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Abstract A long continuous integration (CI) build forces developers to wait
for CI feedback before starting subsequent development activities, leading to
time wasted. In addition to a variety of build scheduling and test selection
heuristics studied in the past, new artifact-based build technologies like Bazel
have built-in support for advanced performance optimizations such as parallel
build and incremental build (caching of build results). However, little is known
about the extent to which new build technologies like Bazel deliver on their
promised benefits, especially for long-build duration projects.

In this study, we collected 383 Bazel projects from GitHub, then stud-
ied their parallel and incremental build usage of Bazel in popular CI services
(GitHub Actions, CircleCI, Travis CI, or Buildkite), and compared the results
with Maven projects. We conducted 3,500 experiments on 383 Bazel projects
and analyzed the build logs of a subset of 70 buildable projects to evaluate
the performance impact of Bazel’s parallel builds. Additionally, we performed
102,232 experiments on the 70 buildable projects’ last 100 commits to evaluate
Bazel’s incremental build performance. Our results show that 31.23% of Bazel
projects adopt a CI service but do not use Bazel in the CI service, while for
those who do use Bazel in CI, 27.76% of them use other tools to facilitate
Bazel’s execution. Compared to sequential builds, the median speedups for
long-build duration projects are 2.00x, 3.84x, 7.36x, and 12.80x, at parallelism
degrees 2, 4, 8, and 16, respectively, even though, compared to a clean build,
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applying incremental build achieves a median speedup of 4.22x (with a build
system tool-independent CI cache) and 4.71x (with a build system tool-specific
cache) for long-build duration projects. Our results provide guidance for de-
velopers to improve the usage of Bazel in their projects, and emphasize the
importance of exploring modern build systems due to the current lack of liter-
ature and their potential advantages within contemporary software practices
such as cloud computing and microservice.

Keywords Build Systems · Continuous Integration · Empirical Study

1 Introduction

Continuous Integration (CI) is the practice of frequently integrating software
changes and checking the quality of the resulting integration through auto-
mated builds and testing. CI helps developers to increase productivity and
maintain code quality (Vasilescu et al. 2015) (Hilton et al. 2016), and is a
widespread practice in the industry. An ideal CI build should take a short
time to finish (Duvall et al. 2007) since long builds delay the feedback, thus
slowing down development activities (Hilton et al. 2017) (Zampetti et al. 2020)
(Bernardo et al. 2023).

However, recent studies show that, in practice, long CI builds are a perva-
sive phenomenon. While surveys on practitioners show that the most accept-
able build duration is 10 minutes (Hilton et al. 2017), Ghaleb et al. (2019)’s
analysis of 104,442 CI builds from 67 GitHub projects found that 40% of CI
builds took more than 30 minutes to finish. Given the increasingly frequent
delivery of software that is driven by industry practices such as continuous
delivery (Humble and Farley 2010) (Chen 2015), the negative impact of long
build times will be more significant.

Many approaches have been proposed to deal with long CI builds such
as optimizing CI scheduling by build outcome prediction (skipping builds for
certain commits) or commit batching (building multiple commits together)
(Jin and Servant 2020) (Beheshtian et al. 2021) (Kamath 2023), reducing CI
testing time by test selection and prioritization (Pan et al. 2022), or speeding
up builds by refactoring source code, e.g., removing redundant header files
in C/C++ projects (Dayani-Fard et al. 2005) (McIntosh et al. 2016). Practi-
tioners have also invested extensive efforts in improving build technologies to
enhance their performance.

Traditionally, features aimed at optimizing the performance of build tech-
nologies, such as parallel builds and incremental builds often come at the cost
of correctness (Adams and McIntosh 2016). Traditional file-based (e.g., Make)
or task-based technologies (e.g., Maven) usually lack the necessary information
to generate an accurate dependency graph that determines the execution order
of a build. This absence of dependency information can result in incorrect par-
allel and incremental builds (Licker and Rice 2019), as well as non-reproducible
builds (Lamb and Zacchiroli 2021). Moreover, even when these features suc-
cessfully produce correct build results, their applicability within a CI context
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is often limited. For example, although incremental build is widely supported
in major build technologies, they are rarely employed in CI due to the lack
of support for remote caching (Maudoux and Mens 2017). Developers often
have to resort to external tools to share build outcomes between CI builds.
It is noteworthy that while most CI services provide support for parallel CI
builds, the CI build parallelism is generally achieved by scheduling entire jobs
in parallel. The long compilation time of individual build jobs can still be a
blocker of long CI builds no matter how many parallel jobs developers enable.

In recent years, a new family of artifact-based build system technologies
such as Bazel (Bazel 2023), Buck (Buck 2023), and Pants (Pants 2023), has
received a lot of attention, as it proposes a unique approach achieving both
build performance and correctness, as well as built-in remote caching support.
In 2015, Google released Bazel as an open-source version of its internal Blaze
build technology. Unlike the traditional file-based or task-based build system
technologies, Bazel’s artifact-based philosophy enables developers to declara-
tively describe the artifacts and their dependencies in the build files. Based
on this information, Bazel determines how to carry out the build. Because
Bazel has precise knowledge about the build dependencies and has full control
over the build process, it can generate an accurate dependency graph of the
project. Therefore, Bazel provides reliable support of parallel and incremental
builds, while ensuring the builds are correct and deterministic. As the build
results are deterministic, Bazel allows developers to share build results across
multiple machines through its remote caching to further improve performance
and build reproducibility.

While the features of artifact-based build technologies like Bazel are promis-
ing, there is only limited research on the usage of artifact-based systems like
Bazel within open-source projects. A lot of questions related to Bazel (and
artifact-based build technologies in general) still remain to be answered, espe-
cially in the CI context. How do developers use Bazel in their projects? How
useful are Bazel’s features in a CI context? How much can Bazel speed up
long-build duration projects? In fact, a recent study by Alfadel and McIn-
tosh (2024) studied a phenomenon of organizations migrating away from build
tools like Bazel due to higher build system maintenance costs than expected,
for lower build performance gains. Instead, we are eager to understand the
performance gains that realistically can be expected by Bazel’s parallelization
and caching features, in order to help organizations determine whether Bazel
(and its alternatives) would be worth the switch in the first place.

Therefore, we conducted an empirical study on 383 GitHub projects that
use Bazel, focusing on the build system’s compilation activities (similar to
other work in this domain (Robles et al. 2006) (Maes-Bermejo et al. 2022)
(Misu et al. 2024)). From this sample, we selected projects that use GitHub
Actions, CircleCI, Travis CI, or Buildkite as their CI services and examined
their CI configuration files. We first examine whether developers use Bazel in
CI services. Then we investigate the usage of parallel and incremental build
features in CI services. We also make comparisons with Maven projects to
gain a broader perspective. Moreover, we performed 3,500 experiments on the
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383 projects’ latest snapshots with 5 different parallelism degrees to assess the
performance of the parallel build of Bazel. From the experiments, we identified
70 buildable projects divided into three groups based on their build duration,
to evaluate the impact of parallel build performance on projects on projects
with different build durations. Then, we analyzed the structure and granularity
of the dependency graph of the projects to investigate their impact on the
parallelization efficiency. Additionally, we conducted 102,232 experiments with
4 cache strategies on the last 100 commits of the 70 buildable projects to
evaluate the incremental build of Bazel. As such, we address the following
research questions.

RQ1: To what extent do developers use parallelization and incremental
build (cache) features in CI builds?

For the 4 studied CI services, we observed that 31.23% of Bazel projects
adopt a CI service but do not use Bazel in the CI service, as Bazel is adopted
in these projects not only for building projects but also for other purposes such
as making projects compatible to other Bazel projects (e.g., Non-Bazel C++
projects cannot be directly used as a library for Bazel C++ projects unless
they also adopt Bazel in their projects). For projects that use Bazel in CI, we
found that in CI builds, 26.36% of them use tools such as Shell scripts, Make,
and Docker to facilitate the execution of Bazel. All studied projects in the 4
studied CI services use Bazel’s parallel build feature. However, surprisingly,
while Bazel is famous for its good support of incremental build, we found only
44.08% of them use caching to speed up build performance.

RQ2: What is the impact of Bazel parallelization on the build performance?
We discovered that Bazel’s parallelization can significantly (large effect

sizes) improve the build performance at parallelism degrees 4, 8, and 16 for
long-build duration projects. However, at parallelism degrees 2, short, medium,
and long-build duration projects show no significant difference in speedups.
We also found that, as the parallelism increases, the build performance tends
to improve slowly for short and medium-build duration projects, while long-
build duration projects still exhibit a continuous performance improvement.
Nonetheless, at parallelism degree 16, 100% of short, 96% of medium, and
83% of long-build duration projects are unable to fully harness the benefits of
parallelism.

Moreover, unexpectedly, there is no significant correlation between the an-
alyzed structural properties of the Bazel dependency graph with speedups, for
any of the four parallelism degrees. However, the average size of the Bazel
build targets in the dependency graph does show a significant correlation with
build time speedups, implying that, at parallelism degree 16, there is a higher
likelihood of improved build performance when the developers define smaller
Bazel build targets for projects.

RQ3: What is the impact of Bazel incremental build (cache) functionality
on the build performance?

We found that, while caching of build dependencies is commonly employed
in CI workflows, downloading dependencies from a remote cache in CI builds
can still slow down the builds, with only 52.17% of short, 8.70% of medium, and
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4.17% of long-build duration projects exhibiting improved build performance
compared to clean builds.

We observed that caching of build results (i.e., incremental build) can
greatly help reduce the build time for medium- and long-build duration projects.
Specifically, for projects with medium build durations, we observed a me-
dian speedup of 1.21x when using a build system tool-independent CI cache
("General-Deps-and-Results strategy") and a median speedup of 1.25x when
using a build system tool-specific cache ("Specific-Deps-and-Results strategy").
For projects with long build durations, the median speedups were even more
notable, i.e., 4.22x and 4.71x, respectively. Nevertheless, the benefits of em-
ploying incremental builds for short-build duration projects are limited. In such
cases, the differences in build speedups between the Specific-Deps-and-Results
and General-Deps strategies, as well as between the General-Deps-and-Results
and General-Deps are negligible and small, respectively.

Additionally, we discovered similar build performance improvement be-
tween General-Purpose CI Cache and Build-Tool-Specific Cache for incremen-
tal builds, as there is no significant difference in speedups between General-
Deps-and-Results and Specific-Deps-and-Results strategies for medium- and
long-build duration projects, while a significant difference with a small (0.179)
effect size for short-build duration projects.

The paper is structured as follows. Section 2 introduces the concepts of
task-based and artifact-based build systems, as well as the related work. Sec-
tion 3 presents our data collection process and the empirical design of each
research question. Section 4 provides the results for each research question,
followed by Section 5 discussing the results from the previous section. Sec-
tion 6 presents the threats to the validity of the conducted research. Finally,
Section 7 concludes.

2 Background

In this section, we start by explaining the concepts of task-based build tech-
nologies and artifact-based build technologies. Next, we look into how parallel
build and incremental build function in task-based and artifact-based build
system technologies. Lastly, we discuss our research within the existing liter-
ature on build systems and CI.

