
 
 
 
 
 
 
 
 
 
 
 
 
 

Science Written by Generative AI is Perceived as Less Intelligent, but More Credible and 
Trustworthy than Science Written by Humans 

 
 
 

David M. Markowitz1 
 
Affiliations 
1 Department of Communication, Michigan State University, East Lansing, MI 48824 



 1 

Abstract 
This paper evaluated the effectiveness of using generative AI to simplify science communication 
and enhance public trust in science. By comparing lay summaries of journal articles from PNAS, 
yoked to those generated by AI, this work assessed linguistic simplicity across such summaries 
and public perceptions. Study 1a analyzed simplicity features of PNAS abstracts (scientific 
summaries) and significance statements (lay summaries), observing that lay summaries were 
indeed linguistically simpler, but effect size differences were small. Study 1b used GPT-4 to 
create significance statements based on paper abstracts and this more than doubled the 
average effect size without fine-tuning. Finally, Study 2 experimentally demonstrated that 
simply-written GPT summaries facilitated more favorable public perceptions of scientists (their 
credibility, trustworthiness) than more complexly-written human PNAS summaries. AI has the 
potential to engage scientific communities and the public via a simple language heuristic, 
advocating for its integration into scientific dissemination for a more informed society. 
 
Significance Statement 
Across several studies, this paper revealed that generative AI can simplify science 
communication, making complex concepts feel more accessible and enhancing public trust in 
scientists. By comparing traditional scientific summaries from the journal PNAS to AI-generated 
summaries of the same work, this research demonstrated that AI can produce even simpler and 
clearer explanations of scientific information that are easier for the general public to understand. 
Importantly, these simplified summaries can improve perceptions of scientists’ credibility and 
trustworthiness as experimentally demonstrated in this work. With small, language-level 
changes, AI has the potential to be effective science communicators and its possible 
deployment at scale makes it an appealing technology for clearer science communication. 
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Science Written by Generative AI is Perceived as Less Intelligent, but More Credible and 
Trustworthy than Science Written by Humans 

 
 Scientific information is essential for everyday decision-making. People often use 
science, or information communicated by scientists, to make decisions in medical settings (1), 
environmental settings (2), and many others (3). For people to use such information effectively, 
however, they must have some amount of scientific literacy (4) or at least trust those who 
communicate scientific information to them (5). Overwhelming evidence suggests these ideals 
are not being met, as trust in scientists and scientific evidence have decreased over time for 
nontrivial reasons (e.g., distrust in institutions, political polarization, among many others) (6–8). 
The public’s decreasing trust in scientists and scientific information is unrelenting, which 
requires more thoughtful research into countermeasures and possible remedies that can be 
scaled across people and populations. 
 Several remedies have been proposed to make science more approachable, and to 
improve the perception of scientists. For example, some propose that being transparent about 
how research was conducted and disclosing possible conflicts of interest (9, 10), having 
scientists engage with the public about their work (11), or improving scientists’ ability to tell a 
compelling story (12) can increase public trust. While there is no panacea for dwindling public 
trust in science and scientists, extant evidence suggests this is an issue worth taking seriously, 
and it is imperative that scientists discover ways to best communicate their work with the hope 
of improving how people perceive them and their research. 
 Against this backdrop, the current work argues that how one’s science is communicated 
matters, and that language-level changes to scientific summaries can significantly improve 
perceptions of a scientist. Critically, the evidence in this paper suggests scientists may not be 
the best messengers to communicate their work if one goal is to communicate science simply. 
In other words, it may be difficult for experts to write for non-experts. Instead, as the current 
research demonstrates, generative AI can effectively summarize scientific writing in ways that 
are more approachable for lay readers, and such tools can be scaled to improve science 
communication efforts at a system level. 
 
