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SOME REMARKS ON PERIODIC GRADINGS

OKSANA S. YAKIMOVA

ABSTRACT. Let q be a finite-dimensional Lie algebra, ϑ ∈ Aut(q) a finite order automor-

phism, and q0 the subalgebra of fixed points of ϑ. Using ϑ one can construct a pencil P of

compatible Poisson brackets on S(q), and thereby a ‘large’ Poisson-commutative subalge-

bra Z(q, ϑ) of S(q)q0 . In this article, we study one particular bracket { , }∞ ∈ P and the

related Poisson centre Z∞. It is shown that Z∞ is a polynomial ring, if q is reductive.
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INTRODUCTION

The ground field k is algebraically closed and char(k) = 0. Let q = (q, [ , ]) be a finite-

dimensional algebraic Lie algebra, i.e., q = LieQ, where Q is a connected affine algebraic

group. The dual space q∗ is a Poisson variety, i.e., the algebra of polynomial functions on

q∗, k[q∗] ≃ S(q), is equipped with the Lie–Poisson bracket { , }. Here {x, y} = [x, y] for

x, y ∈ q. Poisson-commutative subalgebras of k[q∗] are important tools for the study of

geometry of the coadjoint action of Q and representation theory of q.

0.1. There is a well-known method, the Lenard–Magri scheme, for constructing “large”

Poisson-commutative subalgebras of k[q∗], which is related to compatible Poisson brackets,

see e.g. [GZ00]. Two Poisson brackets { , }′ and { , }′′ are said to be compatible, if any linear

combination { , }a,b := a{ , }′+ b{ , }′′ with a, b ∈ k is a Poisson bracket. Then one defines

a certain dense open subset Ωreg ⊂ k2 that corresponds to the regular brackets in the pencil

P = {{ , }a,b | (a, b) ∈ k2}. Let Za,b ⊂ S(q) denote the Poisson centre of (S(q), { , }a,b).
Then the subalgebra Z ⊂ S(q) generated by Za,b with (a, b) ∈ Ωreg is Poisson-commutative
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2 O. YAKIMOVA

w.r.t. { , }′ and { , }′′. An obvious first step is to take the initial Lie–Poisson bracket { , }
as { , }′. The rest depends on a clever choice of { , }′′.

0.2. Let ϑ be an automorphism of q of finite order m. Then q is equipped with a Zm-

grading q =
⊕m−1

i=0 qi, where each qi is an eigenspace of ϑ. One can naturally construct

a compatible Poisson bracket { , }′′ associated with the grading [PY, PY21]. In this case,

all Poisson brackets in P are linear and there are two lines l1, l2 ⊂ k2 such that Ω =

k2 \ (l1 ∪ l2) ⊂ Ωreg and the Lie algebras corresponding to (a, b) ∈ Ω are isomorphic to

q. The lines l1 and l2 give rise to new Lie algebras, denoted q(0) and q(∞). These new

algebras are different contractions of q. A definition and basic properties of contractions

are discussed in Section 1.2. Let ind q denote the index of q (see Section 1.1). Then we

have ind q 6 ind q(t) for t ∈ {0,∞}. Let S(q)q ≃ k[q∗]Q be the ring of symmetric invariants

of q, i.e., the Poisson centre of S(q). Let further Z = Z(q, ϑ) be the Poisson-commutative

subalgebra associated with P . Many features of Z depend on the properties of q(0) and

q(∞).

In [PY21, PY23], we have studied the ring Z0 = S(q(0))
q(0) in case q = g is reduc-

tive. For some g such that ind g(0) = rk g, this is a polynomial ring with rk g genera-

tors. However, there are exceptions even if m = 2 [Y17]. Partial results were obtained

for Z∞ = S(q(∞))
q(∞) . Namely, if g is reductive and ϑ is an inner automorphism, then

Z∞ = S(g0) [PY21].

In Section 1, we collect basic facts on the coadjoint action and symmetric invariants.

Explicit descriptions of the algebras q(0) and q(∞) are presented in Section 1.3.

0.3. If ind q(∞) > ind q, then Z∞ does not have to be Poisson-commutative. Our first

result states that {Zq0
∞ ,Zq0

∞} = 0, if q∗0 contains a regular in q∗ element. Furthermore,

under that assumption, the algebra alg〈Z,Zq0
∞〉, generated by Z and Zq0

∞ , is still Poisson-

commutative, see Theorem 2.3. Both statements have applications related to the cur-

rent algebra q[t]. Namely, one can construct a large Poisson-commutative subalgebra of

S(q[t]ϑ) following the ideas of [PY21, Sect. 8]. However, our new approach works for sev-

eral non-reductive Lie algebras and does not require the assumption that ind g(0) = rk g,

which is imposed in [PY21]. The construction will appear in a forthcoming paper.

Section 3 contains a brief summary of Kac’s classification of finite order automorphisms

for a semisimple g [Ka69]. In particular, we describe a relation between the roots of g

and of gσ, where σ is a diagram automorphism of g. Then in Section 3.3, we state main

results of [PY21] on generators of Z(g, ϑ). Many crucial properties of Z(g, ϑ), including its

transcendence degree, depend on the equality ind g(0) = rk g, see e.g. [PY21, Thm 3.10] or

Theorem 3.6 here. Conjecture 3.1 in [PY23] states that ind g(0) = rk g for all g and all ϑ. In

Section 3.4, we recollect several instances, where the equality holds, and provide a few

new positive examples, see Theorem 3.10.
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In the more favourable reductive case, we prove that Z∞ and Zg0
∞ are always polyno-

mial rings and describe their generators explicitly, see Section 4. We consider also the

non-reductive Lie algebra g̃ = g0 ⋉ g(∞) and its coadjoint representation. It is shown that

ind g̃ = rk g + rk g0 and that g̃ has the codim–2 property, see Theorem 4.4. Then by Theo-

rem 4.5, S(g̃)g̃ is a polynomial ring with ind g̃ generators. These generators are described

explicitly.

Non-reductive Lie algebras q such that S(q)q is a polynomial ring with ind q generators

attract a lot of attention, see e.g. [J06, PPY, P07, P09, Y14, CM16, FL18]. A quest for this

type of algebras continues. Many examples that are found so far are related to particular

simple Lie algebras. For instance, assertions of [J06] and [PPY] hold in full generality only

for sln and sp2n. Note that our results on g(∞) and g̃ are independent of the type of g and

apply to all finite order automorphisms. We prove also that g̃ is a Lie algebra of Kostant

type in the terminology of [Y14].

The Lie algebra g̃ is quadratic, i.e., there is a g̃-invariant non-degenerate symmetric bi-

linear form on g̃. This implies that the adjoint and coadjoint representations of g̃ are

isomorphic, see e.g. [P09, Sect. 1.1]. In [P09, Sect. 4], invariants of the adjoint action of g̃

are studied. In the notation of that paper, g̃ = g〈m+1〉0. A more general object g〈nm+1〉0
of [P09] can be also interpreted in our context.

Suppose that g = h⊕n is a sum of n copies of a reductive Lie algebra h and ϑ is a

composition of a finite order automorphism ϑ̃ ∈ Aut(h) and a cyclic permutation of the

summands. Formally we have

(0·1) ϑ ((x1, x2, . . . , xn)) = (xn, ϑ̃(x1), x2, . . . , xn−1) for (x1, x2, . . . , xn) ∈ h⊕ h⊕ . . .⊕ h.

Then g̃ associated with ϑ is equal to h〈nm + 1〉0. In [P09, Thm 4.1(ii)], it is shown that

k[g〈nm+1〉0]g〈nm+1〉0 is a polynomial algebra of Krull dimension nrk g+rk g0, if g0 contains

a regular nilpotent element of g. Here we have no assumptions on g0, i.e., we show that

[P09, Thm 4.1(ii)] holds for all g and ϑ.

Our general reference for semisimple Lie groups and algebras is [Lie3].

1. PRELIMINARIES ON POISSON BRACKETS AND POLYNOMIAL CONTRACTIONS

LetQ be a connected affine algebraic group with Lie algebra q. The symmetric algebra of q

over k is N0-graded, i.e., S(q) =
⊕

i>0 S
i(q). It is identified with the algebra of polynomial

functions on the dual space q∗.

1.1. The coadjoint representation. The group Q acts on q∗ via the coadjoint representa-

tion and then ad∗ : q → GL(q∗) is the coadjoint representation of q. The algebra of Q-inva-

riant polynomial functions on q∗ is denoted by S(q)Q or k[q∗]Q. Write k(q∗)Q for the field

of Q-invariant rational functions on q∗.

