
Unbundle-Rewrite-Rebundle: Runtime Detection and Rewriting
of Privacy-Harming Code in JavaScript Bundles

Mir Masood Ali
mali92@uic.edu

University of Illinois Chicago

Peter Snyder
pes@brave.com
Brave Software

Chris Kanich
ckanich@uic.edu

University of Illinois Chicago

Hamed Haddadi
h.haddadi@imperial.ac.uk

Imperial College London, Brave Software

ABSTRACT
This work presents Unbundle-Rewrite-Rebundle (URR), a system
for detecting privacy-harming portions of bundled JavaScript code,
and rewriting that code at runtime to remove the privacy harm-
ing behavior without breaking the surrounding code or overall
application. URR is a novel solution to the problem of JavaScript
bundles, where websites pre-compile multiple code units into a
single file, making it impossible for content filters and ad-blockers
to differentiate between desired and unwanted resources. Where
traditional content filtering tools rely on URLs, URR analyzes the
code at the AST level, and replaces harmful AST sub-trees with
privacy-and-functionality maintaining alternatives.

We present an open-sourced implementation of URR as a Firefox
extension, and evaluate it against JavaScript bundles generated
by the most popular bundling system (Webpack) deployed on the
Tranco 10k. We measure the performance, measured by precision
(1.00), recall (0.95), and speed (0.43s per-script) when detecting
and rewriting three representative privacy harming libraries often
included in JavaScript bundles, and find URR to be an effective
approach to a large-and-growing blind spot unaddressed by current
privacy tools.

1 INTRODUCTION
An enormous body of research has establishedWeb content filtering
(e.g., blocking advertising, tracking, and other unwanted network
requests on websites) as an important and effective technique for
improving privacy[36, 48], security[42, 66], and performance[35,
53]. Most Web content filtering approaches rely on crowd sourced
lists of regular-expression-like rules that describe which URLs the
browser should load, and which should be blocked.

This approach—broadly, URL based content filtering—works be-
cause URLs in practice provide useful and stable information about
the resources they map to. In some cases this is because of the text
in the URL (e.g., browsers can make a reasonable guess about the
purpose of JavaScript returned from a URL like
https://advertising.example/tracker.js), or because experts
have manually evaluated the resource returned from a URL and
found it to be similarly harmful to users.

However, modern Web development practices make URL based
content filtering increasingly difficult. Previously, Web applications
were often delivered as a collection of discrete JavaScript files,
each fetched independently from their own URL (e.g., /script/li-
brary.js, /script/tracker.js ,/script/app.js), which allowed
URL-based content filtering tools to easily block some parts of an

application, but not others. Increasingly though, developers inte-
grate bundling tools as part of their build and deployment practices,
compiling all of the libraries and application code into a single
file unit, which is delivered to the browser from a single URL (e.g.,
/script/bundle.js).

These bundling approaches, inadvertently or otherwise, circum-
vent URL based content filtering tools. When applications are de-
livered as a single bundled code unit, URL based filtering tools
can no longer block just parts of the application; blocking a site’s
JavaScript becomes an all-or-nothing proposition. And since block-
ing all JavaScript on a page breaks useful functionality on many
sites, in practice content filtering tools are reduced to blocking noth-
ing, reintroducing the privacy, security, and performance issues the
user wanted to avoid in the first place.

This work presents the design and implementation of Unbundle-
Rewrite-Rebundle (URR), a system to enable content blocking in
modern Web applications, even when Web applications are de-
ployed as a compiled, single file JavaScript bundle. In other words,
URR aims to enable browsers to avoid executing the code from
/script/tracker.js, while still executing the non-privacy harm-
ing code originally provided in /script/library.js and /scrip-
t/app.js, even when all three libraries are bundled and delivered
in /script/bundle.js.

URR is a novel, practical solution to a problem that has been
explored by a vein of related Web privacy research. Works like [19]
identify that bundled applications are widespread and pose a serious
challenge to Web privacy, and [59] found that blocking these bun-
dled JavaScript resources often broke the benign, desirable parts of
websites. Systems like [60] showed that bundled applications could
be automatically rewritten to prevent privacy harm, though with
expensive precomputation, which rendered practical deployment
prohibitive. URR is a first-in-class approach to solving the privacy
and security harms caused by bundled JavaScript applications, in a
method that is performant and practical.

To do so, URR solves several non-trivial challenges:
First, the system must identify known privacy harming code

(e.g., the code delivered from /script/tracker.js) within the
larger bundled application, in the absence of any information about
the URL the code originally came from. This identification must
be robust even across the kinds of code modifications and trans-
formations JavaScript bundlers make in their build processes (e.g.,
minification, dead-code elimination, tree-shaking).

Second, URR must remove known-privacy-harming code from
the bundled application, without breaking desireable functionality

ar
X

iv
:2

40
5.

00
59

6v
2

 [
cs

.C
R

]
 7

 M
ay

 2
02

4

Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

in the surrounding code. Just deleting unwanted libraries from a
bundled application will, in practice, be counter productive, since
the applicationwill fail when trying to access now-deleted functions
and classes defined by the deleted library. A useful solution must
remove the unwanted, target libraries from the bundled application
without breaking surrounding code.

Third, such a system must be performant, and be able to Debun-
dle, analyze, modify, and reconstitute bundled Web applications
at runtime, and quickly, in a way that maintains the usefulness
of the Web application. If the performance overhead of a privacy-
and-security preserving system is too costly, then the system is in
practice unusable, and so not meaningfully useful at benefit Web
users.

URR is implemented in several parts: i. as a database of signatures
of ASTs of real world known-privacy-harming code, ii. a library of
crowd sourced privacy-preserving alternative implementations of
privacy-harming code, designed to remove privacy harming behav-
iors without impacting surrounding application code, iii. a browser
extension that, at runtime, decomposes a bundled JavaScript ap-
plication into its constituent libraries, detects the sub-ASTs from
the bundled application that come from known-privacy-harming li-
braries, and rewrites the bundled application with the stub-libraries
in place of the privacy-harming versinos.

More broadly, this work makes the following contributions to
Web privacy and security.
(1) A novel algorithm for efficiently generating fingerprints of

bundled modules within JavaScript libraries. These fingerprints
are robust to many of the modifications that bundling tools
make during their complication process (e.g., label minification,
“tree-shaking”).

(2) An open sourced, empirically tuned system for:
(a) unbundling applications into their constituent libraries
(b) generating fingerprints for each sub-library and checking

them against a database of known unwanted JavaScript
libraries

(c) replacing unwanted JavaScript libraries with compatibility-
preserving “shim” implementations, which maintain the li-
brary’s API “shape”, while removing any privacy-or-security
affecting behaviors

(d) reconstituting the resulting new application into a new
bundle, that can then be passed to the browser’s JavaScript
engine for normal execution.

(3) An empirical evaluation of the accuracy and performance of
our system when applied to a representative crawl of the Web,
finding that our system results in libraries being blocked on 7%
of the top 10K sites in the Tranco list, within practical perfor-
mance bounds.

(4) An open source implementation of our system as a Firefox
extension, along with the complete dataset for all discussed
figures and measurements.

2 BACKGROUND
This section first provides a primer on concepts relevant to bundling
and their use in web development. It then presents a simple ex-
ample that highlights the limitations of existing content blocking

approaches. The section concludes by outlining the properties of
an effective solution.

2.1 Bundles and Relevant Concepts
As websites and web applications grow more complex, they re-
quire a plethora of functionality, often aided by numerous libraries
and dependencies. Handling these dependencies can prove to be
quite strenuous, especially when needing to take into account the
range of platforms on which the code needs to correctly execute.
JavaScript bundlers are essential tools used by web developers to
streamline the handling of code and dependencies within complex
web applications. At its core, a JavaScript bundler is a utility that
gathers and wraps code from multiple JavaScript files. Bundles not
only reduce the number of network requests required to load a web
page but also optimize the handling of dependencies and various
aspects of development and production environments. The simplic-
ity of the example hides certain nuances necessary to understand
the complexity of bundles. Below, we introduce a few fundamental
concepts that can help better understand JavaScript bundles.

2.1.1 Modular Programming. Web developers design and create
websites in different environments than browsers. These environ-
ments have their own caveats and follow different programming
concepts and philosophies. Modular programming is a general pro-
gramming concept where developers separate complex application
code into independent pieces called modules. A module forms the
atomic unit of a bundle, and rougly corresponds to a code snip-
pet relevant to a file or library that exports functionality that is
consumed by other modules. Popular JavaScript development envi-
ronments like Node.js [1] adopt a modular programming approach.
Developers can create their own modules and use reuse modules
available in the npm registry [2].

