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Abstract—The privacy funnel (PF) gives a framework of
privacy-preserving data release, where the goal is to release
useful data while also limiting the exposure of associated sensitive
information. This framework has garnered significant interest
due to its broad applications in characterization of the privacy-
utility tradeoff. Hence, there is a strong motivation to develop
numerical methods with high precision and theoretical conver-
gence guarantees. In this paper, we propose a novel relaxation
variant based on Jensen’s inequality of the objective function
for the computation of the PF problem. This model is proved to
be equivalent to the original in terms of optimal solutions and
optimal values. Based on our proposed model, we develop an
accurate algorithm which only involves closed-form iterations.
The convergence of our algorithm is theoretically guaranteed
through descent estimation and Pinsker’s inequality. Numerical
results demonstrate the effectiveness of our proposed algorithm.

I. INTRODUCTION

An increasing amount of private user data is flowing into the
network nowadays, probably collected by certain individuals
or companies eventually for customizing personalized services
or other purposes. Usually, such data contains private or
sensitive information. Considering general content of private
information and the task of system, the problem is reduced
to learning private representations, i.e., representations that
are informative of the data (utility) but not of the private
information. Researchers have started to model and study
privacy protection mechanisms, in order to develop privacy
preserving technologies and characterize the privacy-utility
tradeoff. A general framework of statistical inference from
an information-theoretic perspective has been proposed in [1].
Specifically, given a public variable X ∈ X we want to
transmit, and a correlated variable S ∈ S we want to keep
private, one needs to encode X as a variable Y ∈ Y , forming
a Markov chain

S ←→ X −→ Y.
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the corresponding author. This work was partially supported by National
Key Research and Development Program of China (2018YFA0701603) and
National Natural Science Foundation of China (12271289 and 62231022).

Our goal is to minimize the average cost gain by the adversary
after observation, while keeping the distortion of privacy-
preserving mapping under certain threshold. When the self-
information cost and log-loss metric are introduced, the pri-
vacy funnel (PF) [2] is formulated to find a privacy preserving
mapping from X to Y , such that it minimizes the average
information leakage I(S;Y ) with the disclosure I(X;Y ) kept
above a certain threshold. More precisely, given the joint
distribution PS,X , the PF problem pursues the above tradeoff
by considering the following optimization problem

min
PY |X

I(S;Y ), s.t. I(X;Y ) ≥ R, (1)

where R ≤ H(X) to ensure that the problem is feasible [2].
Research related to the PF model has covered a variety of
setups in information theory [3]–[5], machine learning [6]–[9]
and other fields. Moreover, the PF problem can be viewed as
a dual of the well-known information bottleneck (IB) problem
[2], [10], suggesting an intriguing connection between them.

However, different from the IB problem benefiting from
a variety of algorithms including the BA algorithm [11],
[12] and the recently proposed ABP algorithm [13], the
PF problem still lacks an adequately effective algorithm. In
fact, the PF problem is inherently non-convex, and therefore
developing its numerical algorithms is a generally challenging
task. Several algorithms have been proposed to solve the
PF problem, but it is difficult to ensure effectiveness and
convergence guarantee simultaneously. The greedy algorithm
[2] and the submodularity-based algorithm [14] motivated
by agglomerative clustering [15] have been proposed early,
merging the alphabet of sanitized variable to construct the
mapping. Although strict descent of the objective is ensured,
it only descends to a local minimum, resulting in limited
computational accuracy and efficiency due to greedy search.
The semi-definite programming (SDP) framework [10] has
also been applied to the PF problem, yet solving the SDP
proves to be a time-consuming endeavor. Besides, variational
approaches have been proposed in [16], [17], where each
parameter is learnt through gradient descent. They only pro-
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vide approximate results and require intensive computations
to obtain gradient for each iteration, severely limiting the
computational efficiency.

A recent work [18] has proposed a unified framework to
solve the IB and PF problems through the Douglas-Rachford
splitting (DRS) method, ensuring locally linear rate of conver-
gence. This approach involves solving complex subproblems
via gradient descent, and exceedingly large penalty is required
in large-scale scenarios to ensure convergence, leading to
gradient explosion and numerical instability. Consequently, the
approach has been primarily suitable for limited scale cases.
Such difficulty has been tackled with variational inference in a
subsequent work [19], but it only deals with a surrogate bound
as an approximation.