The Benefits of Simple Writing 
 The idea that simple language patterns can improve perceptions of scientists is 
supported by decades of processing fluency research (13–15). This literature suggests people 
tend to use their feelings when consuming information (16, 17), and simple (fluent) information 
feels better to most people than complex (disfluent) information. Support for this contention 
suggests people engage with, approach, and prefer content that is written in simple versus 
complex terms (e.g., simple synonyms of the same concept compared to complex synonyms) 
(18–20). Indeed, much of this research supports the simpler-is-better hypothesis, which claims 
that people will engage with content that is communicated in simple versus complex terms, 
absent some instrumental goal being activated (18).   
  The most common linguistic fluency dimension is lexical fluency, which considers the 
degree to which people use common and everyday terms in the communication. People 
perceive scientists to be more intelligent if their work is written with simple words (e.g., the word 
job) compared to complex words (e.g., the word occupation) (15). In most cases, people prefer 
simple synonyms for a concept compared to complex synonyms of the same concept because it 
is more of a challenge to interpret and comprehend complexity, and people are economical with 
their effort and attention (21, 22). Another fluency dimension is analytic writing fluency (23). This 
dimension considers one’s communication style and how people communicate, instead of what 
they are communicating about (24, 25). According to prior work, a simple communication style is 
informal and reflects a story (e.g., it contains more pronouns, adverbs) compared to a complex 
communication style, which is formal and contains high rates of articles and prepositions (26–
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28). Finally, another relevant fluency concept is structural fluency, which considers the length of 
words and sentences. Longer words (e.g., occupation vs. job) and sentences with more words 
tend to require more effort to process (29). Therefore, the final marker of fluency relevant to the 
current work is operationalized by readability, which considers verbal simplicity/complexity in 
terms of word and sentence length. 
 
The Current Work 
 The current empirical package evaluates fluency effects in the context of science writing 
and has several aims. The first aim is to evaluate how lay summaries of scientific articles (called 
significance statements in many journals) are indeed linguistically simpler compared to scientific 
summaries of the same articles (abstracts). It is unclear if scientists are aware of how to 
effectively summarize their work for non-experts (30), making this effort worthwhile to empirically 
test if ideals of a journal like simple and approachable writing are being realized (Study 1a). The 
second aim is to evaluate if such lay summaries can be made simpler. Study 1b had generative 
Artificial Intelligence (AI) and a popular large language model (GPT-4) create lay summaries 
based on paper abstracts and compared the linguistic properties of such texts. 

Finally, building on this progression of studies, Study 2 tested the causal impact of 
reading scientific writing generated by AI (versus reading scientific writing generated by 
humans) on perceptions of scientists. Participants were randomly assigned to AI or human 
versions of a scientific summary, and they made judgments about the credibility, trustworthiness, 
and intelligence of the authors. To foreshadow the results: people preferred the simple (AI) 
version of each summary compared to the complex (human) version, yet ironically, people 
believed that the complex version was more likely to be AI than human.   

 
Study 1a: Method 

Data Collection 
To first evaluate if lay summaries had a simpler linguistic style than scientific summaries, 

significance statements and academic abstracts were respectively extracted from the journal 
Proceedings of the National Academy of Sciences (PNAS). This journal was selected because it 
is a widely read, high-impact general science journal that was one of the first outlets to require 
authors to provide traditional scientific summaries (e.g., abstracts) and lay summaries that 
appeal to average readers. PNAS also has topical breadth, scale, and longevity relative to other 
journals that may require lay summaries in that significance statements began in 2012 (31).  