2.1.2 JavaScript Module Systems. Like development environments
and programming approaches, JavaScript module systems are also
not a monolith. Depending on the context in which they are con-
sumed and executed, JavaScript modules express functionality in
different ways. The twomost popular module systems for JavaScript
are (1) the ECMAScript modules (ESM) which are consumed with
import statements, and (2) CommonJS (CJS) modules which are
consumed with require statements. While Node.js supports both
types of modules, web browsers only recognize import statements.
Bundles therefore include wrappers around modules and provide
workarounds for require statements within web browsers.

2.1.3 Inter-module Dependencies. Larger projects include multiple
libraries and packages, and as a result comprise numerous, inter-
dependent modules. When bundles gather and parse all the modules
that need to be combined, they create a dependency graph that
helps determine (1) the order and chain of dependencies between
modules, and (2) which code snippets can be combined within a
module and which snippets need to be split across multiple modules.

2.1.4 Minification. Bundlers additionally perform a code transfor-
mation step that reduces the overall size of the code. Depending
on various configuration and optimization options, minification

Unbundle-Rewrite-Rebundle

1 (function (modules) {
2 // The module cache
3 var installedModules = {};
4
5 // The require function
6 function __webpack_require__(moduleId) {
7 // Check if module is in cache
8 if (installedModules[moduleId]) {
9 return installedModules[moduleId]. exports;
10 }
11 // Create a new module (and put it into the

cache)
12 var module = (installedModules[moduleId] = {
13 exports: {},
14 });
15
16 // Execute the module function
17 modules[moduleId].call(
18 module.exports ,
19 module ,
20 module.exports ,
21 __webpack_require__
22);
23
24 // Return the exports of the module
25 return module.exports;
26 }
27
28 // Load entry module and return exports
29 return __webpack_require__ (0);
30 })([
31 /* 0 */
32 function (module , exports , __webpack_require__)

{
33 const hello = __webpack_require__ (1);
34 console.log(hello.sayHello("Webpack"));
35 },
36 /* 1 */
37 function (module , exports) {
38 exports.sayHello = function (name) {
39 return "Hello , " + name + "!";
40 };
41 },
42]);

Listing 1: A non-minified example of a webpack bundle.

returns an irreversible code output containing randomized, uniden-
tifiable variable names and changes to the code syntax that only
retains its underlying logic.

2.1.5 Source Maps. During development, bundles provide source
maps as a key to reverse minification and debug parts of code. These
files help map minified code back to their unminified counterparts,
and hence identify individual modules. However, source maps are
not available by default in production, making it difficult to reverse
engineer bundled code in the wild.

2.1.6 Popular Bundlers. Examples of popular JavaScript bundlers
include Webpack [5], Browserify [8], Rollup [6], and Parcel [7],
each of which offer unique features and advantages. In this work,
we focus on Webpack because it is the most popular and mature
JavaScript bundler as determined from GitHub stars [3], NPM
weekly downloads [4], and prior work [54].

2.1.7 General Structure of Webpack Bundles. Listing 1 presents an
example of a script comprising a webpack bundle. We describe the
example below.

➤ Webpack wraps the bundled code in an Immediately Invoked
Function Expression (IIFE). As a result, the bundle is executed
as soon as it is loaded, thereby making all necessary functions
and variables available in the global scope.

➤ The bundle comprises a modular system where each module is
represented as a function in an array or object of modules.
Listing 1 contains a module array in L30-42.

➤ Function wrappers around each module handle dependen-
cies on other modules and gather any variables and functions
exported by the module.

➤ The __webpack_require__ function (Listing 1, L6-26) loads and
executes modules andmanages exports and dependencies.

➤ The bundle executes an entry point module (module 0 in List-
ing 1). The entry point module uses __webpack_require__ to
load functionality from other modules (Listing 1, L33).
Overall, bundlers allow developers to organize their code into

modules, manage dependencies, and apply various optimizations
like minification and code splitting, resulting in more efficient,
maintainable, and faster-loading web applications.

2.2 Motivating Example
In this section we present an example that shows how typical
content blocking approaches work and why they are ineffective
against bundles.

2.2.1 Generic Code Inclusion. Consider the toy example presented
on the left half of Figure 1. Here, the websites loads two scripts,
each of which define global functions. The first script, setup.js,
loads from the website’s domain itself and contains benign code
relevant to the website’s functionality. The second script, track.js,
loads from a known tracking domain, tracker.com, and returns a
script that creates a unique identifier to track the user. When the
website includes the two scripts from two separate <script> tags,
it triggers two network requests, one to website.com and another
to tracker.com.

2.2.2 Typical Content Blocking Approach. A typical approach to
blocking privacy-harming scripts involves the use of a curated list of
domains and regular expressions (for example, from EasyList [24],
EasyPrivacy [25]). These lists are developed from manual contribu-
tions and include domains and paths to known privacy-harming
resources. Content blocking tools (e.g., AdBlock [26], uBlock [37])
pull from these filter lists. The tools intercept outgoing network
requests, compare them against entries in filter lists, and create
interventions if they find a match. In the toy example, a filter list
contributor might add the rule ||tracker.com/track.js. There-
after, when the website creates two network requests, the content-
blocking tool permits a request to script.js but blocks the request
to tracker.com/track.js. This way, the privacy-harming script
is neither loaded nor executed in the user’s browsing session.

2.2.3 Limitations of Existing Content Blocking Approaches. Con-
sider the scenario presented in the right half of Figure 1. Unlike the
previous example, the website includes a single <script> tag that
fetches code from its own server. The resulting network request
does not have a corresponding entry in the filter list and is there-
fore not blocked by the content blocking tool. The server responds
with a bundled script that includes both, benign code (setup())

Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

<script
 src="/setup.js">
</script>

<script
 src="tracker.com/track.js">
</script>

<script>
 setup();
 track();
</script>

website.com

tracker.com

Filter List

<script
 src="bundle.js">
</script>

website.com

setup.js

track.js

setup();
track();

Filter List

Figure 1: Motivating example.

and privacy-harming code (track()). Bundled resources expose
multiple shortcomings of existing content-blocking approaches,
which we briefly describe below.

➤ Privacy-harming code can be fetched from multiple, variable
resource paths, including from first-party domains, making
it impossible for contributors to manual detect and curate a
comprehensive, non-exhaustive list of entries.

➤ Bundles include code frommultiple resources. As a result, privacy-
harming code is embedded along with necessary and benign
functionality. Blocking the network request itself can break the
website. Existing approaches need to be adopt an approach that
targets embedded resources instead of the entire resource itself.

➤ Bundles alsomutate code included inmoduleswith wrappers
and through various minification and obfuscation techniques.
These mutations make it difficult to identify content with com-
parisons against regular expressions.

2.3 Properties of an Ideal Solution
We outline the properties of a general solution to identifying and
replacing privacy-harming modules from bundled scripts.

First, a robust solution should be able to identify and target
specific modules. Unlike typical content blocking approaches,
the solution cannot rely on domain-based blocking or attempt to
replace the a script in its entirety.

Second, as a corollary to the previous point, the solution should
have limited impact on benign functionality, i.e., the solution
should limit the effect of its intervention to privacy-harming code,
leaving execution of other modules untouched. This also involves
ensuring that any dependancies on the targeted module are handled
in a way that limits side-effects.

Third, the solution should be generalizable across multiple
dimensions. It should be applicable to multiple privacy-harming
libraries (and multiple versions of libraries) that are of interest to
content blocking tools. Additionally, it should also be generalizable
to different bundling strategies and robust against minification and
obfuscation techniques.

Finally, the solution should have a limited performance over-
head. While the solution executes in real-time, i.e., as scripts are
loaded and executed in the browser, it needs to limit its effect on
the usability of websites.

3 UNBUNDLE-REWRITE-REBUNDLE DESIGN
Unbundle-Rewrite-Rebundle (URR) adopts a static analysis approach
that leverages the code structures of privacy-harming modules to
identify and neutralize them when embedded in bundled scripts
without disrupting the functionality of other components of the
application.

URR adopts a four-step process (see Figure 2):
➤ First, URR generates an Abstract Syntax Tree (AST) representa-

tion of a given script. It then analyzes the structure to identify if
the script is a bundle that comprises one or more modules. If so,
URR gathers the component modules for further anlaysis.

➤ Next, URR processes each module into an implementation agnos-
tic representation, i.e., stripping variable names, function names,
and object properties. It creates a bottom-up hash of the AST
structure and uses the resulting representation for comparison.

➤ Next, URR compares each processed module against previously
generated representations of privacy-harming modules. If URR
finds a match, it marks the corresponding module for replace-
ment.

