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Abstract. We consider 3-dimensional Euclidean gravity in the weak coupling limit

of Smolin and show that it is BF-theory with U(1)3 as a Lie group. The theory is

quantised using loop quantum gravity methods. The kinematical degrees of freedom

are truncated, on account of computational feasibility, by fixing a graph and deforming

the algebra of the holonomies to impose a cutoff on the charge vectors. This leads to

a quantum theory related to Uq(1)
3 BF-theory. The effect of imposing the cutoff on

the charges is examined. We also implement the quantum volume operator of 3d loop

quantum gravity. Most importantly we compare two constraints for the quantummodel

obtained: a master constraint enforcing curvature and Gauß constraint, as well as a

combination of a quantum Hamilton constraint constructed using Thiemann’s strategy

and the Gauß master constraint. The two constraints are solved using the neural

network quantum state ansatz, demonstrating its ability to explore models which are

out of reach for exact numerical methods. The solutions spaces are quantitatively

compared and although the forms of the constraints are radically different, the solutions

turn out to have a surprisingly large overlap. We also investigate the behavior of the

quantum volume in solutions to the constraints.

1. Introduction

The problem of finding a quantum theory of gravity is a long standing one with different

attempts to resolving it [1]. Einstein’s theory of general relativity (GR) describes an

intricate interplay between the 4-dimensional spacetime and the matter within it [2].

The classical theory has proven to be remarkably successful, the direct observation of

black holes [3] and detection of gravitational waves [4] serve as examples. However, it

is also equally difficult to study in its full generality. This in result necessitated the use

of some classical symmetry reductions to consider approximate models. Such models

are ones which enjoy a certain symmetry, often in the context in cosmology [5, 6], while

another type of reduction is one in which gravity is considered in one dimension lower
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[7, 8, 9]. This is specifically interesting as, while the physics is different than that in 4-

dimensions, this 3-dimensional theory is well understood and solvable [8], often serving

as a test case for candidate quantum theories of gravity, see for example [10, 11, 12, 9].

In all cases, a consistent quantum theory of gravity that is fully understood remains

elusive due to grave technical and conceptual difficulties.

Loop quantum gravity (LQG, see for example [13, 14, 15]) is an attempt to canonically

quantise GR starting from its connection formulation with the fundamental variables

taken to be the Ashtekar-Barbero connection and the densitised triads. The quantum

states in LQG describe either 1 or 2-dimensional quantum gravitational excitations, for

canonical-LQG or spinfoam-LQG respectively. One also has within LQG well defined

notions of quantum geometric observables such as volume [16, 17, 18, 19] and area

[16, 20]. Further, one has well defined quantum constraints which embody the Einstein

field equations in the quantum theory [21, 22, 11]. These quantum constraints come

as a triplet: the Gauß, diffeomorphism (vector) and the Hamilton (scalar) constraints.

The first generates gauge transformations, the second spatial diffeomorphisms. The dy-

namics are encoded in the quantum Hamilton constraint.

Obtaining, understanding and interpreting the solutions to the dynamics of any quan-

tum theory of gravity is a difficult task. Therefore unsurprisingly, the case is the same

for LQG. Different regularisations for the quantum Hamilton constraint exist in the

literature [21, 22, 23, 24, 25, 26, 27, 28]. However, just as in the classical theory, general

solutions are difficult to obtain leading to once again considering approximate models.

Most notable outcomes is the development of loop quantum cosmology (LQC) which

is the symmetry reduced FLRW cosmological spacetime quantised in LQG methods

[29, 30, 31, 32]. Despite that, numerical methods are often employed, and so is the case

in spinfoam-LQG as well [33, 34, 35, 36, 37].

Recently [38], novel numerical methods were used to solve the constraints of a gravity

inspired quantum model. Specifically, a 3-dimensional U(1) BF-theory was quantised

using LQG methods and the neural network quantum state (NNQS) ansatz [39] was

used to obtain solutions to the constraints of the canonical theory, making no use of

classical symmetry reductions. It was demonstrated in [38] that in principle one can

apply such a variational ansatz to find solutions to a master constraint of this gravity

inspired toy model considered with very high accuracy and efficiency.

The NNQS ansatz is a variational ansatz which allows one to harness the power of

neural networks to arrive at ground states of the quantum Hamilton Ĥ of a quantum

many-body system. This is done by finding the amplitudes in the many-body wave-

function which minimise ⟨Ĥ⟩ using a neural network. The NNQS was first considered

in [39] where a restricted Boltzmann machine (RBM) [40], which is a two-layer gener-

ative stochastic network, was used to solve the Heisenberg model. Since then, it has
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showed remarkable success in several many-body physics problems, explored by differ-

ent network architectures, and had its numerical efficiency compared to state of the art

methods [41, 42, 43]. The key feature was the ability of this ansatz to parameterise the

many-body wave-function with a number of parameters which is comparatively small in

respect to the dimensions of the Hilbert space of the considered system.

During this recent study of applying NNQS to gravity-like models [38], the kinematical

degrees of freedom were truncated by considering a fixed graph and only allowing a set

of admissible representation labels‡M := [−mmax, . . . ,mmax] ⊆ Z for the holonomies in

the models. This resulted in what was called a Uq(1) BF-theory where the q-deformation

parameter was a root of unity. Even then, the Hilbert spaces, for large sets of admissible

representation labels M and/or arbitrarily large graphs, were rather large and growing

exponentially with respect to the number of edges in the graph. The NNQS ansatz was

nevertheless successful in solving such a model, at times with a number of parameters

representing 1.57% of the dimensions of the Hilbert space. Since the goal is to ulti-

mately find approximate numerical solutions to the full 4d theory, this becomes a rather

important, if not indispensable, feature of the numerical method of choice. We note

that working on a fixed graph has also been advocated in algebraic LQG [44, 45, 46].

Of course, the graph employed there may be infinite or very large, much larger than the

one we have to restrict to.

In this work, we depart from the toy model considered in [38] and inch closer to 4d

gravity. We will consider 3d Euclidean gravity in the weak coupling limit of Smolin

[47] in which we will show is too a BF-theory but with a U(1)3 gauge group. The pur-

pose of this work is two-fold. First, it is to demonstrate that the NNQS ansatz can be

utilised to solve different regularisations of the quantum Hamilton constraint. Second,

we show that this ansatz and the computational framework developed in this work can

model more complicated gauge groups. Both of these are building blocks for further

work, as it is shown that 4d gravity in the weak coupling limit also has a gauge group

of U(1)3 [48, 49]. We will follow the implementation in [38], and define our quantum

model on a fixed graph with similar truncation on the representation labels arriving at a

3-dimensional Uq(1)
3 BF-theory. We will explore geometric observables of LQG, specifi-

cally the spatial volume operator in 3d Euclidean gravity as formulated in [11]. Further,

we will consider two different regularisations for the quantum Hamilton constraint. The

first being a master constraint constructed from the quantum analogs of the curvature

and Gauß constraints and the second following the regularisation presented in [11]. We

will solve both the constraints using the NNQS ansatz and we will compare the solution

space of the first with the kernel of the second. The plan of the paper is then as follows:

(i) In Section 2, we present both classical and LQG quantised 3d Euclidean gravity

in the weak coupling limit of Smolin. We also discuss the truncation of the

‡ called charges and denoted as m ∈ Z
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kinematical degrees of freedom, the Thiemann regularisation of the quantum

Hamilton constraint as well as the volume operator of 3d LQG.

(ii) Next, the modelling of the now quantum theory and its constraints in the

computational framework is provided in Section 3.

(iii) Following that, in Section 4, we present the results obtained in this work in the

following order:

• In Section 4.1, the solution space of the master constraint of the quantum

model is presented and discussed. We show that as the cutoff imposed on

the labels of the holonomies is relaxed, the frustration between the Hamilton

and Gauß constraints becomes alleviated and the behaviour of the continuum

theory is obtained even for conservative cutoffs.

• Section 4.2 concerns the observables of the theory where we will present the

quantum fluctuations of the minimal loop holonomy operator. We show that

as the cutoff is relaxed, the gauge invariant solutions obtained indeed become

more flat.

• In Section 4.3 the quantum volume operator of 3d LQG is presented. We will

examine its properties and behaviour in our quantum model and compare it

with exact results expected from the literature when possible.

• The analysis of the kernel of the Thiemann regularised quantum Hamilton

constraint is presented in Section 4.4 whereby we discuss the implementation

of the constraint in the computational framework, the nature of the states

near the kernel, and a detailed analysis comparing the obtained states to the

solutions of the master constraint considered in Section 4.1.

(iv) An appendix contains some observations about the scaling of Hilbert space

dimension and about the scalar product of states picked randomly from a Hilbert

space.

2. Classical and quantum 3d Euclidean gravity in the weak coupling limit

The starting point in this work is to consider the classical theory describing 3d Euclidean

gravity, with no matter or cosmological constant contribution, and investigate the gauge

group arising in Smolin’s weak coupling limit [47]. To obtain gravity as a BF-theory,

we consider GR in the first-order formalism, in which GR is described as a theory of

connections and vielbeins, rather than metrics. One such formulation is given by the

Palatini action. For a spacetime of n-dimensions M = R × Σ(n−1), one can choose the

fundamental variables to be an orthonormal frame of 1-forms eI and a metric compatible

connection ωI
J , where we use I, J, . . . to denote the internal indices. In (n − 1) + 1-

dimensions, the Palatini action is expressed as [50]

S[e, ω] =
1

κ

∫
M

⋆
(
eI ∧ eJ

)
∧ FIJ(ω), (1)
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where FIJ(ω) = dωI
J + ωI

K ∧ ωK
J is the curvature tensor of the connection, κ is a

constant related to Newton’s gravitational constant GN and the Hodge dual map is

given by [50]

⋆(eI1 ∧ · · · ∧ eIk) :=
1

(n− k)!
ϵI1...IkIk+1...Ine

Ik+1 ∧ · · · ∧ eIn . (2)

For a metric ηIJ := diag(σ, 1 . . . , 1) with σ = +1, the frame rotation group is the SO(n)

group while for σ = −1, it is the Lorentz group SO(n − 1, 1). Here, ϵ is the totally

antisymmetric tensor. The equations of motion arising from this action are equivalent§
to the Einstein field equations. Now, in 3-dimensions the Palatini action takes the simple

form

S[e, ω] =
1

κ

∫
M

eK ∧ FK =
1

κ

∫
M

(
eI ∧ dωI +

1

2
ϵI

JKeI ∧ ωJ ∧ ωK

)
. (3)

The canonical analysis on this action shows that the phase space is subject to the two

first-class constrains which are written as [51, 52]

F I = 0 , d(ω)eI = 0, (4)

where d(ω) is the covariant exterior derivative with respect to ω. The first of the two

equations shown in (4) is the curvature constraint enforcing flatness of the connection

and the second is the Gauß constraint generating gauge transformations. In our work,

we will consider Euclidean gravity, hence we take the Riemannian signature of the met-

ric. Thus, the configuration space is the space of SO(3)-valued connections and the

phase space is the cotangent bundle over it. The Gauß constraint generates SO(3)

transformations.

It is clear that the Palatini action in 3-dimensions shown in equation (3) is of BF-

type [53], and hence a topological theory, whereby the Lie group is SO(3) and the role

of B is played by the orthonormal frame of 1-forms eI . In the absence of a cosmological

constant, the solutions are locally flat (homogeneously curved otherwise) and the theory

has no local degrees of freedom. In the weak coupling limit of Smolin [47], the action

(3) reduces to

S[e, ω] =

∫
M

eI ∧ dω̃I , (5)

where ω̃ = ω/κ. What is observed is that one does not have any quadratic terms of the

connection arising. This is also reflected in the constraints. In this limit, the constraints

pulled back to Σ are expressed as

F I
ab := 2∂[aω̃

I
b] = 0 , ∂ae

a
I = 0 (6)

where a, b, · · · = 1, 2 denote spatial indices. To investigate the type of gauge

transformations generated by the Gauß constraint shown on the right in (6), let Λ

§ for non-degenerate orthonormal frames
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be a smearing field and define on the phase space the functional

G(Λ) =

∫
Σ

d2xΛI∂be
I
cε

bc. (7)

Then, one can compute the Poisson bracket of G(Λ) with the connection to see that

{ωI
a(x), G(Λ)} =

∫
Σ

d2y∂
(y)
b {ωI

a(x), e
J
c (y)}εbcΛJ(y) (8)

= −∂aΛI(x). (9)

So ω transforms like a U(1)3 connection under the transformations generated by G(Λ).