In order to address the aforementioned difficulty, we pro-
pose a novel approach to solve the PF model by computing
its upper bound relaxation variant, which is derived under
the inspiration of the E-step of the celebrating Expectation-
Maximization (EM) algorithm [20]. This algorithm, named as
the Alternating Expectation Minimization (AEM) algorithm,
is developed to minimize the Lagrangian in an alternative
manner, where each primal variable can be computed by a
closed-form expression, with dual variables similarly updated
or searched via Newton’s method in only a few inner iterations.
The closed-form solutions ensure the efficiency of our algo-
rithm. Moreover, the descent of objective is theoretically esti-
mated, and the convergence of iterative sequence to a Karush-
Kuhn-Tucker (KKT) point is guaranteed by the Pinsker’s
inequality. Numerical experiments exhibit the effectiveness of
our algorithm in a wide range of scenarios including traditional
distributions and real-world datasets.

II. PROBLEM FORMULATION

Consider a discrete public variable X ∈ X with a relevant
private variable S ∈ S , and a representation variable Y ∈ Y ,
where S = {s1, · · · , sK}, X = {x1, · · · , xM}, and Y =
{y1, · · · , yN}. Then the Markov chain S ↔ X → Y yields
the following distribution

PS,Y (s, y) =
∑
s,x,y

PS,X,Y (s, x, y) =
∑
x

PS|X(s|x)PX,Y (x, y).

Denote ski = PS|X(sk|xi), uij = PX,Y (xi, yj), wij =

PX|Y (xi|yj), rj = PY (yj), pi = PX(xi) and R̂ = R +∑
i

pi log pi, then the PF problem (1) can be formulated prop-

erly as the following constrained optimization problem

min
u,w,r

∑
j,k

(∑
i

skiuij

)(
log
(∑

i

skiuij

)
− log rj

)
, (2a)

s.t.
∑
j

uij = pi, ∀i;
∑
i

uij = rj , ∀j; (2b)∑
i

wij = 1, ∀j; uij = wijrj , ∀i, j; (2c)∑
j

rj = 1;
∑
i,j

uij logwij ≥ R̂, (2d)

where a feasible solution Y ⊇ X , p(x|y) = 1{x = y} exists if
R ≤ H(X) [2]. It is worth mentioning that our formulation (2)
guarantees the convexity with respect to each variable, which
ensures numerical stability during optimization.

III. UPPER BOUND RELAXATION VARIANT AND ITS
EQUIVALENCE WITH THE ORIGINAL MODEL

For the PF problem (2) formulated above, it is still difficult
to solve the variable u, mainly due to the term taking the
logarithm of the sum in the objective

f(u, r) =
∑
j,k

(∑
i

skiuij

)(
log
(∑

i

skiuij

)
− log rj

)
.

Therefore, we propose the following upper bound to relax the
problem (for similar techniques, see [9], [21]):

f̃(u, r, q) =
∑
i,j,k

skiuij

(
log(skiuij)−log rj−log qijk

)
, (3)

where
∑
i

qijk = 1, making it much easier to minimize with

respect to u from the first-order conditions. The corresponding
novel model is the basis for us to design an alternating
algorithm.

Surprisingly, as will be shown, the upper bound relaxation
variant is equivalent to the original problem (2), so there is no
loss considering such a variant.

The following two subsections will specifically elaborate on
these two points, constituting our main contributions.

A. Upper Bound Relaxation Variant

First, we notice that the sum
∑
i

skiuij corresponds to

PS,Y , so the idea similar to the E-step of the EM algorithm
[20] inspires us to estimate PX|S,Y first, from which an
upper bound of objective is established. In this scenario, X
corresponds to the latent variable in the EM algorithm. More
specifically, the upper bound is given by∑

j,k

(∑
i

skiuij

)
log
(∑

i

skiuij

)
≤
∑
i,j,k

skiuij

(
log(skiuij)− log qijk

)
,

where q is an auxiliary variable such that
∑
i

qijk = 1. The

equality holds if and only if qijk = skiuij

/(∑
i′
ski′ui′j

)
.

