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In this work, we study the complexity of fundamental distributed graph problems
in the recently popular setting where information about the input graph is available
to the nodes before the start of the computation. We focus on the most common such
setting, known as the Supported LOCAL model, where the input graph—on which
the studied graph problem has to be solved—is guaranteed to be a subgraph of the
underlying communication network.

Building on a successful lower bound technique for the LOCAL model called round
elimination, we develop a framework for proving complexity lower bounds in the stronger
Supported LOCAL model. Our framework reduces the task of proving a (determinis-
tic or randomized) lower bound for a given problem Π to the graph-theoretic task of
proving non-existence of a solution to another problem Π′ (on a suitable graph) that
can be derived from Π in a mechanical manner.

We use the developed framework to obtain substantial—and, in the majority of
cases, asymptotically tight—Supported LOCAL lower bounds for a variety of funda-
mental graph problems, including maximal matching, maximal independent set, ruling
sets, arbdefective colorings, and generalizations thereof. In a nutshell, for essentially
any major lower bound proved in the LOCAL model in recent years, we prove a similar
lower bound in the Supported LOCAL model.

Our framework also gives rise to a new deterministic version of round elimination
in the LOCAL model: while, previous to our work, the general round elimination tech-
nique required the use of randomness (even for obtaining deterministic lower bounds),
our framework allows to obtain deterministic (and therefore via known lifting tech-
niques also randomized) lower bounds in a purely deterministic manner. Previously,
such a purely deterministic application of round elimination was only known for the
specific problem of sinkless orientation [SOSA’23].
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1 Introduction

Since its beginning, one of the cornerstones of research in distributed computation has been the
study of locality, asking how distant information the nodes of a large computer network need to
collect in order to solve a given computational problem. While this fundamental question has
been commonly studied in the idealized setting where nothing about the input instance is known
before the start of the computation, in this paper we will consider a more general setting: what
if information about the instance is known ahead of time, allowing for some preprocessing before
the start of the actual computation? Besides being a highly natural question from a theoretical
perspective that has been studied in many areas of computer science, this question has a very
concrete motivation in the context of distributed algorithms, making its study particularly relevant
in this field.

In distributed computing, the common scenario is that of a network on which computational
problems, often related to the structure of the network, have to be solved. This network is usually
assumed to be static, not allowing for any (or only few) changes in the topology. In contrast, on
this fixed network, in many practical settings we want to solve a variety of computational tasks
that occur repeatedly over time, often defined on subnetworks of the entire network (e.g., involving
different subsets of the computational entities the network consists of). Naturally, in such a setting,
it is computationally desirable to exploit the consistency of the network topology by performing
some preprocessing on the network itself once and store the computed information in the nodes of
the network to allow for a more rapid execution of the computational tasks that occur over time.

Formalization. While formalized already in 2013 (in the context of software defined networks) by
Schmid and Suomela [SS13] as so-called “supported models”, the study of this highly natural setting
has received increasing attention in the last five years [FHSS19, FKRS19, GHK+22, AAPR23,
BKK+23, HWZ21], covering “supported” versions of the LOCAL model, the CONGEST model, and
others. The most frequently studied model, commonly known under the name Supported LOCAL,
captures the setting discussed above as follows. The input instance is given by a communication
network G, called the support graph, and a subgraph G′ of G, called the input graph, on which
some given problem has to be solved. Each node has a unique identifier and is aware of which of
its incident edges are part of G′, if any; otherwise it has no information about G′. However, each
node is aware of the entire communication network G (i.e., each node has complete information
about G’s topology, all assigned unique identifiers etc.). The actual computation proceeds as in
the standard LOCAL model of distributed computation on the communication network G. For a
formal introduction to the (Supported) LOCAL model, we refer the reader to Section 2.

We note that, in Supported LOCAL, the aforementioned preprocessing is modeled in a very
powerful way: each node has complete information about G as opposed to partial information
obtained by some actual preprocessing step. However, this makes our main results only stronger
as they are (round complexity) lower bounds.

Significance for lower bounds. Besides its importance in capturing a natural and frequent
setting, the Supported LOCAL model turns out to be also highly relevant for lower bounds in
models related to locality (such as the LOCAL model), as we will explain in the following.

In the LOCAL model, recent years have seen a revolution with regards to round complexity
lower bounds. While 8 years ago only a handful of non-trivial lower bounds were known for the
complexity of reasonably important problems, the introduction of a new lower bound technique (in
a version tailored towards a specific problem [BFH+16] in 2016, and in its general version [Bra19] in
2019) has advanced the state of the art for lower bounds dramatically. Using this technique, called
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round elimination, a series of recent works has established substantial complexity lower bounds for
many of the most important problems studied in the context of locality, such as sinkless orientation
[BFH+16], maximal matching and variants thereof [BBH+21, BO20], maximal independent sets and
many variants of it, such as ruling sets and bounded-outdegree dominating sets [BBO22, BBKO21,
BBKO22], arbdefective colorings [BBKO22], and even variants of these problems on hypergraphs
[BBKO23]. While elegant and powerful, one surprising aspect of the round elimination technique
is that, even for obtaining deterministic lower bounds, it is currently required to use randomness.
More specifically, to obtain such a deterministic bound with round elimination, first a randomized
lower bound is proved, and then the randomized bound is lifted to a deterministic lower bound. For
an overview of the whole round elimination framework, including the final lifting of the obtained
bound, we refer the reader to [BBKO22]. While the obtained deterministic lower bounds are
generally as good as can be expected (even if using randomness were not required), the requirement
to first obtain a randomized lower bound is highly unsatisfactory, due to the following reasons.

First of all, while round elimination currently applies directly essentially only to the LOCAL
model (although the obtained lower bounds indirectly imply, for instance, the same bounds for
strictly weaker models such as the CONGEST model), a highly interesting direction of research is
to extend this technique also to other models related to the notion of locality (such as SLOCAL,
LCA, and VOLUME).1 It is far from clear whether, for such extensions, the roundabout way of
first obtaining and then lifting randomized lower bounds is feasible (and provides enough power to
obtain tight bounds), while an approach not involving randomness might be more promising (and
does not risk degradation of the size of the bound). Second, from the viewpoint of simplicity, a
direct way of proving deterministic lower bounds via round elimination deterministically that avoids
cumbersome failure probability analyses and the application of a blackbox lifting theorem would
be highly desirable. We remark that this would essentially also remove the need to use randomness
in round elimination for obtaining randomized lower bounds: the aforementioned deterministic
lower bounds directly imply randomized lower bounds (that are as good as currently achievable
via “randomized” round elimination) via the interesting fact that for all problems to which round
elimination is applicable, the randomized complexity on n-node graphs is at least the deterministic
complexity on roughly (log n)-sized instances [CKP19, DDL+23]. Third, the sizes of the bounds
obtainable with the current version of round elimination directly depend on the number of labels
used in the descriptions of certain problems generated in a mechanical manner from the problem of
interest (see [BBKO22, Theorem 7.1]). This is an inherent consequence of the randomized analysis
used in the current approach and can lead to worse bounds than achievable with an approach that
avoids randomness.

Interestingly, a direct deterministic way to obtain a deterministic (and, by implication, a ran-
domized) lower bound via round elimination was recently shown for the sinkless orientation prob-
lem [BKK+23]—via the Supported LOCAL model.2 While this was done in a highly problem-
specific manner, this raises the question whether such an approach is feasible also for other prob-
lems and, more generally, whether a general deterministic round elimination framework can be
developed. We remark that sinkless orientation is a problem that behaves very nicely under round
elimination, which is likely the reason why round-elimination-related results are likely to be ob-
tained first for this problem (see, e.g., [BFH+16])—obtaining similar results for problems with a

1While such an extension to the Supported LOCAL model was already shown in [BKK+23] for a specific problem,
the paper at hand is a first example of a problem-independent extension of round elimination to the Supported
LOCAL model.

2We note that the idea of providing a support graph as input to the nodes is highly related to the ID graph
technique from [BCG+22] that was (independently) developed in the context of a different lower bound technique
called Marks’ technique.
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much more complex behavior under round elimination has historically required the development of
more generally applicable techniques [Bra19].

1.1 Our Contributions

A deterministic round elimination framework and Supported LOCAL lower bounds.
As one of our main conceptual contributions, building on the original round elimination framework
from [Bra19, BBH+21], we develop a deterministic round elimination framework that avoids using
randomness. To a large degree, this framework is based on a new technique for proving lower
bounds in the Supported LOCAL model that is of independent interest.

We start our discussion by giving a brief overview of the current version of round elimination.
In a nutshell, in order to prove a lower bound for a given problem Π in the LOCAL model,
the original round elimination framework provides a simple blueprint: first derive a sequence of
problems Π = Π0,Π1,Π2, . . . from Π in a well-defined mechanical manner, and then show that a
problem Πk with (ideally large) index k cannot be solved in 0 rounds with a randomized algorithm
that allows only a certain failure probability. From this, a randomized lower bound can be inferred
(whose size depends on the size of the index k), which subsequently can be lifted to a deterministic
lower bound via a blackbox lifting theorem [BBKO22]. This framework is applicable to any problem
Π that is locally checkable, which, roughly speaking, means that Π can be described via local
constraints (for a formal definition, see Section 2). The class of locally checkable problems contains
the vast majority of problems studied in the LOCAL model, including essentially all common
colorings problems, maximal matching, maximal independent set, and many more.