Note also {eI(x), G(Λ)} = 0 as expected for an Abelian gauge theory. Thus, in this

limit, the theory is U(1)3 BF-theory on a 3-dimensional manifold M (3) = R×M (2). In

the following, we will take M (2) = R2. In what follows, we canonically quantise this

model using LQG methods.

2.1. Quantum U(1)3 BF-theory

LQG uses the formulation of GR in which the (kinematical) phase space is parame-

terised by the Ashtekar-Barbero connection AI
a and the densitised triads EI

a [15]. This

means that the physical phase space of GR is embedded in that of SU(2) Yang-Mills

theory and facilitates the use of familiar tools from gauge theory in LQG. Holonomies

of AI
a and fluxes of EI

a are quantized and lead to a closed algebra [15].

To outline this process, let c : [0, 1] → Σ denote a Ck semi-analytic path embedded

in Σ (k ≫ 1). A holonomy is a G-valued element here denoted hc(A) where A is a

Lie(G)-valued connection 1-form, the Ashtekar-Barbero connection in the case of LQG.

They are nothing but the path ordered exponential integral of the connection along

paths c. Important functions of holonomies are their matrix elements in irreducible

representations of G which are hereby denoted by πj with a G representation label j.

For brevity, we will denote by hjc(A) := πj(hc(A)). Smearing the densitised triads over

2-surfaces S, the pair of variables then can be written as [15]

hc[A] = P exp

(
−
∫
c

A

)
, ES,i[E] =

∫
S

Ea
i dSa. (10)

Holonomies can be seen to transform under gauge transformations only at their

endpoints. That is, for some transformation U(x) ∈ G,

hjc(A) = U−1(c(1)) hjc(A) U(c(0)). (11)

The pair (10) has Poisson brackets which yields sums of products of functions of

holonomies [15]. This holonomy-flux algebra can be represented on a Hilbert space

H = L2(A, dµ) where A is the space of distributional connections and a measure µ
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[15, 14]. A dense subset of this space is given by cylindrical functions Ψ ∈ Cyl which

are complex valued functions which depend on A through a finite number of holonomies

Ψ[A] = ψ(he1 [A], . . . , hen [A]). (12)

where ψ : Gn → C. Here, the collections of paths e1, . . . , en are denoted the name edges,

and they only meet at their end/start points which are denoted the name vertices v.

Together, they are said to constitute a graph γ ↪→ Σ.

To construct gauge invariant states, one chooses a G-invariant tensor, the intertwiner

ιv, for every vertex v, which intertwines the matrix elements of the holonomies of the

incoming and outgoing edges at v in an appropriate manner [54]. One can then define

spin-network functions (SNFs) on γ which are functions composed of products of the hje
for every e ∈ E(γ) contracted with suitable intertwiners for every vertex [54].

If we now consider the specific case G = U(1)3 then the representation labels are charge

vectors m⃗ ∈ Z3. The intertwiner spaces are one- or zero-dimensional, depending on

whether the incoming charges match the outgoing ones [54, 49]. The state is gauge

invariant iff ∑
e in at v

m⃗e =
∑

e out at v

m⃗e. (13)

for all vertices v. In this case we call the state a charge-network function (CNF) on γ

and denote it by Tγ,{m⃗}. Explicitly,

Tγ,{m⃗}[A] =
∏

e∈E(γ)

hm⃗e
e [A]. (14)

The kinematical Hilbert space HAL = L2(A, dµAL) is then taken to be spanned by

the CNFs along with the Ashtekar-Lewandowski measure [54, 49]. On such a space,

the flux operator acts as a derivation with respect to a holonomy [49]. Further, the

holonomy operator acts as a multiplication operator, merely changing the label on the

corresponding edge it acts upon [49]. Precisely, this can be written as

ĥm⃗0
ek

Tγ,{m⃗} = Tγ,{m⃗′}, (15)

where now

{m⃗′} = {m⃗e1 , m⃗e2 , . . . , . . . m⃗ek + m⃗0, . . . , . . . , m⃗|E(γ)|}, (16)

if ek ∈ E(γ) otherwise it modifies the graph by adding an edge ek.

The constraints of this resulting quantum theory are composed of the quantum analogs

of the curvature and Gauß constraints. We will discuss them below, in section 2.4.
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2.2. Quantum Uq(1)
3 BF-theory

The last step of quantising this theory in our work is one necessitated due to

computational resources: truncating the number of kinematical degrees of freedom.

This comes in two forms, just as in [38]. First, we restrict our model to only one fixed

graph γ. Further, we employ a cutoff on the irreducible representations of U(1)3. We

denote the set of admissible charges by

M := [−mmax, . . . ,mmax] ⊆ Z, (17)

where mmax ∈ Z. As such, we have a total of 2mmax + 1 possible choices for every

component and a total of (2mmax + 1)3 possible values for a given charge vector. To

do this in a consistent and elegant fashion, we interpret these as labels for irreducible

representations of the quantum group Uq(1)
3. This entails a deformation of the dual

group of irreducible representations and hence also of the holonomy operators. The

tensor product of irreducible representations is now

mi ⊗ ni := (mi + ni +mmax) mod (2mmax + 1)−mmax, i = 1, 2, 3. (18)

This also dictates a deformation of the action (15), (16) of the holonomies on quan-

tum states. We should note, however that this also means the gauge group is now

Uq(1)
3 ≃ Z3

2mmax+1 [55, 38], in the following sense: While U(1)3 still acts on the result-

ing Hilbert space, and we will be implementing the constraints of the continuum theory,

the action of the holonomy operators is not gauge covariant under U(1)3, but only under

Uq(1)
3.

Let us briefly dwell on a possible physical meaning of the cutoff. The q-deformation

parameter is expressed as [55]

q = t2 , t = exp

(
iπ

2mmax + 1

)
. (19)

This could be compared to the Turaev-Viro model [56, 57, 58] in which a q-deformation

of SU(2) with

q = t2 , t = exp

(
iπ

k + 1

)
. (20)

encodes a cosmological constant [58]

Λ =
1

G2
Nℏ2k2

. (21)

k is the level of the Chern-Simons theory describing 3d gravity. By comparing (19)

and (20), k in our work corresponds to 2mmax. This in turn implies that an effective

cosmological constant would be

Λ =
1

4G2
Nℏ2m2

max

. (22)
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in a given cutoff mmax. The interpretation drawn is then that for larger mmax, one

approaches a setting where Λ is small. Of course, this has to be taken with a lot of

caution because the weak coupling limit employed here might have very little to do with

the original theory.

Lastly, one surprising consequence of this is that the curvature and Gauß constraints

will not commute in the quantum theory. Consequently, for finite mmax there are no

exact joint solutions of all the constraints. This frustration will however be shown to be

alleviated for large mmax. We will, in the following refer to this gravitational model as

quantum Uq(1)
3 BF-theory.

2.3. Geometric operators

As previously mentioned, LQG comes with well-defined quantum geometric observables.

Therefore, in this quantised model one has for example a well-defined notion of quantum

volume. For a compact region B ⊂ Σ, the volume operator is expressed as [11]

V̂ (B) :=
∑

v∈V (γ)∩B

V̂v , V̂v :=

√√√√∑
I

( ∑
e,e′ at v

sign(e, e′)ϵIJKXJ
eX

K
e′

)2

, (23)

where in the U(1)3-limit, the XI
e are the three invariant vector fields on U(1)3, acting

on holonomies along e, and sign(e, e′) is the orientation of the tangents of the ordered

pair (e, e′) relative to the orientation of Σ.

In the 4d case, an analog of this operator would vanish at gauge invariant vertices of

valence 3 or less while in 3-dimensions, this the case for valence 2 only, so long as there

are at least a pair of edges incident at the vertex with linearly independent tangents.

In this work, we will explore the implementation of this operator in our computational

framework and examine its properties as given in the literature. This operator also

plays a role for the Thiemann regularised quantum Hamilton constraint which we also

consider in this work.

2.4. Constraint operators

The classical theory considered so far is subject to the curvature and the Gauß

constraints (4). The Gauß constraints imposes charge vector conservation at every

vertex of the graph. The curvature constraint ensures flatness of holonomies. In one

of the two approaches pursued in this work, we impose both constraints in the form of

master constraints [59, 60, 61]. For a fixed graph γ

F̂γ =
∑

α∈L(γ)

tr
[(
ĥα − 1

)(
ĥ†α − 1

)]
(24)
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where L(γ) is a set of minimal loops in γ, and

Ĝ|γ =
∑

v∈V (γ)

3∑
i=1

(ÊS(v),i)
2 (25)

where S(v) is a small sphere around the vertex v. In principle, we would then demand

⟨Ψγ| F̂γ + Ĝ|γ |Ψγ⟩ = 0 (26)

for a physical state Ψγ. Just as in [38], the solutions of the flatness constraint are not

normalisable in HAL but instead form a different measure µflat which is the δ-measure

on flat connections [62, 63, 64, 65]. It is not absolutely continuous with respect to the

Ashtekar-Lewandowski measure but we also nevertheless choose to work with states in

HAL, which can approximate solutions. For details of how these constraints are imple-

mented in the computational model, see Section 3.1.

The constraints (4) look structurally different from those of 4d gravity [66]. Never-

theless, it was shown that one can bring them into the same form [11]. This is very

interesting, because it maximizes the analogy of this model to 4d gravity. In this form,

the constraints read [11]

GI := DaE
a
I , Va := F I

abE
b
I , H :=

1

2
√
det q

ϵIJKF
I
abE

a
JE

b
K (27)

where Da denotes the covariant derivative with respect to the connection, q is spatial

the metric and Ea
I are modified densitised triads [11]. The Gauß constraint remains

unchanged. However, the curvature constraint is now replaced by the diffeomorphism

(vector) constraint Va and the Hamilton (scalar) constraint H. The field theories gov-

erned by the constraints (4) shown previously and these three constraints shown above

are classically equivalent. However, it is argued that upon quantisations, the two quan-

tum theories are different, having little overlap in their solution spaces [11].

The exact procedure of deriving the quantum Hamilton constraint, is too complex to be

presented here, and consequently, we only state the result. We partially follow the pre-

scription proposed in [11]: The classical constraint is regularized in terms of holonomies,

fluxes, and their Poisson brackets, all associated to a triangulation T . To turn this regu-

larization into an operator, one adapts the triangulation to a graph, T ≡ T (γ), replaces

holonomies and fluxes by their operator counterparts and takes a certain limit:

ĤT (γ)(N)fγ := lim
ϵ→0

ĤT,ϵ(N)fγ (28)

=
2

ℏ2
∑

∆,∆′∈T,v

ϵijϵklN(v) tr(ĥαij(∆′)ĥsk(∆)[ĥ
−1
sk(∆),

√
V̂v]ĥsl(∆)[ĥ

−1
sl(∆),

√
V̂v])fγ.

(29)
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Here, ∆,∆′ ∈ T are solid triangles sharing a common basepoint v(∆) = v(∆′) =: v,

αij(∆
′) is a loop created using a specific prescription along the edges labeled by i, j of

∆′ which meet at v, sk, sl are edges in ∆ meeting at v, N is a smearing function and fγ
are functions on the graph [11].

Solutions to the constraint are by definition diffeomorphism invariant states (Ψ| such
that

(Ψ|ĤT (γ)(N) |fγ⟩ = 0 for all γ, fγ ∈ Hγ, N. (30)

For the purpose of our work, this prescription poses a problem, since the operator de-

fined in this way is graph-changing, whereas we would like to work on a fixed graph.