Let qξ = {x ∈ q | ad∗(x)·ξ = 0} be the stabiliser in q of ξ ∈ q∗. The index of q,
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ind q, is the minimal codimension of Q-orbits in q∗. Equivalently, ind q = minξ∈q∗ dim qξ.

By the Rosenlicht theorem (see [Sp89, IV.2]), one also has ind q = tr.deg k(q∗)Q. Set

b(q) = (dim q + ind q)/2. Since the Q-orbits in q∗ are even-dimensional, b(q) is an integer.

If q is reductive, then ind q = rk q and b(q) equals the dimension of a Borel subalgebra.

The Lie–Poisson bracket on S(q) is defined on S1(q) = q by {x, y} := [x, y]. It is then

extended to higher degrees via the Leibniz rule. Hence S(q) has the usual associative-

commutative structure and additional Poisson structure. Whenever we refer to subalge-

bras of S(q), we always mean the associative-commutative structure. Then a subalgebra

A ⊂ S(q) is said to be Poisson-commutative, if {H,F} = 0 for all H,F ∈ A. It is well known

that if A is Poisson-commutative, then tr.degA 6 b(q), see e.g. [Vi90, 0.2]. More gener-

ally, suppose that h ⊂ q is a Lie subalgebra and A ⊂ S(q)h is Poisson-commutative. Then

tr.degA 6 b(q)− b(h) + ind h, see [MY19, Prop. 1.1].

The centre of the Poisson algebra (S(q), { , }) is

Z(q) := {H ∈ S(q) | {H,F} = 0 ∀F ∈ S(q)} = S(q)q = k[q∗]q = k[q∗]Q.

Since the quotient field of k[q∗]Q is contained in k(q∗)Q, we deduce from the Rosenlicht

theorem that

(1·1) tr.deg (S(q)q) 6 ind q.

The set of regular elements of q∗ is

(1·2) q∗reg = {η ∈ q∗ | dim qη = ind q} = {η ∈ q∗ | dimQ·η is maximal}.

It is a dense open subset of q∗. Set q∗sing = q∗ \ q∗reg. We say that q has the codim–n property

if codim q∗sing > n. The codim–2 property is going to be most important for us.

For γ ∈ q∗, let γ̂ be the skew-symmetric bilinear form on q defined by γ̂(ξ, η) = γ([ξ, η])

for ξ, η ∈ q. It follows that ker γ̂ = qγ . The 2-form γ̂ is related to the Poisson tensor (bivector)

π of the Lie–Poisson bracket { , } as follows.

Let dH denote the differential of H ∈ S(q) = k[q∗]. Then π is defined by the formula

π(dH ∧ dF ) = {H,F} for H,F ∈ S(q). Then π(γ)(dγH ∧ dγF ) = {H,F}(γ) and therefore

γ̂ = π(γ). In this terms, ind q = dim q− rk π, where rk π = maxγ∈q∗ rk π(γ).

For a subalgebra A ⊂ S(q) and γ ∈ q∗, set dγA = 〈dγF | F ∈ A〉
k
. By the definition of

S(q)q, we have

(1·3) dγS(q)
q ⊂ ker π(γ)

for each γ ∈ q∗.

1.2. Contractions and invariants. We refer to [Lie3, Ch. 7, § 2] for basic facts on contrac-

tions of Lie algebras. In this article, we consider contractions of the following form. Let

k
⋆ = k \ {0} be the multiplicative group of k and ϕ : k⋆ → GL(q), s 7→ ϕs, a polynomial

representation. That is, the matrix entries of ϕs : q → q are polynomials in s w.r.t. some
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(any) basis of q. Define a new Lie algebra structure on the vector space q and associated

Lie–Poisson bracket by

(1·4) [x, y](s) = {x, y}(s) := ϕ−1
s [ϕs(x), ϕs(y)], x, y ∈ q, s ∈ k

⋆.

All the algebras (q, [ , ](s)) are isomorphic and (q, [ , ](1)) is the initial Lie algebra q. The

induced k
⋆-action on the variety of structure constants is not necessarily polynomial, i.e.,

lims→0[x, y](s) may not exist for all x, y ∈ q. Whenever such a limit exists, we obtain a new

linear Poisson bracket, denoted { , }0, and thereby a new Lie algebra q(0), which is said to

be a contraction of q. If we wish to stress that this construction is determined by ϕ, then

we write {x, y}(ϕ,s) for the bracket in (1·4) and say that q(0) = q(0,ϕ) is the ϕ-contraction of q

or is the zero limit of q w.r.t. ϕ. A criterion for the existence of q(0) can be given in terms of

Lie brackets of the ϕ-eigenspaces in q, see [Y17, Sect. 4]. We identify all algebras q(s) and

q(0) as vector spaces. The semi-continuity of index implies that ind q(0) > ind q.

The map ϕs, s ∈ k⋆, is naturally extended to an invertible transformation of Sj(q),

which we also denote by ϕs. The resulting graded map ϕs : S(q) → S(q) is nothing but

the comorphism associated with s ∈ k⋆ and the dual representation ϕ∗ : k⋆ → GL(q∗).

Since Sj(q) has a basis that consists of ϕ(k⋆)-eigenvectors, any F ∈ Sj(q) can be written

as F =
∑

i>0 Fi, where the sum is finite and ϕs(Fi) = siFi ∈ Sj(q). Let F • denote the

non-zero component Fi with maximal i.

Proposition 1.1 ([Y14, Lemma 3.3]). If F ∈ Z(q) and q(0) exists, then F • ∈ Z(q(0)).

1.3. Periodic gradings of Lie algebras and related compatible brackets. Let ϑ ∈ Aut(q)

be a Lie algebra automorphism of finite order m > 2 and ζ = m
√
1 a primitive root of

unity. Write also ord(ϑ) for the order of ϑ. If qi is the ζ i-eigenspace of ϑ, i ∈ Zm, then

the direct sum q =
⊕

i∈Zm
qi is a periodic grading or Zm-grading of q. The latter means that

[qi, qj] ⊂ qi+j for all i, j ∈ Zm. Here q0 = qϑ is the fixed-point subalgebra for ϑ and each qi

is a q0-module.

We choose {0, 1, . . . , m−1} ⊂ Z as a fixed set of representatives for Zm = Z/mZ. Under

this convention, we have q = q0 ⊕ q1 ⊕ . . .⊕ qm−1 and

(1·5) [qi, qj] ⊂







qi+j, if i+ j 6 m−1,

qi+j−m, if i+ j > m.

This is needed below, when we consider Z-graded contractions of q associated with ϑ.

The presence of ϑ allows us to split the Lie–Poisson bracket on q∗ into a sum of two

compatible Poisson brackets. Consider the polynomial representation ϕ : k
⋆ → GL(q)

such that ϕs(x) = sjx for x ∈ qj . As in Section 1.2, this defines a family of linear Poisson

brackets on S(q) parametrised by s ∈ k
⋆, see (1·4).

Below we outline some results of [PY21]:
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(i) There is a limit lims→0{x, y}(s) =: {x, y}0, which is a linear Poisson bracket on S(q).

(ii) The difference { , } − { , }0 =: { , }∞ is a linear Poisson bracket on S(q), which is

obtained as the zero limit w.r.t. the polynomial representation ψ : k⋆ → GL(q) such

that ψs = sm·ϕs−1 = sm·ϕ−1
s , s ∈ k⋆. In other words, { , }∞ = lims→0{ , }(ψ,s).

(iii) For any ϑ ∈ Aut(q) of finite order, the Poisson brackets { , }0 and { , }∞ are com-

patible, and the corresponding pencil contains the initial Lie–Poisson bracket.

Set

{ , }t = { , }0 + t{ , }∞,
where t ∈ P := k ∪ {∞} and the value t = ∞ corresponds to the bracket { , }∞. Let q(t)
stand for the Lie algebra corresponding to { , }t. All these Lie algebras have the same

underlying vector space.

Proposition 1.2 ([PY21, Prop. 2.3]). The Lie algebras q(0) and q(∞) are N0-graded. More pre-

cisely, if r[i] stands for the component of grade i ∈ N0 in an N0-graded Lie algebra r, then

q(0)[i] =







qi for i = 0, 1, . . . , m−1

0 otherwise
, q(∞)[i] =







qm−i for i = 1, 2, . . . , m

0 otherwise
.

