quite subgraphs of
the Cayley graph of C (this would require them to be co-deterministic, and any def-
inition attempting to enforce this property is likely to result in a left ample monoid)
but Proposition 3.12 shows how they are closely related to such subgraphs.

A Margolis-Meakin expansion of a group G has maximal group image G. In
contrast, the maximal right cancellative image of the Pretzel monoid PT(C;X)
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will clearly be the special right cancellative monoid C′ defined from C as at the
beginning of Section 4, and so will be C only in the case that C is itself special
right cancellative.

Taking C to be free, we recover FLAd(X), in a similar regard to how one recovers
free inverse monoids from taking free groups in Margolis-Meakin expansions.

Margolis-Meakin expansions are E-unitary inverse monoids; the property of be-
ing E-unitary has several equivalent characterisations for inverse semigroups, which
turn out to be non-equivalent in the left adequate setting [4, 6, 12]. One charac-
terisation is that an inverse monoid is E-unitary if the natural morphism to its
maximal group image is idempotent-pure, that is, if the elements which map to 1 in
the maximal group image are all idempotent. It is immediate from our presentation
of pretzel monoids that PT(C;X) has the corresponding properties with respect
both to the right cancellative monoid C used to construct it and the special right
cancellative monoid C′ (which is its maximal right cancellative image). Moreover,
it can easily be shown from the presentation that PT(C;X) in the category of X-
generated left adequate monoids with maximal right cancellative image C′, with
morphisms the idempotent-pure (2, 1, 0)-morphisms.

It remains open if there is an alternative natural (perhaps geometric) way to
define a left adequate expansion of a right cancellative monoid C which shares
other properties of the Margolis-Meakin expansion, in particular such that the
right cancellative image is always C.
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