In [11], the loop αij is formed by taking two edges i, j of a solid triangle ∆ ∈ T and

creating a new edge connecting them. This edge is usually created halfway through the

edges i, j. For our purposes, it is natural to change this prescription, by closing the

holonomy along a loop that is already part of γ. Thus in the following, αij denotes a

minimal loop in γ, with basepoint v that starts with edge ei and ends with edge ej. We

will still refer to this constraint as the Thiemann regularised constraint (TRC for short)

owing to the work done in [11]. We note that this operator need not be self-adjoint, nor

non-negative. We will also see this in the example implemented below.

Since we will use a graph non-changing operator, we can somewhat simplify the condition

(30). Solutions (Ψ| must be the diffeomorphism average of some cylindrical function,

(Ψ| = (Ψγ0|. But then, due to the properties of the group averaging and the kinematical

inner product (see for example [15]), (30) is already fulfilled if γ0 is not diffeomorphic

to γ∥. Then, again due to the properties of the group averaging [15], (30) is equivalent

to

⟨Ψ′
γ| ĤT (γ)(N) |fγ⟩ = 0 for all fγ ∈ Hγ, N, (31)

where we have introduced a modified cylindrical function Ψ′
γ which is chosen such that

it gives the same group averaged state, (Ψγ| = (Ψ′
γ| and that it is invariant under the

action of the graph symmetries [15] of γ. This in turn is equivalent to

⟨Ĥ†
T (γ)(N)Ψ′

γ| |fγ⟩ = 0 for all fγ ∈ Hγ, N (32)

⇐⇒ Ĥ†
T (γ)(N)Ψ′

γ = 0 for all N (33)

⇐⇒ ⟨Ψ′
γ| ĤT (γ)(N)Ĥ†

T (γ)(N) |Ψ′
γ⟩ = 0 for all N. (34)

Now (34) finally has the right form for the numerical methods that we are going to

deploy. Alas, the complexity of ĤT (γ) is such that its modulus squared is beyond the

∥ Strictly speaking, although our regularization of H can still annihilate edges of γ, although it uses

loops that are part of the graph: It could so happen that it cancels all the charges on that edge. Thus,

strictly speaking, we also have to consider the case where γ0 is diffeomorphic to a subgraph of γ. Since

this annihilation of edges only happens in highly non-generic situation, we will not consider it in the

following.
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capabilities of the code that we are going to deploy. We will instead look for solutions

of

⟨Ψγ| ĤT (γ)(N) + Ĥ†
T (γ)(N) |Ψγ⟩ = 0, (35)

for fixed N . Thus we will only implement a necessary condition for Ψγ to be a solution,

not a sufficient one.

To summarize, we have quantized 3d Euclidean gravity in the weak coupling limit using

LQG methods and the kinematical degrees of freedom were truncated. The constraints

are expressed in two different ways: On the one hand as master constraints (26). On the

other hand, we will implement the Gauß constraint as a master constraint (25) the same

way, but treat diffeomorphism and Hamilton constraints (27) in a way that resembles

loop quantum gravity in 4d, see (29), (30).

3. The computational model

This section covers the two topics of (i) implementing the physical model in a

computational framework and (ii) the network architecture used in this work. In (i), we

will present the expression of the constraints of the quantum Uq(1)
3 BF-theory which

are to be implemented. Furthermore, the exact setup to accommodate for the different

gauge group is discussed.

3.1. The implementation of the physical model

In this work, we will adopt both the terminology and the implementation provided in

[38]. Our models are to be defined in the computational framework on graphs denoted

by γ̃ which are the dual to an oriented graph γ. Here, duality means that every edge and

vertex in γ is replaced by a dual vertex ṽ and a dual edge ẽ in γ̃ respectively. We will

consider non-trivial N -L graphs where the number of minimal loops¶ N = |L(γ)| ≥ 2+.

The reason for the implementation on the dual graph is purely driven by computational

feasibility: as the edges in γ carry the charge vectors, it is easier to model the Hilbert

space as the tensor product of the Hilbert spaces of the dual vertices. Further, minimal

loops are taken to have the same incrementing orientation discussed in [38] and as such,

the orientation of the loop need not coincide with that of the graph.

Now, one has at hand a many-body system where the role of a particle is played by

a dual vertex. Every dual vertex has a finite set of (2mmax + 1)3 degrees of freedom

for the charge vector associated to it. As such, for a dual graph of K dual vertices,

the dimensions of the Hilbert space over γ would be dimHγ = (2mmax + 1)3K , thrice

as large compared to what is considered in the Uq(1) model [38]. Here, we have im-

posed the same cutoff conditions as in [38] as shown also in equation (18) above where

¶ the set of smallest length cycles in the cycle basis of the cycle space of the undirected version of γ
+ For N = 1, the Gauß constraint is already perfectly imposed
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each component of the charge vector is independently restricted within a set of allowed

charges M = [−mmax, . . . ,mmax] ⊆ Z.

The next point of order is to outline the implementation of now the three dimensional

gauge group. Consider once again the simple Uq(1) BF-theory in [38] where a dual graph

composed of 5 dual vertices is chosen. Then, the basis states would be a 5-fold tensor

product of basis states in the Hilbert spaces Hṽ living on the dual vertices. Since the

basis states of Hṽ are labeled by the charge numbers, a basis state in the total Hilbert

space over the entire graph was given by a quintuplet

(m1,m2,m3,m4,m5) := |m1⟩ ⊗ |m2⟩ ⊗ |m3⟩ ⊗ |m4⟩ ⊗ |m5⟩ , (36)

where mk denotes the charge on the dual vertex k and mk ∈ [−mmax, . . . ,mmax] ⊆ Z.
In the present case, one has for every dual vertex a charge vector. As such, a basis state

in the Uq(1)
3 model considered here over the same graph would be identified with five

charge vectors, or equivalently 15 charge numbers

(m1
1,m

1
2,m

1
3︸ ︷︷ ︸

m⃗1

,m2
1,m

2
2,m

2
3︸ ︷︷ ︸

m⃗2

,m3
1,m

3
2,m

3
3︸ ︷︷ ︸

m⃗3

,m4
1,m

4
2,m

4
3︸ ︷︷ ︸

m⃗4

,m5
1,m

5
2,m

5
3︸ ︷︷ ︸

m⃗5

). (37)

where ml
k denotes the kth component of the charge vector m⃗l. Thus, one needs to label

the basis states of the dual vertices in the computational framework with the charge

vectors m⃗ ∈ Z3. However, in our computational framework, this is not feasible. Fur-

thermore, since the charge numbers for every component of a given charge vector can

be the same, one cannot uniquely map the charge numbers of the components of a given

charge vector to another basis in an isomorphic manner that allows for distinguishing

between different components. The workaround implemented in this work is that one

considers three different copies of the same graph, with every copy of the dual vertex

in every different copy of the graph carrying one component of the charge vector. To

illustrate this, Figure 1 shows an example of this decomposition of the charge vectors

over three graphs in the computational framework.

In Figure 1, the graph on which the analytical model is defined can be seen on the

left in black, where each edge carries a charge vector composed of three charge values.

The equivalent computational implementation of such a graph is shown on the right

where we have three copies of γ where now each edge in every copy carries one of the

charge numbers in the charge vectors on γ. Every copy of the graph is then implemented

independently, with its own dual graph, in the computational framework. The operators

in the constraints then act on the appropriate graphs as they should.

We now move to discuss the implementations of the constraints of the Uq(1)
3 BF-

theory. We recall that the master constraint Ĉ considered in [38] was composed of a the

Gauß constraint Ĝ and curvature constraint F̂ . To further facilitate the computational
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Figure 1: On the left, the graph γ on which the analytical model would be based upon. On

the right, the equivalent implementation on the computational framework. The analytical

graph γ is implemented as three different independent computational graphs, all identical

to γ. Every computational graph carries the set of charge numbers corresponding to certain

components of the charge vectors of γ.

implementation, the curvature constraint imposed flatness on the minimal loops as one

can faithfully decompose any loop in the graph in terms of the minimal loops.

In the current work, the curvature constraint (24) also imposes flatness over the minimal

loop holonomies. Let (1) denote the operators in the Uq(1) theory and introduce the

notation

Â(1)m :=

n− fold︷ ︸︸ ︷
1⊗ 1⊗ · · · ⊗ 1⊗︸ ︷︷ ︸

(m−1)− fold

A(1) ⊗ 1⊗ . . ., (38)

to denote that the operator Â(1) sits in the mth position in the n fold tensor product

shown above. In our work, n = 3. The curvature constraint (24) can then be expressed

as

F̂ =
∑

α∈L(γ)

tr
[(
ĥα − 1

)(
ĥ†α − 1

)]
(39)

=
∑

α∈L(γ)

3∑
k=1

(
ĥ(1)kα − 1

)(
ĥ
(1)†k
α − 1

)
(40)

=
∑

α∈L(γ)

3∑
k=1

(
21− ĥ(1)kα − ĥ

(1)†k
α

)
(41)

=
∑

α∈L(γ)

(
61− tr ĥα − tr ĥ†α

)
(42)

= 6|L(γ)|1−
∑

α∈L(γ)

tr
[
ĥα + ĥ†α

]
(43)
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where we denote by

tr ĥα :=
3∑

k=1

ĥ(1)kα . (44)

For brevity, we will often refer to tr ĥα as the minimal loop holonomy operator despite

it actually being the trace of it. Recall that the Uq(1) minimal loop holonomy operators

are of the form [38]

ĥ(1)α =
∏

ṽ∈Ṽ (α)

↔

ĥ
(1)
ṽ . (45)

Here, the ↔ indicates that one uses either the holonomy operator or its adjoint depend-

ing on the orientation of the edges of minimal loop relative to the underlying graph [38].

These basic Uq(1) holonomy operators ĥ
(1)
ṽ are defined as in [38], acting as raising and

lowering operators for the charge numbers while imposing the same periodic boundary

conditions discussed therein and mentioned in equation (18) above.

Since the vector addition/subtraction of charge vectors is defined element-wise, the

Gauß constraint is imposed on every copy of the graph independently as well. Thus,

we once again have three of the Gauß constraint as implemented in [38] which gives the

expression for the Uq(1)
3 Gauß constraint (25)

Ĝ = Ĝ(1)1 + Ĝ(1)2 + Ĝ(1)3 , (46)

where by Ĝ(1)1 we mean that it is the Uq(1) Gauß constraint imposed on the first graph.

We recall that [38]

Ĝ(1) =
∑

v∈V (γ)

 ∑
e∈Ei(γ)

N̂ (1)
e −

∑
e′∈Eo(γ)

N̂
(1)
e′

2

. (47)

where Ei(v), Eo(v) indicates the set of edges incident at and outgoing from a vertex v

respectively. Here, the N̂ (1) operator is defined as in [38], which is nothing but a diag-

onal dimHγ × dimHγ matrix with the diagonal being diag(mmax, . . . ,−mmax) which

upon acting on an edge just gives the charge that the edge carries.

Now, the master constraint considered in our work is

Ĉ = F̂ + Ĝ, (48)

which is implementable in a computational framework. This enables us solve it using

exact numerical methods as well as employing the NNQS ansatz. We note that one

now is haunted by the curse of high dimensionality in that one now has a Hilbert space

thrice as large as one encounters in the Uq(1) model (see Appendix A for details). In this

work, we will also compare the solution space of this master constraint to the Thiemann

regularised quantum Hamilton constraint as previously shown in (29). However, the

entirety of this discussion, including the computational implementation, is done in

Section 4.4.
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3.2. The network architecture

The main aim of this work is to, of course, solve the presented LQG model using NNQS.

However, in this endeavour, we have also taken up the task of developing a network ro-

bust enough to solve arbitrary such models. This is due to the fact that it was observed

in [38] that finding a network which can solve such models is a non-trivial task. In this

work, we test the capability of the network developed in [38] and consequently opt to

use the same network.