2.1 Task-based Build Technologies

Traditional build systems such as Maven, Ant, and Gradle are task-based build
system technologies, where the build process comprises a set of configurable
tasks that depend on each other. These tasks are specified by developers in
build configuration files, instructing the build system on how to carry out the
build. For example, Figure 1 shows the Maven default build lifecycle, which
handles a project’s build and deployment. This lifecycle consists of a sequence
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compile

initialize
generate-sources
process-sources

generate-resources
process-resources

process-classes

validate

test

process-test-sources
generate-test-resources
process-test-resources

process-test-classes

prepare-package

generate-test-sources

test-compile
install

package
pre-integration-test

integration-test

verify

deploy

post-integration-test

Maven Default Lifecycle

Fig. 1 The phases in Maven default lifecycle (The phases with darker backgrounds are the
most commonly used ones).

of build phases executed in order. Developers control the Maven project’s
build process by configuring these phases in the pom.xml file. Figure 2 shows
an example of a Maven pom.xml file, where two plugins are configured. In
the example, the maven-compiler-plugin (executed in the compile phase)
set the Java version of the source codes and compiled classes to 1.8. The
maven-jar-plugin (executed in the package phase) is configured to exclude
files under the config directory from the generated jar.

Task-based build systems are powerful and highly customizable, but they
leave too much power to the developers to define and customize these tasks.
The underlying build systems have no idea what these tasks actually do and
what they depend on, which could lead to incorrect build results and poor
performance in parallel and incremental builds (Fan et al. 2020). Because the
implementation of tasks is obscure to build systems, build systems have to be
conservative when scheduling and executing tasks in parallel builds to ensure
the correctness of results. The conservative approach in parallel execution
could impact the parallelism of the build process. If not handled carefully, it
may even lead to the failure of parallel builds due to potential race conditions
(Licker and Rice 2019).

Furthermore, since build systems might not have complete knowledge of
task dependencies, they cannot confidently reuse previous build results as they
do not know what the task depends on and if the dependencies have changed.
The unspecified and transitive dependencies in tasks can further contribute to
incorrect incremental builds (Morgenthaler et al. 2012) (Bezemer et al. 2017).

2.2 Artifact-based Build Technologies

In artifact-based build system technologies like Bazel, developers do not ex-
plicitly specify the build tasks nor their execution process. The build system
is responsible for configuring, scheduling, and executing tasks. Artifact-based
build systems require developers to declaratively describe in the build file the
set of artifacts to be built as well as the dependencies between those and 3rd
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<project >
[...]
<build>

[...]
<plugins >

<plugin >
<groupId >org.apache.maven.plugins </groupId >
<artifactId >maven -compiler -plugin </artifactId >
<version >3.12.1 </version >
<configuration >

<source >1.8</source >
<target >1.8</target >

</configuration >
</plugin >
<plugin >

<groupId >org.apache.maven.plugins </groupId >
<artifactId >maven -jar -plugin </artifactId >
<version >3.3.0 </version >
<configuration >

<excludes >
<exclude >**/ config /*</exclude >

</excludes >
</configuration >

</plugin >
</plugins >
[...]

</build >
[...]

</project >

Fig. 2 An example Maven pom file

party components needed to perform a build. This way, developers inform the
build system what needs to be built, and the build system figures out how to
carry out the building process. Developers must explicitly specify both exter-
nal (e.g., third-party libraries, compilers) and internal (e.g., other components
in the project) dependencies of the artifacts in the build files. As the build
system knows all the dependencies of the artifacts and has full control over
the build process, it can effectively parallelize the tasks and reuse the previous
build results while ensuring correctness. Moreover, given that build systems
control both the input and tasks of the build process, they also achieve the
reproducibility of builds.

Figure 3 shows an example of a Bazel build file that contains three Bazel
build rules, each describing an artifact. The java_library build rule in the
example compiles the source files located in the same package as the build
file, and using an external dependency, @maven//:com_google_guava_guava,
generates a .jar file. The java_binary build rule uses java-maven-lib, the
name of the aforementioned jar file, as a dependency, and defines an entry
point com.example.myproject.App for the jar file to make an executable.

It is worth noting that in Bazel, a test suite is also an artifact, in which
the test rule produces an executable with a test runner as the entry point and
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runs all the tests defined in the test rule. The java_test build rule in the
example specifies the test class, test code, and dependencies (1 internal and 2
external dependencies are imported) of the test code. The executable built by
the java_test build rule loads the test class and executes all test codes.

load("@rules_java //java:defs.bzl", "java_binary", "java_library")

package(default_visibility = ["// visibility:public"])
java_library(

name = "java -maven -lib",
srcs = glob(["src/main/java/com/example/myproject /*. java"]),
deps = ["@maven //: com_google_guava_guava"],

)

java_binary(
name = "java -maven",
main_class = "com.example.myproject.App",
runtime_deps = [":java -maven -lib"],

)

java_test(
name = "tests",
srcs = glob(["src/test/java/com/example/myproject /*. java"]),
test_class = "com.example.myproject.TestApp",
deps = [

":java -maven -lib",
"@maven //: com_google_guava_guava",
"@maven //: junit_junit",

],
)

Fig. 3 An example of the Bazel build configuration file
(https://github.com/bazelbuild/examples)

2.3 Parallel Build and Incremental Build

Parallel and incremental builds both are common ways to speed up the build
process and are supported by most major build technologies. Here we discuss
the implementation of parallel build and incremental build in Maven and Bazel.
Since we focus on the duration of the compilation activities during a build,
we do not cover the available techniques for test parallelization in these two
build technologies. However, since test suites, as everything else in Bazel, are
treated as artifacts, the same mechanisms of parallel and incremental build
execution apply to test execution within Bazel.

When building projects, build systems analyze the external dependencies
and internal dependencies of the projects and generate a directed acyclic graph
(DAG). According to this DAG, a build tool determines how to orchestrate the
compilation tasks to finish the build process. Figure 4 (a) shows an example of
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the build process with parallel build, where each node in the DAG represents
a compilation unit. Assuming each node has the same build time T, before
employing the parallel build, the total build time is 11T. With the parallel
build, in the example, build systems can have at most 4 workers running to
build the projects, which reduces the build time to 4T.

Figure 4 (b) illustrates the build process with incremental build. In in-
cremental build, build systems compile only units that have been changed or
have direct or transitive dependencies that were changed, whereas reusing the
previous build results of other compilation units. In the DAG, the leftmost
compilation unit on level three has changed, therefore Bazel builds the compi-
lation unit and every compilation unit depending on it, i.e., two compilation
units in the example, with a resulting time of 2T.

The major differences between parallel and incremental builds of Maven
and Bazel are the accuracy and granularity of the DAG. In Maven, a compi-
lation unit is a module that consists of multiple Java packages (Maven 2023),
while a compilation unit in Bazel for Java projects is usually an individual
Java package (Bazel 2023). The coarse granularity of Maven tasks in parallel
execution reduces its potential for parallelism, however, if the granularity is too
small it may increase execution time because of the costs of synchronization
of build results between threads (Bramas and Ketterlin 2020). The large gran-
ularity of a Maven compilation unit also leads to underutilized dependencies
(Vakilian et al. 2015) (Jendele et al. 2019). Such underutilized dependencies
reduce the effectiveness of incremental builds, as a compilation unit that de-
pends on a very small part of a dependency might need to be rebuilt due to
changes in other parts of the dependency, even if the changes are unrelated to
the compilation unit.

To generate the DAG, build systems must analyze the external and inter-
nal dependencies of the projects. As we discussed before, the task-based build
systems do not have enough control over the tasks as they are configured by
developers. The uncertainty of the side effects of the tasks results in a less
accurate dependency graph and, therefore, more error-prone parallel and in-
cremental builds. As shown in Figure 3, Bazel solves this problem by reserving
the control of tasks to itself and requires developers to explicitly write down
all dependencies in the build files. However, while it may lead to better perfor-
mance and correctness in parallel and incremental builds, it also leads to high
maintenance costs, since developers must manually maintain the dependency
graph in the build files.

2.4 Related Work

There are extensive studies investigating the usage of build technologies in
open-source projects. McIntosh et al. (2011) studied ten large projects and
discovered that maintaining build systems brings 27% overheads to the de-
velopment process. (McIntosh et al. 2015) analyzed 177,039 repositories and
uncovered that framework-driven build technologies such as Maven are more
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(a)

Worker 1

Worker 2

Worker 3

Worker 4

(b) Worker 1

Changes

Fig. 4 (a) The DAG of the build process with parallel build. (b) The DAG of the build
process with incremental build. Each node in the DAG represents a compilation unit in the
build.

coupled with source code and require more maintenance effort than low-level
build technologies such as Make. McIntosh et al. (2012) and Macho et al.
(2021) studied the evolution and change patterns of build configuration files
to understand the co-evolution between build systems and source codes. How-
ever, these studies mostly focused on the maintenance activity of the build
systems and did not investigate how developers actually use build systems,
especially in the context of CI.

Other studies on build technologies and CI mainly focus on CI build break-
age and prediction. Rausch et al. (2017) performed analysis on CI build failures
of 14 open-source Java projects and identified that test failures are the most
common errors, while the stability of recent CI builds is the strongest factor
influencing the CI build outcome. Zolfagharinia et al. (2017) studied 30 million
CPAN builds and discovered the impact of the environment on the CI build
outcomes. Several studies have proposed techniques to predict the CI build
results and skip CI builds to save build time (Xia and Li 2017) (Barrak et al.
2021) (Jin and Servant 2020). Still, none of these studies evaluated how devel-
opers use and how much developers exploit the modern performance features
of build technologies in CI.

Incremental build also has been getting attention in the literature. The
correctness of incremental build relies on an accurate underlying dependency
graph. Several studies investigated the unspecified and redundant dependen-
cies in build systems. Bezemer et al. (2017) studied 4 open-source projects
and identified 6 common causes of unspecified dependencies. Licker and Rice
(2019) proposed a technique to detect the missing dependencies in Make build
files. Some studies discussed the design and principles of an ideal incremen-
tal build system. Erdweg et al. (2015) designed a build system that provides
reliable incremental build with support for dynamic dependencies. Maudoux
and Mens (2017) discussed why developers do not use incremental builds in
CI and proposed criteria for ideal incremental build systems.

Only a few studies examined the usage and benefits of incremental build
in open-source projects. Randrianaina et al. (2022) proposed the idea of in-
cremental build of software configurations and conducted a study on 5 open-
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source projects to evaluate its usefulness. Their results show that an average
of 88.5% of the configurations could be built faster with incremental builds,
while 60% of faster incremental builds are correct. Ghaleb (2021) analyzed
513,384 Travis CI builds of 1,270 projects to understand the adaptation of 3rd
party dependencies caching in CI. However, their analysis primarily focused
on general cache usage in CI rather than caches specific to build results (i.e.,
incremental build). Moreover, they conducted empirical case studies to inves-
tigate the caching adoption in CI. In contrast, we performed experiments to
evaluate the performance benefits of incremental build with different caching
configurations in CI.