➤ Finally, URR replaces each marked privacy-harming module with
a corresponding, benign replacement. In doing so, URR ensures
that access and use of the replacement does not break other parts
of website functionality. It then stitches the bundled script back
together and moves it along for consumption and execution.
All the steps mentioned above are performed in real-time, i.e.,

when resources are loaded in the user’s browser. However, pro-
cessed representations of target modules and benign replacements
are created and gathered offline.

3.1 Gathering Modules
URR first generates an Abstract Syntax Tree (AST) representation of
a JavaScript resource. The AST representation helps gather the syn-
tactic features of the script and provides insight into the structure
of the code.

Thereafter, URR uses the AST representation to determine two
aspects of the loaded script. First, URR determines if the script
comprises a bundle that includes one or more modules. Second,
URR gathers the sub-trees corresponding to each of the identified
modules.

Below, we describe the webpack-specific implementation for this
phase.

Unbundle-Rewrite-Rebundle

Script

Abstract
Syntax Tree

Process modules Compare modules2 31 Gather modules

Determine if script
is a bundle

Extract constituent
modules

Regenerate
Script

Replace modules4

Replace target
module

Generate AST

H() H()
H() H()

Hash modules

Gather top-level
nodes

H()
H()

H()
H()

Compare nodes
against target module

H()
H()

H

H()=

Identify target
module

H()

Figure 2: Overview of the framework.

Table 1: Refining code to identify bundled webpack modules within scripts.

Round 1 (n = 288) Round 2 (n = 432) Round 3 (n = 614) Spot Check (n=300)

Code CodeManual Initial Refined Manual Initial Refined Manual Code Manual Code

Annotation 1: Webpack Bundle
Webpack Bundles 104 153 111 156 162 163 207 217 99 102
Precision 0.68 0.94 0.94 0.96 0.95 0.97
Recall 1 1 1 1 1 1

Annotation 2: Component Modules
Modules 6,857 7,847 6,857 9,816 9,156 9,090 12,889 12,913 5,701 5,690
Precision 0.87 0.99 0.99 0.99 0.998 0.998
Recall 1 1 0.93 1 1 0.996

3.1.1 Gathering JavaScript resources. In order to create a valid
parser for bundles in the wild, we gathered examples of resources
loaded in popularwebsites.We developed a puppeteer-based crawler
that, upon visiting a page, intercepts network requests and stores
a copy of observed script responses. We visited domains from the
Tranco list [41] and gathered 30,930 scripts from 1,063 sites (1K
crawl).

3.1.2 Generating ASTs. For each of the gathered scripts, URR uses
acorn, a community-developed, open-source JavaScript parser to
generate an AST [17]. The generated AST complies with the ESTree
Spec to ensure a consistent, standardized representation that can
be reproduced by alternative implementations [44].

3.1.3 Code Development and Refinement Methodology. We began
with an understanding of the general structure of the output of a
webpack bundle (see Listing 1). We developed a script that parses an
AST and looks for a module array or object, i.e., an array or object
that comprises functions. We used this initial logic and adopted a

code optimization methodology based on ground-truth gathered
through expert manual annotation. We describe the process below.
(1) First, we randomly sampled 100 scripts (without replacement)

from the JavaScript resources gathered during the 1K site crawl.
(2) We manually evaluated the plaintext script and the AST of each

sampled resource. In doing so, we checked for the presence of
webpack-specific code patterns. We annotated each resource
with a boolean value indicating whether we determined the
script as a webpack bundle (Annotation 1). The manual checks
included:
(a) identification of code pattern similar to webpack’s specific

function that handles dependencies (see Listing 1, L6-26);
(b) identification of code patterns specific to webpack chunks,

i.e., files comprising webpack modules separate from the
entry point bundle;

(c) identification of objects and arrays specific containing
functions with parameters, exports, and return statements
similar to webpack’s function wrappers;

Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

Algorithm 1 Processing modules.
Input: AST← module AST
Output: hashedAST← processed representation of the AST
procedure hashModule(𝑛𝑜𝑑𝑒)

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ ← 0
for each 𝑐ℎ𝑖𝑙𝑑 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ + hashModule(𝑐ℎ𝑖𝑙𝑑)
end for
return ℎ𝑎𝑠ℎ(𝑛𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 + 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ)

end procedure

(d) keyword searches that indicate the use of webpack in the
use of webpack in the creation of the resource.

(3) For any resource annotated as a webpack bundle, we also an-
notated the resource with the number of component modules
we identified (Annotation 2).

(4) We repeated Steps 1-3 until at least we had annotated 100 scripts
as webpack bundles.

(5) We then executed our code to automatically analyze and anno-
tate each sampled resource in a similar manner, i.e., (a) Anno-
tation 1: whether the script is a bundle, and (b) Annotation 2:
the number of component modules identified in the script.

(6) We compared the code-generated annotations against the man-
ual annotations and gathered the set of differences. For each
incorrectly labeled script, we analyzed the code outputs and
refined its logic. Refinements included addressing edge cases,
handling multiple IIFEs in a single resource, etc.

(7) We used the refined version of our code to annotate the same
sample and noted any improvements. This refined version of
the code as the initial version of the subsequent phase, against
new samples.

(8) For each subsequent round, we repeated Steps 1-7, append-
ing the existing sample with 50 manually annotated webpack
resources (Step 4). We stopped refining our logic when we
observed negligible improvement in the precision, recall, and
accuracy of code-generated annotations between consecutive
phases.
We repeated the process for three rounds. Table 1 presents the

numbers and metrics for both annotations and the associated met-
rics for each round of refinement. At the end of the third round,
our code identified a given script as a webpack bundle with 95%
precision and gathered modules with 99.8% precision.

We used the resulting logic to annotate all scripts gathered in our
1K crawl. We annotated a total of 11,995 scripts as webpack bundles.
Finally, we performed a spot check of the generated annotation. We
randomly sampled and manually annotated 300, previously unsam-
pled scripts of which we identified 99 scripts as webpack bundles.
Upon comparing and verifying the code-assigned annotation, we
observed a 97% precision rate in identifying webpack bundles and
a 99.8% precision rate in gathering component modules.

3.2 Processing Modules
Each module gathered from the previous phase comprises a sub-
tree, i.e., a partial AST of the larger AST representation of the script.
The module’s AST contains information about both, the structure

of the underlying code and associated names of variables, functions,
and properties as included within the script. Script attributes like
variable names are extremely volatile and have limited use in reli-
ably identifying target modules. URR therefore only considers (1)
the structure of the AST, i.e., the parent-child relationships between
the nodes that comprise the AST, and (2) the type of each AST node,
i.e., attributes which comply with the ESTree Spec, and are hence
limited to a deterministic set of values.

To distill and represent only these specific attributes from a
module’s AST, we adopt a version of a cryptographic concept used
in integrity verification: Merkle trees [47]. As an example, consider
a list of data blocks that need to be verified (e.g., transactions in
a blockchain). We represent this list of blocks in a tree structure.
Consider a tree where each leaf node represents a piece of data,
and each non-leaf node is a cryptographic hash of its child nodes.
These hashes propagate upwards, converging into a singular root
hash, known as the Merkle root. Any alteration in the foundational
data triggers a modification in the root hash, instantly signaling
tampering or modifications. However, if the root hash is verified,
all of its children are verified as well.

URR adopts a similar methodology, briefly presented in Algo-
rithm 1. Given a module’s AST, it performs the following processing
steps.
(1) URR begins traversing the module AST from the root node.
(2) For every child node, it recursively calls the function to gather

the child node’s hash. The hash of each child in-turn results
from the hashes of its children.

(3) It sums the hashes of all child nodes of the root node.
(4) To generate a hashed representation of the root node, URR

concatenates the type of the node to the sum of hashes of its
children, and hashes the resulting string.

(5) It returns the processed representation of the AST.
This processed representation now comprises an alternative

tree representation with equal depth to its original counterpart.
However, tree-based comparisons are complex and add a large per-
formance overhead. Recall that while processing an AST, top-level
nodes contain information about underlying children. Therefore,
comparing a limiting comparison to a few high-level nodes of the
processed module can provide insight into the similarity of the
module’s AST. To this end, URR gathers a list of top-level nodes,
i.e., given a module with webpack’s function wrappers, it gathers a
list of root nodes of each subtree corresponding to a top-level state-
ment within the function. Additionally, URR associates each entry
in this list with a weight that represents the number of child nodes
it represents, i.e., it weighs a node representing a complex function
higher than a node representing a simple variable declaration.

3.3 Comparing Modules
URR uses the list of top-level nodes to compare against a database
of top-level nodes of processed module representations correspond-
ing to targeted libraries. While this database is generated offline,
processed modules for these libraries are also gathered in a similar
manner to the logic presented in Algorithm 1. We provide details
regarding the creation of this database in Section 4. Here, we focus
our discussion on the comparison and identification of processed
modules.