The network considered in [38] was composed of two major blocks, denoted the learning

and evaluation blocks respectively. The learning block was a series of convolution sub-

blocks which either implemented skip connections or not depending on the dimensions of

the Hilbert space. Furthermore, the number of convolution sub-blocks also scaled with

the dimensions of the Hilbert space at hand. Each convolution sub-block consisted of

several layers starting from a convolutional layer and ending with a pooling layer with

several others in between (e.g. normalisation, dropout, activation). The evaluation

block was a simple feed-forward network (FFN) the outputs of which were interpreted

as the amplitudes for the batches of configurations of basis states given as an input to

the network.

The scaling of the network was done in effort to maintain a balance between the high

accuracy and the computational costs relative to the dimensions of the Hilbert space as

it was noticed that for higher mmax, the network needed to be adapted. Currently, this

task of maintaining high accuracy has proven to be difficult in this work (for this type

of architecture). One encounters several issues contributing to this. First, the graphs

are now thrice as large in the computational framework, thus enlarging the size of the

input layer of the network. Second, the Hilbert spaces now grow drastically with small

increments in mmax. This will introduce a host of issues which will need to be addressed

for more complicated models or high mmax simulations (see Section 4.5).

We note that this aim to develop such a universal network architecture is not needed, as

one can develop different networks tailored specifically for different problems. However,

as one knows very little about the solution space, in high dimensions as is considered

in this work, exact numerical methods become no longer possible due to computational

limits. Coupled with the sampler issue discussed in Appendix B of [38], one is then

inclined to develop a trustworthy network for solving such gravitational models. Estab-

lishing trust in a network can be done by verifying its capability across different models.

However, this has not been fully achieved here yet. As a result, this means that for

high mmax, the accuracy is low compared to what was presented in [38]. In this work,

we only explore low mmax cutoffs. A brief discussion on possible improvements on the

network architecture is presented in Section 4.5.
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4. Results

The Uq(1)
3 BF-theory as described above was implemented in a computational

framework where the solutions were obtained using the NNQS ansatz. In this section, we

present the results. In Section 4.1 we look into the nature of the solutions of the master

constraint for different mmax cutoffs and compare it to the Uq(1) model, for validation

purposes. Next, we discuss holonomy operators and their fluctuations in Section 4.2.

In Section 4.3 we present a discussion of the spatial volume operator in 3d Euclidean

gravity in the U(1)3-limit and its properties. Lastly, in Section 4.4, we present the

solutions of the TRC, discuss the nature of the states obtained by the NNQS ansatz

and compare them to the solutions of the master constraint Ĉ (48).

4.1. Solutions to the master constraint Ĉ

To begin, we define the graph. In previous work [38], a specific graph γ was considered

which was the smallest non-trivial graph with |L(γ)| = 2. The network used then was

able to solve the Uq(1) model on γ very efficiently. In this work, we will consider the

same 2-L graph as done in [38] which can be seen in Figure 2.

Figure 2: In red, the oriented 2-L graph γ is shown and its dual graph γ̃ is shown in green.

In principle, one can consider any graph. For example, one can consider a graph cor-

responding to/capturing the topology of a torus, thus solving the model defined on a

spacetime with a toroidal spatial geometry. While this may be more physically inter-

esting, it will be left for future work. The reason for considering the graph identical to

[38] is detailed in what follows.

As mentioned in Section 3, the dimensions of the Hilbert space of a Uq(1)
3 model is

thrice as large compared to a Uq(1) model defined on the same graph. Thus, this puts

serious limitations due to the computational resources required (see Appendix A). One

such limitation is the inability to use exact diagonalisation methods. This, in turn,

implies that the results obtained from the NNQS ansatz cannot be numerically verified.

However, the structure of both the curvature and Gauß constraints in the Uq(1)
3 model
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correspond to them being the second quantisation operators† of their Uq(1) counter-

parts. As such, the eigenvalues λ of the matrix [Ĉ]ij representing the master constraint

Ĉ in this work is merely 3λ(1), where λ(1) are the eigenvalues of the matrix representing

Uq(1) constraint. Therefore, to validate the results obtained in this work, one is required

to solve the Uq(1) model first. This is therefore why we choose to work with the same

graph considered in [38]. The exact diagonalisation (ED) results shown throughout this

work are therefore not computed, but rather taken to be three times the what is obtained

in [38]. This means that we now test the capability of the NNQS ansatz for a model

which one cannot solve using exact methods. This, on its own, is a remarkable point

as one is able to explore models which would otherwise be out of reach due to very real

computational limits. Lastly, in this work we search for solutions with only real valued

coefficients in the charge network basis, which is the computational basis for the numer-

ical work. This is done to avoid the increase in computational demand from complex

coefficients ‡. We note that this is a much less drastic restriction than what it seems,

since all the constraints have a real valued matrix representation in the computational

basis, which ensures that each solution of the constraint can be obtained as a linear

combination of solutions with real coefficients (see Appendix C in [38]).

Figure 3: A simulation where the NNQS has been used to solve the Ĉ constraint in

the Uq(1)
3 model with a cutoff mmax = 2. The accuracy achieved in this simulation was

approximately 99.63%. The number of network parameters needed to be optimised is 6412,

constituting only ∼ 2× 10−5% of the dimensions of the Hilbert space (∼ 3× 1010).

† Â = dΓ(Â(1)) = Â(1) ⊗ 1⊗ 1+ 1⊗ Â(1) ⊗ 1+ 1⊗ 1⊗ Â(1)

‡ using complex datatype (complex128) would require double the amount of allocated memory (16

bytes) per variable compared to double precision floating point datatype (float64)
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Furthermore, as shown in Figure 3, the network is able to solve such models remarkably

well at least for relatively low mmax cutoffs, as shown in a simulation for a mmax = 2

cutoff where the accuracy achieved was 99.63%. The accuracy here denotes how close

the value of min ⟨Ĉ⟩ obtained by the network at the final state at the end of the sim-

ulation to that of the estimated true value. If we consider the average min ⟨Ĉ⟩ over

the last 100 iterations in the simulation, the accuracy then is approximately 91.38%. In

what follows, by accuracy we denote the former definition rather than the latter. Lastly,

the error bars shown in the figure arise due to calculations inherit to the minimisation

process, for example the Markov-Chain Monte-Carlo process.

Also seen in Figure 3, the NNQS ansatz with the network architecture used demon-

strates the same capabilities as seen in [38]. Namely, one still obtains the relatively

fast convergence due to the convolutional layers and the specific network architecture

utilising them. This is made even more remarkable when it is realised that for the

case of mmax = 4 as an example, we have only 42101 network parameters to optimise

in order to find the solution. While this may seem large at first, when compared to

dimHγ = 205.89 × 1012 it is realised that we only need a vanishingly small amount

of information, equivalent to almost 2.045 × 10−8 % of the entire space, to obtain the

solution and thus performing extreme dimensionality reduction and drastically reduc-

ing the computational cost. Further, the computation time is rather “short” even on

standard, not high performance computing, hardware§. We do observe more prominent

fluctuations and larger error bars in the simulations compared to the simple Uq(1) model

considered in [38]. While these are not unusual, they may hint at room for improve-

ment in the used architecture. Further, it was also noticed that for higher mmax valued,

the reliability of the network gradually becomes lower, further indicating the need for

a better architecture. The following table summarises the values for min ⟨Ĉ⟩ obtained
using the NNQS ansatz for different mmax cutoffs.

mmax min ⟨Ĉ⟩
∗∗
(ED) min ⟨Ĉ⟩(NN) Accuracy (%)

1 2.507903 2.998 ± 0.017 80.441

2 1.803495 1.74 ± 0.16 96.286

3 1.168658 1.12 ± 0.11 96.069

4 0.790868 0.84 ± 0.21 93.788

Table 1: The values of min ⟨Ĉ⟩ at different cutoff values are shown. The exact

diagonalisation results (ED) are compared to the results from the neural network (NN).

Note that values are truncated to 6 decimal values at most. **Here, the ED results are not

computed but are estimated based on the results obtained in [38].

§ e.g. for mmax = 1 the Uq(1) model requires ≈ 7 seconds to solve and a Uq(1)
3 model requires ≈ 30

minutes on a standard commercial 8-core Apple Silicon M1 chip, without multiprocessing
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In Table 1, the values of min ⟨Ĉ⟩ are obtained using the NNQS ansatz for different

mmax cutoffs. Here, the (ED) results are not computed but estimated based on the

values obtained in [38]. The cutoff ranges considered are relatively small due to the fact

that the network begins to perform relatively poorly for higher mmax (see Section 4.5

for a discussion on possible improvements). Nevertheless, for low mmax, one sees that

one obtains a good accuracy. Furthermore, one sees once again the effect of imposing

the cutoff on the charge vectors in that the curvature and Gauß constraint terms of Ĉ

no longer commute. Despite that, it is also seen that for higher mmax, this is alleviated

and one approaches the continuum theory, just as in the case of the Uq(1) model [38].

Because exact diagonalisation is not possible even for mmax = 1 due to the compu-

tational limits mentioned, one cannot calculate the inner product of the ED ground

state and its NN counterpart ⟨Ψ(NN)|Ψ(ED)⟩2 as done in [38]. However, for mmax = 1

simulation, one can visualise the amplitudes of the state obtained using the NNQS

ansatz. This is shown in Figure 4.

(a) Uq(1)
3 model (b) Uq(1) model

Figure 4: Solutions to the master constraint of both the Uq(1)
3 and Uq(1) models in the

mmax = 1 cutoff are shown. The basis numbering i ∈ N is merely a sequential numbering

in the computational framework. It is evident that the solution both models at the same

cutoff have qualitatively the same features in that the contributing states are similar.

Figure 4 shows the amplitudes of the basis states of the solution for the constraint

in both the Uq(1)
3 model on the left and the Uq(1) model on the right. Here, the bases

are sequentially numbered by integers in the computational framework∥. It is evident

that qualitatively, the basis states which contribute to the solution in the Uq(1)
3 model

correspond to similar basis states, in nature, which contribute to the solution of the con-

straint in the Uq(1) model (while now clearly one has many more¶ contributing basis

states due to the higher number of degrees of freedom). Thus, while one cannot analyse

the contributing basis states as done in [38], one can confidently extrapolate, to some

∥ in a Uq(1) model over a dual graph with 5 vertices then the state [-1, -1, -1, -1, -1] in an mmax = 1

cutoff is labeled by 0, [-1, -1, -1, -1, 0] by 1, [-1, -1, -1, -1, 1] by 2, and so on
¶ The number of strongly contributing states is roughly 0.2% of the space
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degree, from the results obtained therein to the case of the Uq(1)
3 model considered in

this work.

4.2. Quantum fluctuations of observables

In the Uq(1)
3 model, one can, in a similar fashion to the Uq(1) model, observe

the quantum fluctuations of observables in the theory specifically the minimal loop

holonomies tr ĥαk
. Since one has now three copies of the Uq(1) model, one expects to see

that the expectation values of tr ĥαk
approach 3 for higher mmax cutoffs. Furthermore,

we define the quantum fluctuations as

∆ tr ĥαk
= ⟨(tr ĥαk

+ tr ĥ†αk
)2⟩ − ⟨tr ĥαk

+ tr ĥ†αk
⟩2. (49)

In doing so, we can compute these values for every minimal loop in the graph. The

results are shown in Table 2.

Observable
Charge Cutoff (mmax)

Observable
1 2 3 4

⟨tr ĥα1⟩ 2.18 2.707 2.903 2.684

∆ tr ĥα1 3.928 1.664 1.04 0.184

⟨tr ĥα2⟩ 2.299 2.752 2.945 2.661

∆ tr ĥα2 3.666 1.084 0.728 1.547

Table 2: Results of the expectation value and quantum fluctuations of the minimal loop

holonomy operators, for every minimal loop, in the solution of Ĉ. The findings align with

obtaining flat solutions corresponding to the continuum theory for higher mmax.