A total of 42,022 publications were extracted from PNAS between January 2010 and 
March 2024 to capture possible papers that included both academic abstracts and significance 
statements. Only those with both summary types were included in this paper to create a yoked 
comparison within the same article. The final dataset included 34,584 papers (34,584 
significance statements and 34,584 abstracts), totaling 10,799,256 words. 
Automated Text Analysis 
 All texts were evaluated with Linguistic Inquiry and Word Count (LIWC), an automated 
text analysis tool that counts words as a percentage of the total word count per text (32). LIWC 
contains a validated internal dictionary of social (e.g., words related to family), psychological 
(e.g., words related to cognition, emotion), and part of speech dimensions (e.g., pronouns, 
articles, prepositions), and the tool measures the degree to which each text contains words from 
its respective dictionary categories. For example, the phrase “This science aims to improve 
society” contains 6 words and counts the following LIWC categories, including but not limited to: 
impersonal pronouns (this; 16.67% of the total word count) and positive tone words (improve; 
16.67% of the total word count). All texts were run through LIWC-22 unless otherwise stated. 
Measures 
 To evaluate how lay versus scientific summaries compared in terms of verbal simplicity, 
three measures were used from prior work to approximate simple language patterns (23): 
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common words (e.g., the degree to which people use common and simple terms like job instead 
of uncommon and more complex terms like occupation), one’s analytic writing style (e.g., the 
degree to which people are formal and complex in their writing style compared to informal and 
their writing reflects a story), and readability (e.g., the number of words per sentence and big 
words in a person’s communication output). 

Consistent with prior work (23, 33–35), common words were operationalized with the 
LIWC dictionary category. LIWC’s dictionary represents a collection everyday words in English 
(36, 37). Therefore, texts that use more words from this dictionary are simpler than texts that 
use fewer words from this dictionary. One’s analytic writing style was operationalized with the 
LIWC analytic thinking index, which is a composite variable of seven style word categories. 
Style words represent how one is communicating rather than what they are communicating 
about (24, 38). This index contains high rates of articles and prepositions, but low rates of 
conjunctions, adverbs, auxiliary verbs, negations, and pronouns (26, 39, 40).1 Finally, readability 
was operationalized with the Flesch Reading Ease metric (29) and calculated using the 
quanteda.textstats package in R (41). High scores on the Flesch Reading Ease metric suggest 
more readable and simpler writing (e.g., texts with smaller words and shorter sentences) 
compared to low scores. These language dimensions were evaluated as an index by first 
standardizing (z-scoring) each variable and then applying the following formula: Common 
Words + Readability – Analytic Writing. High scores are linguistically simpler than low scores. 
Analytic Plan 
 Since each article contained one lay summary and one scientific summary from the 
same article, independent samples t-tests were conducted for the simplicity index and each 
individual dimension of the index. All data across studies are located on the Open Science 
Framework: https://osf.io/64am3/?view_only=883926733e6e494fa2f2011334b24796. 
 

Study 1a: Results 
Descriptive statistics for each language dimension and intercorrelations are in Table 1. 

As expected, lay summaries were linguistically simpler than scientific summaries of the same 
article, Welch’s t(65793) = 40.62, p < .001, Cohen’s d = 0.31, 95% CI [0.29, 0.32].2 At the item 
level of the simplicity index, lay summaries (M = 69.77%, SD = 7.14%) contained more common 
words than scientific summaries (M = 67.79%, SD = 6.60%), Welch’s t(68741) = 37.79, p < .001, 
Cohen’s d = 0.29, 95% CI [0.27, 0.30]. Lay summaries (M = 92.34, SD = 7.95) also had a 
simpler linguistic style than scientific summaries (M = 94.31, SD = 5.19), Welch’s t(59561) = -
38.52, p < .001, Cohen’s d = 0.29, 95% CI [0.28, 0.31]. Finally, lay summaries (M = 12.96, SD = 
13.93) were more readable than scientific summaries as well (M = 12.49, SD = 12.46), Welch’s 
t(68320) = 4.67, p < .001, Cohen’s d = 0.036, 95% CI [0.02, 0.05].  

Together, while lay summaries were indeed linguistically simpler than scientific 
summaries at PNAS, the effect sizes between such groups were quite small and it is therefore 
unclear if general readers would be able to recognize or appreciate such differences. Can lay 
summaries be written even simpler, using generative AI tools, to produce more substantive 
effect sizes while maintaining the core content of each text? In the next study, a random 
selection of abstracts was submitted to a popular large language model, GPT-4, and were given 
the same instructions as PNAS authors on how to construct a significance statement. 