In particular, q(∞) is nilpotent and the subspace q0, which is the highest grade component of q(∞),

belongs to the centre of q(∞). �

Suppose that t ∈ k⋆. Then { , }t = { , }(s), where sm = t. The algebras q(t) with t ∈ k⋆

are isomorphic and they have one and the same index. We say that t ∈ P is regular if

ind q(t) = ind q and write Preg for the set of regular values. Then Psing := P \ Preg ⊂ {0,∞}
is the set of singular values.

Let Q0 ⊂ Q be the connected subgroup of Q with LieQ0 = q0. It is easy to see that Q0

is an algebraic group. Hence there are connected algebraic groups Q(t) such that q(t) =

LieQ(t) for each t ∈ P.

Let Zt be the centre of the Poisson algebra (S(q), { , }t). In particular, Z1 = S(q)q. If

t = sm ∈ k⋆, then Zt = ϕ−1
s (Z1). By Eq. (1·1), we have tr.degZt 6 ind q(t). In [PY21], we

have studied the subalgebra Z ⊂ S(q) generated by the centres Zt with t ∈ Preg, i.e.,

Z = Z(q, ϑ) = alg〈Zt | t ∈ Preg〉.

By a general property of compatible brackets, the algebra Z is Poisson-commutative w.r.t.

all brackets { , }t with t ∈ P, cf. [PY, Sect. 2]. Note that the Lie subalgebra q0 ⊂ q = q(1) is

also the same Lie subalgebra in any q(t) with t 6= ∞ (cf. Proposition 1.2 for q(0)). Therefore,

(1·6) Zt ⊂ S(q)q0 for t 6= ∞.

Convention. We think of q∗ as the dual space for any Lie algebra q(t) and sometimes

omit the subscript ‘(t)’ in q∗(t). However, if ξ ∈ q∗, then the stabiliser of ξ with respect to

the coadjoint representation of q(t) is denoted by q
ξ

(t). Set q∗∞,reg := (q∗(∞))reg.
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1.4. Good generating systems. Let g be a reductive Lie algebra. Consider a contraction

g(0) of g given by {ϕs | s ∈ k⋆}. Let {x1, . . . , xdim g} be basis of g and ω = x1 ∧ . . . ∧ xdim g a

volume form. Then ϕ(ω) = sDω, where D is a non-negative integer. We set Dϕ := D.

The Poisson centre S(g)g is a polynomial algebra of Krull dimension l = rk g and

ind g = l. Hence one has now the equality in Eq. (1·1). Let {H1, . . . , Hl} be a set of homoge-

neous algebraically independent generators of S(g)g and di = degHi. Then
∑l

i=1 di = b(g).

As above, each Hj decomposes as Hj =
∑

i>0Hj,i, where ϕs(Hj) =
∑

i>0 s
iHj,i. The poly-

nomials Hj,i are called bi-homogeneous components of Hj . By definition, the ϕ-degree of

Hj,i is i, also denoted by degϕHj,i. Then H•
j is the non-zero bi-homogeneous component

of Hj with maximal ϕ-degree. We set degϕHj = degϕH
•
j and d•j = degϕH

•
j .

Definition 1.3. Let us say thatH1, . . . , Hl is a good generating system in S(g)g (g.g.s. for short)

for ϕ, if H•
1 , . . . , H

•
l are algebraically independent. Then we also say that ϕ admits a g.g.s.

The property of being ‘good’ really depends on a generating system. The importance of

g.g.s. is manifestly seen in the following result.

Theorem 1.4 ([Y14, Theorem 3.8]). Let H1, . . . , Hl be an arbitrary set of homogeneous alge-

braically independent generators of S(g)g. Then

(i)
∑l

j=1 degϕHj > Dϕ ;

(ii) H1, . . . , Hl is a g.g.s. if and only if
∑l

j=1 degϕHj = Dϕ ;

(iii) if g(0) has the codim–2 property, ind g(0) = l, and H1, . . . , Hl is a g.g.s., then Z0 =

S(g(0))
g(0) is a polynomial algebra freely generated by H•

1 , . . . , H
•
l and

{ξ ∈ g∗ | dξH
•
1 ∧ . . . ∧ dξH

•
l = 0} = (g(0))

∗
sing. ✷

Let F1, . . . , FN ∈ k[xi | 1 6 i 6 n] = k[An] be algebraically independent homogeneous

polynomials. Set

J(F1, . . . , FN) := {x ∈ A
n | dxF1 ∧ . . . ∧ dxFN = 0}.

Then J(F1, . . . , FN ) is a proper closed subset of An. An open subset of An is said to be big,

if its complement does not contain divisors. Thereby the differentials dFi with 1 6 i 6 N

are linearly independent on a big open subset if and only if dim J(F1, . . . , FN) 6 n− 2.

By the Kostant regularity criterion for g, J(H1, . . . , Hl) = g∗sing, see [K63, Theorem 9].

By [K63], g has the codim–3 property, i.e., dim g∗sing 6 dim g− 3.

Part (iii) of Theorem 1.4 states that the Kostant regularity criterion holds for g(0). One

of the ingredients of the proof, which will be used in this paper as well, is the following

statement.

Theorem 1.5 ([PPY, Theorem 1.1]). Let F1, . . . , FN be as above. If dim J(F1, . . . , FN) 6 n− 2,

then F = k[Fj | 1 6 j 6 N ] is an algebraically closed subalgebra of k[An], i.e., if H ∈ k[An] is

algebraic over the field k(F1, . . . , FN), then H ∈ F .
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2. PROPERTIES OF q(∞) AND OF THE POISSON CENTRE Z∞ ⊂ S(q(∞))

By Proposition 1.2, q(∞) is a nilpotent N-graded Lie algebra. Recall also that the subspace

q0 belongs to the centre of q(∞). Let πt be the Poisson tensor of q(t). We identify q∗0 with the

annihilator Ann(
⊕m−1

i=1 qi) ⊂ q∗ and regard it as a subspace of q∗.

For any ξ ∈ q∗0 ⊂ q∗, we have

(2·1) q
ξ

(∞) = q0 ⊕
⊕

j>1

q
ξ
j , where q

ξ
j = {y ∈ qj | ξ([y, qm−j]) = 0}.

Furthermore, qξ = q
ξ
0 ⊕

⊕

j>1 q
ξ
j . If this ξ is regular in q∗, then ξ ∈ (q∗0)reg.

Theorem 2.1. Suppose that q∗0 ∩ q∗reg 6= ∅. Then ind q(∞) = dim q0 + ind q− ind q0.

Proof. (1) Take any ξ ∈ q∗0 ∩ q∗reg. Then q
ξ

(∞) = qξ + q0. Furthermore qξ ∩ q0 = q
ξ
0. As

we have explained above, ξ ∈ (q∗0)reg. Thereby dim q
ξ
0 = ind q0 and hence dim q

ξ

(∞) =

ind q+ dim q0 − ind q0. This leads to ind q(∞) 6 ind q+ dim q0 − ind q0.

(2) Let us prove the opposite inequality. Take any ξ ∈ q∗reg such that ξ̄ = ξ|q0 ∈ (q∗0)reg.

Note that there is a non-empty open subset consisting of suitable elements. For all but

finitely many t, we have dim q
ξ

(t) = ind q. Hence v = lim
t→∞

q
ξ

(t) is a well-defined sub-

space of q of dimension ind q. If t 6= ∞, then πt(ξ)|q0×q = π1(ξ)|q0×q and π1(ξ)(q0, q
ξ

(t)) =

πt(ξ)(q0, q
ξ

(t)) = 0. Therefore

(2·2) π1(ξ)(q0, v) = 0

and v ∩ q0 ⊂ q
ξ̄
0. By the construction, v ⊂ q

ξ

(∞). Thus

(2·3) dim q
ξ

(∞) > dim(v+ q0) = dim v+ dim q0 − dim(q0 ∩ v) > ind q+ dim q0 − ind q0.

This finishes the proof, since the inequality holds on a non-empty open subset. �

The assumption q∗0 ∩ q∗reg 6= ∅ is satisfied in the reductive case, since the reductive

subalgebra g0 = gϑ contains regular semisimple elements of g, see e.g. [Ka83, §8.8]. Thus,

we obtain a new proof of [PY21, Theorem 3.2].

Corollary 2.2 ([PY21]). Suppose that q = g is reductive. Then one has ∞ ∈ Preg if and only if

dim g0 = rk g0, i.e., g0 is an abelian subalgebra of g.