Unbundle-Rewrite-Rebundle

Algorithm 2 Comparing modules against target libraries.
Input:
TOP_LEVEL_NODES← list of top-level nodes of module
DATABASE← hashes of known libraries
CANDIDATE_LIBRARIES← empty set
Output:
MATCH← weight of the associated match
for each 𝑛𝑜𝑑𝑒𝐻𝑎𝑠ℎ in 𝑇𝑂𝑃_𝐿𝐸𝑉𝐸𝐿_𝑁𝑂𝐷𝐸𝑆 do

librariesWithThisNode = DATABASE[𝑛𝑜𝑑𝑒𝐻𝑎𝑠ℎ]
for each [library, weight] in librariesWithThisNode do

CANDIDATE_LIBRARIES[library] += weight
end for

end for
bestMatch = max(CANDIDATE_LIBRARIES)
if bestMatch = targetLibary then return CANDIDATE_LI-
BRARIES[targetLibrary]
end if

Algorithm 2 presents an overview of the comparison strategy.
We present a brief description below.
(1) URR traverses the list of hashes of the top-level nodes that

represent the module observed in the wild.
(2) It looks up the hash of each node in the database and identifies

every library that has the same top-level node. It considers any
such library as a candidate library.

(3) It appends the weight of the node for each candidate library
to previous matches, if any. Therefore, the weights associated
with a candidate library increases each time it includes a match.

(4) Once all top-level nodes have been traversed, URR identifies
the candidate library with the highest associated weight.

(5) If the highest match corresponds to the target library, URR
returns the weight of this match, thereby marking the module
as a candidate for replacement.

3.4 Replacing Modules
URR replaces each marked privacy-harming module with a corre-
sponding, benign replacement. It can perform this action in one
of two ways; (1) URR can replace the module’s AST with an alter-
native, benign AST and then regenerate the script from from the
modified AST; (2) Alternatively, URR can identify the string indices
for the module within the textual representation of the script, and
place the benging replacement between these indices. Regardless
of the approach it adopts, URR ensures that access and use of the
replacement does not break other parts of website functionality.

Replacements for targeted modules are manually created. Given
the nuances of each target library and its eventual, mutated repre-
sentation in webpack bundles, we describe the three categories of
replacements to consider within each module.

➤ Global Variables. If libraries expose global variables on the
window object, these variables need to be made available. Addi-
tionally, the types of such variables need to be retained.

➤ Exports. The replacement needs to ensure that values previously
exported from the target module remain available. When the
module is consumed by other modules, they need to be made
accessible, even if replaced with a benign version.

➤ Webpack-based Function Wrappers.When webpack wraps
modules in functions, it passes specific parameters included in the
function signature. Additionally, values exported by modules are
appended as properties to webpack objects. Replacements need
to ensure that these parameters and exports work seemlessly.
Finally, each replacement needs to ensure the consistency of

variable types, i.e., functions be replaced with functions, constants
be replaced with constants, and so on. We further provide examples
of specific replacements in Section 4.

4 EVALUATION
In this section we evaluate the effectiveness of URR in identify-
ing specific libraries in bundled scripts captured in the wild. We
select three libraries to target and describe the process of gath-
ering their module representations for comparison. We then use
URR to identify target libraries in scripts gathered from a crawl of
popular websites. Next, we develop a deployment of URR as a Fire-
fox extension and evaluate the performance overhead introduced
by its interventions. We conclude by describing the creation and
evaluation of benign replacements.

4.1 Evaluation Dataset
We first describe the selection of example libraries that we use to
identify in the wild. We describe the offline process of gathering rep-
resentations for these libraries which URR can then use to identify
libraries in the wild.

4.1.1 Target Library Selection. We select three libraries for our
evaluation —FingerprintJS [31], Sentry [58], and Prebid [51]. Each
of these libraries are included in filter lists [24, 25] used by popu-
lar content blocking tools [26, 37]. Additionally, all three libraries
provide the option for developers to use their npm packages with
bundled code [10, 12, 14].

FingerprintJS [33] is a popular browser fingerprinting library
that tracks and identifies users. When embedded within a website
that a user visits, the library performs various client-side operations
that query browser attributes, and stores a unique identifier for the
user. Besides its use in user authentication [43] and ad fraud pre-
vention [9], the library de-anonymizes sensitive user activity across
sites. Since the domains that the library uses are blocked by popular
content blocking tools, FingerprintJS recommends that developers
use their npm package or self-host a copy of their scripts [32].

Sentry [34] is an analytics tool that offers libraries for perfor-
mance and error monitoring. The library helps developers gathers
details about user interaction, DOM events, console logs, and net-
work calls. The library lets developers decide how they use the
information gathered from users and offers multiple integrations,
including with multiple third-party analytics services [56]. Since
the CDNs that host by Sentry code are blocked by popular content
blockers, the library recommends that developers get around this
restriction by bundling Sentry’s npm package into their app [57].

Prebid [52] is a popular advertising library that developers can
use to add header bidding to their application. The library integrates
with numerous advertising, analytics, and user tracking libraries,
providing support for bidding on targeted advertisements. Similar
to previously discussed libraries, Prebid is included within filter
lists and content blocking tools. The library is open source and

Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

Table 2: An overview of of the build options used to gather
representations for the target library.

Build Options Possible Values

Module Systems:
↩→ Dependency Statement [import, require]
Webpack Optimizations:
↩→ usedExports [true, false]
↩→ concatenatedModules [true, false]
Minifier Options:
↩→ passes [0, 1, 2]
↩→ arrows [true, false]
↩→ dropConsole [true, false]
↩→ unsafeCompress [true, false]
↩→ unsafeMethods [true, false]
↩→ unsafeUndefined [true, false]
↩→ unsafeArrow [true, false]
↩→ unsafeCompare [true, false]
↩→ typeofs [true, false]
Browser Support:
↩→ ie8 [true, false]
↩→ safari10 [true, false]

is available to be added to bundles with an npm package. Prebid
provides specific instructions on integration with webpack [20, 51].
The library needs to be compiled with Babel and makes use of
specific plugins when loaded with webpack. It provides specific
instructions for webpack configurations, which gives us insight
into its use when integrated by bundles in the wild.

4.1.2 Bundler Configurations. Web applications are developed in
a large variety of environments, frameworks, and configurations,
before they are compiled and shipped to production. As a result,
when the same npm package is bundled within different applications,
its modules will generate a wide range of AST structures. These
variations make it difficult to gather a definitive AST representation
for the package that will return perfect matches when compared
against scripts found in the wild. However, the AST of the module
corresponding to each library is complex and hence, unique. Our
intuition is that the AST of a given library will be closer to differ-
ently configured ASTs of the same library than to ASTs of other
libraries.

To gather multiple options for module representations and help
us get the closest match to a target library in the wild, we gather
a list of popular build options to be considered for each library.
Table 2 These options cover four aspects that we describe below.
(1) Module Systems. Depending on the target npm package and

the development evironment of the web application, the library
may be consumed as a CommonJS module or an EcmaScript
module. We gather configurations for both module types.

(2) Webpack Optimizations. When bundling code from multiple
files, webpack keeps track of imported and exported values
with the help of a dependency graph. Depending on the module
system, the output environment, and developer’s configura-
tions, it provides options to automatically identify and discard
unused parts of code and to reduce the size of the final output.

The use of these options can change how the module appears
in the output bundle.

(3) Minifier Options. Once webpack creates a bundle output, it
uses Terser [63] to minify the code. Developers can provide
additional options to ensure that the output works with their
intended production environment, ensuring that their applica-
tions work in all supported environments. We consider a list of
compression options that alter the syntax of the module in the
bundled output.

(4) Browser Support.Developers can additionally specify support
for legacy browsers. These options override other minification
and compression to ensure that the output bundle is also com-
patible with legacy browsers.
We gathered all combinations of the build options and created

a total of 24,576 build configurations that we then used to bundle
each target library.

4.1.3 Creation of TargetModule RepresentationDatabase. Wegather
various hashes for these libraries with the help of a large set of
versions and different webpack configuration options, resulting in
multiple AST representations for each target library. We briefly
describe the steps below.
(1) Library Versions.We gather a list of past versions released by

the library on the npm registry. We download and install each
version in a separate barebones application.

(2) Barebones Application. For each version, we create a bare-
bones Node.js application with a single JavaScript file. The file
consumes the target library with either an import or a require
statement.

(3) Build Options. For each library version, we build multiple
webpack bundles, one for each combination of build options.