 
Study 1b: Method 

 An a priori power analysis using a small effect size (Cohen’s d = 0.20) powered at 80% 
suggested 788 cases were needed to detect a difference between GPT significance statements 

 
1 Analytic writing = [articles + prepositions - pronouns - auxiliary verbs - adverb - conjunctions - negations] 
from LIWC scores (40). 
2 95% Confidence Intervals were bootstrapped with 5,000 replicates. 



 4 

and PNAS significance statements. Therefore, a random selection of 800 abstracts from Study 
1a was used in this study. Using the OpenAI API, the large language model GPT-4 was fed 
each abstract individually and given the following prompt, which was drawn from descriptions of 
what PNAS authors should communicate in their significance statements (31): 

The following text is an academic abstract from the journal Proceedings of the National 
Academy of Sciences. Based on this abstract, create a significance statement. This 
statement should provide enough context for the paper’s implications to be clear to 
readers. The statement should not contain references and should avoid numbers, 
measurements, and acronyms unless necessary. It should explain the significance of the 
research at a level understandable to an undergraduate-educated scientist outside their 
field of specialty. Finally, it should include no more than 120 words. Write the significance 
statement here: 
The same text analytic process was performed on these data as Study 1a. Each GPT 

significance statement received scores based on common words (LIWC dictionary category), 
analytic writing (LIWC analytic writing category), and readability (Flesch Reading Ease). 

 
Study 1b: Results 

Distributions of the comparisons in this study are reflected in Figure 1. Indeed, GPT 
significance statements were written in a simpler manner than PNAS significance statements for 
the simplicity index, Welch’s t(1492.1) = 11.55, p < .001, Cohen’s d = 0.58, 95% CI [0.47, 0.69]. 
Specifically, GPT significance statements (M = 75.53%, SD = 5.57%) contained more common 
words than PNAS significance statements (M = 69.84%, SD = 7.45%), Welch’s t(1478.7) = 
17.31, p < .001, Cohen’s d = 0.87, 95% CI [0.76, 0.97]. GPT significance statements (M = 
17.59, SD = 11.15) were also more readable than PNAS significance statements (M = 12.86, 
SD = 14.27), Welch’s t(1510) = 7.39, p < .001, Cohen’s d = 0.37, 95% CI [0.27, 0.47]. However, 
GPT significance statements (M = 92.73, SD = 6.89) had a statistically equivalent analytic style 
as PNAS significance statements (M = 92.32, SD = 7.48), Welch’s t(1587.7) = 1.16, p = .246, 
Cohen’s d = 0.06, 95% CI [-0.04, 0.16]. All results were maintained when comparing GPT 
significance statements to PNAS abstracts and PNAS significance statements as well. 
Alternative Explanations 
 One possible explanation for the Study 1b results is that there are content differences 
across the PNAS and GPT texts explaining or impacting such differences across groups. This 
concern was addressed in two ways. First, PNAS has various sections that authors submit to, 
and LIWC has categories to approximate words associated with such sections. For example, 
the LIWC category for political speech would approximate papers submitted the Social Science 
section, specifically Political Sciences. Several linguistic covariates were therefore examined to 
account for content-related differences across GPT and PNAS texts. After including overall 
affect/emotion and cognition (to control for topics within the Psychological Sciences section of 
PNAS), political speech (to control for topics within the Political Science section of PNAS), and 
physical references to the multivariate models (to control for topics within the Biological 
Sciences section of PNAS), all results were maintained except for Analytic writing, where GPT 
texts were more analytic than PNAS texts, which is also consistent with prior work (42). Please 
see the online supplement for additional LIWC differences across these text types. 

