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ABSTRACT

Tool-augmented Large Language Models (LLMs) have shown impressive capa-
bilities in remote sensing (RS) applications. However, existing benchmarks as-
sume question-answering input templates over predefined image-text data pairs.
These standalone instructions neglect the intricacies of realistic user-grounded
tasks. Consider a geospatial analyst: they zoom in a map area, they draw a re-
gion over which to collect satellite imagery, and they succinctly ask “Detect all
objects here”. Where is here, if it is not explicitly hardcoded in the image-text
template, but instead is implied by the system state, e.g., the live map positioning?
To bridge this gap, we present GeoLLM-QA, a benchmark designed to capture
long sequences of verbal, visual, and click-based actions on a real UI platform.
Through in-depth evaluation of state-of-the-art LLMs over a diverse set of 1,000
tasks, we offer insights towards stronger agents for RS applications.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate impressive potential in complex geospatial scenarios,
augmenting remote sensing (RS) platforms with agents capable of sophisticated planning, reasoning,
and task execution. These developments have sparked interest to deploy multimodal models across
various RS tasks, including image captioning and visual question answering (VQA) (Yuan et al.,
2022). Notably, SkyEyeGPT (Zhan et al., 2024) finetunes state-of-the-art VQA agents (Chen et al.,
2023) on RS imagery for unified multimodal responses, while Remote Sensing ChatGPT (Guo et al.,
2024) deploys computer-vision models (e.g., land use classification, object detection) via prompting.
However, these approaches rely on chatbot-based templates with predefined text-image correlations
over specific image files to assess LLM performance (Fig. 1 left), hence failing to capture the nu-
ances of realistic user-grounded RS tasks.

Figure 1: Unlike prior work that assumes task-specific templates (e.g., “[detection]” keyword),
GeoLLM-QA requires the agent to follow nuanced instructions and perform multi-step reasoning
to accomplish user-defined objectives.

In this work, we aim to bridge this gap with the following contributions: first, we introduce
GeoLLM-QA, a novel benchmark of 1,000 diverse tasks, designed to capture complex RS work-
flows where LLMs handle complex data structures, nuanced reasoning, and interactions with dy-
namic user interfaces (Fig. 1 right). To this end, we harness recent advancements in benchmarking
work for tool-augmented LLMs (Zhuang et al., 2023; Maini et al., 2024; Koh et al., 2024). Second,
we adopt a comprehensive evaluation scheme (Maini et al., 2024) beyond traditional text-based met-
rics that accurately assesses an agent’s proficiency in utilizing external tools for effective problem-
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Figure 2: GeoLLM-QA challenges agents to solve complex RS tasks through multimodal reasoning
and actions over long sequences of verbal, visual, and click-based actions on a real UI platform.

solving. Third, we evaluate several state-of-the-art tool-augmentation and prompting methodologies
on our benchmark. We highlight our key takeaways regarding the strengths, weaknesses, and po-
tential of LLMs within geospatial platforms. We strive to motivate future work and help the RS
community in unlocking further advancements in this domain.

2 THE GEOLLM-QA FRAMEWORK

Benchmarking Platform: To assess geospatial reasoning in an agent-assisted platform context,
we draw inspiration from (Zhou et al., 2023) and we implement a benchmarking UI, as a realistic
and reproducible standalone web-app that incorporates user-centered tasks with open-source tools
and datasets. By leveraging open-source APIs, not only we address challenges of reproducibility
and comparison across different systems, but also enable the examination of a wide range of RS
use-cases through various input modalities including verbal, visual, and tactile interactions. The
complete tool set consists of 117 tools, such as plotly mapbox APIs for the map functionality
and LangChain routines for FAISS vectorstores (Douze et al., 2024), to name a few. We intend
to release our codebase and benchmark to stimulate future research on geospatial Copilots.

Problem Formulation: To denote RS tasks beyond simplistic VQA data-pairs, we model the prob-
lem after the realistic UI experience: intuitively, each interaction consists of the user question, the
sequence of tool-calls by the agent, and the final (textual) response to user and platform state. We
can therefore denote each task as {q, T, r, S}, where q is the user prompt, r is the textual response,
while T represents the set of tool-calling steps T = {t1, t2, . . . }. At each step i, the agent invokes
tool ti = {tooli, args∗∗i } ∈ T from the available tool space T . Finally, S defines the final system
state: e.g., map positioning, loaded database, visible data holdings, etc.

Data Sources: Our evaluation framework includes three representative large-scale datasets:
xview1 (Lam et al., 2018), xview3 (Paolo et al., 2022), DOTA-v2.0 (Ding et al., 2021). Encom-
passing both optical and synthetic aperture radar (SAR) imagery, these data holdings offer detailed
object annotations across 80 categories from a total of 5,000 images. Notably, these datasets come
with valuable metadata, such as dates and coordinates, which greatly enhances the complexity of
temporal and spatial RS scenarios in our benchmark. The satellite imagery serves as task context for
LLM agents to execute function calls and is not used for finetuning the LLM or other downstream
tasks, enabling our research-purposes investigation.