Table 2 presents the expectation values and the quantum fluctuations of the minimal

loop holonomy operators for every minimal loop in the graph. The results presented in-

dicate that for higher mmax values, then the effect of imposing such a cutoff become less

pronounced, leading to the observables having a closer value to 3 as one would expect

with quantum fluctuations which slowly die out. This behaviour is in analogy to what

was observed in the Uq(1) case [38]. The values of these observables at the mmax = 4

cutoff deviate away from what is expected as a result of decreasing accuracy in the

simulation at this cutoff. As such, while for high mmax the results are more difficult to

obtain, one can still confidently extrapolate the results. For relatively low mmax, one

starts to see the behavior of the continuum theory, in which we get flat solutions.
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4.3. The volume operator in the Uq(1)
3-limit

The spatial volume operator for 3d Euclidean gravity in the Uq(1)
3-limit implemented

here follows the prescription given in [11]. In principle, one expects to see some known

behaviour from such an operator. For example, unlike the volume operator of the 4d

theory, the volume operator of 3d gravity does not vanish on 2 and 3-valent vertices so

long as there is at least a pair of edges incident at the vertex with linearly independent

tangents [11]. The purpose of this section is to affirm such results and demonstrate

the ability of implementing and computing such quantum geometric observables in our

computational framework.

4.3.1. Implementing the quantum volume operator

The discussion starts with the computational implementation of such an operator

as it contains subtleties which make it not straightforward. Recall that the vertex

contribution to the volume operator is expressed as [11]

V̂v :=

√√√√∑
I

( ∑
e,e′ at v

sign(e, e′)ϵIJKXJ
eX

K
e′

)2

, (50)

Here, the sign(e, e′) can be computed directly for every pair of edges at every vertex

in the graph. Next, the Xe in our case is the charge vector associated to the edge

e. Thus, the term ϵIJKXJ
eX

K
e′ is simply the cross product of the two charge vectors

of the edges e and e′. This cross product is computed element-wise. Once the sum

is computed, it can be easily squared. One then faces the issue of implementing the

square root, even though the volume operator is a diagonal operator. This is because

in our computational framework the operators are stored in a representation which is

not in dense form. Rather, there are several “sub-operators” in the volume operator,

each representing a term in the squared sum and acting on a certain number of vertices.

The complete volume operator (represented by a dimHγ × dimHγ matrix) acting on

the charge-network function on the entire graph is constructed only at runtime. Even

then, only the non-zero matrix elements are stored. This is done to allow for fast

computations which do not require large computational resources. Taking the square

root of the sub-operators does not correspond to taking the square root of the resulting

volume operator. Therefore, the volume operator implemented in our basis is

V̂ 2
v :=

∑
I

( ∑
e,e′ at v

sign(e, e′)ϵIJKX
J
eX

K
e′

)2

. (51)

From there, we perform a series expansion to obtain an expression for V̂v and once

more for
√
V̂v (see Appendix B) which is needed later for the TRC. The task of Tay-

lor expanding an operator in the computational framework however introduces further

computational complexity, as the operator grows in size for higher order expansions.
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In order to avoid this, we always expand the volume operator only up to first order.

To ensure that such an expansion does not introduce a rather large margin of error,

when one intends to use this Taylor expanded volume operator, one is required to run a

complete simulation once prior to doing so where the exact operator shown in equation

(51) is evaluated at the end for every vertex. This value, for every vertex, becomes the

point around which the corresponding operators are Taylor expanded.

We note, however, that this Taylor expansion is only necessary for using the volume

operator in the TRC later. For the case that one wishes to investigate the volume

operator alone, we have developed a direct implementation corresponding to the ex-

act expression shown in equation (50). Consequently, it is important to measure the

differences between the two implementations to further determine the margin of error

introduced due to the Taylor expansion. The results are shown in Figure 5.

Figure 5: An mmax = 1 simulation is shown and the two implementations of the volume

operator are compared. In light green, the Taylor expanded volume operator around x0 = 4

is shown while in dark green, the direct implementation of the volume is shown. As one sees,

the Taylor expanded operator gives results that closely match the exact implementation as

the simulation reaches a stable solution.

As seen in Figure 5, a simulation is conducted in the mmax = 1 cutoff where the

Uq(1)
3 master constraint Ĉ is being solved and the two different implementations of the

volume operator are being observed. In dark green, the direct implementation of the

volume operator V̂v as shown in equation (50) is shown while in light green, the Taylor

expanded version of (51) is shown. The Taylor expansion took place around x0 = 4 and

both the operators were computed for the same 3-valent vertex in the graph.

As can be seen from the figure, the two implementations do not result in the same

numerical result. However, the Taylor expansion was not taken to be the most accu-

rate one, as we have deliberately taken a different point to expand around as would be



24

otherwise dictated by the procedure outlined prior. This is to demonstrate that even at

first order expansion around a point which is not very accurate, the Taylor expanded

version of the volume operator does not introduce a large margin of error. More impor-

tantly, it shows that the Taylor expanded operator does not exhibit completely different

behaviour when acting on the solution of the Master constraint as shown at the end

of the simulation in Figure 5. This then rules out any room for excluding obtained

results due to this approximation. The results in the following section concerning the

volume operator are all obtained from the direct implementation rather than the Tay-

lor expanded approximation. This Taylor expansion will only be used in the quantum

Hamilton constraint discussed in Section 4.4.

4.3.2. Properties of the spatial volume operator in 3d Euclidean gravity

We now shift out attention to discussing the properties of the volume operator in this

model. As mentioned, one expects to see that the volume operator not vanishing on 3 or

2-valent vertices identically so long as they have at least a pair of edges with orthogonal

tangents at the vertex. Moreover, the Gauß constraint in our model imposes the Uq(1)
3

gauge invariance, thus charge conservation at every vertex in each of the graphs. If the

Gauß constraint is well imposed, and as such the solution of the constraint of the model

obtained by the NNQS ansatz is Uq(1)
3 gauge invariant, we expect to see some vertices

to have zero volume. Specific to our case, due to the orientation of the graph, we expect

to see the 2-valent vertices to have vanishing volume as the charge vectors on the edges

attached to them can be completely fixed by the Gauß constraint leading to their cross

product being zero.

Figure 6 shows the expectation value of
√
V̂ on every vertex of the graph during an

mmax = 1 simulation where the constraint Ĉ was solved with an accuracy of 81.013%.

As can be seen, the 3-valent vertices labeled in our graph by 0 and 2 do not have

vanishing volume while the 2-valent vertices do. This is because the solution of the

constraint we arrive at has contributing basis states all of which are gauge invariant.

Thus the Gauß constraint, as expected, perfectly fixes the charge vectors on the edges

attached to these 2-valent vertices and as a result, the volume operator, which involves

the cross product of now two identical vectors, becomes zero. This holds true even for

higher mmax, with the only difference being the amount of numerical instability and

fluctuations in the simulation becoming lower. This is the result of more allowed charge

configurations being allowed.

We now look at one last result concerning the volume operators. Namely, what can

be learned about the nature of the solution from the volume operator. Figure 7 shows

the expectation value of the volume squared, the volume, and the square root of the

volume operator all evaluated on the 3-valent vertex labeled by 0 in our graph during a

mmax = 1 simulation where once again the constraint Ĉ was solved.
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Figure 6: The expectation value of
√
V̂ for every vertex in the graph evaluated during

a mmax = 1 simulation where the constraint Ĉ was solved with an accuracy of 81.013%.

As shown in blue and beige,
√

V̂ does not vanish on 3-valent vertices (labeled by 0 and 2

in Figure 2). The 2-valent vertices 1 and 3 have a zero volume as shown since the charge

vectors on the edges attached to them are fixed by the Gauß constraint.

Figure 7: An mmax = 1 simulation where the constraint Ĉ is being solved and the

expectation value of the volume squared, the volume and the square root of the volume

operators are observed while acting on a 3-valent vertex of the graph in Figure 2.

As shown in Figure 7, the ⟨
√
V̂ ⟩ on the vertex 0 is close to the square root of ⟨V̂ ⟩,

which in turn is close to the square root of ⟨V̂ 2⟩. Specifically, at the end of the simula-

tion, the values were ⟨V̂ 2⟩ = 4.69± 0.43, ⟨V̂ ⟩ = 1.78± 0.15 and ⟨
√
V̂ ⟩ = 1.112± 0.088.
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One can see that ⟨V̂ ⟩ ≈
√
⟨V̂ 2⟩ but not exactly equal and similarly, ⟨

√
V̂ ⟩ ≈

√
⟨V̂ ⟩+.

Now, consider the expression for the expectation value of a function f(V̂ ) of the volume

operator denoted as follows

⟨f(V̂ )⟩ =
∫
SpecV̂

p(λ)f(λ)dλ. (52)

Let us now interpret p(λ) as the probability distribution of the wave-function. If one

finds that this distribution is sharply peaked around a specific value λ = v0, then the

expectation value would simply be ⟨f(V̂ )⟩ = f(v0). In the other extreme, if it is evenly

spread this equality would not hold. In the case that the distribution is sharply peaked,

one has another equality which holds true, namely ⟨
√
f(V̂ )⟩ =

√
⟨f(V̂ )⟩. The findings

presented above suggest that the ground state obtained using the NNQS ansatz is not

as sharply peaked as a δ-distribution in the spectrum of the volume operator.

4.4. Investigating the Thiemann regularised quantum Hamilton constraint of 3d LQG

So far, we have explored the solution space of the master constraint Ĉ composed of

a curvature part F̂ and a Gauß part Ĝ. In this section, we investigate the solution

of the quantum Hamilton constraint constructed using the Thiemann strategy [11].

We first discuss the implementation of such a quantum Hamilton constraint on the

computational framework. Following that, we present several results starting with

observing the behaviour of the TRC in the solution space of Ĉ. We follow that with

exploring states near the kernel of the TRC using the NNQS ansatz. Lastly, we compare

these states with the solution space of Ĉ.

4.4.1. Implementing the TRC: challenges and possibilities

Recall that the TRC of 3d LQG, following the regularisation procedure of [11], can be

expressed as

ĤT (N)fγ := lim
ϵ→0

ĤT,ϵ(N)fγ (53)

=
2

ℏ2
∑

∆,∆′∈T,v

ϵijϵklN(v) tr(ĥαij(∆′)ĥsk(∆)[ĥ
−1
sk(∆),

√
V̂v]ĥsl(∆)[ĥ

−1
sl(∆),

√
V̂v])fγ.

(54)

As described above, we modify he prescription from [11] by letting αij be a minimal

loop in γ, with basepoint v that starts with edge ei and ends with edge ej. In the graph

considered, this means that the triangulation T is simply the set of minimal loops L(γ)

of the graph†. Therefore, the sum goes over all ordered pairs of minimal loops in the

+
√
4.69 ≈ 2.165,

√√
4.69 ≈ 1.471

† For a graph composed of minimal loops of length ≥ 3, then one can adopt the same triangulation by

employing edge refinement.
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graph, for which then ϵij and ϵkl are computed accordingly. We will drop the numerical

prefactor in equation (54) and set N(v) = 1. Lastly, the trace in this case translates to

having the constraint decompose over the three different graphs in the computational

framework. As such, one has for each term in the sum shown in (54) three terms where

each one lives on a different graph.

As one now in the computational framework has three of such an expression (54), the

sizes of the matrices of the sub-operators packed in the TRC are rather large, and grow

quickly for higher charge cutoffs. Even if one simplifies the expression analytically, one

still has an abundant number of computational operators which need to be tensor mul-

tiplied in order to act appropriately on the wave-function defined on Hγ. This issue

is further compounded as one now uses the Taylor expanded volume operator. Simply

put, one has several computational sub-operators in the TRC stored in the computa-

tional framework which themselves are large matrices which all need to be multiplied

together. This introduces a computational demand that is rather large for constructing

such an operator. For example, even at a cutoff of mmax = 2, then one would need

hours to merely construct the TRC and a borderline comical amount of RAM (approx.

7.451 Zetta Bytes (7.451× 109 Tera Bytes) for a sparse representation of the constraint

matrix) in the process of exactly solving it‡.