Content effects were also evaluated in a bottom-up manner using the Meaning 
Extraction Method to measure dominant themes across the GPT and PNAS texts (43, 44). The 
evidence in the online supplement states there were 8 themes reliably extracted from the data, 
ranging from basic methodological and research information to gene expression and cancer 
science. Controlling for these themes, including the prior LIWC content dimensions, revealed 
consistent results as well (see supplement). Therefore, Study 1b evidence is robust to content. 

Altogether, human authors write simpler for lay audiences than for scientific audiences 
(Study 1a), but Study 1b demonstrated artificial intelligence and large language models can do 
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so more effectively (e.g., the effect size differences between GPT significance statements and 
PNAS significance statements was larger than human in Study 1a). The findings thus far are 
correlational and therefore need causal evidence to demonstrate the impact of these effects on 
human perceptions. In Study 2, participants were randomly assigned to read a GPT significance 
statement or PNAS significance statement from pairs of texts that appeared in the previous 
studies. Participants made perceptions about the author (e.g., intelligence, credibility, 
trustworthiness), judged the complexity of each text, and they rated how much they believed the 
author of each text was human or artificial intelligence. Only perceptions of the author were 
made because prior work suggests people generally report consistent ratings when asked about 
both scientists and their science in similar studies (9). 

 
Study 2: Method 

 Participants in the US were recruited from Prolific and paid $4.00 for their time in a short 
study (median completion time < 7 minutes). People were told that they would read scientific 
summaries and make judgments about the authors of such texts. 
Participants and Power 
 Based on this study’s preregistration (https://aspredicted.org/C3K_T31), a minimum of 
164 participants were required to detect a small effect powered at 80% in a within-subjects 
study (f = 0.10, α = two-tailed, three measurements). A total of 274 participants were recruited to 
ensure enough participants were in the study. Most participants self-identified as men (n = 139; 
50.7%; women n = 127, other n = 7), they were 36.74 years old on average (SD = 12.47 years), 
and were mostly White (n = 190; 69.3%). On a 7-point political ideology scale (1 = extremely 
liberal, 7 = extremely conservative), participants leaned liberal (M = 2.97, SD = 1.63). 
Procedure 
 Five pairs of stimuli from Study 1b were selected for the experiment, having had the 
greatest difference in common words scores between the PNAS and GPT texts (Pair 1 GPT = 
79.31%, Pair 1 PNAS = 48.65%; Pair 2 GPT = 76.64%, Pair 2 PNAS = 46.32%; Pair 3 GPT = 
79.07%, Pair 3 PNAS = 52.14%; Pair 4 GPT = 85.00%, Pair 4 PNAS = 59.66%; Pair 5 GPT = 
87.10%, Pair 5 PNAS = 62.81%). Participants were randomly assigned to read stimuli from 
three out of a possible five pairs (see the online supplement for the stimuli texts), and within 
these randomly selected pairs, participants were randomly assigned to the GPT (simple) or 
PNAS (complex) version of each pair. Participants were told to read each summary of a 
scientific paper and then answer questions below each summary. They were specifically told 
“we are not expecting you to be an expert in the topic discussed below. Instead, make your 
judgments based on how the summary is written.” 

Finally, participants made various perceptions of the author (e.g., intelligence, 
trustworthiness) based on prior work (14, 15, 34), judgments about the identity of who wrote the 
scientific summary (AI or human), and assessed the complexity in each text as a manipulation 
check. The order of these measures was randomized, and items within each block were 
randomized as well. This study was approved by the author’s university research ethics board. 
Measures 
Manipulation Check 
 Based on prior work (15, 34), three questions asked participants to rate how clear (“How 
clear was the writing in the summary you just read?”), complex (“How complex was the writing 
in the summary you just read?”), and how well they understood each scientific summary (“How 
much of this writing did you understand?”). Ratings for the first two questions were made on 7-
point Likert-type scales from 1 = Not at all to 7 = Extremely. The third question ranged from 1 = 
Not at all to 7 = An enormous amount. 
Author Perceptions 