“Golden” Detector Models: without loss of generality, we employ “oracle detectors,” a common
practice in foundation-models literature (Yang et al., 2023a), so that we can concentrate on eval-
uating the agent’s proficiency in selecting and utilizing the appropriate tools without confounding
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the false positives/negatives of a non-optimal detector. By abstracting out detection errors, we can
measure any degradation in performance metrics directly attributable to agents’ failures.

For instance, consider a scenario where the LLM is instructed to “detect all airplanes at the Mexico
City airport using the YOLO detector.” We want to verify whether the agent can designate the right
detector, filter through the correct imagery, and specify the right classes. Therefore, upon the LLM’s
selection of an image set, we assume an oracle detector that provides 100% accurate detections, i.e.,
“gold” results directly from dataset ground truths. We then calculate the recall of these detector
“results”, attributing any discrepancies solely to the agent’s inability to accurately fulfill the task.

Benchmark Creation: To create a representative set of RS tasks, GeoLLM-QA adopts the three-
step benchmarking process presented in (Zhuang et al., 2023): 1. Reference Template Collection: we
curate a set of 25 template questions that cover the wide range of RS tasks, such as object detection,
change detection, etc. Several key tasks are shown in Fig. 2. To generate answers for these questions,
we guide GPT-4 to reach the answers via a simple human-in-the-loop mechanism via feedback UI
buttons (Ouyang et al., 2022). By using previous (un)successful attempts as in-context examples,
GPT can quickly help us create the Reference Templates.

2. LLM-guided Question Generation: we generate permutations and perturbations of the Reference
Templates. Note here that previous RS benchmarks assume that all LLM tasks are implicitly correct.
However, Maini et al. (2024) show that one of the most challenging aspects of agent performance
is their ability to handle prompts that maintain the general template of a genuine question but are
factually incorrect. We therefore assume a ratio of 9:1 correct:incorrect tasks and we use GPT-4 to
generate variations per template for a total of 1,000 tasks. To allow GPT-4 to “programmatically”
select from real data combinations, we provide in-context prompt with dataset descriptions, e.g.,
SQL schemas with all eligible category names in the xview1 database.

Reference Question with Paraphrased and Perturbed Variations

Reference Q: Use the YOLO detector to detect fishing vessels in
xview3 images around Ancona. Plot them on the map.
Paraphrased Q: Use RetinaNet to find yacht detections in xview1
images around Barbados, and show them on the map.
Perturbed Q: Use NoNet to find Zeppelins in images around the
mythical city of Atlantis.

3. Human-guided Ground Truth Generation: last, to generate the ground truth answers and tool-set
solutions, we task GPT-4 to solve each question using the available platform tools. To guide the
process, we leverage the Reference Templates (questions and solutions) and we augment the LLM
by dynamically retrieving similarly correct examples via RAG (Gao et al., 2024). This allows us to
accelerate the process, while ensure the human-on-the-loop to validate the overall correctness.

Metrics: Unlike existing VQA-based benchmarks, we consider a a comprehensive set of metrics
that capture the LLM’s ability for effective tool-calling and reasoning:
a. Success rate: the ratio of successfully completed tasks across the entire benchmark. Each task is
consider to be completed correctly when the final platform state S matches the S̃ ground-truth. This
ratio informs us of the degree to which the agent is able to complete tasks, irrespective of whether it
took incorrect or unnecessary intermediate steps.
b. Correctness ratio: the ratio of correct function-call operations across the benchmark. Given a
ground-truth tool-set T̃ and an LLM solution T , we track all applicable LLM error-types as defined
in (Zhuang et al., 2023) (i.e., “Infeasible Action”, “Function Error”, “Argument Error”, “Incorrect
Data Source”, and “Omitted Function”). Given the total number of errors and ground-truth tools,
we compute the correctness ratio Rcorrect = max(0, 1−Nerrors/Ntools) (Maini et al., 2024). This
metric captures how likely it is for the agent to invoke the correct functions in the expected order.
c. ROUGE score: we use the ROUGE-L recall score (Lin, 2004) to compare model answers a with
the ground truth ã to assess the ability of the agent to reply to the task at hand.
d. Cost (Tokens): we compute the average number of tokens per task over the entire benchmark.
e. (Detection) Recall: over the entire benchmark, we assess the agents ability to correctly return
detection tasks by calculating the overall recall R (i.e., detections returned by the method against
“gold” ground-truths from oracle detectors).
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Table 1: Performance of different agents on GeoLLM-QA-1k.