Additionally, the studies on build technologies usually only cover tradi-
tional task-based build technologies such as Maven, Ant, and Gradle. However,
there is a notable gap in the literature regarding the usage of artifact-based
build technologies like Bazel in open-source projects. Apart from the work
of Alfadel et al. discussed in the introduction (Alfadel and McIntosh 2024),
several studies from Google have investigated the building and testing process
using Bazel in their internal projects (the internal version of Bazel at Google
is called "Blaze"). Jendele et al. (2019) discussed their work at Google with
Bazel and proposed a tool to automatically decompose the compilation units
of a Bazel build system to improve the performance of the build process. Wang
et al. (2021) proposed a technique for optimizing Bazel’s distributed builds to
avoid out-of-memory and deadline-exceeded errors due to the magnitude of
Google’s huge monolithic codebase. Memon et al. (2017) also presented their
project at Google based on Bazel to reduce the test time by controlling the
test workload without compromising quality and by distilling test result data
to inform developers. All the above studies focused only on Google’s internal
projects and did not analyze whether and how developers use Bazel in these
projects.

3 Methodology

In this section, we present the methodology of our empirical study address-
ing the RQs of the introduction. Specifically, we describe the process of data
collection and processing, as well as the experimental setup used to address
our research questions. All the scripts and CSV files used in the paper were
uploaded to GitHub1.

3.1 Data Collection

Figure 5 shows an overview of the data collection process. We used Source-
graph’s search API (Sourcegraph 2023), which is a code search engine hosting
more than 2 million open-source projects, to collect Bazel projects hosted on
GitHub. This is because, as of the day that we collected the data, February

1 https://github.com/SAILResearch/replication-23-shenyu-bazel_usage
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Identify Bazel/Maven
projects in GitHub

SourceGraph
API

Remove projects with
less than 100 stars and commits

GitHub API 4727
Maven
projects

583
Bazel

projects

Clone projects

Remove projects 
whose build files are
not written in Starlark

Manually check projects
to remove non-Bazel

projects

Randomly sample projects
from the two datasets, with 

the same # of samples
as for Bazel projects

383
Bazel

projects

383 large
Maven
projects

383 small
Maven
projects

Dataset

Linguist tool

Split projects into two sets based 
on the median of 100 medians 

calculated from Bazel and randomly 
sampled Maven commit data.

Fig. 5 The process of data collection

13th, 2023, GitHub’s search API does not provide good support to search
for projects containing Bazel build files. Since Maven is the previous state-
of-the-art (task-based) build technology studied in research (McIntosh et al.
2012)(McIntosh et al. 2015), we also analyze Maven projects and compare the
usage of Maven and Bazel in open-source projects.

Conventionally, Bazel projects have a build configuration file named BUILD
or BUILD.bazel in their root directory (Bazel 2023), while Maven projects
have a build file pom.xml in their root directory (Maven 2023). We used the
query select:repo (file:ˆBUILD(.bazel)?$) count:10000 to search for
Bazel projects and the query select:repo (file:ˆpom.xml$) count:10000
to search for Maven projects in Sourcegraph’s API. We limited the number
of results to 10,000 in the queries to optimize the query time. The returned
results are sorted by the number of stars, and, in both results, the last result
had less than 100 stars. We then used the GitHub API to remove the remain-
ing projects with less than 100 stars and commits from the dataset of 10,000
projects to eliminate trivial projects, which left us with a total of 583 Bazel
projects and 4,727 Maven projects.

Because BUILD is a very common file name (for example, other build
technologies like Pants and Buck also used BUILD as the default name of
their build configuration files), we then cloned Bazel projects and employed
a tool named Linguist (Linguist 2023), to detect the programming language
used in the build file to filter out projects whose BUILD or BUILD.bazel files
are not written in Starlark, which is a Python dialect language used for Bazel
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build configuration files (Starlark 2023). As the results returned by Linguist
may not be entirely reliable, we manually checked the remaining 393 Bazel
projects, and we found 10 non-Bazel projects in the dataset. As shown in
Figure 5, we retrieved 383 Bazel projects after applying the above steps.

To compare the usage of build systems between Bazel and Maven projects,
we divided and sampled the Maven projects into two groups based on their
number of commits. Due to the disparity in the number of projects within
the Bazel (383 projects) and Maven (4,727 projects) groups, to compute a fair
threshold for the grouping and the subsequent comparison, we generated 100
random samples of 383 Maven projects, matching the number in the Bazel
group. We then calculated the median number of commits for the projects in
each sample by aggregating the commit data from both the Bazel group and
the randomly selected Maven projects. This resulted in 100 median values.
The median of these 100 median values, which is 731.25, was then used as the
final threshold for dividing Maven projects, resulting in 2,750 small Maven
projects (less than 731.25 commits) and 1,977 large Maven projects (more
than 731.25 commits). Subsequently, we randomly sampled 383 projects from
the two groups, i.e., the same number of samples for each group as the size of
the Bazel group.

3.2 Research Questions

3.2.1 RQ1: To what extent do developers use parallelization and incremental
build (cache) features in CI builds?

Motivation The performance of build systems greatly influences the success-
ful implementation of CI processes, and long build times could result in less
frequent software delivery (Mårtensson et al. 2017). While Bazel provides rich
and powerful features to developers to speed up their build process, it is unclear
how developers use these features in their projects, especially in the context of
CI. Alfadel and McIntosh (2024) also suggest that if the perceived benefits of
Bazel’s feature richness do not outweigh its maintenance costs, it could lead
to the abandonment of Bazel.

In RQ1, we investigate the extent to which Bazel’s parallelization and
incremental build features are employed in CI builds. Before this, we first
examine how common Bazel is used in CI in general. Then, we analyze whether
developers use parallelization and incremental build features in their CI builds.
We compare the results to the results of Maven projects to understand the
differences between traditional and modern build systems.

Approach To understand the parallelization and incremental build (cache)
features of Bazel in open-source projects, we leverage the following approaches.

Identify CI Configuration Files
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Fig. 6 The process of analyzing CI configuration files of the projects adopting Bazel or
Maven build systems.

Figure 6 shows an overview of the process of analyzing CI configuration
files of the projects. Golzadeh et al. (2022) analyzed 91k GitHub repositories
of active npm packages, which revealed that GitHub Actions, Travis CI, and
Circle CI are the three most widely used CI services among these repositories.
Therefore, for our analysis, we focused on these three CI services, along with
Buildkite, as Buildkite is adopted by many Bazel projects. Projects not us-
ing these four CI services were excluded from the analysis of CI usage. Since
we cannot know the entire population of CI-using Bazel projects in GitHub
directly through Sourcegraph’s API, we first sampled from the entire popula-
tion of Bazel projects, then obtained CI-using Bazel projects from this sample
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Table 1 Regular Expressions for Matching CI Configuration File Paths

CI Service Regular Expression

GitHub \.github/(workflows|actions)/.*\.ya?ml$
CircleCI \.circleci/.*\.ya?ml$
Travis CI \.travis.ya?ml$
Buildkite \.buildkite/.*\.ya?ml$
Buildkite (With DSL)* \.bazelci/.*\.ya?ml$

* Projects maintained by Bazel developers use a DSL to set up their CI workflows on
Buildkite: https://github.com/bazelbuild/continuous-integration

Table 2 Regular Expressions for Matching Build Commands

Build Tool Regular Expression

Bazel .*bazel[\"w]? (.+)
.*bazelisk (.+)

Maven .*mvnw? (.*)
Make .*make (.*)

(see below). To ensure fairness, we employed the same approach for sampling
Maven projects.

We went through these services’ documentation to determine the file paths
and specifications of the CI configuration file. Then, to check if a CI service is
used by a project, we cloned all projects in the datasets and used the regular
expressions listed in Table 1 to search for CI configuration files under the
root directory of projects. After examining the 1,149 open-source projects in
our three datasets, we identified 289 Bazel, 284 large Maven, and 212 small
Maven projects that used the four CI services and 2,660 CI configuration
files in these projects. Notably, the number of CI configuration files is much
higher than the number of identified projects. This is because many projects
use multiple CI services and because GitHub Actions projects usually create
multiple configuration files.

Extract Build Commands
Since build systems like Bazel are not always invoked directly by CI, but

can be used within shell scripts, we also needed to analyze the build system-
related commands directly or indirectly used in CI configuration files. For
this, we followed the specifications of the CI configuration files to extract the
shell commands executed in the workflow. The locations of shell commands
in CI configuration files are shown in Table 3. We extracted a total of 11,866
shell commands from the CI configuration files. Additionally, instead of using
shell commands to run the build system in CI workflow directly, some projects
execute shell script files in their workflows and run the build system within the
shell script files. So, for each project, we collected all the files whose name ends
with .sh and analyzed those whose names appeared in the shell commands,
identifying 1,157 shell script files used in the CI configuration files.
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Table 3 Locations of Shell Commands in CI Configuration Files

CI Service Location

GitHub – jobs.<job_id>.steps[*].run
– runs.steps[*].run

CircleCI – jobs.<job_name>.steps[*].run
– commands.<command>.steps[*].run

Travis CI – script
– jobs.include[*].script
– jobs.exclude[*].script
– install
– deploy

Buildkite – steps[*].command
– steps[*].commands

Buildkite (With DSL) – platforms.<id>
– tasks.<id>

Next, we used regular expressions shown in Table 2 to identify build system-
related commands from the shell commands and shell script files. Initially, we
only examined build commands for Maven and Bazel. However, we discovered
that some projects use Make to execute other build systems. Hence, we used
another regular expression to match Make build commands and analyzed the
shell commands run by the Make targets, including their prerequisites, in
the build commands. Furthermore, we analyzed the .bazelrc file in the root
directory of Bazel projects, which contains the default command-line options
of Bazel commands. Finally, we extracted a total of 5,088 build commands
(shell commands that run build systems) associated with Bazel or Maven.

Analyze Build Commands
To assess the usage of parallelization, we inspected the build command

options. By default, Bazel has parallelization enabled, and therefore all Bazel
projects are presumed to use parallelization unless they use the -j or –job
option to specify the number of concurrent jobs to run. On the other hand,
parallelization is not enabled by default in Maven, and thus all Maven projects
are presumed not to use the parallelization feature unless they use the -T or
–threads option and specify a value greater than 1. We analyzed the values of
these command options to obtain the desired parallelism of each build system.

Incremental build is an effective technique for reducing build time and is
often achieved by sharing caches in CI. Although both build systems and CI
services support cache sharing between CI builds, their sharing mechanisms
differ in certain aspects. The cache provided by CI (General-Purpose CI Cache)
needs to be build system technology-independent, hence typically leverages
general-purpose file or object storage. In this case, the build system reads
from and writes to a local file path that essentially corresponds to a file stored
in the General-Purpose CI Cache. Conversely, the build system remote cache
(Build-Tool-Specific Cache) is specifically designed for a given build tool and,
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Table 4 Locations of Cache-related configuration in CI Configuration Files

CI Service Location

GitHub – jobs.<job_id>.steps[uses=actions/cache]
– jobs.<job_id>.steps[uses=actions/setup-java]

CircleCI – jobs.<job_name>.steps.restore_cache
– jobs.<job_name>.steps.save_cache

Travis CI – cache

Buildkite – steps[*].plugins[gencer/cache]

Buildkite (With DSL) N/A

therefore only caches files deemed necessary for the build by the build tool
using the tool’s official API. In addition, the Build-Tool-Specific Cache usually
incorporates specialized optimizations (e.g., cache integrity validation, gRPC
support) to improve performance and security, whereas the General-Purpose
CI Cache lacks such tailored optimizations.