(4) Target Module. When building a bundle, webpack provides
the option to gather relevant info about individual modules [64].
We use this information to identify the file, name, and position
of the module corresponding to the target library. Thereafter,
we gather an AST representation of the output bundle and
extract the sub-tree corresponding to the target module.

(5) Processing AST. We process the extracted AST in a similar
manner to the steps described in Section 3.2. We then gather a
list of hashes for the top-level nodes from each bundle along
with their corresponding weights.

4.1.4 Additional Library Configurations. In addition to the three
target libraries, we gathered a list of 10k popular npm packages
based on their download counts [27, 39, 50]. From this list, we
collected a random sample of 10 versions each of 1k libraries. For
each sampled library version, we generated 100 webpack bundles
with each with a different, random build option. We extracted and
processed their modules and gathered a weighted list of hashes
corresponding to the top-level nodes of their ASTs.

4.2 Replacements
Prior work has extensively studied and determined the creation
and use of non-breaking, benign replacements for privacy-harming
code [60]. We follow similar principles and extend example replace-
ments used by uBlock Origin [15].

Unbundle-Rewrite-Rebundle

4.2.1 Creating Benign Versions of Target Libraries. For each of the
three libraries, we considered associated source code and documen-
tation to create equivalent benign versions. We briefly describe
them below.

FingerprintJS, when loaded as a library from its npm pack-
age, provides a function, load(), which returns a Promise that
resolves to a computed visitorId. While the computation includes
privacy-harming code, the benign replacement that we developed
only returns a randomly generateed visitorId. We used a sim-
ilar approach to the existing replacment included within uBlock
origin [16], but modified the same to a Node.js module.

Sentry provides a browser library as an entry point npm pack-
age [14] to include its functionality within web applications. The
library further includes other related packages and integrations that
vary across developer and application use cases. We used the official
documentation as a guideline and developed replacements for ex-
ported values, included those imported from other Sentry libraries.
For each class that the library exports, we developed an equiva-
lent bengign class with a constructor that accepts any argument it
is passed. Similarly, we developed benign function replacements,
with no return value, for each exposed function. For functions that
return promises, we resolve into an empty promise. Finally, since
the library additionally makes functionality available globally, via
the window object, we also make the benign version of the library
globally available.

Prebid provides a similar npm package to sentry, i.e., its main
functionality is included from an entry point module, while develop-
ers can make use of additional integrations. We focus on the entry
point module, i.e., pbjs, since all other functionality is accessed
from this module. We follow a similar approach, i.e., creating benign
replacements for each function and variable made available on the
entry point module, the Prebid API for publishers (i.e., web applica-
tion developers), and ensure that any access to the benign version
is considered valid and does not throw an error when accessed.

4.2.2 Gathering Bundled Versions. For each replacment module, we
created a barebones application that accesses the library function-
ality. The barebones application helps evaluate each replacement,
ensuring that the application remains functional. We package the
resulting application and gathered the webpack module correspond-
ing to the benign replacement, for use in URR’s deployment.

4.3 Framework Effectiveness
In this section, we describe our evaluation of URR’s effectiveness
in identifiying target libraries within scripts captured in the wild.

4.3.1 JavaScript Resource Dataset. We used a puppeteer-based
crawler that visited sites from the the Tranco list [41] and gathered
JavaScript resources through network interception. We previously
used this dataset to create a bundle parser, described in Section 3.1.
The dataset comprises 30,930 scripts from 1,063 sites, of which
11,995 scripts are bundled resources.

4.3.2 Gathering Matches. For each bundle in the dataset, URR
extracted and processed component modules (see Algorithm 1). It
then gathered a weighted list of top-level nodes from the processed
module. URR then compared each module against all libraries in
the evaluation dataset (see Section 4.1). For each module, we noted

Figure 3: An overview of the target libraries identified from
a crawl of the Tranco 10K. In addition to the 697 instances of
true positive (✕)matches above the 8% threshold, we observed
>15K instances of true negative () matches ofmodules below
the threshold.

the library in the evaluation dataset with the closest match. Finally,
we gathered a list of modules for which the closest match was one
of the three target libraries. We gathered a total of 73 matches for
FingerprintJS, 324 matches for Sentry, and 3,532 matches for Prebid.

4.3.3 Manual Verification. For each match, we manually verified
the code embedded between the corresponding indices in the script.
We observed the code structure, the use of specific properties, and
the number and types of exported variables, functions, and objects.
We then manually annotated each match as a true positive or a
false positive.

4.3.4 True Positive Threshold. We observed the tradeoff between
precision and recall for the matches returned for all three target
libraries. We looked for the lowest threshold match percentage
for an AST for which all three libraries observed 100% precision,
i.e., any AST that returned a positive match above this threshold
was correctly annotated. We therefore arrived at a common match
threshold value of 8%. Despite observing a small drop in recall for
Sentry, we prioritized precision to ensure that URR never blocks
benign modules even if it misses some privacy-harming scripts.

4.3.5 Evaluation on a larger crawl. Next, we performed a larger
crawl of the web, gathering scripts from the top 10K sites in the
Tranco list. We used URR to evaluate these scripts and employed the
>=8% match threshold discussed earlier. We detected FingerprintJS
on 205 sites, Sentry on 213 sites, and Prebid on 325 sites. Overall,
URR identified at least one of the three target libraries on 7% (𝑛 =

697) of the top 10K sites. Figure 3 presents an overview of our
observations.

4.4 Performance
In this section, we provide a sample deployment of URR as a Firefox
extension. We use this non-optimized deployment to evaluate an

Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

Table 3: Time taken (ms) by the the extension to process
scripts using network interception.

Phase # Scripts Time (ms)
𝜇 𝜎 Median

Buffering script text 6,702 690.69 1,189.26 240

Gathering modules 6,699 46.17 98.25 9
Processing modules 2,135 326.31 635.58 114
Comparing modules 2,135 1.15 2.28 0

upper bound on the latency introduced by different phases of the
pipeline and their effect on page load times.

4.4.1 Firefox Extension. Considering URR’s ability to recognize
bundles given the entire contents of scripts, we determined that
an approach that intercepts network requests and responses will
be a useful initial deployment. Considering Chrome’s restrictions
on content filtering from extensions [23], we developed a Firefox
extension that intercepts and modifies the content of responses
across all domains that the browser visits [65].

4.4.2 Crawl. We evaluated the performance of a browser instance
with and without the extension by visiting sites in the Tranco
list [41]. For each web page, we performed the following steps.
(1) First, we created and initialized a new browsing profile.
(2) Next, we used Mozilla’s web-ext [11] to load a Firefox instance

with the web extension.
(3) We used puppeteer [13] to connect to the browser instance, and

visit the web page in a new tab and wait for 30 seconds.
(4) The extension’s background script intercepts and evaluates all

script-based network requests. It captures and stores the time
taken by each step in the script evaluation pipeline [45].

(5) The extension’s content script captures metrics relevant to web
page performance.

(6) We closed the browser instance and deleted the user profile
directory and Firefox’s caches from the filesystem to ensure a
fresh browsing state for subsequent visits.

(7) We repeated steps 1-6 in a browsing profile without our ex-
tension installed and recorded relevant web page performance
metrics for comparison.

4.4.3 Pipeline Performance. First, we discuss the evaluation of
individual scripts. Table 3 shows the time taken by different phases
of the pipeline. We observed the gathering modules and comparing
processed modules have the least impact, taking on average 46.17ms
and 1.15ms respectively. URR takes the longest time to process
modules, i.e., recursively compute hashes for all nodes in an AST,
which takes 326.31ms on average for each script.

However, we observed that the largest chunk of the time was
consumed outside of URR’s evaluation and instead spent in buffer-
ing incoming response chunks to load the entire script. This is
a limitation of the mode of deployment, i.e., Firefox extensions
that modify the body of network responses bypass the browser’s
optimized cache for scripts [46]. The deployment waits for large

Table 4: Time taken (ms) to load a page with and without the
extension installed, from a crawl of 𝑛 = 963 web pages.

Metric w/o Extension w/ Extension
𝜇 𝜎 Median 𝜇 𝜎 Median

First Contentful Paint 2,735.55 1,690.62 2,550 3,029.51 2,236.36 2,423
DOM Interactive 2,796.39 1,687.63 2,620 3,367.55 2,204.51 3,052
Page Load 4,790.39 3,156.72 4,130 7,107.45 4,759.42 6,078

network responses to complete before evaluating the script. In Sec-
tion 5, we discuss alternative deployments that evaluate code at
runtime and can bypass dependence on network load times.

4.4.4 Page Performance. Next, we discuss the effect of the sample
deployment on page load. Recall that we used a content script to
gather metrics from the page context for each visit with and without
the extension. Table 4 presents a snapshot of our observations. We
describe three collected measures below.