Our first technical contribution consists in showing that, by replacing the LOCAL model with
the Supported LOCAL model in the above blueprint, we can avoid the use of randomness. More
precisely, we prove that the fact that problem Πk from the aforementioned sequence cannot be solved
in 0 rounds by a deterministic algorithm in the Supported LOCAL model implies a deterministic
lower bound for Π (whose size depends on k). The following theorem, proved in Appendix B,
formalizes this statement (where ∆ is the maximum degree of the support graph, and n the number
of nodes).

Theorem 1.1 (Simplified version of Theorem B.2). Assume there is no deterministic 0-round
algorithm for Πk in the Supported LOCAL model. Then, any deterministic algorithm solving Π in
the Supported LOCAL model requires Ω(min{k, log∆ n}) rounds.

Theorem 1.1 generalizes the special case of this theorem that was proved for the sinkless orien-
tation problem in [BKK+23].

In order to make use of Theorem 1.1 for proving lower bounds in the Supported LOCAL model
and, by consequence, developing our deterministic round elimination framework for the LOCAL
model, we provide a characterization of deterministic 0-round-solvability in the Supported LOCAL
model. More precisely, in Section 3, for any locally checkable problem Ψ, we show how to define a
problem lift(Ψ) satisfying the following surprising property.

Theorem 1.2 (Simplified version of Theorem 3.2). Problem Ψ can be solved in 0 rounds in the
Supported LOCAL model on a support graph G if and only if there exists a solution on G for
lift(Ψ).

By combining Theorem 1.1 and Theorem 1.2 (where we set Ψ := Πk), the task of proving lower
bounds in the Supported LOCAL model for some problem Π is reduced to the task of showing that
another problem Π′ admits no solution in the support graph(s). This dramatically simplifies the
task of proving Supported LOCAL lower bounds, since we do not need to think about distributed
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algorithms executed on subgraphs, but instead can obtain lower bounds by answering purely graph-
theoretic questions.

Besides providing a highly useful technique for proving lower bounds in the Supported LOCAL
model, the combination of Theorem 1.1 and Theorem 1.2 also provides the desired deterministic
round elimination framework (for the LOCAL model), as lower bounds in the stronger Supported
LOCAL model immediately apply also to the weaker LOCAL model.

While all of the aforementioned lower bounds are deterministic, in Appendix C we provide a
lifting theorem for the Supported LOCAL model that allows us to turn deterministic lower bounds
into randomized lower bounds.

Theorem 1.3 (Simplified version of Lemma C.2). Let DΠ(n) denote the deterministic complexity
of Π in the Supported LOCAL model, and RΠ(n) the randomized complexity of Π in the Supported
LOCAL model. Then,

DΠ(n) ≤ RΠ(2
O(n2)).

Theorem 1.3 constitutes an extension of the celebrated lifting theorem from [CKP19, DDL+23]
to the Supported LOCAL model.

Using Theorem 1.3, we can obtain randomized lower bounds (in Supported LOCAL, and there-
fore also LOCAL) from our deterministic framework. More precisely, combining Theorems 1.1
to 1.3, we obtain the following theorem, summarizing the above discussion.

Theorem 1.4 (Simplified version of Theorem 3.4). Suppose there exists a support graph G on
which no solution for lift(Πk) exists. Then, any deterministic algorithm solving Π on G requires
Ω(min{k, log∆ n}) rounds and any randomized algorithm solving Π requires Ω(min{k, log∆ log n})
rounds in the Supported LOCAL model.

We remark that Theorems 1.1 to 1.4 are simplified versions of the actual theorems we prove.
In particular, we obtain the theorems in a more general setting, covering also hypergraphs and
bipartite graphs.

After giving an overview of our contributions regarding the development of new techniques,
we now turn our focus to results for concrete (classes of) problems. In a nutshell, for essentially
all major lower bounds proved in the LOCAL model in recent years [BBH+21, BO20, BBKO21,
BBO22, BBKO22], we obtain similar lower bounds in the stronger Supported LOCAL model,
including lower bounds for maximal matching, maximal independent set, ruling sets, arbdefective
coloring, and generalizations of these problems, providing ample evidence for the usefulness of
our new technique. However, we would like to emphasize that, while this technique provides a
clear blueprint for obtaining Supported LOCAL lower bounds, each such lower bound still requires
proving an existential graph-theoretic statement, which is far from trivial.

Maximal matching and variants. An x-maximal y-matching of a graph G = (V,E) is a subset
M ⊆ E of edges satisfying that each node is incident to at most y edges of M , and that, if a node v
is not incident to any edge of M , then at least min{deg(v),∆−x} neighbors of v are incident to an
edge of M . This family of problems includes maximal matching (by setting x = 0 and y = 1), but
it also includes many variants of it, for example, the problem of computing some relaxed variant of
matching, where nodes are allowed to be matched multiple times, say log∆, and unmatched nodes
need to have at least ∆/2 matched neighbors. This class of problems was studied in [BBH+21],
where non-tight bounds were shown in the LOCAL model. Later, [BO20] provided tight bounds,
for any values x and y. The following theorem shows that the same bounds hold in the stronger
Supported LOCAL model as well. For ∆′ = Θ(∆), this bound matches exactly the one known for
LOCAL. This theorem is proved in Section 4.
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Theorem 1.5 (Simplified version of Theorem 4.1). On bipartite 2-colored support graphs of degree
∆, when the input graph has degree ∆′, the x-maximal y-matching problem requires Ω(min{(∆′ −
x)/y, log∆ n}) rounds deterministically and Ω(min{(∆′ − x)/y, log∆ log n}) with randomization.

In [AAPR23] the authors proved that if maximal matching on bipartite 2-colored graphs can be
solved in o(∆′) rounds, then it can be solved in o(∆′) rounds on all graphs. They left as an open
question to determine the complexity of maximal matching on 2-colored graphs. Observe that
Theorem 1.5 solves the open question of [AAPR23] by answering it negatively.

Arbdefective coloring. The α-arbdefective c-coloring problem requires to color the nodes with
c colors, and output an orientation of the edges that connect nodes of the same color, such that each
node has at most α outgoing edges. Arbfective colorings are a basic building block that has been
extensively used to develop many algorithms for proper coloring [MT20, FHK16, Bar16]. It is known
that in the LOCAL model, this problem can be solved in O(∆+ log∗ n) rounds when (α+1)c > ∆,
while it requires Ω(log∆ n) for deterministic algorithms and Ω(log∆ log n) for randomized ones when
(α+1)c ≤ ∆ [BBKO22]. The following theorem, proved in Section 5, shows that a similar statement
holds in the Supported LOCAL model as well, where we want to compute an α-arbdefective c-
coloring problem on a given input graph G′ of degree ∆′.

Theorem 1.6 (Simplified version of Theorem 5.1). On support graphs of degree ∆, when the
input graph has degree ∆′, if (α + 1)c ≤ min{∆′, ϵ∆/ log∆} for a small-enough constant ϵ, then
the α-arbdefective c-coloring problem requires Ω(log∆ n) deterministic rounds and Ω(log∆ log n)
randomized rounds.

Arbdefective colored ruling sets. A subset S ⊆ V of nodes is an α-arbdefective c-colored
β-ruling set if the following holds: the subgraph induced by nodes of S is labeled with a solution
for the α-arbdefective c-coloring problem, and for each node v ∈ V \S, it holds that there is a node
in S within distance β.

The α-arbdefective c-colored β-ruling sets problem family includes many natural and widely
studied problems. For example, by setting β = 0, we obtain α-arbdefective c-coloring, by then
setting α = 0 we obtain c-coloring. If we set α = 0 and c = 1, we obtain (2, β)-ruling sets, and
by then setting β = 1 we obtain the maximal independent set problem. Instead, if we set β = 0,
α = ∆ − 1, and c = 1, we obtain sinkless coloring (which is, up to one round of communication,
equivalent to sinkless orientation) [BFH+16], while if we set β = 1 and c = 1, we obtain α-outdegree
dominating sets [BBKO21]. Hence, lower bounds for this general problem family are highly useful
as they imply lower bounds for all the important problems that are special cases of this family.

In [BBKO22], it has been shown that computing an α-arbdefective c-colored β-ruling set in the
LOCAL model requires Tdet = Ω(min{β( ∆

(α+1)c)
1/β), log∆ n}) rounds for deterministic algorithms

and Trand = Ω(min{β( ∆
(α+1)c)

1/β), log∆ log n}) rounds for randomized ones, assuming that β is

small enough to imply Tdet−β = Ω(Tdet) in the deterministic case, and Trand−β = Ω(Trand) in the
randomized case. This result is tight: in fact, these lower bounds hold even if a (∆+ 1)-coloring is
provided to the nodes, and in such a setting it is possible to compute an α-arbdefective c-colored
β-ruling set in O(β( ∆

(α+1)c)
1/β)) rounds.