Recall that q0 ⊂ Z∞. Thereby Z∞ is not Poisson-commutative, unless q0 is commu-

tative. However, if [q0, q0] = 0 and q∗0 ∩ q∗reg 6= ∅, then ind q0 = dim q0 and { , }∞ is a

regular structure in the pencil spanned by { , } and { , }0, see Theorem 2.1. In this case,

Z∞ ⊂ Z(q, ϑ). Thereby a description of Z∞ is desirable.

The group Q0 acts on q(∞). Hence one may consider Zq0
∞ ⊂ Z∞.

Theorem 2.3. Assume that q∗0 ∩ q∗reg 6= ∅.

(i) We have {Zq0
∞ ,Zq0

∞} = 0.
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(ii) The algebra alg〈Z,Zq0
∞〉 is still Poisson-commutative.

(iii) We have also tr.degZq0
∞ 6 ind q.

Proof. Take ξ ∈ q∗reg ∩ q∗∞,reg such that ξ̄ = ξ|q0 ∈ (q∗0)reg. Note that there is a non-empty

open subset consisting of suitable elements. Following the proof of Theorem 2.1, set v =

lim
t→∞

q
ξ

(t). Recall that v+q0 ⊂ q
ξ

(∞) and that dim(v+q0) > ind q(∞), see (2·3). Since ξ ∈ q∗∞,reg,

there is the equality q
ξ

(∞) = v+ q0.

Next dξZq0
∞ ⊂ q

ξ

(∞) by (1·3) and π1(ξ)(dξZq0
∞ , q0) = 0, since Zq0

∞ consists of q0-invariants.

In the proof of Theorem 2.1, we have established that π1(ξ)(v, q0) = 0, see (2·2). Suppose

that y ∈ q0 and π1(ξ)(y, q0) = 0. Then y ∈ q
ξ̄
0. In particular, dξZq0

∞ ⊂ v+ q
ξ̄
0 and v ∩ q0 ⊂ q

ξ̄
0.

By the dimension reasons, v ∩ q0 = q
ξ̄
0. Thus dξZq0

∞ ⊂ v+ q
ξ̄
0 ⊂ v. The inclusion proves the

inequality tr.degZq0
∞ 6 dim v = ind q.

For almost all t ∈ P, we have dim q
ξ

(t) = ind q. Hence v is a subspace of

L(ξ) :=
∑

t: rkπt(ξ)=dim q−ind q

q
ξ

(t)

and the latter is known to be isotropic w.r.t. πt(ξ) for any t, see e.g. [PY08, Appendix].

Then, in particular, any F ∈ {Zq0
∞ ,Zq0

∞} vanishes at ξ, and, since ξ is generic, the first claim

is settled.

If ∞ ∈ Preg, then Zq0
∞ ⊂ Z∞ ⊂ Z and part (ii) is clear. Suppose that ∞ ∈ Psing. Then

Z ⊂ alg〈Zt | t 6= ∞〉. For any t 6= ∞, the brackets { , }∞ and { , }t span

P = {a{ , }0 + b{ , }∞ | (a, b) ∈ k
2}

and {Z∞,Zt}∞ = {Z∞,Zt}t = 0. Thereby {Z∞,Zt} = 0 for each t 6= ∞. This finishes the

proof. �

3. THE REDUCTIVE CASE

In most of this section, we recollect known results about automorphisms of reductive

Lie algebras and properties of Z(g, ϑ). Statements of Section 3.2 are crucial for the proof

of Theorem 4.4. Theorem 3.10 on the index of g(0) is a new result.

3.1. The Kac diagram of a finite order automorphism. We describe briefly Kac’s classi-

fication of finite order automorphisms in the semisimple case [Ka69].

A pair (g, ϑ) is decomposable, if g is a direct sum of two non-trivial ϑ-stable ideals. Other-

wise (g, ϑ) is said to be indecomposable. Classification of finite order automorphism read-

ily reduces to the indecomposable case. The centre of g is always a ϑ-stable ideal and

automorphisms of an abelian Lie algebra have no particular significance (in our context).

Therefore assume that g is semisimple.
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Suppose that g is not simple and (g, ϑ) is indecomposable. Then g = h⊕n is a sum of

n copies of a simple Lie algebra h and ϑ is a composition of an automorphism of h and a

cyclic permutation of the summands.

Below we assume that g is simple. By a result of R. Steinberg [St68, Theorem 7.5], every

semisimple automorphism of g fixes a Borel subalgebra of g and a Cartan subalgebra

thereof. Let b be a ϑ-stable Borel subalgebra and t ⊂ b a ϑ-stable Cartan subalgebra. This

yields a ϑ-stable triangular decomposition g = u− ⊕ t⊕ u, where u = [b, b]. Let ∆ = ∆(g)

be the set of roots of g related to t, ∆+ the set of positive roots corresponding to u, and

Π ⊂ ∆+ the set of simple roots. Let gγ be the root space for γ ∈ ∆. Hence u =
⊕

γ∈∆+ gγ .

Let eγ ∈ gγ be a non-zero root vector.

Clearly, ϑ induces a permutation of Π, which is an automorphism of the Dynkin di-

agram, and ϑ is inner if and only if this permutation is trivial. Accordingly, ϑ can be

written as a product σ◦ϑ′, where ϑ′ is inner and σ is the so-called diagram automorphism of

g. We refer to [Ka83, § 8.2] for an explicit construction and properties of σ. In particular,

σ depends only on the connected component of Aut(g) that contains ϑ and ord(σ) equals

the order of the corresponding permutation of Π.

— The case of an inner ϑ:

Set Π = {α1, . . . , αl} and let δ =
∑l

i=1 niαi be the highest root in ∆+. An inner periodic

automorphism with t ⊂ g0 is determined by an (l + 1)-tuple of non-negative integers,

Kac labels, p = (p0, p1, . . . , pl) such that gcd(p0, . . . , pl) = 1 and p 6= (0, . . . , 0). Set m :=

p0 +
∑l

i=1 nipi and let pi denote the unique representative of {0, 1, . . . , m − 1} such that

pi ≡ pi (mod m). The Zm-grading g =
⊕m−1

i=0 gi corresponding to ϑ = ϑ(p) is defined by

the conditions that

gαi
⊂ gpi for i = 1, . . . , l, g−δ ⊂ gp0 , and t ⊂ g0.

The Kac diagram K(ϑ) of ϑ = ϑ(p) is the affine (= extended) Dynkin diagram of g, D̃(g),

equipped with the labels p0, p1, . . . , pl. In K(ϑ), the i-th node of the usual Dynkin diagram

D(g) represents αi and the extra node represents −δ. It is convenient to assume that

α0 = −δ and n0 = 1. Then (l + 1)-tuple (n0, n1, . . . , nl) yields the coefficients of a linear

dependence for α0, α1, . . . , αl.

— The case of an outer ϑ:

Let σ be the diagram automorphism of g related to ϑ. The order of a nontrivial diagram

automorphism is either 2 or 3, there 3 is possible only for g of type D4. Therefore, σ defines

either a Z2- or Z3-grading of g, say g = gσ ⊕ g
(σ)
1 or g = gσ ⊕ g

(σ)
1 ⊕ g

(σ)
2 .

The Kac diagrams of outer periodic automorphisms are supported on the twisted affine

Dynkin diagrams of index 2 and 3, see [Vi76, § 8] and [Lie3, Table 3]. Such a diagram

has r + 1 nodes, where r = rk gσ, certain r nodes comprise the Dynkin diagram of the

simple Lie algebra gσ, and the additional node represents the lowest weight −δ1 of the
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gσ-module g
(σ)
1 . Write δ1 =

∑r

i=1 a
′
iνi, where the elements νi are the simple roots of gσ, and

set a′0 = 1. Then the (r + 1)-tuple (a′0, a
′
1, . . . , a

′
r) yields coefficients of linear dependence

for −δ1, ν1, . . . , νr.
Let p = (p0, p1, . . . , pr) be an (r + 1)-tuple of non-negative integers, Kac labels, such

that p 6= (0, 0, . . . , 0) and gcd(p0, p1, . . . , pr) = 1. The Kac diagram of ϑ = ϑ(p) is the

required twisted affine diagram equipped with the labels (p0, p1, . . . , pr) over the nodes.

Then m = ord(ϑ(p)) = ord(σ)·
∑r

i=0 a
′
ipi.

3.2. Relation between roots of g and gσ. Let σ be a diagram automorphism of g associ-

ated with b and t ⊂ b. Then σ(b) = b and σ(t) = t by the construction. Let ∆+
gσ be the set

of positive roots of gσ associated with (bσ, t0), where t0 = tσ.