First Contentful Paint (FCP) is a timing measure that shows when
the browser renders the first bit of content. The content could
be any text, image, video, canvas, or non-empty SVG. The timing
shows the first instance that the user has an indication that the
page is loading. We observed that the extension added 293.36ms to
the average time a user would wait for such an indication.

DOM Interactive indicates the time taken for the Document Ob-
ject Model (DOM) parser to finish its work on the main document,
i.e., the time taken to construct the DOM. This time can be affected
by the parser-blocking JavaScript. Note that the extension’s script
evaluation runs outside the main thread. We observed that the ex-
tension added 571.66ms on average, i.e., a user would have to wait
an additinal 0.5s before the browser has parsed the DOM.

Page Load indicates the total time taken for all resources to load.
It indicates that network requests for all scripts, images, and other
resources have completed. This metric does not indicate actual
end-user experience since it depends on device capabilities and
various network conditions, but in our case, provides insight into
the additional time added by the extension buffering responses
and evaluating script contents. We observed that pages loaded
with the extension took an additional 2,317.06ms on average before
triggering the load event.

Overall, deploying URR as a browser extension slightly increases
the time taken to load the page, adding minimal performance over-
head and ensuring that users can continue to meaningfully interact
with the website.

5 DISCUSSION
5.1 Applicability to Other Systems
In this work we target and evaluate against JavaScript bundles
generated by Webpack. We selected Webpack because it is the most
popular bundling system on the Web. However, there are many
other bundling approaches used on theWeb, some variations on the
same approached used in Webpack some fundamentally different
and even working on different levels of the deployment process.
We here briefly discuss these other bundling formats, and how URR
could be extended to apply to them (and with what difficulties).

Webpack is generally used to combinemultiple different JavaScript
libraries and code units, and to process them into a single JavaScript

Unbundle-Rewrite-Rebundle

file, to make deployment easier and (in some cases) execution faster.
While Webpack is the most common tool for this purpose, there
are many others, for use with different languages, build chains,
testing frameworks, and, in some cases, to also bundle additional re-
source types beyond JavaScript files. Examples of these alternative
bundlers include Browserify 1 and Gulp 2, among many others.

URR could easily be extended to cover these other bundling tools,
as at root they all operate in the samemanner (i.e., consumemultiple
JavaScript files, preprocess them, and then generate code for the
resulting combined AST). To do so would only require generating
new signatures for ASTs of each target privacy-harming library
generated by the bundler’s preprocessing and rewriting phases, and
understanding the structure of each bundler combines the ASTs
generated by each input library into the final, resulting code unit.
This is work that would only need to be done once per bundler
version, and then could be shared across all URR clients.

Another approach to JavaScript bundling is to directly combine
each JavaScript code unit into a single archive, and to ship the
entire archive to the client, along side the website’s initial HTML.
This approach, exemplified by Google’s WebBundles 3 proposal,
does not preprocess or otherwise modify the include JavaScript
code units; included files are directly copied into the bundle archive.
Cloudflare’s Cloudflare’s Managed Components 4 product can also
be seen as a form of this kind of bundling, though instead of all com-
bined into a single archive, they’re instead delivered “on demand”,
as managed by an overriding “manager” application, making any
URLs unpredictable.

Extending URR to cover these kinds of bundled applicationwould
be trivial, since bundled JavaScript files are not modified or prepro-
cessed in the bundling process. Identifying themwithin the bundled
application is straightforward. Similarly, rewriting unwanted code
is similarly trivial, since it only requires swapping the original
file with the privacy-preserving alternative (either in the original
archive, or returned as a new subresource by the “manager” appli-
cation).

5.2 Alternative Deployment Strategies
In this work we implement URR as a Firefox extension. We choose a
Firefox extension because only Firefox’s extension API includes the
ability for an extension to buffer and rewrite a fetched subresource 5
(like a JavaScript file), before the file is seen, parsed, and executed
by the JavaScript engine.

However the same approach we take in the extension could be
identically deployed from other decision points, either to be more
general across browsers (e.g., as part of a man-in-the-middle proxy)
or more specific to particular browsers (e.g., as a modification to
the V8 parsing pipeline). The majority of the resources needed for
URR to work could apply equallyacross all of these intervention
points (e.g., fingerprints of the ASTs of unwanted to code, bundle
“debundling” logic, privacy-preserving replacement AST subtrees).

1https://browserify.org/
2https://gulpjs.com/
3https://wpack-wg.github.io/bundled-responses/draft-ietf-wpack-bundled-
responses.html
4https://managedcomponents.dev/
5https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/
webRequest/filterResponseData

However, each of these intervention points would come with
their own largely-predictable trade offs. Analyzing, debundling,
and rewriting JavaScript bundles as part of a man-in-the-middle
proxy would work for any browser or network tool, though with
a performance impact (since JavaScript engine optimizations like
partial or lazy compilation would not be possible). Likewise, push-
ing URR logic into the JavaScript engine directly would likely allow
for greater performance, at the cost development and maintenance
cost, and requiring browser specific implementations. That said,
we reemphasize that most of the novel aspects of URR would be
generic and shareable across all possible intervention points.

5.3 Diversity of Target Library Representation
URR requires a significant amount of precomputation to work ef-
fectively. Specifically, URR requires precomputing a signature for
every AST for each library or code unit that should be rewritten at
runtime. While this is a significant improvement over the existing
state of the art ([60], for example, requires the precomputing each
target bundled application, which will both be orders of magnitude
larger in occurrence, but also enormously larger in terms of re-
quired disk space), its still not trivial. The same target library can
give different signatures depending on library version (e.g., Finger-
printJS v2 vs v3), bundler version (e.g., Webpack v4 vs Webpack
v3), bundler optimization strategies (e.g., “tree-shaking” or no), li-
brary integration method (e.g.,CommonJS vs ECMAScript modules)
among other dimensions.

As discussed in Section 3, URR uses several heuristics to ef-
fectively generalize signatures, to flatten the number of dimen-
sions of signatures needed per target library (e.g., label stripping,
AST simplification, etc.). Never the less, there is still a tradeoff
between coverage—generating as many signatures as possible, to
correctly identify the same target code across a wide range of
representations—and concision—minimizing the memory, match-
ing time, and disk space used on each URR client at runtime.

5.4 Replacements
While other phases of URR are programmatically generated, we
manually created benign replacements. This part requires an under-
standing of both, the specific bundler and the target library itself.
While prior work has shown approaches that can automate this
creation, we leave the adaption of a similar approach in the con-
text of bundles as an avenue to explore in future work. Prior work
like [60], which allows for the automatic creation of privacy-and-
compatibility preserving versions of JavaScript libraries, could be
leveraged to greatly expand the number of target libraries URR can
identify and rewrite in bundled applications.

6 RELATEDWORK
This work contributes to and builds on an enormous body of re-
search relevant to web privacy, tracking, and content blocking. In
this section, we highlight existing research that relates to the our
framework’s design.

Filter Lists. This research is closely tied to a broad domain of
research investigating the advantages, effectiveness, and responses
to filter list-based content blocking. Note that existing filter lists
(e.g., EasyList [24], EasyPrivacy [25]) are developed manually and

https://browserify.org/
https://gulpjs.com/
https://wpack-wg.github.io/bundled-responses/draft-ietf-wpack-bundled-responses.html
https://wpack-wg.github.io/bundled-responses/draft-ietf-wpack-bundled-responses.html
https://managedcomponents.dev/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData

Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

community-maintained. Merzdovnik et al. [48] performed a large-
scale study that highlighted the effectiveness of filter list-based
browser extensions and also indicated that these tools often lead
to a decrease in overall CPU usage, even when considering their
own overhead. Gervais et al. [36] quantified the privacy gain from
ad-blockers and discovered that these tools can reduce interactions
with third-party entities by up to 40% with default settings.

However, other studies have pointed out significant inefficiencies
in filter lists. Snyder et al. [61] highlighted the abundance of “dead-
weight” rules that offer no discernible benefits in popular lists.
Similarly, Alrizah et al. [18] found that popular lists contain a large
number of false positives which can take two or three months to
be discovered.

Automated Content Blocking Approaches. Numerous studies have
developed approaches to either help automatically generate filter
list rules or develop alternative methods to block privacy harming
content. AdGraph [38] created a graph-based machine learning
approach that used features like URL length and origin to differen-
tiate between benign and privacy harming resources. Bhagavatula
et al. [21] also used URL-based features to train a machine learn-
ing model for resource filtering. Chen et al. [22] used filter lists
as ground truth and developed behavioral signatures based on the
JavaScript event loop, while Sun et al. [62] classified JavaScript
execution based on Web API calls. Le et al. [40] developed a rein-
forcement learning framework that generates filter list rules specific
to a site of interest and showed that their approach was comparable
in visual breakage to manually-created filter lists.