In Section 6, we show that similar lower bounds hold in the Supported LOCAL model as well.
More in detail, we focus on the case β ≥ 1 (since the case β = 0 is already handled by Theorem 1.6),
and prove the following theorem, which, for β = O(1) and ∆ sufficiently large compared to ∆′,
matches the lower bounds known in the LOCAL model.
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Theorem 1.7 (Simplified version of Theorem 6.1). Let α ≥ 0, c ≥ 1, β ≥ 1 be integers, and
assume β = O(1) is a constant, i.e., it does not depend on n and ∆. Let ∆ be the degree of
the support graph, and ∆′ be the degree of the input graph. Let ∆̄ = min{∆′,∆/ log∆}. Then,

the α-arbdefective c-colored β-ruling set problem requires Ω(min{( ∆̄
(α+1)c)

1/β), log∆ n}) deterministic

rounds and Ω(min{( ∆̄
(α+1)c)

1/β), log∆ log n}) randomized rounds.

We note that, in Theorem 1.6, the ∆/ log∆ term is necessary: the support graphs for which
the theorems are proved satisfy that their chromatic number is upper bounded by O(∆/ log∆),
and hence the nodes can compute an O(∆/ log∆)-coloring without communication. Similarly, it
is known that, given a k-coloring, one can compute an α-arbdefective c-colored β-ruling set in
O( k

(α+1)c)
1/β) rounds [BBKO22], and hence the term ∆/ log∆ is required also in Theorem 1.7.

In [AAPR23] the authors noted that MIS can be solved in χG rounds, where χG is the chromatic
number of the support graph G. As an open question, they asked whether this bound could be
improved. Theorem 1.7 implies that this is not possible, at least for deterministic algorithms.
In fact, if we set ∆ := ∆′ log∆′ and ∆′ := logn/ log log n, we get that ∆̄ = Θ(∆′) and that
∆̄ = Θ(log n/ log log n). Then, the lower bound results in Ω(min{log n/ log log n, loglogn n}) =
Ω(log n/ log logn), and G has chromatic number Θ(∆/ log∆) = Θ(log n/ log logn).

2 Preliminaries

The LOCAL model. In the LOCAL model of distributed computation, the nodes of an n-node
(hyper)graph are provided with a unique ID, typically in 1, . . . , nc for some integer c > 0. The
typical assumptions on the initial knowledge is that each node is aware of its own ID, its own
degree in the graph (i.e., the number of neighboring nodes), the maximum degree ∆, and the total
number of nodes in the (hyper)graph. (In the case of hypergraphs, nodes know also the rank r.)
In the randomized version of the LOCAL model, nodes have access to an infinite string of random
bits. In this setting, the computation proceeds in synchronous rounds, where at each round nodes
exchange messages with neighbors and perform some local computation. The size of the messages
and the local computation can be arbitrarily large. The runtime of a distributed algorithm running
in the LOCAL model is determined by the time it is needed for the very last node to terminate and
produce its own output. In the randomized setting, we require that the randomized distributed
algorithm succeeds with high probability, that is with probability at least 1 − 1/nc for any fixed
constant c ≥ 1.

The Supported LOCAL model. In the Supported LOCAL model, we are given a (hyper)graph
G = (V,E) (called the support graph) and a sub(hyper)graph G′ = (V ′, E′) of G (called the input
graph). The number of nodes of G is denoted by n, the degree of G by ∆, and the degree of G′ by
∆′. The rank in G is denoted by r and the rank in G′ is denoted by r′. Initially, nodes know G and
which of their incident (hyper)edges belong to G′ (if any). Also, nodes know ∆′, r′ and the total
number of nodes in G′. The goal is to solve some graph problem of interest in the subgraph G′. The
computation proceeds in synchronous rounds, where at each round nodes exchange messages with
their neighbors in G and perform some local computation. Then, as in the LOCAL model: the size
of the messages and the local computation can be arbitrarily large; the runtime of a distributed
algorithm running in the Supported LOCAL model is determined by the time it is needed for the
very last node to terminate and produce its own output; in the randomized setting, we require
that the randomized distributed algorithm succeeds with probability at least 1− 1/nc for any fixed
constant c ≥ 1.
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Problems in the black-white formalism. In order to apply round elimination, it is required
to describe a problem in a formal language, called black-white formalism, that we now describe
(the actual definition of this formalism is more general, and here we present a version that is
simplified but that still fits our needs). A problem Π described in the black-white formalism is a
tuple (Σ, CW , CB) satisfying the following.

• Σ is a finite set of labels.

• CW is a set of multisets of elements of Σ, where all multisets have the same size.

• CB is a set of multisets of elements of Σ, where all multisets have the same size.

Let dW be the size of the multisets in CW , and dB be the size of the multisets in CB. We will
use problems defined in the black-white formalism in two settings, and for distinguishing the two
cases we will use different notations. One case will be the one of bipartite 2-colored graphs. By
bipartitely solving a problem Π on G we mean the following.

• G = (W ∪ B,E) is a graph that is properly 2-colored, and in particular each node v ∈ W is
labeled c(v) = W , and each node v ∈ B is labeled c(v) = B.

• The task is to assign a label o(e) ∈ Σ to each edge e ∈ E such that, for each node v ∈ W that
has degree exactly dW (resp. v ∈ B that has degree exactly dB) it holds that the multiset of
incident labels is in CW (resp. in CB).

An assignment of labels to edges satisfying these requirements is called bipartite solution. The
second case will be the one of hypergraphs. By non-bipartitely solving a problem Π we mean the
following.

• G = (V,E) is a hypergraph.

• The task is to assign a label o(v, e) ∈ Σ to each node-hyperedge pair (v, e) ∈ V × E, such
that, for each node v ∈ V that has degree exactly dW (resp. for each hyperedge e ∈ E that
has rank exactly dB) it holds that the multiset of incident labels is in CW (resp. in CB).

An assignment of labels to node-edge pairs satisfying these requirements is called non-bipartite so-
lution. In other words, non-bipartitely solving a problem Π on a hypergraph G means to bipartitely
solve Π on the incidence graph of G, and a non-bipartite solution for a problem Π on a hypergraph
G is a bipartite solution for Π on the incidence graph of G. We will use the term white constraint
in order to refer to CW , and black constraint in order to refer to CB. In the case of graphs, we may
use the term node constraint to refer to CW and edge constraint to refer to CB.

Note that, in the variant of black-white formalism that we provided, all white nodes with degree
different from dW do not need to satisfy any constraint, and all black nodes with degree different
from dB do not need to satisfy any constraint. Moreover, nodes do not receive additional labels as
inputs.

We will use the term (black or white) configuration in order to refer to a multiset contained
in a (black or white) constraint. We may represent configurations by using multisets, or by using
regular expressions. For example {A,B,C,D} is a configuration, and ABCD is the same configura-
tion. We may use regular expressions of the form, e.g., [AB][CD]E, to denote all configurations in
{ACE,ADE,BCE,BDE}, and we call such configurations condensed configurations. For two labels
X,Y, we say that X is at least as strong as Y w.r.t. a constraint C if, for all configurations containing
Y, it holds that by replacing an arbitrary amount of Y with X we obtain a configuration that is
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also in C. The diagram of Π w.r.t. a constraint C is a directed graph representing the strength
relation: there is a directed path from Y to X if X is at least as strong as Y. We call a set S of
labels right-closed w.r.t. a diagram if, the fact that a label ℓ is in S, implies that all nodes reachable
from ℓ in the diagram are also in S. An example of encoding of a problem in this formalism, and
an example of diagram, is presented in Appendix A.

Let Π′ := (Σ′, C ′
W , C ′

B) and Π := (Σ, CW , CB) be two problems in the black-white formal-

ism, both having white configurations of size dW and black configurations of size dB. Let C⃗W =
{(ℓ1, . . . , ℓdW ) | {ℓ1, . . . , ℓdW } ∈ CW }, that is we treat the multisets in CW as ordered tuples. Let C⃗ ′

W

be defined analogously. The problem Π′ is a relaxation of Π if there exists a function f : C⃗W → C⃗ ′
W

satisfying the following. For each label ℓ ∈ Σ, let r(ℓ) := {ℓ′i ∈ Σ′ | ∃C = (ℓ1, . . . , ℓdW ) ∈ C⃗W , C ′ =

(ℓ′1, . . . , ℓ
′
dW

) ∈ C⃗ ′
W , f(C) = C ′, ∃i s.t. ℓi = ℓ}, that is, the set r(ℓ) contains all possible labels to

which ℓ is mapped to, when using the mapping f . For every black configuration {ℓ1, . . . , ℓdB}, it is
required that any choice over r(ℓ1)× . . .× r(ℓdB ) is in CB. In other words, Π′ is a relaxation of Π
if there exists a way to map the configurations of white nodes in such a way that, if a solution is
valid for Π, then the obtained solution is valid for Π′.

Black and white algorithms. In the context of algorithms for bipartite 2-colored graphs, a
white (resp. black) algorithm with runtime T for a problem Π (in the black-white formalism) on a
graph G is a function that takes as input the radius-T neighborhood of a white (resp. black) node
v and provides a labeling for the edges incident to v, such that the constraints of Π are satisfied on
all the white and all the black nodes.

In other words, a white algorithm running on a bipartite graph is an algorithm where (black and
white) nodes communicate for T rounds, and then the nodes responsible for assigning an output
for the edges of the graph are solely the white nodes, and the black nodes do not even need to know
the outputs for their incident edges.

Round elimination. For the purpose of understanding the main content of our paper, it is
sufficient to know that there exists a function RE that receives as input a problem Π in the black-
white formalism, and outputs a problem Π′ := RE(Π) in a mechanical and clearly defined way, such
that if the white (resp. black) configurations of Π have size ∆ (resp. r), then also the white (resp.
black) configurations of Π′ have size ∆ (resp. r). The actual definition of this function, and how
the complexity of Π′ is related to Π, is only required when diving into the proofs of Appendix B.
Hence, we defer the definition of such a function to that section.