Furthermore, if one desires to solve the constraint using the NNQS ansatz, one needs

to unpack such an operator in a specific manner in the computational framework where

one ultimately searches for all non-zero matrix elements of the operator. This process

is also computationally expensive when the operator is non-diagonal. The TRC was

constructed over a 2-state model (M = {−1, 1}) over the same 2-L graph considered in

this work. In such a case, one can allocate enough computational resources to inspect

the operator in its entirety. It was found that the matrix representing the constraint

was not only not diagonal, but extremely ill-conditioned to the point of being almost

singular. While the case can be, and probably is, different for a model with more al-

lowed states, it nevertheless shows that the constraint is very difficult to implement in

the computational framework and difficult to explore in high mmax cutoffs.

In any model considered, irrespective of the number of allowed states due to the charge

cutoff, it was observed that the TRC is non-Hermitian. This poses yet another com-

putational hurdle as the tools used in this work to employ the NNQS ansatz do not

(yet) work reliably or easily for non-Hermitian operators. All together, this now leaves

us in a corner: in order to know anything about this constraint, we can only currently

do simulations in the mmax = 1 cutoff. In this work, we will consider the Hermitian

constraint

ĈTRC = Ĥ + Ĥ† + Ĝ. (55)

‡ One can in principle conduct out-of-core distributed computations but this would nevertheless require

large amount of resources.
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While one can also consider the Hermitian and positive operator ĤĤ† + Ĝ, we opt not

to do so as the process of computing ĤĤ† would result in even more computational

demands. We have explicitly checked that the operator Ĥ + Ĥ† is not positive in the

2-state model. In that case, Ĥ + Ĥ† had an eigenvalue spectrum that was symmetric

around 0 and a degenerate kernel. After introducing the Gauß constraint, the eigen-

value spectrum does not have the mirror symmetry as before, and the degeneracy in

the spectrum was lifted. Therefore we do not have reason to believe that the operator

is positive for models with higher mmax.

It is interesting to note that in 4d gravity, the TRC actually takes a simpler form [21].

Although computational hurdles will always exist, the specific hurdles we encounter in

the 3d case will not going to be as pronounced in 4d.

4.4.2. The behaviour of ĈTRC in the solution space of Ĉ

The first point of exploration of ĈTRC is to observe the constraint in the solution space

of the master constraint Ĉ. As shown, the current network architecture has proved

capable of solving the latter with good accuracy for different charge cutoff values. How-

ever, due to the technical difficulties of implementing ĈTRC as previously outlined, we

are restricted in working in the mmax = 1 cutoff.

Figure 8: The result of an mmax = 1 simulation where the master constraint Ĉ is being

solved and the constraint ĈTRC = Ĥ + Ĥ† + Ĝ is being observed.

Figure 8 shows an mmax = 1 simulation where the master constraint Ĉ, shown in

green, is being solved and the TRC constraint ĈTRC, shown in orange, is being observed

at every iteration. As one does not know what the solution space of ĈTRC looks like,

it is difficult to conclude whether it is the case that the states that solve Ĉ also solve

ĈTRC. However, it is seen that the solutions of Ĉ are not in the kernel of ĈTRC. Since
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exact numerical methods cannot be employed, the only means available to investigate

the solution space of ĈTRC is using the NNQS ansatz. Note that values of ⟨Ĉ⟩ in Figure

8 above which are less than 0 are due to numerical artifacts, as further supported by

the error bars being large as well, as this mathematically is known to be not possible

due to Ĉ being a positive operator.

4.4.3. States near the kernel of ĈTRC

In this section, we attempt to solve the ĈTRC constraint using the NNQS ansatz. We

use the word “attempt” for the following reasons: the network architecture used here

was first developed for Uq(1) models, and further shown to be able to solve also Uq(1)
3

models, despite exhibiting some behaviour indicative of it being somewhat pushed to

its limits. The master constraints considered for these theories had a specific expression

and was composed of curvature and Gauß parts. Thus, while the network works well

for Uq(1) and Uq(1)
3 models and the Gauß term is identical in both ĈTRC and Ĉ, there

is no reason for the network to work well when solving the ĈTRC constraint as Ĥ has a

completely different mathematical structure compared to F̂ .

Additionally, the ĈTRC constraint poses many technical hurdles which severely lim-

its our possibilities to explore it numerically. Thus, aside from the two state model,

we do not know what to expect from the eigenvalue spectrum of ĈTRC. Moreover, this

operator does not exist in the Uq(1) theory, and hence one is left completely in the dark

regarding what is to be expected. For this reason, despite the results in this section and

the ones which follow being based on several simulations which were conducted using

the same parameters to ensure the validity and consistency of the results, there were

occurrences where the NNQS has arrived at other solutions. While these occurrences

were not abundant, they nevertheless occurred. The results shown here are of one state

near the kernel of ĈTRC. However, other states also near the kernel were found to exhibit

similar behaviour (see end of Section 4.4.4 for a brief discussion).

Figure 9 shows a mmax = 1 simulation where the constraint being solved is ĈTRC using

the same network architecture used throughout this work. On the left, the results of the

search for the solution space is shown while on the right the volume operator squared

is observed on every vertex of the graph during the same simulation. Since the ĈTRC

constraint in the two state model had an eigenvalue spectrum which included negative

values, there is no reason a priori to conclude that the three state model is a positive

operator. Hence, one is tempted to believe that the state arrived at in the Figure 9a is

not the actual “ground state” of ĈTRC.

Nevertheless, as seen in Figure 9a, we arrive at a state which lies near the kernel of

the constraint. Specifically, at the end of this simulation, the state arrived at was one

in the eigenspace of value 0.023±0.012, close to the kernel. This, actually, is the sort of
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(a) (b)

Figure 9: An mmax = 1 simulation where the constraint ĈTRC = Ĥ + Ĥ† + Ĝ is being

solved. On the left, we see that by the end of the simulation, we have reached a state

almost at the kernel of ĈTRC. On the right, we observe the behaviour of the squared

volume operator during the simulation acting on all the vertices of the graph.

state one is interested in rather than the actual ground state which may have a negative

eigenvalue. Thus, the network used to solve the Uq(1)
3 model, when employed to solve

the ĈTRC constraint in themmax = 1 cutoff, remarkably lands us near the kernel of ĈTRC.

During the simulation, other operators were also observed, for example the squared

volume operator as shown in equation (51). The results are shown on the right in Fig-

ure 9b. During the simulation, for this specific state, the volume squared operators

were observed to behave in a similar qualitative manner as to what was observed in

Figure 6 in the case of solving the Ĉ constraint. That is, it only vanishes on the same

2-valent vertices. The numerical values are now however much smaller. At the end of

the simulation, the squared volumes were observed to have the values 0.732± 0.183 for

both of the two 3-valent vertices here labeled by the numbers 0 and 2 while being zero

for the other two 2-valent vertices.

The last operator which was observed during this simulation is the master constraint

Ĉ. This now asks a similar question to that of the previous section, which is whether

or not the kernel of ĈTRC corresponds to the solution space of Ĉ.

In Figure 10, a simulation in the mmax = 1 cutoff is conducted where the constraint

being solved is the ĈTRC constraint as shown in green. The states at the end of the sim-

ulation lie almost in the kernel of ĈTRC as previously discussed. However, one observes

that these states do not put us in the solution space of Ĉ. This is known because (a) in

the previous section it was shown that the solution space of Ĉ does not correspond to

the kernel of ĈTRC and (b), it is further affirmed now, as it is known from Section 4.1

that the solution space of Ĉ in the mmax = 1 cutoff is not the same eigenspace arrived
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Figure 10: A mmax = 1 simulation where ĈTRC is being solved, shown in green, and Ĉ is

being observed, shown in orange. As shown, the states which are (almost) in the kernel of

ĈTRC do not correspond to the ground state of Ĉ.

at in Figure 10 above. We now aim to quantify the degree of similarity of these solution

spaces.

4.4.4. Comparing solution spaces of Ĉ and ĈTRC

At this point, the NNQS ansatz was used to solve both the Ĉ and ĈTRC constraints,

arriving in the true solution space of the former and the kernel of the latter. It was

observed qualitatively that these two spaces have little overlap. Now, we quantify this

overlap by investigating the contributing basis states of both the solutions.

For the mmax = 1 cutoff used, one can obtain the ∼ 106 amplitudes for each of the

variational states. The first point would be to visualise the two states to determine the

type of contributing basis states as done in Figure 11.

Figure 11: The states ΨĈTRC
and ΨĈ which were obtained as a result solving the ĈTRC

and Ĉ constraints respectively in a mmax = 1 cutoff are shown. The states belong to Hilbert

spaces of the dimensions ≈ 14× 106. On the abscissa, the label of the basis state is shown

while on the ordinate, the corresponding amplitude. We notice that the zero charge state

(⃗0, 0⃗, 0⃗, 0⃗, 0⃗) is the most contributing basis state in both solutions.
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Figure 11 shows the solution ΨĈ of the Ĉ constraint on the right and the state ΨĈTRC

near the kernel of ĈTRC that the NNQS ansatz arrived at on the left. Both simulations

were conducted in a mmax = 1 cutoff. In both, it is observed that the most contributing

basis state happens to be the state with all charge vectors being zero. However, it is

immediate to see that otherwise the two states do not have much in common. The mean

of the absolute value of the amplitudes of ΨĈ was computed to be 1.345×10−6 while for

ΨĈTRC
it was 1.194× 10−7. This shows that the solution of ΨĈ is peaked more strongly,

which is also visually confirmed in Figure 11.

To conduct a more than qualitative comparison, we begin by investigating the con-

tributing basis states of both ΨĈ and ΨĈTRC
. We will denote by contributing basis

states ones which have an amplitude which falls above or equal to a certain threshold.

This threshold is taken to be ϵ = 1.0 × 10−6. Furthermore, to quantify how much do

the amplitudes of these contributing basis states actually contribute to their respective

variational states, we compute the significance of these states by computing the value

||Ψϵ|| =
√∑

Iϵ

(cIϵ)
2, (56)

where we sum over the amplitudes of the basis states numbered by Iϵ such that cI > ϵ.

Lastly, we narrow the criteria even further to determine the similarity between the two

states. Therefore, we consider the common contributing basis states: basis states which

contribute above the chosen cutoff ϵ for both ΨĈ and ΨĈTRC
. The significance of these

common contributing basis states can be computed also using equation (56) above while

now we only keep in account the amplitudes of those common states. The results ob-

tained are shown in Table 3

State
Contributing States Common Contributing States

State
Amount Significance Amount Significance

ΨĈ 39737 0.999999995354185
1299

0.4815059317489464

ΨĈTRC
2226 0.9999999996964684 0.9999993127698954

Table 3: The amount and significance of the basis states with amplitudes ≥ ϵ = 1.0×10−6

are shown in the Contributing States column for both ΨĈ and ΨĈTRC
. The Common

Contributing States column shows the amount and significance of the contributing basis

states which are common in both ΨĈ and ΨĈTRC
. Here, dimHγ ≈ 14× 106.

As seen from Table 3, the amount of contributing basis states with amplitudes above or

equal to the chosen cutoff ϵ = 1.0×10−6 for both ΨĈ and ΨĈTRC
is very low, constituting

roughly 0.2769% and 0.01551% respectively of the Hilbert space (which at this cutoff has
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dimensions dimHγ ≈ 14× 106). Nevertheless, these relatively few, and especially so in

the case of ΨĈTRC
, basis states have amplitudes which contribute very strongly to their

respective states. Furthermore, if one narrows the focus only on common contributing

states, one finds only 1299 states (0.00905% of dimHγ) which both contribute with a

value ≥ ϵ and are common between the two states. Yet, these 1299 states contribute

relatively strongly although not to a similar degree to each respective state. We note

however that all of these values are much more larger than the dimensions of the gauge

invariant subspace which in this case is dimH G
γ = ((2mmax + 1)2)3 = 729.