JavaScript Analysis. Prior work that perform static or dynamic
analysis on JavaScript to create “pre-filters” [29] for malicious
scripts, detectmalicious scripts that camouflage as benign scripts [28],
and detect scripts that evade detection by adopting various obfus-
cation strategies [30]. In their analysis of the Top 10K sites in the
Alexa list, Moog et al. [49] found that 90% sites contained a minified
or obfuscated script.

More relevant to our work, Rack and Staicu [55] presented a
method for detecting and partially reverse engineering bundles.
However, unlike the automated approach we present in § 3.1, their
approach to detect bundlers requiresmanually curated fingerprints;
They manually analyzed the output of a bundler and gathered
unique code snippets which they then used to identify whether a
script is a bundled resource. Further, their approach to partially
reverse engineer bundles relies on the availability of source maps,
i.e., a feature used during development mistakenly being exposed in
production. As a result, they were only able to extract modules from
around 10% of the bundles they detected in the wild. We instead
present an automated approach (see § 3.2 and § 3.3) that can reverse
engineer bundles regardless of the accidental availability of source
maps. However, in support of our choice of bundler, they found
Webpack to be the most popular bundler by an order of magnitude.
They observed the presence of 1.27 Webpack bundles on average
per site, with 0.11 Browserify bundles per site being the closest
alternative choice on the top 100K sites.

7 CONCLUSION
Content blocking plays a crucial role in safeguarding privacy, en-
hancing performance, and preserving user autonomy online. How-
ever, the increasing use of bundlers presents a challenge – websites
often intermingle tracking code with benign code within a single
script – thereby rendering traditional URL-based content blockers
ineffective.

We present a framework, Unbundle-Rewrite-Rebundle (URR),
that detects bundles and reverse engineers them back to constituent
modules. We develop an approach to identify the privacy harm-
ing modules that we then replace with benign alternatives. We
demonstrate the effectiveness of our system in identifying Web-
pack bundles and further developed signatures for a fingerprinting
library (FingerprintJS), an advertising library (Prebid), and an ana-
lytics library (Sentry). Our implementation can identify the bundled
versions of these libraries in the wild via a similarity threshold that
minimizes false negatives and prevents false positives within our
training data. Leveraging our approach, we found the use of these
libraries within bundled scripts on 697 sites of the Tranco 10K. Fur-
ther, we implemented a prototype deployment of URR as a browser
extension and observed that the extension only adds 0.5s to the
DOM Interaction Time on a page visit.

URR can expand existing content blocking approaches to combat
the use of bundlers to hide privacy harming code. It can be further
adapted to combat alternative bundling strategies and can be further
used to detect the use of other privacy-harming libraries, to bolster
web privacy protections.

REFERENCES
[1] 2009. Node.js. https://nodejs.org/en/
[2] 2010. npm | Home. https://www.npmjs.com/
[3] 2014. Github Repository | webpack. https://github.com/webpack/webpack
[4] 2014. NPM Registry | webpack. https://www.npmjs.com/package/webpack
[5] 2014. webpack. https://webpack.js.org/
[6] 2015. Rollup | Rollup. https://rollupjs.org/
[7] 2018. Parcel - The zero configuration build tool for the web. https://parceljs.org
[8] 2020. Browserify. https://browserify.org/
[9] 2023. Customer Case Studies | Fingerprint Device Intelligence Platform. https:

//fingerprint.com/case-studies/
[10] 2023. @fingerprintjs/fingerprintjs. https://www.npmjs.com/package/

@fingerprintjs/fingerprintjs
[11] 2023. Getting started with web-ext. https://extensionworkshop.com/

documentation/develop/getting-started-with-web-ext/
[12] 2023. prebid.js. https://www.npmjs.com/package/prebid.js
[13] 2023. Puppeteer | Puppeteer. https://pptr.dev/ publisher: Google, Inc..
[14] 2023. @sentry/browser. https://www.npmjs.com/package/@sentry/browser
[15] 2023. uBlock:Web Accessible Resources. https://github.com/gorhill/uBlock/tree/

9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources
[16] 2023. uBlock: Web Accessible Resources: fingerprint3.js. https://github.com/

gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_
accessible_resources/fingerprint3.js

[17] acornjs. 2023. acorn: A small, fast, JavaScript-based JavaScript parser. https:
//github.com/acornjs/acorn

[18] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and GangWang. 2019. Errors, Misun-
derstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-blocking
Systems. In Proceedings of the Internet Measurement Conference (Amsterdam,
Netherlands) (IMC ’19). Association for Computing Machinery, New York, NY,
USA, 230–244. https://doi.org/10.1145/3355369.3355588

[19] Abdul Haddi Amjad, Danial Saleem, Muhammad Ali Gulzar, Zubair Shafiq, and
Fareed Zaffar. 2021. TrackerSift: untangling mixed tracking and functional
web resources. In Proceedings of the 21st ACM Internet Measurement Conference
(Virtual Event) (IMC ’21). Association for Computing Machinery, New York, NY,
USA, 569–576. https://doi.org/10.1145/3487552.3487855

[20] Babel. 2023. The compiler for next generation JavaScript. https://babeljs.io/
[21] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi Gupta, and Brian

Ziebart. 2014. Leveraging Machine Learning to Improve Unwanted Resource

https://nodejs.org/en/
https://www.npmjs.com/
https://github.com/webpack/webpack
https://www.npmjs.com/package/webpack
https://webpack.js.org/
https://rollupjs.org/
https://parceljs.org
https://browserify.org/
https://fingerprint.com/case-studies/
https://fingerprint.com/case-studies/
https://www.npmjs.com/package/@fingerprintjs/fingerprintjs
https://www.npmjs.com/package/@fingerprintjs/fingerprintjs
https://extensionworkshop.com/documentation/develop/getting-started-with-web-ext/
https://extensionworkshop.com/documentation/develop/getting-started-with-web-ext/
https://www.npmjs.com/package/prebid.js
https://pptr.dev/
https://www.npmjs.com/package/@sentry/browser
https://github.com/gorhill/uBlock/tree/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources
https://github.com/gorhill/uBlock/tree/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources
https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources/fingerprint3.js
https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources/fingerprint3.js
https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources/fingerprint3.js
https://github.com/acornjs/acorn
https://github.com/acornjs/acorn
https://doi.org/10.1145/3355369.3355588
https://doi.org/10.1145/3487552.3487855
https://babeljs.io/

Unbundle-Rewrite-Rebundle

Filtering (AISec ’14). Association for Computing Machinery, New York, NY, USA,
95–102. https://doi.org/10.1145/2666652.2666662

[22] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. 2021. De-
tecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Sig-
natures. In 2021 IEEE Symposium on Security and Privacy (SP). 1715–1729.
https://doi.org/10.1109/SP40001.2021.00007

[23] Oliver Dunk. 2023. Improving content filtering in Manifest V3. https://developer.
chrome.com/blog/improvements-to-content-filtering-in-manifest-v3/

[24] EasyList Authors. 2023. EasyList. https://easylist.to/easylist/easylist.txt
[25] EasyPrivacy Authors. 2023. EasyPrivacy. https://easylist.to/easylist/easyprivacy.

txt
[26] eyeo GmbH. 2023. AdBlock Plus: The world’s #1 free ad blocker. https:

//adblockplus.org/
[27] Tristan F. 2023. npm-rank: get popular npm packages. https://github.com/

wooorm/npm-high-impact
[28] Aurore Fass, Michael Backes, and Ben Stock. 2019. HideNoSeek: Camouflaging

Malicious JavaScript in Benign ASTs. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 1899–1913.
https://doi.org/10.1145/3319535.3345656

[29] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: a static pre-filter for ma-
licious JavaScript detection (ACSAC ’19). Association for Computing Machinery,
New York, NY, USA, 257–269. https://doi.org/10.1145/3359789.3359813

[30] Aurore Fass, Robert P. Krawczyk,Michael Backes, and Ben Stock. 2018. JaSt: Fully
Syntactic Detection of Malicious (Obfuscated) JavaScript. In Proceedings of the
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA).

[31] FingerprintJS. 2023. Browser fingerprinting library. https://github.com/
fingerprintjs/fingerprintjs

[32] FingerprintJS. 2023. Evade ad blockers. https://github.com/fingerprintjs/
fingerprintjs/blob/master/docs/evade_ad_blockers.md

[33] FingerprintJS, Inc. 2023. The device intelligence platform. https://fingerprint.com
[34] Functional Software Inc. 2023. Sentry: Application Performance Monitoring &

Error Tracking Software. https://sentry.io/welcome/
[35] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. 2017. Ad-blocking:

A study on performance, privacy and counter-measures. In Proceedings of the
ACM on Web Science Conference. 259–262.