Lower bound sequence. Let Π0, . . . ,Πk be a sequence of problems in the black-white formalism.
This sequence is a lower bound sequence if, for each 1 ≤ i ≤ k, the problem Πi is a relaxation of
RE(Πi−1). In this paper, we will not explicitly compute lower bound sequences. In fact, for the
purposes of our proofs, we will only need to prove statements about the last problem of some
sequences that have already been defined in different papers.

High-girth low-independence graphs. Throughout the paper, we will exploit the existence
of a specific family of graphs. We report a known result from graph theory, shown in [Alo10].

Lemma 2.1 ([Alo10]). There exists two constants α and ϵ such that, for any n and ∆ satisfying
that n∆ is even and that 2 ≤ ∆ < n, there exists a ∆-regular graph of n nodes that has girth at
least ε log∆ n and independence number at most αn log∆

∆ .
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3 A New Technique

In this section, we prove that understanding whether a problem Π can be solved in 0 rounds in
the Supported LOCAL model is equivalent to understanding whether another problem Π̄ admits
a solution in the support graph G. The latter is conceptually easier than the former, since it does
not require to think about distributed algorithms that run on subgraphs, but it just requires to
think about existence of solutions. We note that a similar approach, but carefully crafted for the
case of the sinkless orientation problem (which behaves significantly nicer in the round elimination
framework), has been used in [BKK+23].

Definition 3.1. Let Π be a problem in the black-white formalism, where the white configurations
have size ∆′ and the black configurations have size r′. For a pair of integers ∆ ≥ ∆′ and r ≥ r′,
the problem Π̄ := lift∆,r(Π) is a problem in the black-white formalism defined as follows.

• ΣΠ̄ = {L | L ⊆ ΣΠ ∧L ̸= ∅ ∧L is right-closed w.r.t. the black diagram of Π}, that is, the set
of labels of Π̄ contains all possible non-empty subsets of the labels of Π that are right-closed
w.r.t. the black diagram of Π. These labels are called label-sets.

• The black constraint of Π̄ contains all multisets C = {L1, . . . , Lr} of size r satisfying the
following. For all subsets S = {Li1 , . . . , Lir′} of C of size r′, for any choice ℓ1 ∈ Li1 , . . . , ℓr′ ∈
Lir′ , it must hold that the configuration {ℓ1, . . . , ℓr′} is in the black constraint of Π.

• The white constraint of Π̄ contains all multisets C = {L1, . . . , L∆} of size ∆ satisfying the
following. For all subsets S = {Li1 , . . . , Li∆′} of C of size ∆′, there exists a choice ℓ1 ∈
Li1 , . . . , ℓ∆′ ∈ Li∆′ such that the configuration {ℓ1, . . . , ℓ∆′} is in the white constraint of Π.

Theorem 3.2. Let r, ∆, and n be integers. Let G be a (∆, r)-biregular graph of n nodes, and let Π
be a problem in the black-white formalism satisfying that the white configurations have size ∆′ ≤ ∆
and the black configurations have size r′ ≤ r. The problem Π can be bipartitely solved in 0 rounds
by a white algorithm in the Supported LOCAL model on G if and only if there exists a bipartite
solution for Π̄ := lift∆,r(Π) on G.

Proof. We first prove that the existence of a bipartite solution for Π̄ on G implies a 0-round white
algorithm for Π. We define the algorithm A on the white nodes v on G = (V,E) as follows. Node
v computes a solution S for Π̄ without communication. This is possible since v knows G. Note
that this operation does not depend on the input of v, but solely on G, and hence we get that all
nodes compute the same solution S. Then, node v considers its incident edges that are part of the
input graph G′. If the count of these edges is not ∆′, then v, for each edge e, outputs an arbitrary
element from the set Le assigned to e in the solution for Π̄. Otherwise, let the edges be e1, . . . , e∆′ .
Let L1, . . . , L∆′ be the sets of labels assigned to these edges in the solution S. By the definition
of the white constraint of Π̄, there exists a choice of labels ℓ1 ∈ L1, . . . , ℓ∆′ ∈ L∆′ satisfying that
the configuration {ℓ1, . . . , ℓ∆′} is in the white constraint of Π. Node v outputs ℓ1 on e1, ℓ2 on e2,
and so on. By construction, the white constraint of Π is satisfied on all nodes. Moreover, by the
definition of the black constraint of Π̄, any output given by the white nodes satisfies the constraints
of Π on the black nodes.

We now prove that, given a white algorithm A that solves Π in 0 rounds, we can find a bipartite
solution for Π̄ on G. While for proving the existence of a solution for Π̄ it would be sufficient to
provide a centralized algorithm that computes it, in the following we provide a distributed algorithm
that finds a solution for Π̄. Each white node v computes a solution as follows. For each edge e
incident to v on G, node v initializes a set Le to be the empty set. Then, node v enumerates all
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possible choices of ∆′ edges e1, . . . , e∆′ over its ∆ edges. Observe that, since A runs in 0 rounds, its
output on v solely depends on G, n, ∆, r, ∆′, r′, and on which edges of v are selected to be in G′.
Thus, v picks an arbitrary subgraph G′ of G that has white degree bounded by ∆’, black degree
bounded by r′, and that includes the edges e1, . . . , e∆′ , and computes (without communication) the
output that A would provide on G′. Let this output be ℓ1, . . . , ℓ∆′ . Node v adds ℓ1 to Le1 , ℓ2 to
Le2 , and so on. At the end, for each edge e of G, node v outputs Le.

While the obtained sets are not necessarily right-closed, we first prove that they satisfy the
second and third property of Definition 3.1. We will then show that we can add elements to the
sets assigned to the edges in order to make them right-closed, while still satisfying the second and
third property.

We start by proving that the white constraint of Π̄ is satisfied. Suppose, for a contradiction,
that the multiset C = {L1, . . . , L∆} obtained by v does not satisfy the white constraint of Π̄.
This means that there exists a subset S = {Li1 , . . . , Li∆′} of C of size ∆′ where all choices ℓ1 ∈
Li1 , . . . , ℓ∆′ ∈ Li∆′ satisfy that the configuration {ℓ1, . . . , ℓ∆′} is not in the white constraint of Π.
This is in contradiction with the correctness of A, since, when v considered the edges ei1 , . . . , ei∆′ ,
it added to the sets Li1 , . . . , Li∆′ the outputs ℓ1, . . . , ℓ∆′ of A.

We now prove that the black constraint of Π̄ is satisfied. Suppose, for a contradiction, that the
multiset C = {L1, . . . , Lr} obtained by a black node u does not satisfy the black constraint of Π̄.
This means that there exists a subset S = {Li1 , . . . , Lir′} of C of size r′ where there exists a choice
ℓ1 ∈ Li1 , . . . , ℓr′ ∈ Lir′ satisfying that the configuration {ℓ1, . . . , ℓr′} is not in the black constraint
of Π. We show that this implies that A must fail on some input graph G′. We construct the graph
G′ as follows. For each edge eij of the black node u, let vj be the white node connected to eij . We
select ∆′ edges of each vj in such a way that:

• The edge eij is selected;

• The other ∆′ − 1 edges are selected in such a way that A, when run on vj , outputs ℓj on the
edge eij .

By construction, such a choice exists. We complete G′ in an arbitrary way, such that the maximum
white degree is bounded by ∆′ and the black degree is bounded by r′. Observe that A must fail on
G′, and in particular on node u, since it gets the configuration {ℓ1, . . . , ℓr′}.

We now prove that we can add elements to the sets assigned to the edges in order to make them
right-closed w.r.t. the black diagram of Π, while still preserving the second and third requirement
of Definition 3.1. Let L be the set assigned to edge e. For each element ℓ ∈ L, we add to L all the
successors of ℓ in the black diagram of Π. Clearly, since we did not remove elements from L, the
white constraint of Π̄ is still satisfied. Then, by the definition of the black diagram of Π, it holds
that, if a configuration C = {ℓ1, . . . , ℓr′} is allowed, then any configuration obtained by replacing
arbitrary elements of C with elements that can be reached by them in the diagram is also allowed.
Thus, the black constraint of Π̄ is still satisfied.

Note that, by following the exact same arguments, we obtain the following corollary.

Corollary 3.3. Let r, ∆, and n be integers. Let G be a ∆-regular r-uniform hypergraph with n
nodes. Let Π be a problem in the black-white formalism satisfying that the white configurations have
size ∆′ ≤ ∆ and the black configurations have size r′ ≤ r. The problem Π can be non-bipartitely
solved in 0 rounds by a white algorithm in the Supported LOCAL model on G if and only if there
exists a non-bipartite solution for Π̄ := lift∆,r(Π) on G.
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In Appendix B, we will prove that a lower bound sequence Π0, . . . ,Πk, combined with the non-
0-round solvability of Πk in the Supported LOCAL model, implies a lower bound of min{2k, g−4

2 }
deterministic rounds in support graphs of girth g. As we will see, the sequence Π0, . . . ,Πk is defined
in the same exact way as when using round elimination in the standard LOCAL model. Hence, we
can reuse lower bound sequences that are already known from LOCAL lower bounds, and we only
need to argue about non-0-round solvability of Πk. In the following, we assume that, on instances
of size n, the ID space is exactly {1, . . . , n}. This is without loss of generality: since all nodes
know the support graph, given an ID assignment over a larger domain, the nodes can compute
a consistent ID assigment over {1, . . . , n} without communication. In Appendix C, we will prove
that, if a problem Π has deterministic complexity DΠ(n), and randomized complexity RΠ(n), then
DΠ(n) ≤ RΠ(2

3n2
). We now combine these results with Theorem 3.2 to obtain the following.