Therefore, for the usage of incremental build in CI, we examined both
Build-Tool-Specific Cache and General-Purpose CI Cache. We first analyzed
CI configuration files to check the usage of the General-Purpose CI Cache.
We referred to the documentation provided by the CI services to locate the
configuration related to cache usage. Table 4 illustrates the areas we examined
to identify the General-Purpose CI Cache usage. Once we identified the cache-
related configurations from the files, we examined the paths of the cached
files in the cache configurations. We evaluated whether these paths contain
the substring .cache/bazel or .m2 to determine if they facilitate caching for
Bazel or Maven.

Then, we examined the Build-Tool-Specific Cache usage. We looked at
the build command options and build configuration files. For Bazel projects,
we looked for the --remote_cache option in build commands to determine
if they are using the Build-Tool-Specific Cache. For Maven projects, cache
sharing between different machines is supported by the Maven Build Cache
Extension (Maven 2023), so we inspected the pom.xml in the projects to check
if they are using this extension and determined the Build-Tool-Specific Cache
usage of Maven projects.

3.2.2 RQ2: What is the impact of Bazel parallelization on the build
performance?

Motivation Bazel claims to provide better parallelism than traditional task-
based build technologies, and parallel build is by default enabled in Bazel.
However, developers may not be able to fully utilize this capability provided
by Bazel, for a variety of reasons, in CI. The default number of cores of the free
tiers of the three most popular CI services in GitHub is only 2 (GitHub 2023)
(CircleCI 2023) (TravisCI 2023), so even if Bazel provides powerful parallelism,
there is an upper limitation to the parallelism Bazel may achieve in most CI
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Fig. 7 Experiments for parallelization usage of Bazel (RQ2).

environments. Furthermore, Bazel uses the dependency graph of the projects
to determine how to build projects in parallel. If the project’s structure is not
well-organized, the parallelization might be underutilized.

In this RQ, we build projects with different parallelism degrees to un-
derstand the extent to which developers exploit the parallelization feature of
Bazel in open-source projects and the optimal parallelism achievable for these
projects.

Approach To evaluate the utilization of the parallelization of Bazel, we per-
formed builds with five different parallelism degrees on the latest snapshots of
383 Bazel projects obtained from GitHub in the data collection section. Then,
we excluded projects with failed builds during the experiments and analyzed
the build logs of the remaining 70 buildable projects to measure how much
they can utilize the parallelism.

Experiment Setup
Figure 7 illustrates an overview of our experiments. The experiments con-

ducted in RQ2 were executed on 6 Google Cloud Platform e2-standard-16
instances, each equipped with 16 vCPUs, 64 GB of memory, and a 100 GB
SSD disk.

We took the following actions to mitigate any potential interference from
external factors. The machines employed for the experiments were exclusively
dedicated to the study. We ran each experiment within a separate container
that was specifically created for this experiment and was removed after the
experiment ended. To control the CPU resources allocated to containers, we
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employed the --cpu option when starting docker containers, which limited
the number of cores available for containers. Additionally, we controlled the
number of running containers based on the available CPU resources on the
servers and the CPU quota required by the containers to ensure the optimal
utilization of CPU resources for each container. Each project was built with
five different parallelism degrees: 1, 2, 4, 8, and 16. To control the effect of
noise between different builds, for each parallelism degree, we performed the
build 10 times and used the median build duration value for analysis.

We analyzed the Bazel build commands identified previously in RQ1 and
found the percentages of projects using Bazel for compilation (via the build
subcommand) and for testing (via the test subcommand) in CI to be similar,
i.e., 81.52% and 79.15%, respectively. In addition to the fact that compilation
and test execution in Bazel build systems leverage the same mechanisms as
well (as explained in Section 2), we decided to specifically focus on compilation
targets in our experiments, leaving test execution for future work.

In Bazel, the targets to be built are specified by developers and can differ
across projects. To determine the build targets for our experiments, we first
manually examined the Bazel-related build commands extracted from CI con-
figuration files in RQ1. In cases where some projects did not use Bazel in CI
or used different Bazel commands instead of the build subcommand in CI, we
manually looked at these projects’ documentation to identify the build targets.
If no target could be identified through this step, we inspected the build files
at the root of the projects to identify any top-level buildable targets defined
in those files. In such cases, we used the //:all target in the experiments,
which builds all the targets defined at the top level. If no top-level build tar-
get was defined, we used the //... target to build all targets in the projects.
As a result, we used the specific targets for 25 projects, the //:all targets for
249 projects, and the //... targets for 109 projects. Additionally, considering
the difference in Bazel versions across projects, in the experiments, we used
Bazelisk2, a commonly used tool in the Bazel community, to automatically
identify and download the suitable Bazel version for each project.

For each experiment, we cloned the project’s latest snapshot into the con-
tainer and performed the build. To measure the build time for each project,
we used a script to analyze the build logs obtained from Bazel, which show the
duration of the whole build process. In total, we conducted 3,500 experiments
on the 70 Bazel projects, out of the 383 Bazel projects that could be built
without errors. The remaining projects that did not build successfully were
excluded from the analysis.

Parallelism should especially benefit long-duration builds. However, it is
not entirely clear if this is indeed the case. Therefore, we sorted the 70 buildable
projects based on their median baseline build duration (the median build time
of builds at parallelism 1) and then divided them into three groups: short-
(23 projects), medium- (23 projects), and long-build duration projects (24

2 https://github.com/bazelbuild/bazelisk
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Fig. 8 Distribution of the median baseline build times of the parallelization experiments.

projects). Afterward, we compared the results between groups to understand
how to choose parallelism when building projects.

Figure 8 shows the distribution of the median baseline build times for
each group. The minimum, maximum, and median baseline build times for
short-build duration projects are 44.74s, 253.41s, and 108.88s, respectively.
The corresponding figures for medium-build duration projects are 258.21s,
850.49s, and 467.78s, respectively, and for long-build duration projects are
935.84s, 14836.71s, and 1801.53s, respectively.

Dependency Graph Analysis
Considering that the structure of projects might greatly influence the par-

allelization efficiency, we also examined both the structure and the granularity
of the dependency graph to understand their impact on parallelization effi-
ciency.

Bazel analyzes the artifacts and their dependencies defined in the build files
to generate a dependency graph used to determine how to conduct the build
process. In the dependency graph, the nodes are artifacts and the edges rep-
resent the dependencies between artifacts. To extract the dependency graph,
we employed a script to run the Bazel cquery command for each project. As
the generated dependency graph lacks input information for artifacts, we also
executed the Bazel aquery command to query the paths of input files being
compiled for each artifact.

We aimed to understand how the structure of projects affects paralleliza-
tion efficiency. Therefore, in the network analysis of the Bazel dependency
graph, we specifically focused on the measures related to coupling and cohe-
sion.
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The coupling of software systems can be summarized by the degree distri-
bution of their network (Savić et al. 2019). The degree distribution of highly
coupled software networks usually follows the power-law distribution, where
most nodes only have a few connections to other nodes and a few nodes have
many connections (Taube-Schock et al. 2011). However, while fitting power-
law distribution to the degree distribution is a common way to evaluate the
coupling of software systems, Broido and Clauset (2019) found that power-
law degree distribution is rare in real-world networks, and in 88% of analyzed
networks, a log-normal fits the degree distribution as well as or better than a
power law. Savić et al. (2019) also found that high coupling in real software
systems cannot be accurately modeled by power-law distributions. Therefore,
we picked three coupling-related measures used in Savić et al. (2019)’s study
(shown in Table 5) to assess the coupling of the dependency graph.

To assess the cohesion of the dependency graph, we investigated whether
the network displays the small-world property, characterized by a high clus-
tering coefficient and a low average shortest path. The clustering coefficient
gauges the extent to which nodes in a network tend to be neighbors, while
the average shortest path computes the average number of steps along the
shortest path between every pair of nodes in a network. Using both the av-
erage shortest path length and average clustering coefficient, we can identify
the cohesiveness of software systems (Chong and Lee 2015). Since large net-
works tend to have smaller cluster coefficients and bigger average shortest path
lengths, these two measurements are normalized by the corresponding values
of the randomly generated Erdos-Renyi network that has the same number of
nodes and degrees. In addition to these two metrics, we also analyze the size of
the largest weakly connected component in the network. A weakly connected
component refers to a subset of the original graph in which all nodes are in-
terconnected through some path, ignoring the direction of edges. The size of
the latest weakly connected component reflects the overall cohesiveness of a
software project (Savić et al. 2019).

Next, we examined the granularity of nodes (artifacts) within the depen-
dency graph. Using the paths of input files collected in earlier steps for each
artifact, we employed an additional script to calculate the number of lines in
each input file. We used the total number of lines of input files as the size of
each node. Then, we calculated and used the average node size to measure the
overall granularity of the dependency graph. Table 5 shows the complete list
of metrics.

Our approach to analyzing the dependency graph measures is similar to
Bettenburg and Hassan (2010)’s study, i.e., we used a linear regression model
to investigate the statistical connections between these metrics (independent
variables) and the speedup at various levels of parallelism (dependent variable).
To mitigate the skewing effects, we applied log transformation to the indepen-
dent variables that show skewness. We first conducted a correlation analysis
to examine the potential inter-correlation between the independent variables.
We removed the independent variable with the highest variance inflation fac-
tors (Weisberg 2005) from the model and recomputed the variance factors
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Table 5 Network Measures of the Dependency Graph

Measures Description

Coupling Measures
Mean Total Degree
(MTD) The average total degree (i.e., the number

of edges connected to a node) of nodes. A
high total degree suggests a highly coupled
software system.

In-degree Skewness
(INS) The skewness of the nodes’ in-degree (i.e.,

the number of edges coming into a node)
distribution. A high and positive skewness in
in-degrees indicates that a few nodes possess
notably high in-degrees, while others exhibit
low in-degrees, implying potential coupling.

Out-degree Skewness
(OUTS) The skewness of the nodes’ out-degree (i.e.,

the number of edges coming out of a node)
distribution. Similar to in-degree skewness, a
high and positive skewness in out-degrees in-
dicates that a few nodes possess notably high
out-degrees, while others exhibit low out-
degrees, which also implies potential cou-
pling.

Cohesion Measures
Percentage of Nodes in the Largest
Weakly Connected Component (PWCC) The percentage of nodes in the largest

weakly connected component. It measures
the overall cohesiveness.

Average Clustering Coefficient
(CC) It measures the extent to which nodes in a

network tend to be neighbors.
Average Shortest Path Length
(ASPL) The average number of steps along the short-

est path between every pair of nodes in a
network.