Success Correctness ROUGE Det. Avg. Tokens↓
Rate↑ Rate↑ -L↑ Recall↑ /Task↓

GPT-3.5 Turbo (0125)
CoT (Wei et al., 2023) Zero-Shot 30.74% 80.67% 21.42% 91.92% 7.4k
CoT (Wei et al., 2023) Few-Shot 31.65% 89.55% 22.05% 71.17% 9.3k
Chameleon (Lu et al., 2023) Zero-Shot 23.69% 79.88% 23.29% 89.73% 12.1k
Chameleon (Lu et al., 2023) Few-Shot 26.74% 85.70% 24.30% 96.18% 12.9k
ReAct (Yao et al., 2023) Zero-Shot 30.70% 86.26% 22.31% 77.17% 7.5k
ReAct (Yao et al., 2023) Few-Shot 32.95% 89.35% 26.06% 91.78% 11.1k

GPT-4 Turbo (0125)
CoT (Wei et al., 2023) Zero-Shot 34.99% 94.59% 26.82% 85.81% 8.7k
CoT (Wei et al., 2023) Few-Shot 33.35% 94.93% 27.09% 93.33% 9.2k
Chameleon (Lu et al., 2023) Zero-Shot 29.44% 83.49% 21.57% 88.88% 12.5k
Chameleon (Lu et al., 2023) Few-Shot 31.18% 89.59% 22.56% 90.41% 13.1k
ReAct (Yao et al., 2023) Zero-Shot 33.52% 94.85% 27.82% 87.77% 9.5k
ReAct (Yao et al., 2023) Few-Shot 33.39% 94.98% 27.75% 96.73% 11.6k

3 EXPERIMENTS

In the scope of this analysis, we run various prompting techniques from literature: Chain-of-
Thought (Wei et al., 2023), (MM-)ReAct (Yao et al., 2023; Yang et al., 2023b), and Chameleon (Lu
et al., 2023). We leave more advanced prompting strategies for future investigation. Our base-
lines language models include GPT-4 Turbo (gpt-4-0125-preview) and GPT-3.5 Turbo
(gpt-3.5-turbo-1106).

Tab. 1 summarizes our findings. The recent GPT-4 Turbo release exhibits impressive function-
calling capabilities, while in terms of methods, CoT and ReAct outperform Chameleon in both
correctness and success rates, while being more token efficient. With respect to other metrics,
ROUGE-L shows the limitations of text-based scores, as it has been reported by recent work on
foundation models comparing closed- and open-vocabulary answers (Majumdar et al., 2024). That
is, the distribution of LLM answers is heavily dependent on the prompting method. For instance,
answers generated by GPT-3.5 might artificially penalize a different response style by Chameleon if
treated ground-truths (e.g., “There are five airplanes” vs. “This image contains 5 planes” can result
in lower scores despite conveying the same fact). Last, we observe that detection-related metrics, as
captured by recall, do not necessarily correlate with agent performance. All these findings confirm
that, unlike existing RS benchmarks that mainly report detection results or captioning-related scores,
a more comprehensive evaluation is required to assess agent performance.

Figure 3: GPT-3.5 vs. GPT-4 error analysis for CoT prompting.

Fig. 3 shows the error types for CoT on GPT-3.5 and GPT-4, in both zero-shot and few-shot scenar-
ios. The most common, “Missed Function” (where the agent omits necessary tool calls regardless
of the approach used) accounts for more than half of all errors. We expect that dynamic/RAG-
augmented (Srinivasan et al., 2023) prompting should improve agent performance by addressing
such failures. Last, the consistent distribution across different cases implies that these issues are not
method-specific but rather inherent to the current GPT capabilities.
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4 CONCLUSION AND FUTURE WORK

We presented GeoLLM-QA, a benchmark of realistic user-grounded tasks aimed at assessing the
capabilities of tool-augmented LLMs in geospatial applications. Our hope is that this benchmarking
suite will spur the development of new agents that advance the state of the art in remote sensing
platforms. To this end, we would like to highlight some particularly exciting and promising areas for
future work that we have identified through our research and that we are actively investigating. First,
recent advances in multimodal modeling show improved performance compared to MM-ReAct-like
prompting. We are currently extending our benchmark to flexibly incorporate open-source GPT-
V model families, such as mini-GPT (Zhu et al., 2023; Chen et al., 2023). Additionally, we are
expanding our analysis to replace oracle detectors with state-of-the-art models (Jian et al., 2023), to
explore how agent errors interact with suboptimal detector performance.

Moreover, a primary bottleneck that we have encountered with our approach, which is common
in related work (Zhan et al., 2024), is the overhead of human-guided template generation. In our
most recent study (Singh et al., 2024), we demonstrate that by adopting engine-based benchmarking
methodologies (Zhou et al., 2023) in the remote sensing domain, we can leverage fully GPT-driven
template and ground-truth generation to minimize human-in-the-loop overhead. Lastly, by consider-
ing cost- and system-related aspects, our analysis has yielded interesting insights regarding optimiz-
ing the overall agent-platform implementation. Our ongoing explorations include methods to im-
prove performance by leveraging state-of-the-art LLM caching and compression techniques (Jiang
et al., 2023; Fore et al., 2024).
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