Next, the following constraints (4) given by the Markov
chain and the transition probability conditions can be relaxed
from our model, similar to the treatment in our previous
work [13]. It is reasonable since they can be restored in
our update scheme. Moreover, after relaxation we obtain an
optimization problem that is convex with respect to each
variable. It can be solved by analyzing the Lagrangian with
closed-form iterations.∑

i

uij = rj , ∀j; (4a)

uij = wijrj , ∀i, j; (4b)



qijk = skiuij

/(∑
i′

ski′ui′j

)
, ∀i, j, k. (4c)

Under these crucial observations, the process of directly op-
timizing u in the original PF problem (2) can be transformed
to that of estimating q first, and optimizing u thereafter in our
upper bound relaxation variant:

min
u,w,r,q

∑
i,j,k

skiuij

(
log(skiuij)− log rj − log qijk

)
, (5a)

s.t.
∑
j

uij = pi, ∀i;
∑
i

wij = 1, ∀j; (5b)∑
j

rj = 1;
∑
i

qijk = 1, ∀j, k; (5c)∑
i,j

uij logwij ≥ R̂. (5d)

B. Equivalence of Optimal Solutions
We establish the equivalence between model (2) and its

upper bound relaxation variant (5) as shown in the following
theorem.

Theorem 1. The optimal values as well as the optimal triples
(u⋆,w⋆, r⋆) of (2) and (5) are identical.

Proof. Suppose (u⋆,w⋆, r⋆) is optimal for (2), then
(u⋆,w⋆, r⋆, q⋆) is feasible for (5) if we define q⋆ijk =

skiu
⋆
ij

/(∑
i′
ski′u

⋆
i′j

)
. The expression of q⋆ implies the iden-

tity of two objectives. Since (5) is an upper bound of (2),
(u⋆,w⋆, r⋆, q⋆) is optimal for (5).

On the other hand, suppose (u⋆,w⋆, r⋆, q⋆) is optimal for
(5), then the KKT conditions yield the existence of γ⋆ ∈ R,
β⋆ ∈ RN , ζ ∈ RN×K such that

γ⋆ −
∑
i,k

skiu
⋆
ij

/
r⋆j = 0, r⋆j =

(∑
i

u⋆
ij

)/
γ⋆; (6a)

β⋆
j − λ⋆u⋆

ij/w
⋆
ij = 0, w⋆

ij = λ⋆u⋆
ij/β

⋆
j ; (6b)

ζ⋆jk − skiu
⋆
ij/q

⋆
ijk = 0, q⋆ijk = skiu

⋆
ij/ζ

⋆
jk. (6c)

Substituting (6) into (5) we get γ⋆ = 1, β⋆
j = λ⋆

∑
i

u⋆
ij =

λ⋆r⋆j , ζ⋆jk =
∑
i

skiu
⋆
ij , and thus (4) is satisfied and

(u⋆,w⋆, r⋆) is feasible for (2). Suppose it is not optimal for
(2), then there exists (u,w, r) such that

f̃(u, r, q) = f(u, r) < f(u⋆, r⋆) = f̃(u⋆, r⋆, q⋆),

where qijk = skiuij

/(∑
i′
ski′ui′j

)
, and the second equality

follows from the expression of q⋆. Then (u⋆,w⋆, r⋆, q⋆) is
not optimal for (5), which is a contradiction. It means that
(u⋆,w⋆, r⋆) is optimal for (2).

IV. THE ALTERNATING EXPECTATION MINIMIZATION
ALGORITHM

In this section, we propose a convergence guaranteed alter-
nating algorithm to solve problem (5). Since the update of q
corresponds to the E-step of the EM algorithm, and the update
of other variables corresponds to the M-step, we name it the
Alternating Expectation Minimization (AEM) algorithm.

A. Algorithm Derivation and Implementation
We introduce multipliers α ∈ RM , β ∈ RN , γ ∈ R, ζ ∈

RN×K , λ ∈ R+ and obtain the Lagrangian of (5):

L(u,w, r, q;α,β, γ, ζ, λ) =
∑
i,j,k

skiuij

(
log(skiuij)− log rj

− log qijk

)
+
∑
i

αi

(∑
j

uij − pi

)
+
∑
j

βj

(∑
i

wij − 1
)

+ γ
(∑

j

rj − 1
)
+
∑
j,k

ζjk

(∑
i

qijk − 1
)

− λ
(∑

i,j

uij logwij − R̂
)
.

Our key ingredient is to alternatively update the primal vari-
ables with their corresponding dual variables simultaneously
updated. Based on the convexity of the Lagrangian with
respect to each variable, we take partial derivatives for each
primal variable and obtain their closed-form iterative expres-
sions. This update scheme ensures high computation efficiency
and offers an accurate descent estimation of the objective.