Granularity Measures
Number of Nodes
(NNODE) The number of nodes in the dependency

graph.
Mean Node Size
(MNSIZE) The average node size of the dependency

graph. The node size is defined as the sum
of lines across all input files associated with
the node (artifact).

until none had an inflation factor exceeding 5. During the multi-collinearity
analysis, the NNODE independent variable is removed from the model. Due
to space constraints, the detailed results table is available online 3. Following
that, we constructed multiple linear regression models to evaluate the relative

3 https://github.com/SAILResearch/replication-23-shenyu-bazel_usage
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impact of each of the three groups of measures on the speedup at different
degrees of parallelism.

3.2.3 RQ3: What is the impact of Bazel incremental build (cache)
functionality on the build performance?

Motivation Incremental builds have the potential to significantly reduce build
times; however, their utilization in CI services is not widespread (Maudoux and
Mens 2017) (Randrianaina et al. 2022). Although the results of RQ1 show that
Bazel provides strong support for incremental build in CI services, anecdotal
evidence45 also shows that Bazel’s incremental build may not always improve
build performance, especially in CI services, where the process of downloading
or uploading caches could be more time-consuming than the actual build itself.

Thus, in RQ3, we investigate the performance of incremental builds of Bazel
in open-source projects in the context of CI and explore the best practices for
developers to leverage the incremental build features of Bazel.

4 https://github.com/bazelbuild/bazel/issues/7664
5 https://github.com/bazelbuild/rules_go/issues/2188

https://github.com/bazelbuild/bazel/issues/7664
https://github.com/bazelbuild/rules_go/issues/2188
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Approach Bazel’s incremental build in CI services is achieved by sharing caches
between CI builds. There are 3 types of caches in Bazel: Analysis Cache (the
cache of dependency graphs), Repository Cache (the cache of external de-
pendencies), and Action Cache (the cache of build results). For our study,
we focused on the latter two types of cache since the Analysis Cache is usu-
ally stored in memory and not shared in CI builds. Although the Repository
Cache alone cannot achieve incremental build, we included it in our study as
it is commonly used by build systems in CI services to speed up builds. For
clarity, in our study, we refer to the Repository Cache as the Dependency
Cache and the Action Cache as the Build Result Cache.

In RQ1, we observed that developers use both General-Purpose CI Cache
and Build-Tool-Specific Cache to share files between CI builds. Therefore, we
evaluated Bazel’s incremental build performance using four cache strategies:
No Cache (Clean), CI Dependency Cache (General-Deps), CI Dependency
and Build Result Cache (General-Deps-and-Results), and Build-Tool-Specific
Dependency and Build Result Cache (Specific-Deps-and-Results). To enable
each type of cache, we used and combined the following Bazel command-
line options: --repository_cache for CI Dependency Cache, --disk_cache
for CI Build Result Cache, --experimental_remote_downloader for Build-
Tool-Specific Dependency Cache, and --remote_cache for Build-Tool-Specific
Build Result Cache.

Experiment Setup
Figure 9 shows an overview of the incremental build experiments. The

incremental build experiments ran on 5 Google Cloud Platform e2-standard-
16 instances, and the cache server ran on a separate e2-standard-16 instance
equipped with 16 vCPUs, 64 GB of memory, and a 100 GB SSD disk. The
object storage used in this RQ is Google Cloud storage. In practice, cache
servers are often placed near the build machines to reduce the latency. There-
fore, in our experiments, we put the cache and build machines in the same
Google Cloud region (e.g., us-central1) to make them geographically close.
The cache machine and Google Cloud object storage bucket are also deployed
in the same region to make the comparison between General-Deps-and-Results
and Specific-Deps-and-Results strategies fair.

In real-world scenarios, the General-Purpose CI caches are typically stored
in object storage, with CI services offering a file system-style API for build
systems to access these caches. The most common technique for mounting
such remote object storage onto developers’ machines and providing access to
the storage through file system APIs is FUSE (Filesystem in Userspace). To
make our experiments more realistic, we adopted a similar approach and hence
employed FUSE to mount the object storage buckets onto the CI machines.
During the experiments, Bazel accessed these buckets using the file system
APIs.

For the Build-Tool-Specific Cache, we followed the guidance from Bazel’s
official website for its implementation. To set up the Bazel cache server, we
used bazel-remote (Bazel-Remote 2023). The cache server ran on a separate
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machine and was only accessible to experiments over the network. While the
cache server also used the object storage as its backend storage, it maintained
a copy of caches on disk and synchronized the caches with the backend object
storage.

In this RQ, we again evaluate the 70 buildable projects identified in RQ2.
Similar to RQ2, we used Docker containers to isolate the environments and
control the available resources for experiments. Since we focused on incremen-
tal build in the CI setting and the default core number is 2 for the free tiers
of the three most popular CI services in GitHub, the CPU quota for all ex-
periment containers was set to 2. To avoid the influence of changes to GitHub
repositories and speed up the experiments, projects were cloned in advance
onto the machines before the start of their experiments.

In the experiments, we obtained the most recent 100 commits within the
past 1,000 days for each project. We sequentially built these commits in their
chronological order using the 4 cache strategies. For each project, when con-
ducting experiments with a specific cache strategy, we built commits from the
oldest to the newest, excluding the Clean strategy. Due to the significantly
longer time required for the Clean strategy to complete, we built projects
using this strategy every 5 commits instead. To make the experiments more
realistic, each commit was individually built in a dedicated container. The
pre-cloned projects were copied into the containers and checked out to the
respective commit for building. We repeated the experiments for each strat-
egy 5 times and used the median value for analysis. We used different cache
locations during each repetition of the experiments for each strategy to avoid
the impact of caches from other repetitions. As the Bazel version might dif-
fer between commits in the project, similar to RQ2, we also used Bazelisk in
the experiment to download the suitable version of Bazel for each commit.
We employed the build targets identified in RQ2 to build the projects. After
the experiments were completed, a script was used to extract the build dura-
tion. Given that when the Build Result Cache is enabled in the Bazel build,
the build logs show the total number of processes executed in the build pro-
cess and the number of processes that hit caches, the script we employed also
extracted these two values to calculate the cache hit rates.

In total, we ran 102,232 experiments on the 70 buildable projects. In con-
trast to RQ2, here we used the build duration of the Clean builds to categorize
the projects, as we used the builds using the Clean strategy as the baseline.
Moreover, because the build duration of a single commit cannot reflect the
build duration throughout the history of the projects, we used the median
build duration of all Clean strategy builds to sort and divide projects into
three groups, which are short- (23 projects), medium- (23 projects), and long-
build (24 projects) duration projects. Figure 10 illustrates the median baseline
build time distribution of short- (min: 21.25s, max: 100.94s, median: 50.07s),
medium- (min: 107.25s, max: 337.82s, median: 155.81s), and long-build (min:
377.28s, max: 6827.24s, median 634.39s) duration projects.
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Fig. 10 Distribution of the median historical baseline build times of the incremental build
experiments.

4 Results

In the following, we present the findings of our empirical study for each research
question.

4.1 RQ1: To what extent do developers use parallelization and incremental
build (cache) features in CI builds?

Approximately 31.23% of Bazel projects do not use Bazel in their
CI services. In contrast, the corresponding figures for large Maven
projects and small Maven projects are 9.48% and 6.30%, respec-
tively. Figure 11 shows the usage of build systems in the four studied CI
services. Bazel projects exhibit the lowest CI build system usage in Travis
CI (43.58%), GitHub Actions (64.80%), and Circle CI (80.76%), except for
Buildkite, since the latter is Bazel-specific. Conversely, large Maven projects
demonstrate the highest CI build system usage for GitHub Actions (90.04%)
and Circle CI (88.88%), while small Maven projects demonstrate the highest
CI build system usage for Travis CI (99.08%).

By manually examining the CI configuration files of the Bazel projects that
show no usage of Bazel in the four studied CI services, we found that 53.13%
of them adopted multiple build systems and used other build systems to build
in CI services. For example, sogou/srpc uses CMake to build the project in CI,
while go-resty/resty uses Go’s toolchains. We looked at these projects further
to understand the rationale behind maintaining multiple build systems, as it
brings more maintenance overhead (Suvorov et al. 2012). We discovered that
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Fig. 11 The percentage of projects in the dataset adopting a CI service and using the
Maven or Bazel build system in CI. A project may be counted multiple times if it uses
multiple CI services.

for projects that use multiple build systems, around half of them (47.46%) are
C++ projects that use CMake first and adopt Bazel later.

We examined the pull requests that introduced Bazel in these C++ projects
and found that the compatibility issues between non-Bazel C++ projects
and Bazel C++ projects are the reason why developers adopted Bazel in the
projects. A non-Bazel C++ project cannot be easily used as a library of Bazel
C++ projects. Developers often have to inject Bazel build configuration files
that they write themselves into the non-Bazel C++ projects so that these
projects can be used as libraries of Bazel C++ projects. Therefore, projects
such as oneapi-src/oneTBB6, AcademySoftwareFoundation/openexr7, despite
using CMake as their primary build system, introduced Bazel so these projects
can be easily integrated into other Bazel C++ projects as libraries.

For projects that adopt multiple build systems, but use only one of them
in their CI services, this approach can pose potential risks to the maintenance
of build systems as the errors or issues in the unused build systems may not
be detected promptly after updating codes. Additionally, using multiple build
systems may also cause inconsistency, leading build systems to become out-
of-sync, and developers must update all the build systems after each change.

The second reason (35.13%) for the absence of Bazel usage in CI is that
projects can use multiple CI services, with one CI service to build the project
and another one to perform management activities on the GitHub repository.
For instance, pytorch/TensorRT builds the project in CircleCI, while using
GitHub Actions to create labels for pull requests or assign developers to issues.

6 https://github.com/oneapi-src/oneTBB/pull/442
7 https://github.com/PCRE2Project/pcre2/pull/136
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Fig. 12 Proportion of direct usage of Bazel/Maven in CI services.

Table 6 The tools developers use to run Bazel/Maven builds indirectly.

Tool Bazel
Projects

Large
Maven
Projects

Small
Maven
Projects

Shell Script 44 38 11

Make 19 5 2

Docker 2 2 1

Other 3 3 0

72.24% of Bazel projects run Bazel directly in their CI services,
whereas approximately 84.45% of large Maven projects and 93.91%
of small Maven projects run Maven directly. When using build systems
in four studied CI services, developers may run them directly, or use other
tools (e.g. Shell Script, Make, Docker) to drive the build systems. Figure 12
illustrates the percentage of projects that directly use build systems in the
four studied CI Services. About 27.76% of Bazel projects employ other tools
to run Bazel, which is higher compared to the other two groups (15.55% and
6.09%, respectively). This might suggest that executing Bazel may require
a more complicated configuration compared to Maven, leading developers to
incorporate configuration tasks into other tools and run Bazel within.