Take any α ∈ ∆+. If σ(α) 6= α, then the restriction ᾱ = α|t0 is a positive root of gσ. In

any case, ᾱ = σ(α)|t0 . Suppose β ∈ ∆gσ . Then there is a non-zero root vector xβ ∈ gσ. We

can write xβ =
∑

α∈∆ bαeα with bα ∈ k. Then α|t0 = β, whenever bα 6= 0. In particular, ∆gσ

is contained in ∆|t0 .

Let 〈σ〉 ⊂ Aut(g) be a subgroup generated by σ. In all types except A2n, the restriction

of roots from t to t0 produces bijections between 〈σ〉-orbits on ∆+ and ∆+
gσ . If g = sl2n+1,

then the situation is slightly different. These are well-known facts, nevertheless we give

a brieft explanation below. Set sα = gα ⊕ g−α ⊕ [gα, g−α].

Lemma 3.1 (cf. [Ka83, § 8.2]). Suppose ord(σ) = 3. Then there is a bijection between 〈σ〉-orbits

on ∆+ and ∆+
gσ .

Proof. Here g is of type D4. There are six 〈σ〉-orbits on ∆+. Three of these orbits have three

elements, namely

{α1, α3, α4}, {α1 + α2, α2 + α3, α2 + α4}, {α1 + α2 + α3, α1 + α2 + α4, α2 + α3 + α4}.

The other three consist of fixed points: {α2}, {α1+α2+α3+α4}, {α1+2α2+α3+α4}. The

Lie algebra gσ is of type G2 and it has 6 positive roots. Therefore there is nothing more to

show. �

Lemma 3.2. Suppose ord(σ) = 2. Let xµ =
∑

α∈∆ bαeα ∈ (b ∩ gσ) with bα ∈ k be a non-zero

root vector of gσ. Fix one α ∈ ∆+ such that bα 6= 0. Suppose further that β̄ = β|t0 ∈ kᾱ for some

β ∈ ∆+ that does not belong to the 〈σ〉-orbit of α. Then β = α + σ(α).

Proof. Since σ(xµ) = xµ, we have (sα + σ(sα))
σ ≃ sl2, and if σ(α) = α, then σ|gα = id.

Let h ∈ t0 be a subregular element of gσ such that ᾱ(h) = 0 and γ(h) 6= 0, whenever

γ ∈ ∆ and γ|t0 6∈ kᾱ. Consider gh. On the one hand, we have (gh)σ = (gσ)h = sl2 + t0. On

the other hand, if σ(β) 6= β, then

(gh)σ ⊃ (sα + sσ(α))
σ ⊕ (sβ + sσ(β))

σ ≃ sl2 ⊕ sl2 ,

which is a contradiction. This shows that σ(β) = β.
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By the same reason as above, σ|gβ 6= id. It follows that σ|gβ = σ|g−β
= −id, since

ord(σ) = 2. Then [gβ, g−β] ⊂ t0. Let hβ ∈ [gβ, g−β] be such that β(hβ) = 2. Since hβ ∈ t0 and

β̄ ∈ kᾱ, we have α(hβ) 6= 0. In view of this, [sβ, sα] 6= 0.

Set f = [gh, gh]. Then sα + sβ ⊂ f. Furthermore, if γ ∈ ∆ is a root of f, then γ̄ = γ|t0
belongs to kᾱ. Hence, rk f > 2 and f is simple. By the construction, fσ = sl2 + t̃, where

t̃ ⊂ t0 is a maximal torus of fσ. The involution σ induces an automorphism of f of order 2.

It cannot be inner, because the restrictions of α and β to t̃ coincide. From the description

of outer involutions, we deduce that rk f 6 2. Therefore the only possibility for (f, fσ) is

the pair (sl3, so3). Here β = α1 + α2 with α1, α2 being simple roots of sl3 and σ(α1) = α2.

Since eβ = [eα1 , eα2 ] in sl3, up to a suitable normalisation, we have also eβ = [eα, eσ(α)] in g

and β = α + σ(α) in ∆. �

3.3. Properties and generators of algebrasZ(g, ϑ). From now on,G is a connected semisim-

ple algebraic group and g = LieG. We consider ϑ ∈ Aut(g) of order m > 2 and freely use

the previous notation and results, with q being replaced by g. In particular,

g = g0 ⊕ g1 ⊕ . . .⊕ gm−1,

where {0, 1, . . ., m − 1} is the fixed set of representatives for Zm, and G0 is the connected

subgroup of G with LieG0 = g0. Then g(t) is a family of Lie algebras parameterised by

t ∈ P = k ∪ {∞}, where the algebras g(t) with t ∈ k⋆ are isomorphic to g = g(1), while g(0)

and g(∞) are different N0-graded contractions of g.

Note that g0 is a reductive Lie algebra. Let κ be the Killing form on g. We identify g and

g0 with their duals via κ. Moreover, since κ(gi, gj) = 0 if i+ j 6∈ {0, m}, the dual space of

gj , g
∗
j , can be identified with gm−j . We identify also t with t∗ and t0 with t∗0. Set Z = Z(g, ϑ).

Theorem 3.3 ([PY21]). Suppose that ind g(0) = rk g. Then tr.degZ = b(g, ϑ) := b(g)−b(g0)+

rk g0. �

Note that Z ⊂ S(g)g0 by [PY21, Eq. (3·6)]. Thereby tr.degZ 6 b(g, ϑ), see [MY19,

Prop. 1.1]. Thus, if ind g(0) = rk g, then tr.degZ takes the maximal possible value. Note

also that b(g, ϑ) = b(g) if and only if [g0, g0] = 0.

Since ϑ acts on S(g)g, there is a generating set {H1, . . . , Hl} ⊂ S(g)g consisting of ϑ-

eigenvectors. Then ϑ(Hi) = ζriHi with 0 6 ri < m. The integers ri depend only on the

connected component of Aut(g) that contains ϑ, and if a is the order of ϑ in Aut(g)/Int(g),

then ζari = 1. Therefore, if g is simple, then ζri = ±1 for all types but D4.

Recall from Section 1.3 that g(0) = g(0,ϕ) =: g(0,ϑ) is a contraction of g defined by ϕ.

Below we freely use notation of Sections 1.2, 1.4.

Lemma 3.4 ([PY21]). For any ϑ ∈ Aut(g) of order m, we have

(1) ϑ(Hj) = Hj if and only if d•j ∈ mZ;

(2)
∑l

j=1 rj =
1
2
m(rk g− rk g0);
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(3) rk g0 = #{j | ϑ(Hj) = Hj}. �

Lemma 3.5. For each j, the restriction of Hj to g∗0 is non-zero if and only if ϑ(Hj) = Hj .

Proof. If Hj|g∗0 6= 0, then the lowest ϕ-component Hj,0 ∈ S(g0) is non-zero and hence we

have ϑ(Hj) = Hj .

Consider some x ∈ t∗0∩g∗reg, which exists by [Ka83, §8.8], and apply Kostant’s regularity

criterion [K63, Theorem 9] to x. According to this criterion, 〈dxHi | 1 6 i 6 l〉
k
= gx = t.

Here dxHi ∈ gx0 = t0 if and only if ϑ(Hi) = Hi. In view of Lemma 3.4(3), we have dxHi 6= 0

for each i such that ri = 0. Then also Hi,0 6= 0, whenever ri = 0. �

Theorem 3.6 ([PY21]). Suppose that ϑ ∈ Aut(g) admits a g.g.s. and ind g(0) = rk g. Then

(i) Z× := alg〈Hj,i | 1 6 j 6 l, 0 6 i 6 d•j〉 ⊂ Z is a polynomial Poisson-commutative subalge-

bra of S(g)g0 having the maximal transcendence degree.

(ii) More precisely, if H1, . . . , Hl is a g.g.s. that consists of ϑ-eigenvectors, then Z× is freely

generated by the non-zero bi-homogeneous components of all Hj . �

A precise relationship between Z and Z× depends on further properties of ϑ. Two

complementary assertion are given below.

Corollary 3.7 ([PY21]). In addition to the hypotheses of Theorem 3.6, suppose that g(0) has the

codim–2 property and g0 = gϑ is not abelian. Then Z = Z× is the polynomial algebra freely

generated by all non-zero bi-homogeneous components Hj,i.

Corollary 3.8 ([PY21]). In addition to the hypotheses of Theorem 3.6, suppose that g(0) has the

codim–2 property, ϑ is inner, and g0 = gϑ is abelian. Then Z∞ = S(g0) and Z = alg〈Z×, g0〉 is a

polynomial algebra.