[36] Arthur Gervais, Alexandros Filios, Vincent Lenders, and Srdjan Capkun. 2017.
Quantifying web adblocker privacy. In European Symposium on Research in
Computer Security (ESORICS). Springer, 21–42.

[37] Raymond Hill and Nik Rolls. 2023. uBlock Origin - Free, open-source ad content
blocker. https://ublockorigin.com/

[38] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. AdGraph: A Graph-Based Approach to Ad and Tracker
Blocking. In 2020 IEEE Symposium on Security and Privacy (SP). 763–776. https:
//doi.org/10.1109/SP40000.2020.00005

[39] Andrei Kashcha. 2023. npmrank: npm dependencies graph metrics. https:
//github.com/anvaka/npmrank

[40] Hieu Le, Salma Elmalaki, Athina Markopoulou, and Zubair Shafiq. 2023. AutoFR:
Automated Filter Rule Generation for Adblocking. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 7535–7552.
https://www.usenix.org/conference/usenixsecurity23/presentation/le

[41] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

[42] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFengWang. 2012. Know-
ing your enemy: understanding and detecting malicious web advertising. In
Proceedings of the ACM conference on Computer and communications security
(CCS). 674–686.

[43] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis. 2022. Phish in Sheep’s
Clothing: Exploring the Authentication Pitfalls of Browser Fingerprinting. In
31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 1651–1668. https://www.usenix.org/conference/usenixsecurity22/
presentation/lin-xu

[44] Sebastian McKenzie, Kyle Simpson, Mike Sherov, Ariya Hidayat, Adrian Heine,
Dave Herman, and Michael Ficarra. 2023. The ESTree Spec. https://github.com/
estree/estree

[45] MDN. 2023. storage. https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/API/storage publisher: Mozilla.

[46] MDN. 2023. webRequest.filterResponseData(). https://developer.
mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/
filterResponseData publisher: Mozilla.

[47] Ralph C Merkle. 1987. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic techniques.
Springer, 369–378.

[48] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block me if you can: A
large-scale study of tracker-blocking tools. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 319–333.

[49] MarvinMoog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically
Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 569–580. https://doi.org/10.1109/DSN48987.2021.00065

[50] npm/registry. 2023. package download counts. https://github.com/npm/registry/
blob/master/docs/download-counts.md

[51] Prebid. 2023. A free and open source library for publishers to quickly implement
header bidding. https://github.com/prebid/Prebid.js

[52] Prebid.org Inc. 2023. Boost Programmatic Advertising Revenue. https://prebid.
org/

[53] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. 2015. Annoyed users: Ads and
ad-block usage in the wild. In Proceedings of the Internet Measurement Conference
(IMC). 93–106.

[54] Jeremy Rack and Cristian-Alexandru Staicu. 2023. Jack-in-the-box: An Empirical
Study of JavaScript Bundling on the Web and its Security Implications. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (Copenhagen, Denmark) (CCS ’23). Association for Computing Machin-
ery, New York, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623140

[55] Jeremy Rack and Cristian-Alexandru Staicu. 2023. Jack-in-the-box: An Empirical
Study of JavaScript Bundling on the Web and its Security Implications. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (Copenhagen, Denmark) (CCS ’23). Association for Computing Machin-
ery, New York, NY, USA, 3198–3212. https://doi.org/10.1145/3576915.3623140

[56] Sentry. 2023. Analytics. https://develop.sentry.dev/analytics/
[57] Sentry. 2023. Dealing with Ad-Blockers. https://docs.sentry.io/platforms/

javascript/troubleshooting/#dealing-with-ad-blockers
[58] Sentry. 2023. Official Sentry SDKs for JavaScript. https://github.com/getsentry/

sentry-javascript
[59] Michael Smith, Peter Snyder, Moritz Haller, Benjamin Livshits, Deian Stefan,

and Hamed Haddadi. 2022. Blocked or broken? Automatically detecting when
privacy interventions break websites. arXiv preprint arXiv:2203.03528 (2022).

[60] Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan. 2021. Sugar-
Coat: Programmatically Generating Privacy-Preserving, Web-Compatible Re-
source Replacements for Content Blocking. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (Virtual Event,
Republic of Korea) (CCS ’21). Association for Computing Machinery, New York,
NY, USA, 2844–2857. https://doi.org/10.1145/3460120.3484578

[61] Peter Snyder, Antoine Vastel, and Ben Livshits. 2020. Who Filters the Filters:
Understanding the Growth, Usefulness and Efficiency of Crowdsourced Ad
Blocking. In Abstracts of the 2020 SIGMETRICS/Performance Joint International
Conference on Measurement and Modeling of Computer Systems (Boston, MA,
USA) (SIGMETRICS ’20). Association for Computing Machinery, New York, NY,
USA, 75–76. https://doi.org/10.1145/3393691.3394228

[62] Jingxue Sun, Zhiqiu Huang, Ting Yang, Wengjie Wang, and Yuqing Zhang.
2021. A system for detecting third-party tracking through the combination of
dynamic analysis and static analysis. In IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). 1–6. https:
//doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484564

[63] Terser. 2023. JavaScript mangler and compressor toolkit. https://terser.org/
[64] webpack. 2023. Stats Data. https://webpack.js.org/api/stats/
[65] Rob Wu. 2022. Manifest v3 in Firefox: Recap & Next Steps. https://blog.mozilla.

org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
[66] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz,

Christopher Kruegel, and Giovanni Vigna. 2014. The dark alleys of madison
avenue: Understandingmalicious advertisements. In Proceedings of the Conference
on Internet Measurement Conference (IMC). 373–380.

https://doi.org/10.1145/2666652.2666662
https://doi.org/10.1109/SP40001.2021.00007
https://developer.chrome.com/blog/improvements-to-content-filtering-in-manifest-v3/
https://developer.chrome.com/blog/improvements-to-content-filtering-in-manifest-v3/
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://adblockplus.org/
https://adblockplus.org/
https://github.com/wooorm/npm-high-impact
https://github.com/wooorm/npm-high-impact
https://doi.org/10.1145/3319535.3345656
https://doi.org/10.1145/3359789.3359813
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs/blob/master/docs/evade_ad_blockers.md
https://github.com/fingerprintjs/fingerprintjs/blob/master/docs/evade_ad_blockers.md
https://fingerprint.com
https://sentry.io/welcome/
https://ublockorigin.com/
https://doi.org/10.1109/SP40000.2020.00005
https://doi.org/10.1109/SP40000.2020.00005
https://github.com/anvaka/npmrank
https://github.com/anvaka/npmrank
https://www.usenix.org/conference/usenixsecurity23/presentation/le
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://www.usenix.org/conference/usenixsecurity22/presentation/lin-xu
https://www.usenix.org/conference/usenixsecurity22/presentation/lin-xu
https://github.com/estree/estree
https://github.com/estree/estree
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://doi.org/10.1109/DSN48987.2021.00065
https://github.com/npm/registry/blob/master/docs/download-counts.md
https://github.com/npm/registry/blob/master/docs/download-counts.md
https://github.com/prebid/Prebid.js
https://prebid.org/
https://prebid.org/
https://doi.org/10.1145/3576915.3623140
https://doi.org/10.1145/3576915.3623140
https://develop.sentry.dev/analytics/
https://docs.sentry.io/platforms/javascript/troubleshooting/#dealing-with-ad-blockers
https://docs.sentry.io/platforms/javascript/troubleshooting/#dealing-with-ad-blockers
https://github.com/getsentry/sentry-javascript
https://github.com/getsentry/sentry-javascript
https://doi.org/10.1145/3460120.3484578
https://doi.org/10.1145/3393691.3394228
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484564
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484564
https://terser.org/
https://webpack.js.org/api/stats/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/

	Abstract
	1 Introduction
	2 Background
	2.1 Bundles and Relevant Concepts
	2.2 Motivating Example
	2.3 Properties of an Ideal Solution

	3 Unbundle-Rewrite-Rebundle Design
	3.1 Gathering Modules
	3.2 Processing Modules
	3.3 Comparing Modules
	3.4 Replacing Modules

	4 Evaluation
	4.1 Evaluation Dataset
	4.2 Replacements
	4.3 Framework Effectiveness
	4.4 Performance

	5 Discussion
	5.1 Applicability to Other Systems
	5.2 Alternative Deployment Strategies
	5.3 Diversity of Target Library Representation
	5.4 Replacements

	6 Related Work
	7 Conclusion
	References