Another possible reason for a higher number of projects running Bazel
within other tools may be that projects adopting Bazel have more complicated
automation workflows. Table 6 outlines the tools used by developers to execute
build systems. Shell Script is the most common choice for both build systems.
However, 19 projects use Make to run Bazel, which is outside of our initial
expectations, as Make is also a build system technology, pre-dating task-based
build system technology. Upon examining the Makefiles of these projects, we
discovered that most of them utilize Make for managing various automation
tasks, including environment setup, and code generation, while using Bazel to
build projects is only one of these tasks. In contrast, there is only one project in
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Fig. 13 (a) The usage of parallelization in CI services (b) The usage of cache in CI services.

the large Maven projects group, and none in the small Maven projects group,
that utilizes tools like Make for managing their automation tasks.

For projects using build systems in CI services, all Bazel projects
use the parallelization feature of Bazel, while there are only 3.85%
of large Maven projects and 1.01% of small Maven projects that
use the parallelization feature of Maven in CI services. Figure 13 (a)
shows the usage of parallelization features of build systems in the four stud-
ied CI services. Since parallelization is enabled by default in Bazel, no Bazel
project explicitly disables it in CI services. In contrast, for Maven projects,
the parallel build functionality needs to be enabled through command-line
options or configuration in the pom.xml file. Although the percentage of paral-
lelization usage is higher in the large Maven projects group (3.85%) compared
to the small Maven projects group (1.01%), both percentages remain low in
comparison to Bazel projects (100%). Our results are consistent with the find-
ings of Candido et al. (2017), who studied the usage of test parallelization in
open-source Maven projects, showing that only 3.6% of 468 projects use test
parallelization.

However, while parallel builds can potentially reduce build times, they can
also introduce challenges such as race conditions caused by unspecified depen-
dencies in the build systems (Bezemer et al. 2017)(Licker and Rice 2019). The
widespread adoption of parallelization in Bazel projects does not necessarily
suggest that Bazel would be more reliable than Maven when it comes to par-
allel builds. Another explanation might be that developers may just not know
that parallelization is enabled by default in Bazel. RQ2 will analyze parallel
build usage in more detail.

According to Figure 13 (b), among projects using their build
system in the four studied CI services, the usage of caching in CI
services for Bazel projects (44.08%) is lower compared to larger
Maven projects (56.92%) and slightly higher than smaller Maven
projects (40.20%). These findings surprised us, as Bazel is known for its
strong support of incremental builds, and we initially anticipated that Bazel
projects would have a higher cache usage in CI services than Maven projects.
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After examining the CI configuration files, we discovered that most Maven
projects only cache the project dependencies, whereas Bazel projects cache
both dependencies and previous build results. Therefore, even though a high
percentage of Maven projects utilize the build system cache in CI services,
they do not employ incremental builds and may gain less benefit from cache
usage compared to Bazel projects.

Another interesting finding is that although Maven supports Build-Tool-
Specific Cache via the Maven Build Cache extension(Maven 2023), Maven
projects only use the General-Purpose CI Cache in CI services, while Bazel
projects can either use a Build-Tool-Specific Cache or a General-Purpose
CI Cache, with higher usage in CI services of the Build-Tool-Specific Cache
(28.44%) compared to the General-Purpose CI Cache (15.64%). This can be
attributed to the Maven Build Cache extension being a newly introduced fea-
ture. Therefore, developers may not realize its existence.

In principle, the use of Build-Tool-Specific Cache offers certain advantages
and disadvantages. On the positive side, since the cache is not restricted to
CI services, developers can share caches not only among CI builds within
a single CI service but also between builds across different CI services or
between local machine builds and CI service builds. However, developers must
also maintain the cache server responsible for storing the caches, which can
potentially increase maintenance costs.

In RQ3, we will further analyze the usage of cache in the CI context. We
will compare the performance of the General-Purpose CI and the Build-Tool-
Specific Cache, as well as the impact on build performance of caching only
dependencies versus caching both dependencies and build results.

Summary of Research Question 1

For the four studied CI services, 31.23% of Bazel projects adopt a CI
service but do not use Bazel in the CI service. For projects that use
Bazel in CI, 27.76% of them integrate other tools to facilitate Bazel
execution in CI services. While all Bazel projects employ parallelization
in the four studied CI services, only 3.85% of large and 1.01 of small
Maven projects enable parallelization in CI. Moreover, while the usage
of a cache is similar for Bazel (44.08%), large Maven (56.92%) and
small Maven (40.20%) projects, most Maven projects only cache the
project dependencies, whereas Bazel projects cache both dependencies
and previous build results.

4.2 RQ2: What is the impact of Bazel parallelization on the build
performance?

Short, medium, and long-build duration projects show no signifi-
cant difference in performance improvement at parallelism degrees
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Fig. 14 Speedup of builds for different parallelism degrees. The projects are categorized into
three categories based on their baseline build duration (i.e., the build time with parallelism
degree 1)

2. However, after parallelism degree 2, long-build duration projects
demonstrate significantly higher speedups than the other two groups.
Figure 14 illustrates the speedup in build time for Bazel projects across four
parallelism degrees. The speedups are calculated based on their baseline build
times, which is the build time at parallelism degree 1. The median speedups for
small, medium, and long-build duration projects are 1.92x, 2.00x, and 2.00x
at parallelism degree 2. After reaching parallelism degree 4, the speedups for
short and medium-build duration projects remain similar, reaching 3.02x and
3.13x at parallelism degree 4, 4.73x and 4.43x at parallelism degree 8, and
6.05x and 6.26x at parallelism degree 16. In contrast, long-duration projects
exhibit higher speedups at parallelism degrees 4 (3.84x), 8 (7.36x) and 16
(12.80x).

Table 7 shows the results of statistical tests conducted between the dis-
tributions of build time speedups of short-, medium-, and long-build duration
projects at different parallelism degrees. The Kruskal–Wallis test (Kruskal and
Wallis 1952) and Dunn’s post-hoc test (Dunn 1964) were employed for analy-
sis. The results indicate that there is indeed no significant difference in speedup
across the three groups at parallelism degree 2. However, at parallelism de-
grees 4, 8, and 16, while there is still no significant difference between short-
and medium-build duration projects, long-build duration exhibits significantly
higher speedups compared to short- and medium-build duration projects, with
large Cliff’s Delta (Cliff 2014) effect sizes of 0.533 and 0.423 at parallelism de-
gree 4, of 0.772 and 0.591 at parallelism degree 8, and of 0.902 and 0.727 at
parallelism degree 16.
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Table 7 Differences in speedups of build time between short, medium, and long-build
duration projects. A yellow cell represents a medium effect size; a red cell represents
a large effect size.

Comparison1 Parallelism Degree (p-values of the Dunn’s post-hoc test2)

2 4 8 16

S-M 0.333 0.519 0.293 0.384
S-L 0.354 0.004 0.000 0.000
M-L 0.794 0.03 0.001 0.000

KW3 0.230 0.005 0.000 0.000

1. S (short-build duration), M (medium-build duration), L (long-build duration).
2. Holm is used for adjusting the p-values of Dunn’s test.
3. Kruskal-Wallis Test.

The speedups for short- and medium-build duration projects in-
crease slowly after reaching parallelism degree 8. In contrast, the
speedups of long-build duration projects exhibit a continuous in-
crease. Table 8 illustrates the results of the Kruskal–Wallis test and Dunn’s
post-hoc test applied to the build time speedups between different parallelism
degrees within each build duration group. The results show the speedups of
short- and medium-build duration projects observed at parallelism degree 8
are not significantly different from those at parallelism 4. In contrast, the
long-build duration projects show significant differences between every pair of
parallelism degrees, all with large effect sizes.

While, as shown in Table 7, short, medium, and long-build duration projects
have no significant differences in speedups at parallelism degrees 2, the speedups
of long-build duration projects are significantly higher than the other two
groups at parallelism degrees 4, 8 and 16. The reason can be two-fold.

First, long-build duration projects have higher costs of communication and
synchronization overhead, which offset the performance gain at low parallelism
degrees. In Bazel, the build process is divided into multiple actions, and Bazel
determines the execution of these actions by analyzing the dependency graph of
the projects. Long-build duration projects often have large code bases, leading
to a higher number of actions that need to be executed in the build process. As
the number of parallel tasks increases, the costs of communication and synchro-
nization overhead become more significant, affecting the efficiency of parallel
execution (Barney et al. 2010). Additionally, the intricate inter-dependencies
among components in large projects can further increase the costs of synchro-
nization. As a result, for long-build duration projects, the gains in performance
at lower parallelism degrees may be offset by these costs.

Second, since the potential speedup from parallelization is limited by the
serial portions (Amdahl 1967), short-build duration projects may largely par-
allelize their parallelizable build parts at parallelism degree 4, while medium-
build duration projects do so at 8. Consequently, they experience fewer per-
formance improvements at higher parallelism degrees.
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Table 8 Differences in speedups of build time between different parallelism degrees. A
yellow cell represents a medium effect size; a red cell represents a large effect size.

Group KW1 Dunn’s Test (p-values) 2

p 2-4 2-8 2-16 4-8 4-16 8-16

short build duration 0.000 0.007 0.000 0.000 0.017 0.000 0.077
medium build duration 0.000 0.003 0.000 0.000 0.005 0.000 0.092
long build duration 0.000 0.007 0.000 0.000 0.007 0.000 0.009

1. Kruskal-Wallis Test
2. Holm is used for adjusting p-values of Dunn’s test

At parallelism degrees 8 and 16, all short projects and the ma-
jority of medium projects (91% at degree 8 and 96% at degree 16)
are unable to fully exploit parallelism. Figure 15 shows the percentages
of projects not leveraging build parallelism within each group. A project does
not fully utilize the parallelism if its upper bound of the 95% confidence inter-
val of the mean speedup is lower than the parallelism degree. At parallelism
degree 2, 26% of the short, 17% of the medium, and 25% of the long-build du-
ration projects are not able to fully utilize the parallelism. As the parallelism
degree increases, more projects, particularly short and medium-build duration
ones, fail to leverage the full potential of parallelism. At parallelism degree 4,
this rises to 78% for short and 83% for medium-build duration projects, while
long-build duration projects stand at 42%. At degree 8, all short and 91% of
medium-build duration projects fall short in fully utilizing parallelism, com-
pared to 54% for long-build duration projects. This pattern aligns with prior
findings where speedups increase slowly after reaching parallelism degrees 4
for small and 8 for medium-build duration projects.

Furthermore, although the earlier observations indicated continuous per-
formance improvement for long-build duration projects, at parallelism degree
16, there are around 83% of the projects not able to fully utilize parallelism.

The baseline build time is significantly correlated with build time
speedups at parallel degrees 4, 8, and 16, while the average size of
the compilation unit shows a significant correlation specifically at
a parallelism degree of 16. The results of the linear regression analysis at
these four parallelism degrees are presented in Table 9. We started the linear
regression analysis using the baseline build time as the baseline model (Model
MB) since we already found that there is a relationship between baseline
build time and build speedups (dependent variable). Model M1 incorporated
granularity-related measures, Model M2 included coupling-related measures,
and Model M3 introduced cohesion-related measures. As shown in Table 9, at
parallelism degree 2, no measurement shows a significant relationship with the
speedups of the build, while at parallelism degrees 4, 8, and 16, the baseline
build time shows a significant correlation with the speedups with positive coef-
ficients, which is consistent with our previous findings. Surprisingly, measures
related to the dependency graph do not show any significant relationship with
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Table 9 Hierarchical analysis of linear regression models along the three groups of mea-
surements of dependency graph structure and granularity of the compilation units. M1
- granularity-related measures; M2 - Coupling-related measures; M3 - Cohension-related
measures. * p<0.05, ** p<0.01, *** p<0.001.