Theorem 3.4. Let Π be a problem in the black-white formalism. Let ∆′ be the size of the multisets
in the white constraint of Π, and let r′ be the size of the multisets in the black constraint of Π.
Assume ∆′ ≥ 2 and r′ ≥ 2. Let ∆ and r be arbitrary integers satisfying ∆ ≥ ∆′ and r ≥ r′. Let
Π0, . . . ,Πk be a lower bound sequence, where Π0 = Π. Let Π′ be some relaxation of Πk. Assume
that there exist constants c > 0 and ε > 0, and a family G of graphs satisfying that, for any
n ≥ (r∆)c, there exists a graph G ∈ G satisfying the following.

• G has at least n/(∆r)c and at most n nodes.

• G is (∆, r)-biregular.

• G has girth at least ε log∆r n.

• There does not exist a valid bipartite solution for lift∆,r(Π
′) on G.

Then, for all n, there exists a bipartite graph in which white nodes have degree bounded by ∆,
black nodes have degree bounded by r, and there are exactly n nodes, where any algorithm for
bipartite-solving Π requires at least min{2k, (ε(log∆r(n)− c)− 4)/2} − 1 deterministic rounds and

min{2k, (ε(log∆r(
√

1
3 log n)− c)− 4)/2} − 1 randomized rounds in the Supported LOCAL model.

Proof. We start by proving the deterministic bound. If n < (r∆)c, then the claimed lower bound
is at most 0, and hence it trivially holds. Thus, in the following, we assume n ≥ (r∆)c. We pick
a graph G satisfying the conditions of the statement, and let n′ be the number of nodes in G.
We consider the graph Ḡ containing two connected components: one is G, and the other is an
arbitrary tree where white nodes have maximum degree ∆ and black nodes have maximum degree
r, containing n − n′ nodes. We obtain a graph with exactly n nodes. By assumption, there is no
solution for lift∆,r(Π

′) on G (and hence neither on Ḡ), and by Theorem 3.2 this implies that Π′

cannot be solved in 0 rounds by a white algorithm on G.
Hence, by Theorem B.2, solving Π on the component G requires at least min{2k, g−4

2 } rounds
for a white algorithm, where g is the girth of G. By assumption, g is at least ε log∆r(n/(∆r)c) =
ε(log∆r(n)− c). Hence, solving Π requires at least min{2k, (ε(log∆r(n)− c)− 4)/2} deterministic
rounds for a white algorithm on the component G, and hence also on Ḡ. Since a black algorithm
can be converted, by spending 1 additional round, into a white algorithm, we obtain the claimed
deterministic lower bound.

We now lower bound the randomized complexity. By Lemma C.2, DΠ(n) ≤ RΠ(2
3n2

), and

hence RΠ(n) ≥ DΠ(
√

1
3 log n). Hence, the claim follows.

By replacing, in the proof of Theorem 3.4, the application of Theorem 3.2, Theorem B.2, and
Lemma C.2, with Corollary 3.3, Corollary B.3, and Theorem C.3, we obtain the following.
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Corollary 3.5. Let Π be a problem in the black-white formalism. Let ∆′ be the size of the multisets
in the white constraint of Π, and let r′ be the size of the multisets in the black constraint of Π.
Assume ∆′ ≥ 2 and r′ ≥ 2. Let ∆ and r be arbitrary integers satisfying ∆ ≥ ∆′ and r ≥ r′. Let
Π0, . . . ,Πk be a lower bound sequence, where Π0 = Π. Let Π′ be some relaxation of Πk. Assume
that there exist constants c > 0 and ε > 0, and a family G of hypergraphs satisfying that, for any
n ≥ ∆c, there exists a hypergraph G ∈ G satisfying the following: G has at least n/(∆r)c and at
most n nodes; G is a ∆-regular r-uniform linear hypergraph; G has girth at least ε log∆r n; There
does not exist a valid non-bipartite solution for lift∆,r(Π

′) on G.
Then, for all n, there exists a hypergraph of maximum degree ∆ and rank r, with exactly n nodes,

where any algorithm for non-bipartite-solving Π requires at least min{k, (ε(log∆r(n)−c)−4)/2}−1

deterministic rounds and min{k, (ε(log∆r(
3

√
1
4 log n) − c) − 4)/2} − 1 randomized rounds in the

Supported LOCAL model.

4 Variants of Maximal Matching

In this section, we prove lower bounds for x-maximal y-matchings in the Supported LOCAL model.
More in detail, we prove the following theorem.

Theorem 4.1. Let G be the family of bipartite 2-colored ∆-regular graphs of girth Ω(log∆ n). As-
sume that the support graph is from G, and that the input graph has degree ∆′ satisfying ∆ ≥ c∆′

for some large-enough constant c. Then, the x-maximal y-matching problem requires Ω(min{(∆′ −
x)/y, log∆ n}) rounds in the deterministic Supported LOCAL model and Ω(min{(∆′−x)/y, log∆ log n})
rounds in the randomized Supported LOCAL model.

4.1 Problem Definition

In order to prove Theorem 4.1, we consider a family of problems that we will later show to be
strongly related with x-maximal y-matchings.

A family of problems in the black-white formalism. We define Π∆(x, y) as follows.

Definition 4.2 (The problem Π∆(x, y)). The problem Π∆(x, y) is defined via the following white
and black constraints.

ΠW
∆ (x, y):

Xy−1MO∆−y

XyOxP∆−y−x

XyZO∆−y−1

ΠB
∆(x, y):

[MZPOX]y−1 [MX][POX]∆−y

[MZPOX]y [POX]x [OX]∆−y−x

[MZPOX]y [X][POX]∆−y−1

We observe that, by increasing the value of the parameters x and y, we obtain a relaxed problem.

Observation 4.3. For any x′ ≥ x and any y′ ≥ y, the problem Π∆(x
′, y′) is a relaxation of

Π∆(x, y).

Proof. We show that a white node v can convert a solution for Π∆(x, y) into a solution for Π∆(x
′, y′)

without communication. Each white node v operates as follows. If its output is Xy−1MO∆−y, it
converts the required amount of O into X in an arbitrary way, in order to obtain the configuration
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Xy′−1MO∆−y′ . If its output is XyOxP∆−y−x, it converts the required amount of P into O or X,
and the required amount of O into X, in an arbitrary way, in order to obtain the configuration
Xy′Ox′

P∆−y′−x′
. If its output is XyZO∆−y−1, it converts the required amount of O into X, in an

arbitrary way, in order to obtain the configuration Xy′ZO∆−y′−1. Observe that, since we only
replace labels with ones that can be reached from them in the black diagram of the problem
(depicted in Figure 1), then the constraints are still satisfied on the black nodes.

What is known about these problems. In [BO20], it has been shown that the problem
Π∆(x, y) is strictly related to x-maximal y-matching, and in particular that, given a solution for
the latter, it is possible to solve the former in just 2 additional rounds of communication.

Lemma 4.4 (Lemma 4.2 and 4.3 of [BO20]). In the LOCAL model, given a solution for x-maximal
y-matching, it is possible to solve Π∆(x, y) in 2 rounds.

In [BO20], it is shown how problems Π∆(x, y) with different parameters are related.

Lemma 4.5 (Lemma 4.1 of [BO20], rephrased). Assume x + 2y ≤ ∆. Then, for any ∆ ≥ 2,
1 ≤ y ≤ ∆− 1, and 0 ≤ x ≤ ∆− y, Π∆(x+ y, y) is a relaxation of RE(Π∆(x, y)).

By applying Lemma 4.5 for k times, we obtain the following.

Corollary 4.6. Assume x+ (k + 1)y ≤ ∆. Then, there exists a lower bound sequence Π1, . . . ,Πk,
where Π1 = Π∆(x, y) and Πk = Π∆(x+ ky, y).

4.2 A Lower Bound for the Supported LOCAL Model

In the remainder of the section we prove the claimed lower bound for x-maximal y-matchings in the
Supported LOCAL model. More in detail, by exploiting Theorem 3.4, we will prove that, for any
fixed ∆, the problem Π∆′(x, y), in the case where the support graph has degree bounded by ∆ and
the input graph has degree bounded by ∆′ satisfying ∆ ≥ c∆′ for some large-enough constant c,
requires at least min{k, ε log∆ n}−1 deterministic and min{k, ε log∆ log n}−1 randomized rounds,
for some absolute constant ε (i.e., that does not depend on ∆ and n), where k := ⌊∆′−x

y ⌋ − 2.
By Lemma 4.4, by decreasing the lower bound by 2, we obtain a lower bound that holds also for
x-maximal y-matchings. Note that such a statement implies Theorem 4.1. Hence, in the following,
let ∆ be a fixed value.