Participants made three ratings about the author of each scientific summary: (1) “How 
intelligent is the scientist who wrote this summary?”, (2) How credible is the scientist who wrote 
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this summary?”, and (3) “How trustworthy is the scientist who wrote this summary?” As a 
collection, these dimensions were highly reliable (Cronbach’s α = 0.88) and therefore, they were 
averaged to create a general author perceptions index, while also being evaluated individually. 
All items were measured on 7-point Likert-type scales from 1 = Not at all to 7 = Extremely. 
Author Identity Perceptions 

Participants were asked for their agreement with two questions: (1) This summary was 
written by a human, and (2) This summary was written by Artificial Intelligence. All items were 
measured on 7-point Likert-type scales from 1 = Strongly disagree to 7 = Strongly agree. 
Demographics 
 Basic demographic data were obtained from each participant, including their age, 
gender, ethnicity, and political ideology. 
Analytic Plan 
 Since there were multiple observations per participant, linear mixed models with random 
intercepts for participant and stimulus were constructed (45, 46). 
 

Study 2: Results 
 Manipulation checks were successful. Participants perceived the simpler GPT 
significance statements as clearer (B = 1.47, SE = 0.09, t = 16.70, p < .001, R2m = .210, R2c = 
.502)3, less complex (B = -1.50, SE = 0.08, t = -19.28, p < .001, R2m = .275, R2c = .498), and 
they reported understanding more information in such summaries than the complex PNAS 
versions (B = 1.48, SE = 0.08, t = 18.74, p < .001, R2m = .229, R2c = .584). 
 Crucially, GPT significance statements were perceived more favorably than PNAS 
significance statements overall (B = 0.13, SE = 0.05, t = 2.44, p = .015, R2m = .004, R2c = .575). 
Analyses at the item level told a more nuanced story, however. GPT significance statements 
were perceived as more credible (B = 0.25, SE = 0.06, t = 3.95, p < .001, R2m = .011, R2c = 
.548) and more trustworthy than PNAS significance statements (B = 0.28, SE = 0.06, t = 4.63, p 
< .001, R2m = .015, R2c = .558), but they were also perceived as less intelligent (B = -0.15, SE = 
0.06, t = -2.57, p = .010, R2m = .005, R2c = .500). 

Ironically, participants agreed less with the idea that GPT significance statements were 
written by AI (B = -0.42, SE = 0.09, t = -4.29, p < .001, R2m = .021, R2c = .116), and more with 
the idea that GPT significance statements were written by humans (B = 0.51, SE = 0.09, t = 
5.42, p < .001, R2m = .033, R2c = .165). In other words, people perceived complexity to be a 
trait of artificial intelligence more than a trait of humanness. All relationships were maintained 
after controlling for AI and human perceptions as fixed effects in the linear mixed models. 
 

General Discussion 
The current work explored the potential of generative AI to simplify scientific 

communication, enhance public trust in scientists, and increase engagement in the 
understanding of science. The evidence suggested that while lay summaries from a top general 
science journal, PNAS, were linguistically simpler than scientific summaries, the degree of 
difference between these texts could be enlarged and improved. Generative AI assisted in 
making scientific texts simpler and more approachable compared to the human-written versions 
of such summaries. Therefore, this paper is notable given current challenges of scientific 
literacy and the disconnect between scientific communities and the public — AI is indeed better 
at communicating like a human (or the intentions of writing simply) than humans (42, 48). As 
prior work suggests, decreasing trust in scientists and scientific institutions, exacerbated by 
complex communication barriers, call for inventive solutions that are scalable and relatively 
inexpensive. Those that are offered here, particularly through generative AI, represent one 

 
3 R2m = variance explained by fixed effects alone; R2c = variance explained by fixed and random effects. 
All values were calculated using the MuMIn package in R (47). 
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potential pathway toward simpler, more approachable, and improved science communication. 
These data build on a body of existing fluency research and provide empirical support 

for the hypothesis that linguistic simplicity, facilitated by AI, can significantly influence public 
perceptions of scientists’ credibility, trustworthiness, and intelligence. Generative AI, specifically 
large language models like GPT-4, can produce scientific summaries that are not only simpler, 
but also more accessible to lay audiences compared to those written by human experts. These 
results align with a broader scientific narrative (and interest) that advocates for clearer and more 
direct communication strategies in science dissemination (49). 