M. MB (Baseline) M1 M2 M3

BTIME 0.014 0.016 -0.007 -0.009

MNS -0.003 0.001 0.002

MTD 0.026 0.023
ODS -0.002 0.003
IDS 0.003 -0.002

WCC 0.090
CC 0.003
ASPL 0.003

R2 0.012 0.014 0.058 0.063

(a) Linear regression coefficients and p-values at parallelism degree 2.

M. MB (Baseline) M1 M2 M3

BTIME 0.186 ** 0.218 ** 0.210 * 0.188 *

MNS -0.046 -0.042 -0.046

MTD 0.025 0.009
ODS -0.014 -0.020
IDS -0.003 -0.004

WCC 0.493
CC 0.018
ASPL -0.289

R2 0.129 0.147 0.184 0.207

(b) Linear regression coefficients and p-values at parallelism degree 4.

M. MB (Baseline) M1 M2 M3

BTIME 0.734 *** 0.798 *** 0.824 *** 0.824 ***

MNS -0.089 -0.087 -0.078

MTD 0.003 0.021
ODS -0.060 -0.057
IDS 0.003 0.002

WCC 0.485
CC 0.003
ASPL -0.219

R2 0.284 0.294 0.325 0.326

(c) Linear regression coefficients and p-values at parallelism degree 8.

M. MB (Baseline) M1 M2 M3

BTIME 1.890 *** 2.253 *** 2.518 *** 2.544 ****

MNS -0.509 ** -0.568 ** -0.514 **

MTD -0.195 -0.076
ODS -0.020 -0.023
IDS -0.050 -0.022

WCC 1.982
CC -0.179
ASPL -0.720

R2 0.416 0.488 0.526 0.536

(d) Linear regression coefficients and p-values at parallelism degree 16.
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Fig. 15 Percentage of projects not fully utilizing parallelism.

speedups at all four parallelism degrees. Notably, the size of the compilation
unit only displays a significant correlation at a parallelism degree of 16 with
negative coefficients, suggesting the smaller the compilation units, the higher
the possibility the project gains better performance at parallelism degree 16.

Summary of Research Question 2

Given that most CI services default to having only 2 cores, there is
potential to make the Bazel build performance better by increasing
the number of cores. However, for short- and medium-build duration
projects, a parallelism degree beyond 4 might not be useful. While de-
velopers can still benefit from the parallelism, they should consider if
the performance gain is worth the extra hardware costs. On the other
hand, long-build duration projects experience continuous performance
improvement as parallelism increases, but fewer projects can fully lever-
age it. Moreover, we found no significant correlation between the de-
pendency graph structure and the build performance across all four
parallelism degrees, while the average size of compilation units shows
a significant correlation at parallelism degree 16.
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4.3 RQ3: What is the impact of Bazel incremental build (cache) functionality
on the build performance?

When only caching build dependencies in CI builds, 8.70% of medium
and 4.17% of long-build duration projects exhibit improved build
performance compared to clean builds, while 52.17% of short-build
duration projects show better performance. Figure 16 shows the speedups
achieved by projects using different cache strategies. The projects are divided
into three groups based on their median build time of clean builds. The me-
dian speedups of short, medium, and long-build duration projects with the
General-Deps strategy are 1.00x, 0.88x, and 0.85x, respectively. We calculated
the 95% mean confidence interval of speedups of the General-Deps strategy ex-
periments. The results reveal that only a small portion of medium (8.70%) and
long-build (4.17%) projects exhibit better performance (i.e., the lower bound
of the mean confidence interval of speeds is higher than 1) than the baseline
clean builds. Although short-build duration shows a higher (52.17%) percent-
age of projects that demonstrate improved performance than clean builds with
the General-Deps strategy, this figure still falls just around half of the total
projects in this category.

Caching dependencies in CI build is a common practice in open-source
projects to reduce the build time. However, the results indicate that caching
dependencies alone may not help the build performance too much especially for
projects with longer build duration. Although in practice, CI services can use
techniques like compression or deploying the cache storage close to machines
running CI builds to reduce the time of downloading and uploading dependen-
cies caches in builds, our results are still meaningful for long-build duration
projects. Because long-build duration projects usually have only a small por-
tion of build time used to download dependencies, using dependency cache
alone may not lead to a substantial reduction in overall build time for such
projects. Our findings are reinforced by the data shown in Table 10 (b), where
the speedups of medium and long-build duration projects with General-Deps
strategy are actually significantly lower than short-duration projects with a
medium (0.407) and a large (0.572) effect size, respectively.

Caching build results significantly reduces the build time for
medium and long-build duration projects, while it is less effective
for short-build duration projects. The median speedups with General-
Deps-and-Results and Specific-Deps-and-Results strategies for long-build du-
ration projects are 4.22x and 4.71x, respectively. As illustrated in Table 10
(a), long-build duration projects have significantly higher speedups using ei-
ther General-Deps-and-Results (with a large effect size of 0.910) and Specific-
Deps-and-Results (with a large effect size of 0.954) in builds than when using
the General-Deps strategy. Similar trends are observed for medium-build du-
ration projects, with median speedups of 1.21x and 1.25x, along with large
effect sizes of 0.582 and 0.633, respectively.

Conversely, for projects with short build duration, the difference in speedups
between the Specific-Deps-and-Results and General-Deps strategies show only
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Fig. 16 The speedup of build time with different cache strategies

Table 10 Differences in speedups between (a) cache strategies within the build duration
group and (b) build duration groups under the same cache strategy. A grey cell represents

a negligible effect size; a blue cell represents a small effect size; a yellow cell represents a

medium effect size; a red cell represents a large effect size.

Comp.12 Group3

S M L

GD-GDB 0.000 0.000 0.000
GD-SDB 0.002 0.000 0.000
GDB-SDB 0.000 1.000 0.08

KW4 0.000 0.000 0.000

Comp. Cache Strategy3

GD GDB SDB

S-M 0.000 0.000 0.000
S-L 0.000 0.000 0.000
M-L 0.000 0.000 0.000

KW 0.000 0.000 0.000
(a) Differences between cache strategies. (b) Differences between groups.

1. GD (General-Deps), GDB (General-Deps-and-Results), SDB (Specific-Deps-and-Results).
2. S (Short-build duration), M (Medium-build duration), L (Long-build duration).
3. P-values of Dunn’s post-hoc test. Holm is used for adjusting the p-values.
4. Kruskal-Wallis Test.

a negligible difference (effect size: 0.071), and the difference between General-
Deps-and-Results and General-Deps strategies is also small (effect size: 0.167).
One possible explanation of the lower performance improvement for short-
build duration projects may be that the time spent on uploading and down-
loading caches could outweigh the time saved by the incremental build, given
their already short build times.

Long-build duration projects, on the other hand, particularly benefit from
caching build results during builds. As indicated in Table 10 (b), long-build
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Fig. 17 The cache hit rates of Bazel projects in the experiments

duration projects achieve significantly higher speedups with large effect sizes
than both medium- and short-build duration with either the General-Deps-
and-Results or Specific-Deps-and-Results strategy.

As shown in Table 10 (a), Specific-Deps-and-Results shows no sig-
nificant difference in speedups for medium and long build-duration
projects and lower speedups with a small (0.179) effect size for short-
build duration projects, compared to the General-Deps-and-Results
strategy. Our results indicate that there is no or only limited difference be-
tween the General-Purpose CI Cache and Build-Tool-Specific Cache in terms
of build performance. Considering the similar performance between them, and
the lower maintenance effort required for General-Purpose CI Cache, it seems
General-Purpose CI Cache may be a better choice for developers. However,
using a General-Purpose CI Cache also brings security risks if it is not used
well. The Build-Tool-Specific Cache is managed by the build system and the
build system knows which files should be cached, but, for General-Purpose CI
Cache, developers usually specify the file system paths in the CI configura-
tion file, and the CI services cache all the files in these paths. Consequently,
there may be some files containing sensitive data under that path that are
accidentally uploaded to the cache and, therefore can be accessed by others.
So, developers should be careful when using the General-Purpose CI Cache to
ensure not caching any sensitive files.

The median cache hit rate for short, medium, and long-build
duration projects are 8.42%, 66.96%, and 77.15%, respectively. Fig-
ure 17 illustrates the cache hit rate of Bazel projects in the experiments. The
medium and long build duration projects have significantly higher cache hit
rates than the short build duration projects, with effect sizes 0.446 (medium)
and 0.564 (large), respectively.

Additionally, the long build duration projects also demonstrate signifi-
cantly higher cache hit rates than the medium build duration projects with
a small effect size of 0.241. Since short-build duration projects usually have
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smaller code bases, changes with the same size in short-build duration projects
could have a higher impact on cache hit rates than in medium and long-build
duration projects.

Summary of Research Question 3

Caching dependencies in CI builds is a common practice to reduce the
build time, yet employing only such caching may not always be effec-
tive, especially for medium and long-build duration projects. On the
other hand, using incremental builds significantly improves the build
performance in CI for medium and long-build duration projects, with
only a minor impact on build times for short-build duration projects.
Additionally, both General-Purpose CI Cache and Build-Tool-Specific
Cache show similar speed improvements when used for incremental
builds. However, developers should keep in mind that with General-
Purpose CI Cache, the developers themselves are deciding which files
to save to or restore from caches, which can bring potential security vul-
nerabilities since sensitive data may be inadvertently written to caches
and accessed by others. In contrast, with a Build-Tool-Specific Cache,
where Bazel manages caches and knows which files should be cached,
such security concerns are less likely to occur.

5 Discussion

In this section, we discuss the implications of our results to practitioners and
researchers.

For developers who use Bazel in their projects. Our findings (RQ2 and RQ3)
highlight the substantial improvement in build performance that developers
can gain through Bazel’s parallel and incremental build features. Nonetheless,
our results reveal that this potential can be underutilized, especially in the CI
context, as we find that developers may not use Bazel at all in CI builds or
not use Bazel’s incremental build to speed up CI builds (RQ1).

Given that the default number of cores for most CI services is 2, for projects
employing Bazel’s parallel and incremental builds in CI, there may still be po-
tential for developers to speed up CI builds (RQ2). Our results show that
developers can significantly improve the build performance by increasing the
parallelism from 2 to higher degrees (RQ2). Furthermore, our findings indi-
cate that the structure of the dependency graph does not have any significant
impact on the parallelization efficiency (RQ2). However, there is a significant
correlation between the granularity of dependencies and build speedups at a
parallelism degree of 16 (RQ2). For developers, on the one hand, improving
software structure may enhance maintainability but does not necessarily im-
prove the benefits of parallelization in the build process. On the other hand,
reducing the granularity of artifacts proves beneficial for parallelization effi-
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Table 11 Results of RQ1 with Bazel projects being divided into two groups using the same
threshold previously applied for dividing Maven projects.