3.4. The equality for the index of g(0). The equality ind g(0) = rk g is very important in

our context. If it holds, then Z can be extended to a Poisson-commutative subalgebra of

the maximal possible transcendence degree b(g) in the same way as in [PY, Sect. 6.2].

• It holds if ord(ϑ) is two or three [P07, PY23].

• It holds if g is either son or of type G2 [PY23].

• It holds if g1 ∩ greg 6= ∅ by [P09, Prop. 5.3].

Below we will see a few more positive examples.

Let (g, ϑ) be an indecomposable pair, where g = h⊕n, the algebra h is simple, and ϑ

corresponds to ϑ̃ ∈ Aut(h). Note that ϑ̃ may be trivial. We remark also that g0 ≃ hϑ̃.

Let h(0) be the contraction of h associated with ϑ̃.

Lemma 3.9 ([PY21, Lemma 8.1]). If ind h(0) = rk h, then ind g(0) = rk g. If there is a g.g.s. for

ϑ̃ in S(h), then there is a g.g.s. for ϑ in S(g). �

Theorem 3.10. Suppose that either g0 = t0 ⊂ t or g is simple and among the Kac labels of ϑ, see

Section 3.1 for the definition, only p0 is zero. Then ind g(0) = rk g.
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Proof. Making use of Lemma 3.9, we may assume that g is simple. If g0 = t0, then each

Kac label of ϑ is non-zero, see [Vi76, Prop. 17] or e.g. [PY23, Sect. 2.4]. Let ϑ1 be the

automorphism obtained from ϑ by changing each non-zero Kac label of ϑ to 1. Then ϑ1
may be different from ϑ and it may define a different Zm-grading of g. However, the

Lie brackets [ , ](0) defined by ϑ and ϑ1 coincide [PY23]. Thus we may suppose that each

non-zero Kac label of ϑ is 1. By our assumptions on ϑ, only p0 may not be equal to 1.

Let Π be a set of the simple roots of g chosen in the same way as in Section 3.1. Let

ei ∈ gαi
be a non-zero root vector corresponding to a simple root αi ∈ Π. If ϑ is inner,

then e =
∑l

i=1 ei ∈ g1 is a regular nilpotent element in g. Thereby ind g(0) = rk g by [P09,

Prop. 5.3].

Suppose that ϑ is outer. Let σ be the diagram automorphism of g associated with ϑ and

Π′ = {ν1, . . . , νr} the set of simple roots of gσ used in Section 3.1. Then there is a bijection

between Π′ and the set of 〈σ〉-orbits on Π. Namely, νj corresponds to the 〈σ〉-orbit 〈σ〉·αi
of αi ∈ Π, if νj = αi|t0 . There is a normalisation of the root vectors ei = eαi

such that

e′j =
∑

α∈〈σ〉·αi
eα is a simple root vector of gσ of the weight νj = αi|t0 for each j [Ka83,

§ 8.2]. If the Kac label pj is 1, then e′j ∈ g1 according to the description of g1 given in [Vi76,

Prop. 17]. Since pj = 1 for any j > 1, we obtain e =
∑l

i=1 ei ∈ g1. Then again by [P09,

Prop. 5.3], we have ind g(0) = rk g. �

The case g0 = t0 is of particular importance, because tr.degZ(g, ϑ) = b(g) here. If g0 = t,

then Z(g, ϑ) coincides with the Poisson-commutative subalgebra Z(b, u−) constructed in

[PY’], see [PY23, Example 4.5]. In particular, this algebra is known to be maximal [PY’,

Theorem 5.5]. If g0 = t0 is a proper subspace of t, then we obtain a less studied subalgebra.

We conjecture that it is still maximal.

4. PROPERTIES OF Z∞ IN THE REDUCTIVE CASE

In order to understand Zg0
∞ , we study symmetric invariants of g̃ = g0 ⋉ g(∞). The Lie

algebra g̃ is a contraction of g0 ⊕ g associated with a map ϕ̃ : k⋆ → GL(g0 ⊕ g), where

ϕ̃(s) = ϕ̃s. In order to define ϕ̃s, we consider a vector space decomposition

g0 ⊕ g = gd0 ⊕ gm−1 ⊕ . . .⊕ g2 ⊕ g1 ⊕ gab0 ,

where the first summand gd0 is embedded diagonally into g0⊕g and the last summand gab0
is embedded anti-diagonally. Then set ϕ̃s|gd0 = id, ϕ̃s|gm−j

= sjid, and finally ϕ̃s|gab0 = smid.

If we consider ξ ∈ (gab0 )∗ as an element of g∗ and of g̃∗, then g̃ξ = g
ξ
0 ⊕ gξ as a vector space.

If ξ is regular in g∗, then dim g̃ξ = ind g0 + ind g, cf. (2·1). Then, in view of [Ka83, §8.8],

which states that g∗0 ∩ g∗reg 6= ∅, we have ind g̃ 6 ind g0 + ind g. Since g̃ is a contraction of

g0 ⊕ g, there is the equality, cf. [P09, Sect. 6.2],

(4·1) ind g̃ = ind(g0 ⊕ g) = rk g0 + rk g.
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Note that ϑ is also an automorphism of g0 ⊕ g, acting on g0 ⊕ g0 trivially, as well as of g̃.

However, the contraction defined by ϕ̃ is not directly related to ϑ.

4.1. Small rank examples. Let ϑ be the outer automorphism of sl3 of order 4 with the

Kac labels p = (0, 1). Then the corresponding Z4-grading of g = sl3 looks as follows

g = sl2 ⊕ k
2
I ⊕ t1 ⊕ k

2
II ,

where dim k2
I = dim k2

II = 2 and t1 ⊂ t is one-dimensional.

Let Eij ∈ gln be elementary matrices (matrix units).

Lemma 4.1. Suppose g̃ = g0⋉ g(∞) corresponds to the pair (g, ϑ) described above. Let e ∈ (gab0 )∗

be a non-zero nilpotent element. Then e+ y ∈ g̃∗reg for a generic y ∈ g∗1.

Proof. We may suppose that g0 = sl2 is embedded into g as 〈E11 − E33, E13, E31〉k. Then

k2
I = 〈E12 −E23, E21 + E32〉k, k2

II = 〈E12 + E23, E21 −E32〉k, t = k(E11 − 2E22 + E33), and e

is identified with κ(E13, ). As y we choose κ(E21 − E32, ). Set γ = y + e and let π be the

Poisson tensor of g̃. We identify gd0 and gab0 with sl2 in a natural way.

Observe that π(γ)(t1, k(E12 + E23)) 6= 0 and that

(4·2) π(γ)(t1 + k(E12 + E23), g
d
0 + k

2
I + k(E21 −E32) + gab0 ) = 0.

Therefore g̃γ ⊂ gd0 +k2
I +k(E21−E32)+ gab0 . Clearly E13 ∈ gab0 belongs to g̃γ . Now suppose

that x = x0 + x1 + x3 + x4 with x0 ∈ gd0 , x1 ∈ k(E21 − E32), x3 ∈ k2
I , x4 ∈ gab0 belongs to g̃γ .

We may assume that x4 ∈ kE31 + k(E11 − E33). Then

π(γ)(x, k2
I) = π(γ)(x0 + x1, k

2
I) = 0, π(γ)(x, gab0 ) = π(γ)(x0, g

ab
0 ) = 0, and(4·3)

π(γ)(x, gd0) = π(γ)(x3 + x4, g
d
0) = 0.(4·4)

Thereby x0 ∈ kE13, which implies x0 + x1 ∈ k(E13 + E21 − E32). Since π(γ)(x4, E13) = 0

and π(γ)(E21 + E32, E13) 6= 0 for E13 ∈ gd0 , we obtain x3 ∈ k(E12 − E23). Looking at the

commutators with E11 −E33 ∈ gd0 , we obtain x3 + x4 ∈ k(E12 − E23 + E31).

We colnclude that dim g̃γ 6 3. It cannot be smaller than 3 = ind g̃, see (4·1). Thus γ is a

regular point and the same holds for the elements of a non-empty open subset of g∗1. �

Next we generalise Lemma 4.1 to periodic automorphisms of order 4n of direct sums

sl⊕n3 . Let now ϑ̃ be the outer automorphism of h = sl3 of order 4 with the Kac labels

(1, 0). Set g = h⊕n and let ϑ ∈ Aut(g) be obtained from ϑ̃ and a cyclic permutation of the

summands of g, see (0·1).