1) Updating q and ζ: The first-order condition yields
∂L
∂qijk

= −skiuij

qijk
+ ζjk = 0, qijk =

skiuij

ζjk
.

Substituting them into the constraint of q we have∑
i

(skiuij)
/
ζjk = 1, ζjk =

∑
i

skiuij .

Then we can update q by

qijk = skiuij

/(∑
i′

ski′ui′j

)
,

which is exactly the relaxed constraint of q in (4c).
2) Updating u and α, λ: Define ϕij =

∑
k

ski
(
log qijk −

log ski
)
, then the first-order condition yields

∂L
∂uij

= log uij − ϕij + 1 + αi − log rj − λ logwij = 0,

uij = eλ logwij+ϕij−αi−1rj .

Substituting them into the constraint of u we have∑
j

eλ logwij+ϕij−αi−1rj = pi,

αi = log
(∑

j

eλ logwij+ϕijrj

)
− log pi − 1.

Then we can update u by

uij =
eλ logwij+ϕijrj∑

j′
eλ logwij′+ϕij′ rj′

pi,

where λ can be updated by finding the unique root of the
following monotonic function1 via the Newton’s method:

G(λ) =
∑
i,j

eλ logwij+ϕijrj∑
j′

eλ logwij′+ϕij′ rj′
pi logwij − R̂ = 0.

1We can easily verify that G(λ) ≥ 0 as discussed in [22], [23].



3) Updating r and γ: The first-order condition yields

∂L
∂rj

= −
∑
i,k

skiuij

rj
+ γ = 0, rj =

∑
i

uij

γ
.

Substituting them into the constraint of r we have∑
i,j

uij

/
γ = 1, γ = 1,

which follows from the fact that
∑
i,j

uij = 1. Then we can

update r by
rj =

∑
i

uij ,

which is exactly the relaxed constraint of r in (4a).
4) Updating w and β: The first-order condition yields

∂L
∂wij

= −λuij

wij
+ βj = 0, wij =

λuij

βj
.

Substituting them the constraint of w we have∑
i

λuij

/
βj = 1, βj = λ

∑
i

uij .

Then we can update w by

wij = uij

/(∑
i′

ui′j

)
= uij/rj ,

which is exactly the relaxed constraint of w in (4b).
To summarize, the proposed AEM algorithm is presented

in Algorithm 1.

Algorithm 1 Alternating Expectation Minimization (AEM)

Input pi = p(xi), ski = p(sk|xi), R̂, max iter
Output min

∑
i,j,k

skiuij

(
log(skiuij)− log rj − log qijk

)
Initialize a feasible solution uij =

1{i=j}
M , rj =

∑
i

uij

for n = 1 : max iter do
qijk ← skiuij

/(∑
i′
ski′ui′j

)
ϕij ←

∑
k

ski
(
log qijk − log ski

)
Find λ such that G(λ) = 0

uij ←
eλ logwij+ϕijrj∑

j′
eλ logwij′+ϕij′ rj′

pi

rj ←
∑
i

uij

wij ← uij/rj

Return
∑
i,j,k

skiuij

(
log(skiuij)− log rj − log qijk

)

B. Convergence Analysis

With the guarantee of Theorem 1, we estimate the descent
of the objective (3) for model (5). For short, the closed-
form updates of each primal variable provide the descent in
the form of Kullback-Leibler (KL) divergence between the
corresponding variables in two consecutive iterations.

Lemma 1. The objective f̃(w, r, q) is non-increasing, i.e.

f̃(u(n+1), r(n+1), q(n+1)) ≤ f̃(u(n+1), r(n), q(n+1))

≤f̃(u(n), r(n), q(n+1)) ≤ f̃(u(n), r(n), q(n)).

Moreover, the descent of objective can be estimated by

f̃(u(n), r(n), q(n))− f̃(u(n+1), r(n+1), q(n+1))

=
∑
j,k

(∑
i

skiu
(n)
ij

)
D(q

(n+1)
jk ∥q(n)

jk ) +D(r(n+1)∥r(n))

+D(u(n)∥u(n+1)) + λ(n+1)
∑
j

r
(n)
j D(w

(n)
j ∥w

(n−1)
j ),

(10)

where qjk denotes the row of q where the j-th column slice
intersects with the k-th vertical slice, and wj denotes the j-th
column of w.