Observe that x+ ky ≤ x+ (∆
′−x
y − 2)y ≤ x+∆′ − x− 2y = ∆′ − 2y ≤ ∆′ − 1− y =: x′. Hence,

by Observation 4.3, Π∆′(x′, y) is a relaxation of Πk. Thus, there exists a lower bound sequence of
length k := ⌊∆′−x

y ⌋ − 2, where the first problem is Π∆′(x, y) and the last problem is Π∆′(x′, y).

Hence, by Theorem 3.4 (applied with c = 1), if we prove that, for any n ≥ ∆2, there exists a ∆-
regular bipartite graph G with at least n/∆2 nodes and at most n nodes, of girth at least ϵ′ log∆ n
(for some absolute constant ε′), and where lift∆,∆(Π∆′(x′, y)) has no bipartite solution, then we
obtain a lower bound for Π∆′(x, y), as desired.

In the remainder of the section, we prove that such graphs exist. For a given n, we consider
a number n′ ∈ {n, n − 1, n − 2, n − 3} such that n′∆/2 is even. We take a graph of size n′/2
from the family given by Lemma 2.1, and then we take its bipartite double cover. We obtain a
graph G of size n′ that is ∆-biregular and that satisfies the requirement on the girth. Note that
n/∆2 ≤ n/4 ≤ n′ ≤ n, as required. Let Π := Π∆′(x′, y), and let Π̄ := lift∆,∆(Π). What remains to
be done is to show that, on G, the problem Π̄ is unsolvable. For ease of reading, we report here
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Figure 1: Black diagram of Π.

the problem Π.

ΠW
∆′(x′, y):

Xy−1MO∆′−y

XyO∆′−1−yP

XyZO∆−y−1

ΠB
∆′(x′, y):

[MZPOX]y−1 [MX][POX]∆
′−y

[MZPOX]y [POX]∆
′−1−y [OX]

[MZPOX]y [X][POX]∆
′−y−1

In the following, we denote with 2n the number of nodes of G. Assume, for a contradiction, that
there exists a bipartite solution for Π̄ on G. For each edge e, let Se be the set of labels (of Π)
assigned to e. In the following, with L1...Lk , we denote the set {L1, . . . , Lk}.

Recall that, by Corollary 3.3, each set Se is non-empty and right-closed w.r.t. the black diagram
of Π, which is shown in Figure 1. That is, if in the diagram there is an arrow from a label A to a
label B, then A ∈ Se =⇒ B ∈ Se. Thus, each set Se can only be one of the following label-sets:
X , OX , MX , MOX , POX , MPOX , ZMPOX .

In order to prove that there cannot be a solution for Π̄, we apply the following strategy. First,
we prove that, in order to satisfy the constraints of Π̄ on the white nodes, at least some amount of
edges need to be labeled with label-sets that contain P. Then, we prove that, in order to satisfy
the constraints of Π̄ on the black nodes, at most some amount of edges need to be labeled with
label-sets that contain P. We then show that, for c large enough, the two provided bounds are not
compatible, implying a contradiction. We first prove the following lemma.

Lemma 4.7. Let 2n be the number of nodes of G. Any solution for Π̄ must satisfy that at most
ny edges are labeled with label-sets containing M.

Proof. Let v be a black node. We prove that at most y edges incident to v are labeled with label-
sets containing M. Suppose for a contradiction that at least y+1 edges incident to v have label-sets
containing M. Then, since each configuration in ΠB

∆′(x′, y) allows at most y M labels, we obtain that
there exists a choice of ∆′ edges incident to v satisfying the following. The ∆′ edges have label-sets
assigned L1, . . . , L∆′ , and there exists a choice ℓ1 ∈ L1, . . . , ℓ∆′ ∈ L∆′ that is not in ΠB

∆′(x′, y),
which a contradiction with the definition of the black constraint of Π̄ in Definition 3.1.

Lemma 4.8. Let 2n be the number of nodes of G. Any solution for Π̄ must satisfy that at least
n(∆−∆′

2 − y) edges are labeled with label-sets containing P, that is, with POX , MPOX , or ZMPOX .

Proof. Observe that, since ∆′ − y− x′ = ∆′ − y− (∆′ − 1− y) = 1, each configuration in ΠW
∆′(x′, y)

requires at least one label in {M,P,Z}. Thus, incident to v, there are at most ∆′−1 edges that are
either X or OX , since otherwise, similarly as in the proof of Lemma 4.7, we could pick ∆′ edges
that do not contain any label in {M,P,Z}, reaching a contradiction. Since all the label-sets that
are not X or OX contain either an M or a P, then we conclude that there are at least ∆−∆′ + 1
edges with assigned label-sets that contain M or P, that is, MX , MOX , POX , MPOX , ZMPOX .
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We split the white nodes into two parts. A white node is called M -node if it has at least
(∆−∆′)/2 edges with assigned label-sets that contain the labelM, and it is called P -node otherwise.

Observe that there cannot be too many M -nodes. In fact, suppose for a contradiction that
there are at least 2ny

∆−∆′ + 1 M -nodes. We obtain that the total number of edges having M in their

label-sets is at least ( 2ny
∆−∆′ + 1)∆−∆′

2 > ny, a contradiction with Lemma 4.7.

We thus get that the amount of P -nodes is at least n(1 − 2y
∆−∆′ ). Since these nodes have at

least ∆−∆′+1 edges with assigned label-sets containing M or P, but strictly less than (∆−∆′)/2
edges with assigned label-sets containing M, we obtain that P -nodes have, in total, at least n(1−

2y
∆′−∆)∆−∆′

2 = n(∆−∆′

2 − y) edges whose assigned label-sets contain P.

Lemma 4.9. Let 2n be the number of nodes of G. Any solution for Π̄ must satisfy that at most
n(∆′ − 1) edges are labeled with label-sets containing P, that is, with POX , MPOX , or ZMPOX .

Proof. Let v be a black node. Since ∆′ − y − x′ = 1, we get that P∆′
is not in ΠB

∆′(x′, y). By the
definition of Π̄, we get the following. Let e1, . . . , e∆′ be an arbitrary choice of ∆′ edges incident to
v, and let L1, . . . , L∆′ be the label-sets assigned to these edges. Any choice ℓ1 ∈ L1, . . . , ℓ∆′ ∈ L∆′

must satisfy that ℓ1 . . . ℓ∆′ is a configuration allowed by ΠB
∆′(x′, y). We thus get that, incident to

v, there can be at most ∆′− 1 edges with assigned label-sets containing P, showing the lemma.

We now prove that Lemma 4.8 is in contradiction with Lemma 4.9. We fix c = 5, that is,
∆ = 5∆′. From Lemma 4.8, we obtain that the amount nP of edges with label-sets containing P
can be bounded as follows.

nP ≥ n(
∆−∆′

2
− y) ≥ n(2∆′ − y) ≥ n∆′

From Lemma 4.9, we obtain the following bound.

nP ≤ n(∆′ − 1)

Thus, we reach a contradiction.

5 Arbdefective Coloring

In this section, we prove the following.

Theorem 5.1. Let G be the family of ∆-regular graphs of girth Ω(log∆ n). Assume that the sup-
port graph is from G, and that the input graph has degree ∆′. Let k = min{∆′, ε∆/ log∆}, for
some small-enough constant ε. If (α + 1)c ≤ k, then the α-arbdefective c-coloring problem, in the
Supported LOCAL model, requires Ω(log∆ n) deterministic rounds and Ω(log∆ log n) randomized
rounds.

5.1 Problem Definition

In order to prove Theorem 5.1, we consider a family of problems that we will later show to be
strongly related with α-arbdefective c-coloring.
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A family of problems in the black-white formalism. We define a problem Π∆(c) in the
black-white formalism as follows.

Definition 5.2 (The problem Π∆(c)). Let C := {1, . . . , c}, and let ΣΠ∆(c) := {X} ∪ {ℓ(C) | C ⊆
C and C ̸= ∅}. The problem Π∆(c) is defined via the following white (node) and black (edge)
constraints.

ΠW
∆ (c):

ℓ(C)∆−xXx, where x = |C| − 1,

for all C ⊆ C, C ̸= ∅

ΠB
∆(c):

ℓ(C1)ℓ(C2), for all C1, C2 s.t. C1 ∩ C2 = ∅,
where C1, C2 ̸= ∅

XL, for all L ∈ ΣΠ∆(c)

What is known about these problems. In [BBKO22], it has been shown that Π∆(c) is strictly
related to α-arbdefective c-coloring, and in particular that a solution for α-arbdefective c-coloring
can be converted in 0 rounds into a solution for Π∆((α + 1)c), implying that Π∆((α + 1)c) is at
least as easy as α-arbdefective c-coloring.

Lemma 5.3 (Theorem 8.2 (in the ArXiv version) of [BBKO22]). In the LOCAL model, given a
solution for α-arbdefective c-coloring, it is possible to solve Π∆((α+ 1)c) in 0 rounds.

Moreover, in [BBKO22], it has been shown that, if (α+1)c ≤ ∆, then Π∆((α+1)c) is a so-called
fixed point under round elimination, meaning that applying round elimination on the problem gives
the problem itself, and hence that there exists a lower bound sequence of infinite length.

Lemma 5.4 (Section 4 (in the ArXiv version) of [BBKO22]). Assume (α + 1)c ≤ ∆. Then,
RE(Π∆((α+ 1)c)) = Π∆((α+ 1)c).