Lemma 4.2. Suppose g̃ = g0⋉ g(∞) corresponds to the pair (g, ϑ) described above. Let e ∈ (gab0 )∗

be a non-zero nilpotent element. Then e+ y ∈ g̃∗reg for a generic y ∈ g∗1.
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Proof. It is convenient to identify gd0 with h0, gab0 with h0t̄
4n, each g4k+i, where 0 6 i 6 3,

with hit̄
4n−4k−i, assuming that t̄4n+1 = 0. Then [xt̄j , yt̄u] = [x, y]t̄j+u in g̃ for ϑ̃-eigenvectors

x, y ∈ h.

We understand e as a linear function such that e(E13t̄
4n) = e((E11 − E33)t̄

4n) = 0 and

e(E31t̄
4n) = 1. Modelling the proof of Lemma 4.1, take y such that y((E12 − E23)t̄

4n−1) = 2

and y((E21+E32)t̄
4n−1) = 0. Set γ = e+y. Note that γ([xt̄j , yt̄u]) = 0, if j+u 6∈ {4n−1, 4n}.

Iterating computations in the spirit of (4·2), (4·3), (4·4), we obtain

g̃γ =
〈

E13t̄
4n, E13t̄

4k + (E21 −E32)t̄
4k+1, (E12 − E23)t̄

4k+3 + E31t̄
4k+4 | 0 6 k < n

〉

k
.

In particular, dim g̃γ = 1 + 2n = ind g̃ and γ ∈ g̃∗reg. The same holds for the elements of a

non-empty open subset of g∗1. �

4.2. General computations. Let us begin with a technical lemma.

Lemma 4.3. Let q be a finite-dimensional Lie algebra. Suppose we have η ∈ q∗ and ȳ ∈ (qη)∗

such that dim(qη)ȳ = ind q. Then for any extension y of ȳ to a linear function on q, there is s ∈ k⋆

such that sη + y ∈ q∗reg.

Proof. Write q = m ⊕ qη, where η̂ is non-degenerate on m. Let m1 ⊂ qη be a subspace

of dimension dim qη − ind q such that ˆ̄y is non-degenerate on m1. By the construction

dim(m⊕ m1) = dim q− ind q. We extend ȳ to a linear function y on q in some way, which

is of no importance. Choose bases in m, m1, take their union, and let M =

(

sA + C B

−Bt A1

)

be the matrix of sη̂ + ŷ, where s ∈ k, in this basis; here A is the matrix of η̂|m and A1 is the

matrix of ˆ̄y|m1 . Then

det(M) = sdimm det(A) det(A1) + ( terms of smaller degree in s ).

Since det(A) det(A1) 6= 0, for almost all s ∈ k, we have det(M) 6= 0. Whenever this

happens, rk (sη̂ + ŷ) > dim q− ind q and sη + y ∈ q∗reg. �

Theorem 4.4. The algebra g̃ has the codim–2 property.

Proof. The subalgebra g0 is reductive and it contains a semisimple element x that is regular

in g, see e.g. [Ka83, §8.8]. Thus, there is η ∈ (gab0 )∗ ⊂ g̃∗ that corresponds to a regular

element of g and here dim g̃η = rk g+ rk g0 = ind g̃, cf. (2·1).

Take now ξ ∈ g̃∗ such that ξ̄ = ξ|gab0 corresponds to a regular element of g. Note that

lim
s→0

smϕ̃s(ξ) = ξ̄. Since ξ̄ ∈ g̃∗reg, we have ϕs(ξ) ∈ g̃∗reg for almost all s. Each map ϕ̃s : g̃ → g̃

is an automorphism of the Lie algebra g̃. Thus ξ ∈ g̃∗reg.

Assume that D ⊂ g̃∗sing is a divisor in g̃∗. Then {ξ̄ | ξ ∈ D} ⊂ (gab0 )∗ lies in a proper

closed subset of (gab0 )∗. Thereby D = D0 × Ann(gab0 ) for some divisor D0 ⊂ (gab0 )∗. Since

g̃∗sing is a G0-stable subset of g̃∗, the divisor D0 is G0-stable as well. Since g̃∗sing is a conical

subset, D0 is the zero set of a homogeneous polynomial.
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A generic fibre of the categorical quotient ̟ : (gab0 )∗ → (gab0 )∗//G0 consists of a single G0-

orbit. Since D0 is G0-stable, it follows that dim̟(D0) = rk g0 − 1. Then also ̟−1(y) ⊂ D0

for any y ∈ ̟(D0), because each fibre of ̟ is irreducible.

The intersection D0 ∩ t∗0 does not contain regular in g elements, thereby it is a subspace

of codimension 1, the zero set of ᾱ = α|t0 for some α ∈ ∆+. Let η ∈ D0 ∩ t∗0 be a generic

point. Then η is either regular or subregular in g0. Furthermore, if β ∈ ∆ and β(η) = 0,

then β̄ = β|t0 ∈ kᾱ. Set f = [gη, gη]. Note that f is semisimple and that the pair (f, fϑ) is

indecomposable.

(⋄) Case 1. Suppose that η is not regular in g0. Then necessarily [gη0, g
η
0] = sl2. Let

e ∈ [gη0, g
η
0] be a non-zero nilpotent element, which we regard also as a point in (gab0 )∗.

Then η + e ∈ D0, since ̟(η + e) = ̟(η). Suppose {β ∈ ∆+ | β(η) = 0} = {ϑk(α) | k > 0}.

Then ϑk(α) + ϑk
′

(α) with k, k′ > 0 is never a root of g, the subalgebra f is a direct sum of

copies of sl2, the nilpotent element e is regular in f, and η+e ∈ g∗reg. This is a contradiction.

Suppose that there is no equality for the sets above. Then ϑ|f is constructed from an

outer automorphism ϑ̃ of a simple Lie algebra h. From Section 3.2 we know that h = sl3.

Next hϑ̃ ≃ sl2. The fixed points subalgebra can be embedded in two different ways, as so3
or as 〈E11 − E33, E13, E31〉k. For the first embedding, e is still regular in f, a contradiction.

Suppose that hϑ̃ = 〈E11 − E33, E13, E31〉k. The twisted affine Dynkin digram of type

A2 has two nodes. Our choice of hϑ̃ implies that ϑ̃ is the automorphism considered in

Lemma 4.1. Then by Lemma 4.2, there is y ∈ f∗1 ≃ fi ⊂ gj , where 0 < j < m and i depends

on ϑ|f, such that e + y ∈ f̃∗reg. Note that sη + e + y ∈ D for any s ∈ k
⋆.

The vector spaces g̃η and (g0 ⊕ g)η coinside. We have g̃η = f̃+ t0 + t, where g̃η and f̃ are

contractions of gη and f ⊕ fϑ, respectively, given by the restrictions of ϕ̃. We extend e and

y to linear functions on g̃η and g̃ keeping the same symbols for the extensions. Then

(4·5) dim(g̃η)e+y = (rk g+ rk g0)− (rk f+ rk f0) + ind f̃ = ind g̃.

By Lemma 4.3, sη + e+ y ∈ g̃∗reg for some s ∈ k⋆, a contradiction.

(⋄) Case 2. Suppose now that η is regular in g0. Then f0 ⊂ t0. The quotient of f̃ by

(tab0 ∩ f̃) ⊂ gab0 is the contraction f(0),ϑ−1 associated with the restriction of ϑ−1 to f. For y ∈ f̃∗

such that y(tab0 ) = 0, we have f̃y = f
y

(0,ϑ−1) ⊕ (tab0 ∩ f̃). By Theorem 3.10, ind f(0),ϑ−1 = rk f.

Therefore there is y ∈ g̃∗ such that y(tab0 ) = 0 and dim f̃ȳ = rk f+rk f0 for ȳ = y |̃f. Repeating

the argument of (4·5) and using again Lemma 4.3, we conclude that sη+ y ∈ g̃reg for some

s ∈ k⋆. This final contradiction shows that there is no divisor D. �

4.3. Symmetric invariants. Set r = rk g0 and choose a set of homogeneous generators

F1, . . . , Fr ∈ S(g0)
g0 . As above, let gab0 stand for the abelian ideal of g̃, which is isomorphic

to g0 as a g0-module. Let further {Hj | 1 6 j 6 l} ⊂ S(g)g be a generating set consisting of

homogeneous polynomials that are ϑ-eigenvectors. Assume that ϑ(Hj) = Hj if and only
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if j 6 r, cf. Lemma 3.4. Unless stated otherwise, we use upper bullets for the highest

ϕ̃-components of H ∈ S(g0 ⊕ g).