Dataset Bazel Maven
Overall Large Small Overall Large Small

RQ1.1 68.77% 64.98% 74.81% 91.85% 90.52% 93.70%
RQ1.2 72.24% 70.97% 74.77% 88.93% 85.45% 93.91%
RQ1.3 100% 100% 100% 2.61% 3.85% 1.01%
RQ1.4 44.08% 42.74% 45.34% 49.67% 56.92% 40.20%

RQ1.1 - The percentage of projects adopting a CI service and using the Bazel/Maven
build system in their CI service.
RQ1.2 - The percentage of projects directly using the Bazel/Maven build system in CI.
RQ1.3 - The percentage of projects using the parallelization feature in CI.
RQ1.4 - The percentage of projects using the cache feature in CI.

ciency at a parallelism degree of 16. Considering that many projects do not use
caching in CI or only cache dependencies in CI (RQ1), our results show that
developers are able to significantly speed up the build by applying incremental
builds (RQ3).

However, while parallel and incremental builds of Bazel significantly im-
prove the build performance, developers should keep in mind that these fea-
tures also have limitations. Increasing the parallelism in CI builds reduces
the build time, but after reaching a certain parallelism degree, the improve-
ments slow down (RQ2). Applying incremental build can speed up the builds,
however, it may not be effective for projects with short build duration (RQ3).

Furthermore, the maintenance costs of Bazel can be higher in comparison
to traditional build systems such as Maven. As shown in Table 11, we ap-
plied the same threshold of 731.25 commits previously used (in section 3.1)
for dividing Maven projects to now also divide Bazel projects into large and
small Bazel project groups, comprising 223 and 160 projects, respectively.
While large Maven projects exhibit lower direct build tool usage in CI services
compared to the small Maven project group, which can be attributed to the
complexity of workflows in larger projects, even small Bazel projects exhibit
lower direct build tool usage in CI compared to large Maven projects, sug-
gesting a higher complexity of configuration and executing Bazel in CI. This
confirms the finding of Alfadel and McIntosh (2024)’s study that developers
often face challenges when integrating Bazel with other platforms and tools.
In addition, both Bazel groups show lower build tool usage in CI, primarily
because developers adopt multiple build systems and use other build systems
for CI services (RQ1). These practices are partly responsible for the aban-
donment of Bazel by organizations due to the maintenance costs of keeping
multiple build systems in sync (Alfadel and McIntosh 2024).

Therefore, developers need to carefully weigh the performance benefits
against hardware resource costs and maintenance efforts when using paral-
lel and incremental builds in their CI builds.
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For build technology developers. Our study emphasizes the importance of
guiding users in the use of build technology features. As a previous study
pointed out (Mokhov et al. 2018), while build systems are a fundamental part
of software development, they receive limited attention from developers. Our
results reveal a notable disparity between available features and their utiliza-
tion (RQ1). Considering the benefits these features bring to build performance
(RQ2 and RQ3), developers should pay more attention to how to guide build
system users to use build technology features and simplify their configurations.
Default enabling of some features, if possible, may also be a solution. For ex-
ample, parallel build is by default enabled in Bazel, and all Bazel projects use
it in CI, while Maven users need to enable parallel build by command-line op-
tions, and only 2.27% of large Maven and 0.55% of small Maven projects use
parallel build in CI. Although this disparity can be explained by the difference
between Bazel and Maven, considering the lack of attention from developers
to build technology (Mokhov et al. 2018), a lot of them may just not realize
the existence of such features and their benefits.

Furthermore, build technology developers should provide users with best
practices on how to effectively harness these features. Our findings show that
longer-build duration projects typically benefit more from parallel and incre-
mental builds (RQ2 and RQ2) than shorter-build duration projects, or that
caching dependencies alone is not effective in reducing build time for longer-
build duration projects (RQ3), could be guidance aiding users in understanding
the best application scenarios for each feature, thus facilitating more efficient
usage.

For researchers. While traditional task-based build tools have been exten-
sively studied, modern artifact-based build tools like Bazel have received less
attention. Our study investigates Bazel’s utilization and the benefits of its
parallel and incremental builds within the CI context. However, as projects
are organized differently with modern build systems, further exploration into
how the adoption of these systems impacts software development is required.

Investigating distributed builds (an important feature of Bazel) may also
be an area researchers need to look at. Given the prevalence of cloud com-
puting and the trend of cloud-based CI workflows (Garg and Garg 2019), in-
vestigating distributed build’s performance, correctness, and security in cloud
environments could yield valuable insights.

Lastly, the increasingly frequent rate at which software is delivered driven
by industry practices like agile development and microservices (Railić and
Savić 2021), leads to more frequent builds in CI. While our study examines
the CI usage and usefulness of Bazel, we notice that there is still a lack of
attention to investigating build system usage in the CI context. Hence, we
believe that further empirical studies are necessary to better understand the
usage of build systems in the CI context.
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6 Threats to Validity

6.1 Construct Validity

We used SourceGraph’s search API to identify projects that use Bazel. How-
ever, SourceGraph may not be able to index all GitHub repositories, which can
impact the accuracy of our dataset. To detect the usage of Bazel in GitHub
repositories, we relied on the presence of specific Bazel-related files. But the
file name used is very common (i.e. BUILD), which is also used by other build
systems like Buck and Pants as their default name of configuration files. We
mitigated this issue by using Linguist, a tool open-sourced by GitHub, to
identify the programming language of the build file and only kept the projects
whose build file is written by Starlark. Since this tool is not always accurate,
after employing this tool, we manually examined each project to ensure we
only included Bazel projects in the dataset.

Moreover, we used the presence of CI configuration files as evidence that
the projects are using the CI services. But, this is not necessarily true, since
projects may drop the use of a CI service but still keep the CI configuration
files. This is another threat that might impact the validity of the research.
We looked at the CI configuration files to analyze the build commands of
Bazel and Maven. Since we only looked at the default locations for these
configuration files, we may miss some configuration files as the locations can
be configured through their web interface. This is a well-known problem that
has been reported by other researchers (Bird et al. 2009) (Vasilescu et al.
2015).

In addition, while we removed projects with less than 100 commits and
stars to exclude trivial projects, there is still a possibility that some toy
projects (e.g., tutorial, example projects) were included in the dataset. There-
fore, we conducted a manual inspection of the projects within the dataset. In
RQ1, where our analysis focused exclusively on projects adopting GitHub Ac-
tions, Travis CI, CircleCI, or Buildkite as their CI services, we found 0 Bazel
(0%), 2 large Maven (0.7%), and 12 small Maven (5.66%) projects that are toy
projects. In RQ2 and RQ3, our analysis focused on 70 buildable Bazel projects,
none of which were toy projects. Given the low number of toy projects, we be-
lieve that our results remain valid.

6.2 Internal Validity

In RQ1, we checked the entire population of Bazel projects in the datasets
and selected CI-using projects from them. We employed the same approach
to sample Maven projects in the datasets for fairness. However, this approach
resulted in an unequal size of groups between Bazel (289 projects), large Maven
(282 projects), and small Maven (201 projects) project groups. To mitigate this
potential bias, we use percentages instead of absolute numbers to compare the
results of each group.
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We developed Python scripts to collect projects and analyze their CI con-
figuration files in RQ1. However, the scripts may not be able to capture all the
data we need in the dataset, which can affect the accuracy of the results. For
example, we followed the CI services’ specification to extract the shell com-
mands executed in the workflow and identify the Bazel and Maven-related shell
commands from them. However, developers may not directly execute the Bazel
in the shell commands but instead run other tools and execute Bazel within.
To mitigate this threat, we also analyzed shell script files and Makefiles of the
projects, if the shell script files or Make are used in the shell commands. Some
projects have complex workflows, for instance, google/gvisor runs a Docker
container in its CI workflow, and inside the container, it uses Make to exe-
cute Bazel to build the project. Our scripts are not able to identify the build
system-related shell commands in such cases. Therefore, for projects in which
we did not identify any Maven or Bazel-related shell commands, we manually
examined them to extract the commands.

Furthermore, in RQ3, we employed FUSE to mount the object storage
buckets onto the machine running the experiments to simulate the General-
Purpose CI Cache. In practice, CI providers use different techniques, like com-
pression or deploying object storage in the same region as machines, to op-
timize the performance of the cache. To mitigate this issue, all the machines
and object storage buckets are deployed onto the same region. However, we
did not employ compression to optimize the General-Purpose CI Cache, which
could result in lower performance and impact the validity of the study.

6.3 External Validity

In RQ1, we only analyzed the CI configuration files of four CI services (GitHub
Actions, CircleCI, Travis CI, and Buildkite). The results may differ for projects
using other CI/CD services. However, since the first three CI services are
the three most popular CI/CD services on GitHub (Golzadeh et al. 2022),
and the last one is popular among Bazel projects, we believe the results are
representative.

In RQ2 and RQ3, we evaluated the parallel build and incremental build
for Bazel open-source projects. Since Bazel is an artifact-based build system,
the results may not be applicable to task-based build systems. However, for
artifact-based build systems, since most of them are the derivatives of Blaze
(the internal version of Bazel at Google), the results can be generalized to
them.

Moreover, RQ2 and RQ3 focus only on compilation activities. We believe
our findings to be also helpful in guiding developers with test execution, given
that the mechanisms for parallel build and incremental build execution both
apply for compilation and for test execution. However, the effectiveness of
these performance optimizations on testing still needs to be investigated. We
intend to extend our research to include test execution in future studies.
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7 Conclusion

In this paper, we investigate how developers employ Bazel within their CI
builds to build projects, along with exploring the benefits and limitations
associated with Bazel’s parallel and incremental builds in the CI context.

Our findings show that Bazel’s parallel and incremental build features have
substantial potential for significantly reducing build times in CI. However,
these features are not always harnessed to their full extent by developers,
as these features may not be used or are underutilized by developers in CI
builds. Our study also reveals the limitations of parallel and incremental builds
of Bazel. We observe that as the parallelism degree increases, fewer projects,
particularly for short and medium-build duration projects, can fully exploit the
parallelism. Furthermore, when applying incremental build features in CI, we
found that long-build duration projects achieve significantly higher speedups
than short and medium-build duration projects, while the speedups of the
medium group are significantly higher than the short group.

In future work, as anecdotal evidence shows that tests can benefit more
from Bazel than builds 8, we intend to conduct a study on Bazel’s testing in
open-source projects to understand its maintenance and performance. Since
in this study, we only evaluated the performance of Bazel’s parallel and in-
cremental builds, therefore, we also plan to investigate the correctness and
reproducibility of Bazel builds to empirically validate the reliability claims of
Bazel.

8 Data Availability Statement

The datasets have been made publicly available on GitHub for replication pur-
poses at this link: https://github.com/SAILResearch/replication-23-shenyu-
bazel_usage
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