The implications of this paper are twofold. First, the results suggest that leveraging AI in 
scientific communication can bridge scientific communities and the general public. This could be 
particularly beneficial in a time where science is increasingly central to everyday decision-
making but is also viewed with skepticism or deemed inaccessible by non-experts. Second, the 
increased readability and approachability of AI-generated texts might contribute to a higher 
engagement with scientific content, thereby cultivating a more informed public.  

Despite these positive outcomes and effects, it is important to acknowledge that the 
simpler-is-better hypothesis was not universally supported (18). While AI-generated summaries 
were rated higher in terms of credibility and trustworthiness, they were also perceived as less 
intelligent. This inconsistency underscores the complex interplay between content simplicity and 
perceived expertise, suggesting that while simpler language can enhance understanding and 
trust, it might simultaneously reduce perceived intelligence. In science, people may be 
perceived as smart but untrustworthy and not credible, which suggests a one-size-fits-all model 
of the relationship between complexity and person-perceptions is perhaps inaccurate.  

Future research should aim to examine these dynamics further, potentially exploring how 
different domains of science (e.g., communicating about health, communicating about climate) 
might uniquely benefit from AI-mediated communication (50). Studies could investigate the long-
term impact of AI-mediated communication strategies on public engagement with science and 
scientists. Finally, texts from only one journal were used in this paper across studies and 
therefore, texts from other journals should be used as well. As a general science journal that 
publishes high-impact research, however, using PNAS for this paper was purposeful and helped 
to ensure fluency effects were investigated across core domains of scientific inquiry. 
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Table 1 
 
Descriptive Statistics and Correlation Matrix for Study 1a 
Variable M SD 1 2 
     

1. Common words 68.78 6.94   

      
2. Analytic writing 93.33 6.79 -.18**  
    [-.19, -.18]  
      
3. Readability 12.73 13.22 .24** -.07** 
     [.24, .25] [-.08, -.06] 
       

Note. ** p < .01. Numbers in brackets are 95% Confidence Intervals
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Table 2 
 
Descriptive Statistics and Correlation Matrix for Study 2 
 

Variable M SD 1 2 3 4 5 6 7 
          
1. Intelligent 5.07 1.05 --       
             
2. Credible 4.60 1.16 .65** --      
      [.61, .69]       
             
3. Trustworthy 4.56 1.12 .65** .84** --     
      [.60, .68] [.82, .86]      
             
4. AI 3.89 1.44 -.18** -.20** -.22** --    
      [-.24, -.11] [-.27, -.14] [-.29, -.16]     
             
5. Human 4.55 1.39 .24** .28** .33** -.79** --   
      [.18, .30] [.21, .34] [.27, .39] [-.82, -.77]    
             
6. Clear 3.95 1.58 .16** .32** .33** -.26** .31** --  
      [.10, .23] [.25, .38] [.27, .39] [-.33, -.20] [.25, .37]   
             
7. Complex 4.74 1.41 .21** .03 .01 .14** -.13** -.55** -- 
      [.14, .27] [-.04, .10] [-.06, .08] [.07, .21] [-.20, -.07] [-.60, -.50]  
             
8. Understand 3.46 1.55 .05 .23** .25** -.20** .25** .72** -.56** 
      [-.02, .11] [.17, .30] [.19, .31] [-.27, -.13] [.18, .31] [.69, .75] [-.60, -.51] 
                

Note. ** p < .01. Numbers in brackets are 95% Confidence Intervals.
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Figure 1 
Distributions of Key Comparisons in Study 1b 

 