Theorem 4.5. There is a g.g.s. Fi, H̃i, Hj with 1 6 i 6 r < j 6 l for the contraction g0 ⊕ g g̃

defined by ϕ̃. Furthermore, for i 6 r, H̃i ∈ Hi + S(g0)
g0 , where g0 is a direct summand of g0 ⊕ g,

and the ring S(g̃)g̃ is freely generated by {F •
i , H̃

•
i , H

•
j | 1 6 i 6 r < j 6 l}.

Proof. First we compute the number Dϕ̃ using the properties of the grading on g̃:

Dϕ̃ = m dim g0 +
m−1
∑

j=1

(m−j) dim gj = m dim g0 +
m

2
(dim g− dim g0) =

m

2
(dim g+ dim g0).

Since gab0 is embedded anti-diagonally in g0 ⊕ g, we have degϕ̃ F
•
i = m degFi.

Suppose that ϑ(Hj) = Hj . Then the restriction of Hj from g∗ to g∗0 ⊂ g∗ is non-zero

by Lemma 3.5. Thus H•
j ∈ S(gab0 )g0 . Hence there is a homogeneous polynomial H̃j in

Hj + S(g0)
g0 , where g0 is a direct summand of g0 ⊕ g, such that d̃•j = degϕ̃ H̃

•
j < m degHj .

We have ϑ(H̃•
j ) = ζ−d̃

•

j H̃•
j and at the same time ϑ(H̃•

j ) = H̃•
j . Thereby d̃•j 6 m degHj −m.

Suppose now that ϑ(Hj) 6= Hj , i.e., ϑ(Hj) = ζrjHj with 0 < rj < m. Here H•
j 6∈ S(gab0 )

and degϕ̃ H̃
•
j 6 m degHj − rj . According to Lemma 3.4,

∑l
j=1 rj =

1
2
m(rk g− rk g0). Thus

(4·6)
r
∑

i=1

degϕ̃ F
•
i +

r
∑

j=1

degϕ̃ H̃
•
j +

l
∑

j=r+1

degϕ̃H
•
j 6

6 mb(g0) +mb(g)−mrk g0 −
1

2
m(rk g− rk g0) =

m

2
(dim g + dim g0) = Dϕ̃.

By Theorem 1.4(i), we have the equality in (4·6) and the polynomials Fi, H̃i, Hj form a

good generating system for ϕ̃. We obtain also

(4·7) degϕ̃H
•
j = m degHj − rj if 0 < rj < m.

By Theorem 4.4, the Lie algebra g̃ has the codim–2 property. Then Theorem 1.4(iii) states

that S(g̃)g̃ is freely generated by F •
i , H̃

•
i , H

•
j with 1 6 i 6 r < j 6 l. �

Recall that Hj =
∑

i>0Hj,i, where ϕs(Hj) =
∑

i>0 s
iHj,i. Let Hj,• be the the non-zero

bi-homogeneous component of Hj with the minimal ϕ-degree. We regard each Hj,i as an

element of S(g(∞)) ⊂ S(g̃) identifying g with the subspace

g(∞) = gm−1 ⊕ . . .⊕ g1 ⊕ gab0 ⊂ g̃.

Note that degϕ̃Hj,i = m degHj − i.

Theorem 4.6. The algebra Zg0
∞ is freely generated by F •

i ∈ S(gab0 ) with 1 6 i 6 r and the set

{Hj,• | r < j 6 l}, where Hj,• = H•
j for each j.
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Proof. For any Hj ∈ S(g) ⊂ S(g0 ⊕ g), the highest ϕ̃-component H•
j ∈ S(g̃) is obtained by

taking first Hj,• ∈ S(g) and then replacing in it each element of g0 by its copy in gab0 . This

is exactly how we understand Hj,• ∈ S(g̃).

By the construction and Proposition 1.1,

H := {F •
i , H

•
j | 1 6 i 6 r, r < j 6 l} ⊂ Zg0

∞ .

These homogeneous polynomials are algebraically independent, see Theorem 4.5. In view

of Theorem 2.3(iii), we have tr.degZg0
∞ = rk g = l. By Theorems 1.4(iii), 4.4, 4.5, g̃ satisfies

the Kostant regularity criterion and the differentials of the generators F •
i , H̃

•
i , H

•
j with

1 6 i 6 r < j 6 l are linearly independent on a big open subset. Thus also

(4·8) dim J(H) 6 dim g− 2,

where J(H) ⊂ g∗(∞). By Theorem 1.5, the subalgebra generated by H is algebraically

closed in S(g(∞)) and hence it coincides with Zg0
∞ . �

If ϑ is inner, then Z∞ = S(g0) [PY21] and Zg0
∞ = S(g0)

g0 . One does not need any heavy

machinery in that case. If ϑ is outer, the situation is different. We have seen this in Theo-

rem 4.6 and are going to obtain a description of Z∞ next.

Proposition 4.7. If ϑ is outer, then a basis {y1, . . . , yR} of g0 together with the lowestϕ-components

Hj,•, where r < j 6 l, freely generate Z∞.

Proof. We check that the differentials dyi and dHj,• of the proposed generators are linearly

independent on a big open subset of g∗. For ξ ∈ g∗, set ξ̄ = ξ|g0 . Note that ξ̄ ∈ (g∗0)reg for

all ξ in a big open subset of g∗. Let ̟ξ : T
∗
ξ g

∗ → T ∗
ξ (G0·ξ) be the restriction map. Since Hj,•

is a G0-invariant, we have ̟ξ(dξHj,•) = 0 for each j. Note that ker(̟ξ|g0) = g
ξ̄
0.

Suppose that ξ̄ ∈ (g∗0)reg. Then dim̟ξ(g0) = dim g0 − rk g0. By the Kostant regularity

criterion [K63, Theorem 9] applied to g0, we have

〈dξF •
i | 1 6 i 6 r〉

k
= g

ξ̄
0.

Suppose now that ξ 6∈ J(H). This additional restriction still leaves us a big open subset of

suitable elements, see (4·8). Then

dim(gξ̄0 + 〈dξHj,• | r < j 6 l〉
k
) = l.

Thus, on a big open subset, the dimension of Vξ = 〈dξyi,dξHj,• | 1 6 i 6 R, r < j 6 l〉
k

is equal to the sum of dim̟ξ(Vξ) = dim g0 − rk g0 and l = dimker(̟ξ|Vξ), i.e., dimVξ =

R + (l − r). This number is equal to the number of generators. By Theorem 1.5, the

subalgebra

alg〈yi, Hj,• | 1 6 i 6 R, r < j 6 l〉
is algebraically closed in S(g(∞)). Furthermore,

alg〈yi, Hj,• | 1 6 i 6 R, r < j 6 l〉 ⊂ Z∞ and tr.degZ∞ 6 ind g(∞) = R + l − r,
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see Theorem 2.1 for the last equality. Thereby alg〈yi, Hj,• | 1 6 i 6 R, r < j 6 l〉 = Z∞. �

In [PY21, Sect. 5], we have considered a larger Poisson-commutative subalgebra Z̃ :=

alg〈Z, S(g0)g0〉.

Corollary 4.8. Suppose that ind g(0) = rk g and that S(g(0))
g(0) = k[H•

1 , . . . , H
•
l ], where each Hj

is homogeneous, ϑ(Hj) ∈ kHj , and the polynomials H•
j are highest ϕ-components.

• If ∞ ∈ Preg, then alg〈Z,Zg0
∞〉 = alg〈Z,Z∞〉 = Z̃ = Z = alg〈Z×, g0〉;

• if ∞ 6∈ Preg, then alg〈Z,Zg0
∞〉 = Z̃ = alg〈Z×, S(g0)

g0〉.
In both cases, Z̃ is a free (polynomial) algebra.

Proof. Our assumptions on S(g(0))
g(0) imply that Z0 ⊂ Z×. Furthermore, {H1, . . . , Hl} is a

g.g.s. for ϑ. Then Z× is a polynomial algebra by Theorem 3.6. It has b(g, ϑ) algebraically

independent generators Hj,i. Exactly r = rk g0 of these generators belong to S(g0), see

Lemmas 3.4, 3.5. If we replace them with algebraically independent generators of S(g0)
g0 ,

the new algebra is still polynomial. This finishes the proof in view of Theorem 4.6. �

The first statement of Corollary 4.8 generalises Corollary 3.8 to outer automorphisms.
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