We conduct the last measure of comparison by computing the inner product of the

two states |⟨ΨĈTRC
| ΨĈ⟩|2 as well as calculating the angle between them. In doing so,

it is seen that

|⟨ΨĈTRC
| ΨĈ⟩|

2 ≈ 0.0308 , arccos |⟨ΨĈTRC
| ΨĈ⟩| ≈ 1.394rad. (57)

At first sight, these results seem may seem to be a little discouraging, suggesting that

the solution of Ĉ and this state near the kernel of ĈTRC are unrelated. However, they are

not exactly orthogonal to one another either. As such, we now quantify the significance

of this similarity.

To do this, one can think of random state picking in this Hilbert space. This would

give a measure of significance by asking the question: what is the probability that two

randomly chosen states from the Hilbert space have an overlap larger or equal to that

of ΨĈ and ΨĈTRC
? If one considers the entire Hilbert space Hγ, which contains states

with complex valued coefficients, then this question can be addressed exactly by random

picking from the probability N -simplex (see Appendix C) where N = dimC Hγ. In this

case, one sees that the probability that two states have the overlap of 0.0308 obtained

above is

PC
N(|⟨ΨĈTRC

| ΨĈ⟩|
2 ≥ 0.0308) ∼ 10−194953, (58)

where N := dimC Hγ ∼ 106. While this looks impressive at first sight, it should of

course be expected that both states are much closer than random due to the fact that

they are both approximately gauge invariant. If one considers only the gauge invariant

sector, then NG := dimC H G
γ = ((2mmax + 1)2)3 = 729 for mmax = 1. Repeating the

same calculation shows that this would again yield a negligible probability

PC
NG(|⟨ΨĈTRC

| ΨĈ⟩|
2 ≥ 0.0308) ∼ 10−10. (59)

In this work we explored states with real valued coefficients in the computational basis

(to further downsize the computational requirements, also see Appendix C of [38]). A

precise statement regarding the probability of two states being ε similar therefore needs

to take that into consideration. The analogous picking process restricted to only the

subspace H R
γ̃ composed only of states with real valued coefficients amounts to ran-

dom picking of uniformly distributed vectors on the unit sphere SN−1 ⊂ RN where
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N = dimR H R
γ̃ . An exact analytical expression for PR

N(|⟨ΨĈTRC
| ΨĈ⟩|2 ≥ ε) was not

obtained in this case. However, numerical estimates are shown in Figure 12.

Figure 12: On the left, P (|⟨U⃗ , V⃗ ⟩|2 ≥ ϵ = 0.0308) of two randomly chosen normalised unit

vectors U⃗ , V⃗ on SN−1 ⊂ RN is shown in green and an exponential fit function is shown in

red. On the right, the same probability is shown for different values of ε.

In Figure 12 on the left, a numerical estimate of the probability that the inner product

squared of two randomly chosen normalised unit vectors U⃗ , V⃗ which lie on the unit

sphere SN−1 ⊂ RN (for different N ∈ [2, 1500]) is ≥ ε = 0.0308. Here, for every N ,

two normalised unit vectors which lie on the hypersphere were chosen at random. The

absolute value squared of their inner product was computed and stored if it had a value

≥ ε. This process was repeated for 107 trials for every N , each time generating new

vectors and repeating the computation. The probability, for a given N , of the inner

product squared of such random vectors being ≥ ε was then computed as the number

of such occurrences divided by the number of trials conducted. The results were then

fitted with an exponential fit function as shown in the figure as well. On the right in

Figure 12, the same simulation is done for different values of ε with a number of trials

being 106. The results indicate that for n→ ∞, random vectors on SN−1 are very likely

to be almost orthogonal as the likelihood of them being ε similar decreases for large N ,

a result also known from concentration of measures on the sphere [67].

Given the exponential decay shown in the figure above, we can then address the random

picking procedure on H R
γ as well. We see that even if one restricts to the real subspace,

then

PR
N(|⟨ΨĈTRC

| ΨĈ⟩|
2 ≥ 0.0308) ∼ 10−5559. (60)

Further, if one restricts to the gauge invariant sector of the real subspace, the probability

is still very small, with a value of

PR
NG(|⟨ΨĈTRC

| ΨĈ⟩|
2 ≥ 0.0308) ∼ 10−5. (61)

We do note, however, that any numerical estimates are bound to errors. For example, as

can be seen from Figure 12 on the left, the probabilities obtained are zero if one consid-
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ers large N . While this may be due to numerical precision limits, it may also be due to

choosing a number of trials which may not be sufficient. What concerns us in this work

is N = 729§. As such, two sets of 1000 simulations were done specifically for such choice

of N . In the first set, each simulation included 106 trials and in the second, 107 trials. In

none of all 2000 simulations was any occurrence observed. However, the results of these

simulations showed that for some dimensions before and after N = 729, a probability

of 10−6 was observed. Hence, it is fair to conclude that for N = 729, a probability of

10−6 is also expected. This is not far off from what is obtained through the fit func-

tion as shown in equation (61). We also note that the value of the exponential decay

in the fit function shown in Figure 12 did not change when considering only the non-

zero values (N ≤ 200). Thus, the values which are identically zero, irrespective of the

reason, do not affect the resulting fit function. In all cases, it is expected to follow an ex-

ponential decay as can be seen from the concentration of the measure on the sphere [67].

To conclude, the remarkable picture is that if picked at random, whether one looks

at the entire Hilbert space or the real subspace only, and whether one restricts to inves-

tigating the gauge invariant sector or not, there is in practice zero probability of the two

states having even this small overlap if picked at random. The take away here is that

while the two regularisations produce constraints which look radically different, and the

solution of the master constraint Ĉ and the states near the kernel of the constraint

ĈTRC may look qualitatively very different, the numerical findings suggest that the two

quantisations may have something in common as this significant and non-trivial overlap

in the states obtained when solving them could not have occurred randomly.

We now make a few cautionary comments regarding the findings:

(i) All of the results obtained in this study regarding the TRC were conducted in a

mmax = 1 cutoff due to computational limitations. Therefore, it remains unknown

how these results translate for higher mmax cutoffs. We have observed that the

solutions of the master constraint Ĉ changed under different cutoffs (e.g. number

of contributing basis states, etc.), and as such it is not completely excluded that

the same would happen for ĈTRC.

(ii) The results shown in this section correspond to one state near the kernel of ĈTRC.

During simulations, five different states near the kernel were obtained including the

one presented in this work. These states looked qualitatively and quantitatively

different. That is, the contributing states were different to the ones shown in this

work (Figure 11) and the contributing and common contributing amplitudes were

also different. In such simulations, the inner product | ⟨ΨĈTRC
| ΨĈ⟩ |2 had different

values ranging from approximately 0.015 to 0.0012. Nevertheless, conducting

random picking of states in H R
γ of such large dimensions shows that such results

are however still significant as the probability PR
N(|⟨ΨĈTRC

| ΨĈ⟩|2 ≥ ε) of randomly

§ since the dimensions of the gauge invariant subspace of the real subspace is dimR H R,G
γ = 729
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picking the state ΨĈ starting from the state ΨĈTRC
with ε ∼ 0.001, . . . , 0.01 and

N = dimR H R
γ ∼ 106 is still zero (in the order of 10−271 to 10−2913 respectively).

(iii) Computing ⟨tr ĥαk
⟩ in the state ΨĈTRC

yields different values compared to ΨĈ .

Specifically, the values are far less than 3, which hint that the obtained state is not

flat. This is, however, to be expected as one can can write the state ΨĈTRC
as

ΨĈTRC
= Ψ⊥ + λΨĈ , (62)

where Ψ⊥ represents states orthogonal to ΨĈTRC
and λ a constant proportional to

ε. The expectation value ⟨tr ĥαk
⟩ will therefore include contributions of the form

⟨tr ĥαk
⟩ΨĈTRC

= ⟨tr ĥαk
⟩Ψ⊥

+ |λ|2⟨tr ĥαk
⟩ΨĈ

+ λ⟨Ψ⊥, ĥαk
ΨĈ⟩+ λ⟨ΨĈ , ĥαk

Ψ⊥⟩. (63)

Of all such terms, the contributions purely from ΨĈ have the smallest value. As

such, it is anticipated that such expectation values would differ in their values when

computed in ΨĈ as opposed to ΨĈTRC
.

(iv) We should remind the reader that we have fixed the lapse function, N(v) = 1. Thus

the condition

⟨ĈTRC⟩Ψ = min (64)

is only one of many necessary conditions.

(v) So far we have not discussed the diffeomorphism constraint. Note that it is part of

the curvature constraint and hence included in Ĉ but it is not included in ĈTRC,

however. Thus it would have to be implemented separately when implementing

ĈTRC. From (31) one can deduce that implementing the diffeomorphism constraint

in the current situation would only require a symmetrisation of the states with

respect to the graph symmetries GSγ of γ. For the γ considered in this work,

GSγ ≡ S2 and the non-trivial graph symmetry acts via

(m⃗1, . . . , m⃗5) 7−→ (−m⃗5,−m⃗2,−m⃗4,−m⃗3,−m⃗1) (65)

on the computational basis. We have not implemented the corresponding averaging

in the present work.

4.5. Possible improvements

In this section, we briefly comment on the technical/computational issues encountered in

solving the Uq(1)
3 model. In principle, there are two roads one could take in attempting

to solve this model: (i) exploring the entire Hilbert space for solutions or (ii) exploring

only the gauge invariant subspace. If one follows (ii), then since dimH G
γ ≪ dimHγ,

this problem no longer exists. However, to do so, one would be required to implement

networks which are inherently gauge invariant thus identically satisfying the Gauß con-

straint. In such an approach, it is also expected to arrive at solutions more efficiently

both in terms of computational resources and runtime as the space required to be ex-

plored is rather small which in turn allows for exploring complicated operators at high
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cutoff values. This approach will be discussed in future work. In this work, we follow

(i), and thus are faced with the problem of large dimHγ. In what follows, some avenues

to explore to better the situation of the (i) approach are presented.

First, the current network architecture can be more finely tuned to such large dimen-

sional spaces, as the one used in this work was primarily implemented for the compar-

atively smaller Uq(1) model. Put simply, one has now a problem where the number

of input neurons of the network is large. This is because of having three copies of the

same graph to accommodate for the charge vectors on the edges. This becomes more

pronounced if one goes further beyond the simple graph considered in this work. One

work around is to consider networks which specifically include dimensionality reduction.

For example, a U-Net [68], typically used in image segmentation problems, contains an

up-sampling and a down-sampling branch to deal with this issue.

The suggested network redesign addresses the issue of large graphs. However, even

for the smallest possible graph considered in this work, one eventually hits another

hurdle which is the number of allowed states per dual vertex, that is dimHγ growing

quickly for small mmax increments. This issue is realised in the MCMC process. The

Metropolis type samplers used in this work are either local or 2-local (see Appendix B

in [38]). Such samplers do not efficiently explore the Hilbert space. More sophisticated

samplers would be required to remedy this problem. For example, one could introduce

Metropolis type samplers which sample only gauge invariant configurations. In this

manner, one would not have a gauge invariant network but a gauge respecting sampler,

effectively also exploring only gauge invariant states.

In all cases, these issues remain present for complicated gauge groups and therefore

should be addressed appropriately. This is especially so if one wishes to construct a

universal network capable of solving any quantum gravity models. At the moment, this

is neither completely necessary nor known to be feasible. Further, it is for now unclear

how this translates if one considers the SU(2) gauge instead of the simpler U(1)3 group.

Naturally, one expects to have similar issues. Thankfully, for this gauge group, whether

one deals with 2+1 or 3+1 spacetime dimensions, one can always solve the simple Uq(1)

model to verify the results obtained in the higher gauge dimensional models enabling

one to continue this endeavour.