Proof. We have the following estimations proved in Appendix
A:

f̃(u(n), r(n), q(n))− f̃(u(n), r(n), q(n+1))

=
∑
j,k

(∑
i

skiu
(n)
ij

)
D(q

(n+1)
jk ∥q(n)

jk ),

f̃(u(n), r(n), q(n+1))− f̃(u(n+1), r(n), q(n+1))

=D(u(n)∥u(n+1)) + λ(n+1)
∑
j

r
(n)
j D(w

(n)
j ∥w

(n−1)
j ),

f̃(u(n+1), r(n), q(n+1))− f(u(n+1), r(n+1), q(n+1))

=D(r(n+1)∥r(n)).

The non-increasing property follows from the non-negativity
of KL divergence.

Lemma 2. The objective f̃(u, r, q) is non-negative.

Proof.

f̃(u, r, q) =
∑
i,j,k

skiuij

(
log(skiuij)− log rj − log qijk

)
≥
∑
i,j,k

skiuij log(skiuij)

≥
(∑

i,j,k

skiuij

)
log
(∑

i,j,k

skiuij

)
= 0.

The first inequality is due to 0 ≤ rj ≤ 1, 0 ≤ qijk ≤ 1, and
the second inequality follows from Jensen’s inequality.

The objective converges since it is non-increasing and lower
bounded throughout iterations. Furthermore, the convergence
of iterative sequence is also guaranteed.

Theorem 2. The sequence {(u(n),w(n), r(n))} converges to
a stationary point (u⋆,w⋆, r⋆).

Proof. Applying Pinsker’s inequality to (10) we have

f̃(u(n), r(n), q(n))− f̃(u(n+1), r(n+1), q(n+1))



≥1

2

(∑
j,k

(∑
i

skiu
(n)
ij

)
∥q(n+1)

jk − q
(n)
jk ∥

2 + ∥r(n+1) − r(n)∥21

+∥u(n) − u(n+1)∥21 + λ(n+1)
∑
j

r
(n)
j ∥w

(n)
j −w

(n−1)
j ∥21

)
≥ 0.

Since the objective converges, we have
∞∑

n=1

(
f̃(u(n), r(n), q(n))− f̃(u(n+1), r(n+1), q(n+1))

)
< +∞.

This implies
∞∑

n=1
∥r(n+1) − r(n)∥21 < +∞, so {r(n)} con-

verges. Similar analysis goes for {u(n)}. The update rule of w
ensures the convergence of {w(n)}. Denote the limit point by
(u⋆,w⋆, r⋆), then the iterative scheme guarantees the feasibil-
ity of the limit point. Taking limit of our iterative expressions,
the KKT conditions are satisfied at (u⋆,w⋆, r⋆).

V. NUMERICAL RESULTS

This section evaluates our AEM algorithm on a synthetic
distribution and two real-world datasets of different sizes.
These experiments have been implemented by Matlab R2023b
on a laptop with 16G RAM and one Intel(R) Core(TM) i7-
12700H CPU @ 2.30GHz.

A. Experiments on A Synthetic Distribution

The synthetic conditional distribution in our experiment is
given by [18]

PS|X =

 0.9 0.08 0.4
0.025 0.82 0.05
0.075 0.1 0.55

 .

We evaluate the performance with uniform and non-uniform
PX respectively given by

PX,unif =
(
1/3 1/3 1/3

)T
, PX,nonunif =

(
0.1 0.3 0.6

)T
.

In our experiment, we set N = 4 and the maximum number
of iterations 500. We compare the AEM algorithm with the
DRS method [18] and plot PF curves on the information plane
given in Fig. 1. The reported values I(S;Y ) are the best ones
by performing 30 different trials for each R ≤ H(X).

Fig. 1: Comparison of PF curves between the AEM algorithm
(red dashed line) and the DRS method (blue dashed line).

Both algorithms reach the theoretical bound I(X;Y ) =
H(X) and I(S;Y ) = I(S;X). Compared to the DRS method,
the proposed AEM algorithm provides more uniform points
and smoother curves, demonstrating its numerical stability. In
contrast, the DRS method performs worse on certain disclo-
sures and shows poorer ability to output complete curves.