Corollary 5.5. Assume (α+1)c ≤ ∆. Then, there exists a lower bound sequence of infinite length
where all problems are equal to Π∆((α+ 1)c).

5.2 A Lower Bound for the Supported LOCAL Model

In order to prove Theorem 5.1, we follow the same strategy as in the case of x-maximal y-matchings,
that is, we operate as follows. Let k = min{∆′, ε∆/ log∆}, for some small-enough constant ε. We
show that, for any n and ∆ such that n ≥ ∆2, there exists a ∆-regular graph G with at least n/∆2

nodes and at most n nodes, of girth at least ϵ′ log∆ n (for some absolute constant ε′), and where,
assuming (α+1)c ≤ k, Π′ := lift∆,2(Π∆′(α+1)c)) has no non-bipartite solution. For this purpose,
we use exactly the graph family G given by Lemma 2.1.

Hence, in the following, let G ∈ G. We need to prove that, on G, Π′ is not non-bipartitely
solvable. We actually prove a different statement, that will be useful also in the next section. We
will show that this statement implies what we want, that is, that Π′ admits no solution in G. We
start by defining what we mean by solving a problem Π on a subset of nodes S of G.

Definition 5.6 (S-solution of Π). Let G be a graph, and let Π be a problem defined on G in the
black-white formalism. A labeling of G is an S-solution of Π if the following holds.

• The node constraint of Π is satisfied on all nodes of S.

• The edge constraint of Π is satisfied on all edges that connect two nodes of S.
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Lemma 5.7. Let S be a subset of nodes of G, and let k ≤ ∆′ be an integer. Assume we are given
an S-solution for Π′ := lift∆,2(Π∆′(k)). Then, it is possible to color the subgraph induced by the
nodes in S with 2k colors.

We start by showing that Lemma 5.7 implies that Π′ admits no solution in G. Later, we will
prove Lemma 5.7.

Corollary 5.8. The problem Π′ admits no solution in G.

Proof. Let V be the set of nodes of G, and consider S = V . By applying Lemma 5.7, we obtain
that we can color G with 2(α+ 1)c ≤ 2ϵ∆/ log∆ colors, which, by choosing ϵ small enough, is less
than the chromatic number of G, a contradiction.

In the rest of the section, we prove Lemma 5.7. We prove Lemma 5.7 in two steps. The first step
is to show that, if we are given an S-solution for Π′, then we can convert it into an S-solution for
Π∆((α+1)c). The second step is to show that an S-solution for Π∆((α+1)c) can be converted into
a proper (2(α+1)c)-coloring of the nodes in S. Note that these two statements imply Lemma 5.7.
In other words, the second step proves that Π∆(x) is strictly related to the problem of coloring
a graph of degree ∆ with Θ(x) colors. Based on this informal equivalence between Π∆(x) and
x-coloring, we can informally restate the first step as proving that, if we can solve x-coloring in 0
rounds in all subgraphs of maximum degree ∆′, then we can solve x-coloring also on the support
graph of degree ∆.

Lemma 5.9. Let S be a subset of nodes of G, and let k ≤ ∆′ be an integer. Assume there exists
an S-solution for Π′ := lift∆,2(Π∆′(k)). Then, there exists an S-solution for Π∆(k).

Proof. For each edge e incident to a node v in S, let Le(v) be its label-set. We start by transforming
Le(v) into a set of colors that satisfies some desirable properties. Let Ce(v) = ∪ℓ(C)∈Le(v)C. Observe
that, for two nodes v and u that are incident to the same edge e, Ce(v) ∩ Ce(u) = ∅. In fact, by
the definition of the edge constraint of Π′ (see Definition 3.1) it holds that if ℓ(C1) ∈ Le(v) and
ℓ(C2) ∈ Le(u), then {ℓ(C1), ℓ(C2)} must be contained in the edge constraint of Π∆′(k), which in
turn requires C1 and C2 to be disjoint.

For each node v in S, we define a bipartite graph H = (UH ∪VH , EH) as follows. Let e1, . . . , e∆
be the edges incident to v, taken in an arbitrary order. The set UH is defined as UH := {u1, . . . , uk}.
The set VH is defined as VH := {v1, . . . , v∆}. The set of edges EH is defined as follows. There
is an edge between ui ∈ UH and vj ∈ VH if and only if i /∈ Cej (v). For a subset of colors
C = {ci1 , . . . , ci|C|}, let N(C) be the union of the neighbors of nodes vi1 , . . . , vi|C| . Assume, for a
contradiction, that the following holds.

∀C ⊆ C, |C| ≤ |N(C)|

By Hall’s marriage theorem [Hal35], this condition implies that there exists a matching in H, where
all nodes in UH are matched. Consider a subset E′ of ∆′ edges incident to v that include the edges
corresponding to matched nodes in VH (note that this subset exists since k ≤ ∆′). We claim that,
when considering the chosen edges E′, the constraint of Π′ is not satisfied on v. Suppose, for a
contradiction, that there exists a configuration ℓ(C)∆

′−xXx, where x = |C| − 1, valid for these
edges. This implies that there exist ∆′ − x edges e ∈ E′ incident to v satisfying ℓ(C) ∈ Le(v). By
the definition of Ce(v), this implies that, in E′, there are at least ∆′ − x = ∆′ − |C| + 1 edges e
satisfying that C ⊆ Ce(v). However, by the construction of E′, there are at least |C| edges e in E′

satisfying that Ce(v) misses at least one color of C. Thus, at most ∆′ − |C| edges e ∈ E′ satisfy
that C ⊆ Ce(v), reaching a contradiction.
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Hence, we get that, for all nodes v, there exists a set C ⊆ C satisfying that |C| ≥ |N(C)|+1. This
implies that there exists a set C ⊆ C satisfying that at most |C| − 1 edges e of v satisfy C ̸⊆ Ce(v),
and hence that we can assign the configuration ℓ(C)∆−xXx, where x = |C| − 1, to v.

Lemma 5.10. Let S be a subset of nodes of G, and let k ≤ ∆′ be an integer. Assume there exists
an S-solution for Π∆(k). Then, the subgraph induced by the nodes in S can be colored with 2k
colors.

Proof. For each v ∈ S, let ℓ(Cv)
∆′−xvXxv , where xv = |Cv| − 1, be the configuration of v in the

S-solution. Observe that, if each node v picks an arbitrary color from Cv, then we obtain a coloring
of the nodes of S satisfying that the only monochromatic edges in the subgraph induced by nodes
in S are edges that are labeled X on at least one side. We prove that, at the cost of doubling the
amount of colors and using a more careful assignment, then we can properly color the subgraph
induced by nodes in S. More in detail, we provide a function that maps each node v into a color
from C ′

v := {ci,1, ci,2 | ci ∈ Cv}, such that we obtain a proper coloring of the nodes in S.
Let GX be the graph obtained as follows. Start from the subgraph induced by the nodes in S

and throw away all edges e that are labeled with a configuration {ℓ1, ℓ2} satisfying that both ℓ1 and
ℓ2 are not X. We prove that we can provide an ordering O = (v1, v2, . . .) of the nodes that satisfies
the following property. For each node vi, let V≥i = {vj | j ≥ i}, and let G≥i be the subgraph of
GX induced by nodes in V≥i. The degree of vi in G≥i is bounded by 2|Cvi | − 1.

Suppose we already constructed the prefix of the ordering (v1, . . . , vi−1). We show that a node
vi that satisfies the above property exists. For each node v ∈ V≥i, let di(v) be the degree of node v
in G≥i. Let E(G≥i) be the edges of G≥i. We start by proving that |E(G≥i)| ≤

∑
v∈G≥i

(|Cv| − 1).

For each edge to be in E(G≥i), it needs to be labeled X on at least one side. Hence, |E(G≥i)| is
upper bounded by the amount of X in G≥i, which in turn is bounded by

∑
v∈G≥i

(|Cv| − 1). We
will use this property in the following.

Suppose, for a contradiction, that all nodes v ∈ V≥i satisfy di(v) ≥ 2|Cv|. Then, the following
holds.

∀v ∈ G≥i 2|Cv| ≤ di(v) =⇒
∑

v∈G≥i

2|Cv| ≤
∑

v∈G≥i

di(v)

=⇒
∑

v∈G≥i

2|Cv| ≤ 2|E(G≥i)| =⇒
∑

v∈G≥i

|Cv| ≤
∑

v∈G≥i

(|Cv| − 1),

which is a contradiction if G≥i contains at least one node. Hence, there exists a node vi that
satisfies di(v) ≤ 2|Cvi | − 1, as required. Hence, we can construct the ordering O, as desired.

We now prove that we can process the nodes in the ordering that is the reverse of O, and color
each node v with a color from the set C ′

v satisfying that the graph induced by nodes in S is properly
colored. Assume that the nodes vi+1, vi+2, . . . are already colored. We show that we find a color
for vi such that G≥i is properly colored. Node vi has at most 2|Cvi | − 1 neighbors that are already
colored, and it has 2|Cvi | colors available. Hence, vi can pick a unused color from C ′

vi . This implies
that, after processing all nodes, we obtain a proper coloring of GX where each node v gets a color
from C ′

v, which implies a proper coloring for the subgraph induced by nodes in S.