5. Discussion and outlook

In this work, we expanded upon the work done in [38] where we have applied the

NNQS ansatz to solve two constraints of LQG quantised 3d Euclidean gravity in the

weak coupling limit and explored quantum geometric observables of LQG. We started

by considering the classical theory, in which it was shown that Euclidean gravity in

3-dimensions in the weak coupling limit was a 3-dimensional BF-theory with a U(1)3
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Lie group. The classical theory was subject to the two rather simple constraints

F I
ab := 2∂[aω̃

I
b] = 0 , ∂ae

a
I = 0. (66)

The first of the constraints is the curvature constraint, ensuring flatness of the connec-

tion while the second is the Gauß constraint generating gauge transformations. The

theory was quantised using LQG methods. To facilitate the computational implemen-

tation, we truncated the kinematical degrees of freedom by (a) fixing a graph and (b)

limiting the values the charge vectors are allowed to have in the model. This resulted in

what we called a Uq(1)
3 BF-theory. Upon quantisation, we obtained quantum analogs

of the two classical constraints where the curvature ensured flatness of minimal loop

holonomies and the Gauß constraint ensured charge vector conservation at the vertices

of the graph. We formulated a master constraint Ĉ consisting of the squares of these

two constraints. Further, we implemented a quantum Hamilton constraint Ĥ follow-

ing the strategy proposed in [11] after which we constructed the Hermitian constraint

ĈTRC = Ĥ + Ĥ† + Ĝ.

The NNQS ansatz was employed to solve the master constraint Ĉ of this quantum

theory using a network with the same architecture as used in previous work [38]. The

architecture proved successful, where it obtained high accuracy for relatively low charge

cutoff values. Due to computational limits, such a model was not possible to solve using

exact numerical methods. Hence, this demonstrated the ability of the NNQS ansatz

to explore physical systems which would otherwise not be solvable at least using tradi-

tional numerical techniques. The quantum fluctuations of the minimal loop holonomy

operators were computed in which it was seen that with higher charge cutoff, one starts

to recover the continuum theory and obtain truly flat and gauge invariant solutions.

The last part of the work concerned exploring the some operators of 3d LQG. Specifi-

cally, we started by numerically verifying the results found in the literature by showing

that the 3d quantum volume operator of LQG indeed does not necessarily vanish on

2 or 3-valent vertices as the 4d volume operator of LQG would. Next, we considered

the constraint ĈTRC. In such a case, the operator was only investigated in the smallest

possible cutoff in which mmax = 1 due to technical and computational limitations which

deemed that necessary. Nevertheless, it was seen that the NNQS ansatz was able to

arrive at states near the kernel of ĈTRC. It was observed that in this specific state

obtained in this work, the volume operator behaved in a qualitatively similar manner

to the behaviour seen for states in the solution space of Ĉ. The solution space of Ĉ

and the states near the kernel of ĈTRC were compared. We showed that both the states

have common basis states which contribute relatively strongly, but not equally. The

inner product of the two states was shown to be of significance despite its small value.

This indicates that while the constraints differ radically in their regularisation, the two

states had a significant non-trivial similarity between them.
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As this work pushes further the application of NNQS in canonical quantum gravity,

we have to note not only the results but also the shortcomings and issues encountered.

It was observed that the network’s architecture used is sub-optimal, leaving room for

exploring architectures better suited for very large Hilbert spaces and very large graphs.

Furthermore, this issue may become more evident if one considers more complicated

gauge groups. Hence, it is suggested that one considered inherently gauge invariant

implementations of network to be used for the ansatz. Furthermore, the Metropolis-

Hastings sampler can also be tailored to explore very large Hilbert spaces more efficiently.

Nevertheless, it is now shown that NNQS can be used to solve simplified LQG models

of pure gravity in 3-dimensions. Although the model considered here consisted of only

pure 3d Euclidean gravity in the weak coupling limit, one can in principle consider more

interesting models. This can range from considering different topologies for Σ such as a

torus universe to the inclusion of matter or scalar fields. Now with the ability to solve

the quantum Hamilton constraint of physical models, one can also investigate interest-

ing questions such as the correlation range and entanglement of the solution. Lastly,

one can expand upon this by considering now 4d gravity in the weak coupling limit.

These avenues will be explored in upcoming work.
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Appendices

A. Computational requirements and limits

The dimensions of the Hilbert space of the Uq(1)
3 model is D := dimHγ = (D(1))3

where by D(1) := (2mmax + 1)N we denote the dimensions of the Hilbert space of a

Uq(1) model considered in [38] over an N vertex dual graph.

We now give an estimate and comparison on the computational resources required for

both models. In this comparison, we let N = 5 and mmax = 1. Our operators in the

computational framework are composed of real numbers which are stored in a 64-bit

floating point datatype on the computer, requiring 8 bytes in memory†. If one wishes

to store the amplitudes of the variational state (arrays of size dimHγ), then one needs

1.944 Kilo Bytes for the Uq(1) model, and 144.8 Mega Bytes (MB) for the Uq(1)
3 model.

If one wishes to solve the models using exact numerical methods, this would require (typ-

ically) a sparse representation of the matrix representing the constraint. For the Uq(1)
3

case, where D ∼ 106 for mmax = 1, then one needs to allocate 1.647 Peta Bytes (PB)

(1647000 Giga Bytes (GB)) for the D × D matrix representing the constraint. Figure

13 shows the log plots of the memory requirements for exactly solving the constraint

and the dimensions of the Hilbert spaces for both models.

Figure 13: Two log plots are shown. On the left, the dimension of the Hilbert space in

both the Uq(1) and Uq(1)
3 BF-theory models are shown while on the right is the required

RAM which is to be allocated if one wishes to do exact diagonalisation for the constraint

in each of the models at different mmax cutoffs.

The memory requirement for exact diagonalisation as well as the dimensions of the

Hilbert spaces of both Uq(1) and Uq(1)
3 models are shown in Figure 13 on the right and

left respectively. This required memory is to be allocated as RAM, as the memory is

† assuming the double (float64) datatype in C, as done in our work, according to the IEEE 754-2008

Standard for Binary Floating-Point Arithmetic
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allocated during runtime. For the mmax = 8 cutoff, one would need 65.548×106 Quetta

Bytes (QB) for storing the sparse matrix of the Uq(1)
3 constraint, where 1 QB = 1018

TB = 1021 GB. Clearly, these numbers fall beyond the possible computational limits

even though this comparison was done for the smallest possible non-trivial graph.

The NNQS ansatz parameterises the wave-function in terms of a neural network and

hence, the number of parameters required to be determined to fully characterise the

wave-function are the number of weights connecting the neurons in the network. These

parameters are often far fewer than dimH . Further, modern computational libraries

and methods allow for automatic differentiation, accelerated linear algebra computa-

tions and just-in-time compilation all of which reduce the demand on computational

resources. In the current implementation, one does not even need a sparse matrix rep-

resentation of the constraint, rather only the non-zero matrix elements thus reducing

the memory demand in the simulations as well.

B. Series expansion of the V̂ 2
v operator

Consider the operator of the form

V̂ 2
v :=

∑
I

( ∑
e,e′ at v

sign(e, e′)ϵIJKX
J
eX

K
e′

)2

. (67)

The aim is to Taylor expand the above operator. Let us define f(x) = x where x is

the entire right hand side of the above equation. In the following, we first show the

general closed form of the series expansion of g(x) =
√
f(x) =

√
x and following that,

for h(x) =
√
g(x) =

√√
x as well.

The Taylor expansion of a function around a point x0 is

f(x) =
∞∑
n=0

fn(x− x0)

n!
(x− x0)

n. (68)

Computing the first few derivatives of g(x), it is easy to see that the nth derivative of

g(x) can be written as g(n)(x) = x1/2−nAn where An+1 = An(1/2−n) with A0 = 1. This

then enables us to reach the closed form for An such that for n ≥ 2, then

An = (−1)n+1 (2n− 3)!!

2n
. (69)

Thus, for g(x) =
√
x, the closed form equation of the nth derivative is written as

g(n)(x) = x1/2−n(−1)n+1 (2n− 3)!!

2n
(70)

which then can be substituted into the Taylor expansion to compute the any term with

n ≥ 2. The case for h(x) =
√√

x is done similarly and one arrives at h(n)(x) = x1/4−nBn
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where Bn+1 = Bn(1/4− n). It can be seen that for B0 = 1, then B1 = 1/4 and thus for

n ≥ 2, a closed form for the nth derivative can be written as

h(n)(x) = x1/4−n(−1)n+1 (4n− 5)!!

4n
(71)

which once again can be substituted into the Taylor expansion of h(x).

C. Random state picking in a Hilbert space

To answer the question of what would be observed if the quantum state of a physical

system is picked at random from a Hilbert space H , we have to specify the probability

space. Let N = dimH . The measure is the unique probability measure on the space of

unit vectors in H (complex projective space PN(C)) that is invariant under the action

of the unitary group U(d). Call I the map

I : (z1 . . . zN) 7−→ (|z1|2, . . . , |zN |2), (72)

sending a normalized state with coefficients z1 . . . zN to a point in the unit N -simplex

∆ (note that |z1|2 + . . .+ |zN |2 = 1). Then the pullback of the uniform measure on PN

is the uniform measure on ∆. Thus, as long as we are only interested in functions of

|z1|2, . . . , |zN |2, we can work on ∆. The uniform measure on ∆ is given as [70]

dP∆ = (N − 1)! δ

(
N∑
i=1

pi − 1

)
N∏
i=1

dpi. (73)

The inner product of two quantum states provides insight into the probability amplitude

of transitioning from one state to another upon some measurement of the system. To

quantify the significance of this transition probability within the Hilbert space, one can

consider the process of state selection akin to sampling from the probability simplex

formed by the states in the Hilbert space. Moreover, one can quantify the volume of

the region within this probability simplex that corresponds to transition probabilities

greater than or equal to a certain threshold, which we denote by ε.

This can be more easily visualised by considering the simple 2-dimensional case in

which the probability simplex is as shown in Figure 14. Because of the invariance un-

der unitary transformations of the probability measure, we can assume without loss of

generality, that Ψ is not randomly chosen, but is the first basis vector. Then |⟨Ψ,Φ⟩|2
corresponds to the random variable |z1|2 ≡ p1. The shaded region correspond to tran-

sition probabilities greater than or equal to ε. In this case, then

P (|⟨Ψ,Φ⟩|2 ≥ ε) = 1− P (|⟨Ψ,Φ⟩|2 < ε), (74)

= 1− 2

(
1− (1− ε)2

2

)
, (75)

= ε2 − 2ε+ 1. (76)
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Figure 14: The probability simplex ∆ in a 2-dimensional Hilbert space.

This can be very directly done by computing the area of the square formed by com-

pleting the simplex, as shown in the figure, and subtracting from that the area of the

square without the red shaded regions and then dividing by two.

For now arbitrary N -dimensions, a general expression can be obtained by first com-

puting the volume of the simplex and the volume of the shaded region. The former is

given by dividing the volume of the N -dimensional parallelepiped spanned by its edges

(which is 1) by N !. For the case of the latter, the volume of the region in the simplex

bounded by ε can be found be computing the integral

Vε(∆) =

∫ ε

0

dp1

∫ 1−p1

0

dp2

∫ 1−p1−p2

0

dp3· · ·
∫ 1−

∑N−1
i=1 pi

0

dpN (77)

=
1− (1− ε)N

N !
. (78)

Clearly, Vε(∆) → 0 for ε→ 0 and Vε(∆) → 1/N ! for ε→ 1. Thus, one finds that

PN(|⟨Ψ,Φ⟩|2 ≥ ε) = 1− P (|⟨Ψ,Φ⟩|2 < ε) = 1− V (∆)−1Vε(∆) = (1− ε)N , (79)

since V (∆)−1 = N !. This provides a quantitative measure of the likelihood that, given

an initial state Ψ within a Hilbert space of N -dimensions, a randomly selected state Φ

will exhibit a similarity to Ψ of at least ε. This probability diminishes exponentially

with increasing N . It can be demonstrated that for N = 2, this measure aligns with the

previously obtained result above. This is somewhat in analogy to (if one entertains the

idea of real valued vectors) the concentration of measure on the sphere in which once

a vector v in a unit N -sphere is chosen, the probability that second vector chosen at

random is orthogonal to it goes to 1 as the dimensions go to infinity [71].
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