B. Experiment on Real-World Datasets

We evaluate the performance on the following two datasets:
“Heart failure clinical records” dataset and “Census income”
dataset from the UCI Machine Learning Repository [24]. The
former dataset has 299 items and 13 attributes. We select
S = {“sex”,“death”} and X = {“anaemia”,“high blood
pressure”,“diabetes”,“smoking”} where all selected attributes
are binary, so |S| = 4, |X | = 16. The latter dataset has
32561 items and 14 attributes. We select S = {“age”,“income
level”}, and X = {“age”,“gender”,“education level”} where
all selected attributes are all integers, so |S| = 10, |X | = 160.
The distributions are taken empirically and normalized after
adding a perturbation of 10−3 to each entry.

Fig. 2: Performance comparison between the AEM algorithm
and the DRS method on two real-world datasets.

As shown in Fig. 2, the AEM algorithm reaches almost
perfect privacy (i.e., I(S;Y ) ≈ 0) for a wide range of
disclosure thresholds. In contrast, we found that the DRS
method performs worse in a range of disclosures. This may be
due to the difficulty of striking a balance between convergence
and numerical stability, as discussed in Section I. A specific
explanation is attached in Appendix B.

VI. CONCLUSION

We propose a novel approach to solve the PF problem
where the objective is replaced with an upper bound under the
EM framework, and several constraints given by the Markov
chain and transition probability conditions are relaxed. The
equivalence between the original model and the upper bound
relaxation variant is further proven. Based on the new model,
we develop the AEM algorithm by analyzing the Lagrangian,
which turns out to recover the relaxed constraints with the-
oretically guaranteed convergence. Numerical experiments on
synthetic and real-world datasets demonstrate effectiveness of
our approach. The extension of our approach to continuous
scenarios is also interesting and worthy of further research.
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APPENDIX A
CONVERGENCE ANALYSIS

We estimate the descent caused by the update of each
variable in two adjacent iterations.

1) Descent caused by the update of q: The update rule of
q gives

f̃(u(n), r(n), q(n))− f̃(u(n), r(n), q(n+1))

=
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i,j,k
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In (11) we apply the update rule of q, then we change the
summation order to sum over i first.

2) Descent caused by the update of u: The update rule of
u gives

f̃(u(n), r(n), q(n+1))− f̃(u(n+1), r(n), q(n+1))
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Noticing that the update rule of u yields

R̂ =
∑
i,j

u
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ij logw
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ij =
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ij logw

(n−1)
ij

in two consecutive iterations, we add these terms to get (12)
such that the update rule of u can be applied in (13). The
marginal distribution pi =

∑
j

u
(n)
ij =

∑
j

u
(n+1)
ij implies the

derivation of (14). In the final representation, wj denotes the
j-th column of w.

3) Descent caused by the update of r: The update rule of
r yields

f̃(u(n+1), r(n), q(n+1))− f̃(u(n+1), r(n+1), q(n+1))

=
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We change the summation order to sum over k first, and in
(15) we apply the update rule of r.

With the descent estimated, we can derive Lemma 1 in the
context.

APPENDIX B
EXPLANATION IN LARGE-SCALE EXPERIMENT

In [18], the objective is written as L(p, q, v) = F (p) +

G(q)+⟨v,Ap−Bq⟩+ c

2
∥Ap−Bq∥2, where p, q represent PY |S

and PY |X respectively, A,B are coefficients. The function
G(q) is σG-weakly convex with σG = 2|Y|Mq

(
|β−1|+|X |

)
,

where |X |, |Y| represent the cardinality of X and Y respec-
tively, β is the tradeoff parameter, and Mq = ϵ−1

Y |X , ϵY |X is
the infimum of PY |X . The subproblem

qk+1 = argmin
q∈Ωq

L(pk+1, q, vk+1/2)

is convex, and hence can be solved via gradient descent if

c > Mq

MqασG +
√

(MqασG)2 + 8(2− α)L2
qλ

2
BµBBT

4− 2α

>
α

2− α
M2

q σG >
2α

2− α
M3

q |X ||Y|,

where α is the relaxation coefficient, λB and µBBT are
constant coefficients determined by B, and Lq = ϵ−1

Z|X , ϵ−1
Z|X

is the infimum of PZ|X .
The lower bound is proportional to |X | and |Y|, and thus

increases with the growing scale of the problem. Meanwhile,
too large penalty brings numerical instability since it causes
gradient explosion, consequently the numerical computation
exceeds the computing ability of our device. Therefore, we
can only obtain a locally sub-optimal solution by applying the
DRS method to a large-scale dataset.