6 Arbdefective Colored Ruling Sets

In this section, we prove the following theorem.
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Theorem 6.1. Let G be the family of ∆-regular graphs of girth Ω(log∆ n). Let ∆ be the de-
gree of the support graph G, and let ∆′ be the degree of the input graph G′. Assume that the
support graph is from G, and that the input graph has degree ∆′ satisfying ∆ ≥ 3∆′. Let ∆̄ =
min{∆′, ε∆/ log∆}/2c·β, for some small-enough constant ε, and some large-enough constant c. Let
α ≥ 0, c ≥ 1, β ≥ 1 be integers satisfying (α + 1)c ≤ ∆̄ and β < ∆′. Then, the α-arbdefective c-

colored β-ruling set problem, in the Supported LOCAL model, requires Tdet = Ω(min{β( ∆̄
(α+1)c)

1/β), log∆ n})
deterministic rounds and Trand = Ω(min{β( ∆̄

(α+1)c)
1/β), log∆ log n}) randomized rounds, for all β

satisfying Tdet−β = Ω(Tdet) in the deterministic case, and Trand−β = Ω(Trand) in the randomized
case.

6.1 Problem Definition

In order to prove Theorem 6.1, we consider a family of problems that we will later show to be
strongly related with α-arbdefective c-colored β-ruling sets.

A family of problems in the black-white formalism. We define a problem Π∆(c, β) in the
black-white formalism as follows.

Definition 6.2 (The problem Π∆(c, β)). Let C := {1, . . . , c}, let β ≥ 0 be an integer, and let
ΣΠ∆(c,β) := {X} ∪ {ℓ(C) | C ⊆ C and C ̸= ∅} ∪ {Pi,Ui | 1 ≤ i ≤ β}. If β = 0, the problem Π∆(c, β)
is defined as the problem Π∆(c) of Definition 5.2. For β ≥ 1, the problem Π∆(c, β) is defined via
the following white and black constraints.

ΠW
∆ (c, β):

ℓ(C)∆−xXx, where x = |C| − 1,

for all C ⊆ C, C ̸= ∅
PiU

∆−1
i , for all 1 ≤ i ≤ β

ΠB
∆(c, β):

ℓ(C1)ℓ(C2), for all C1, C2 s.t.

C1 ∩ C2 = ∅,
where C1, C2 ̸= ∅

XL, for all L ∈ ΣΠ∆(c,β)

PiUj , for all 1 ≤ j < i ≤ β

Piℓ(C), for all 1 ≤ i ≤ β,

for all C ⊆ C, C ̸= ∅
UiUj , for all 1 ≤ i, j ≤ β

An example of black diagram of the probles in the family is shown in Figure 2.
Observe that the problem Π∆(c, β) is defined very similarly as the problem Π∆(c) of Defini-

tion 5.2. In particular, Π∆(c, β) can be obtained from Π∆(c) by performing the following operations.

• On the node constraint, we add the configuration PiU
∆−1
i for each 1 ≤ i ≤ β.

• On the edge constraint, we make Pi and Ui compatible with all the labels of Π∆(c).

• Additionally, on the edge constraint, we make Ui compatible with Uj for all pairs (i, j), and
we make Pi compatible with Uj only if i > j.

Intuitively, a valid solution of Π∆(c, β) can be obtained as follows.

• Select a subset of nodes S that satisfies that all nodes in V \ S have a node in S at distance
at most β, and solve Π∆(c) on them.

• All nodes in V \ S can use labels Pi and Ui to point to a node in S at distance at most β.
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What is known about these problems. In [BBKO22], it has been shown that Π∆(c, β) is
strictly related to α-arbdefective c-colored β-ruling sets, and in particular that a solution for α-
arbdefective c-colored β-ruling sets can be converted in β rounds into a solution for Π∆((α+1)c, β),
implying that Π∆((α + 1)c, β) is at most β rounds harder than α-arbdefective c-colored β-ruling
sets.

Lemma 6.3 (Theorem 1.5 (in the ArXiv version) of [BBKO22]). In the LOCAL model, given a
solution for α-arbdefective c-colored β-ruling sets, it is possible to solve Π∆((α+1)c, β) in β rounds.

Moreover, in [BBKO22] it is also shown how, in the round elimination framework, problems
Π∆(k, β) with different parameters are related.

Lemma 6.4 (Lemma 6.1, Lemma 6.13, Lemma 8.6, and Corollary 8.8 (in the ArXiv version) of
[BBKO22]). Let t := ⌊εβ( k

(α+1)c)
1/β⌋, for some small-enough constant ε, and any integer 1 ≤ k <

∆. Then, there exists a lower bound sequence Π1, . . . ,Πt, where Π1 = Π∆((α+ 1)c, β) and Πt can
be related to Π∆(k, β).

6.2 A Lower Bound for the Supported LOCAL Model

In order to prove Theorem 6.1, we follow the same strategy as in the case of x-maximal y-matchings
and arbdefective colorings, that is, we prove the following lemma, that combined with Corollary 3.5,
Lemma 6.4, and Lemma 6.3, gives Theorem 6.1.

Lemma 6.5. Let k := ⌊min{∆′, ε∆/ log∆}/2c·β⌋, for a small-enough constant ε, and a large-
enough constant c. For any n and ∆ such that n ≥ ∆2, there exists a ∆-regular graph G with at
least n/∆2 nodes and at most n nodes, of girth at least ϵ′ log∆ n (for some absolute constant ε′),
and where, assuming ∆ ≥ 3∆′, Π′ := lift∆,2(Π∆′(k, β)) has no non-bipartite solution.

In order to prove this lemma, we use exactly the graph family G given by Lemma 2.1. Hence,
in the following, let G ∈ G. We need to prove that, on G, Π′ is not non-bipartitely solvable.

For this purpose, consider the following family of problems. The problem Π̄∆′,x(k, β) has the
same edge constraint as lift∆,2(Π∆′(k, β)), and the node constraint requires that each node satisfies
the node constraint of lift∆,2(Π∆′−y(k, β)), for some y ∈ {1, . . . , x}, where different nodes may use
different values of y. We prove the following statement (recall the notion of S-solution defined in
Definition 5.6).

Lemma 6.6. Let S be a subset of nodes of G. Assume there exists an S-solution for Π̄∆′,x(k, β)
satisfying that, for all edges e = {u, v} such that u ∈ S and v /∈ S, the label assigned by u on e

P1 P2 U2 U1

C X

AC A
BC B

ABC AB

Figure 2: Black diagram of Π, in the case where C contains 3 colors denoted with A, B, and C, and
β = 2.
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does not contain any label Pi, for 1 ≤ i ≤ β. Then, there exists a subset S′ of nodes of G satisfying
|S′| ≥ |S|/4 such that there exists an S′-solution for Π̄∆′,x+1(2k, β− 1) on G satisfying that, for all
edges e = {u, v} such that u ∈ S′ and v /∈ S′, the label-set assigned by u on e does not contain any
label Pi, for 1 ≤ i ≤ β − 1.

We now show that Lemma 6.6 implies Lemma 6.5. Later, we will prove Lemma 6.6. Assume,
for a contradiction, that lift∆,2(Π∆′(k, β)) is solvable. Note that lift∆,2(Π∆′(k, β)) = Π̄∆′,0(k, β).
By applying Lemma 6.6 recursively for β times, we obtain that if there exists a V -solution on
G = (V,E) for lift∆,2(Π∆′(k, β)), then there exists a subset S of nodes of size n/4β satisfying
that an S-solution for Π̄∆′,β(2

βk, 0) exists on G. Note that, if a node has a labeling that is
valid for lift∆,2(Π∆′−x(2

βk, 0)), then it has a valid labeling also for lift∆,2(Π∆′−x′(2β, 0)), for any
x′ > x. Hence Π̄∆′,β(2

βk, 0) is equivalent to lift∆,2(Π∆′−β(2
βk, 0)), which in turn is equivalent to

lift∆,2(Π∆′−β(2
βk)), that is, the lift of the problem defined in Definition 5.2. Recall that k is defined

as k := ⌊min{∆′, ε∆/ log∆}/2c·β⌋. Observe that

2βk = 2β · ⌊min{∆′, ε∆/ log∆}/2c·β⌋ ≤ 2β ·∆′/2c·β =
∆′

2cβ−β
,

that, for large-enough c, by the assumption that β < ∆′, is at most ∆′ − β. Hence, by applying
Lemma 5.7, we obtain that it is possible to color a fraction 1/4β of the the nodes of G with 2·2β ·k =
2β+1 · k colors. Thus, by picking c large enough, if there exists a solution for lift∆,2(Π∆′(k, β)) on
G, then it is possible to color a fraction 1/4β of the the nodes of G with the following amount of
colors:

min{∆′, ε∆/ log∆}/2c′β ≤ ε∆

2c′β log∆
,

for any chosen constant c′. By assumption, the graph G satisfies that the largest independent set in
G has size γn log∆

∆ for some constant γ > 0. Observe that this property implies that, if we consider
the subgraph GS induced by an arbitrary fraction 1/4β of the nodes, the chromatic number of GS

is lower bounded by:
n

4β
· ∆

γ · n · log∆
=

∆

γ · 22β · log∆
.

Observe that, by picking ε small enough, and c′ large enough, we obtain a contradiction. Hence,
there is no solution for lift∆,2(Π∆′(k, β)) on G, implying Lemma 6.5. In the rest of the section, we
prove Lemma 6.6.

Proof. Assume there is an S-solution to Π̄∆′,x(k, β) satisfying the requirements of Lemma 6.6. The
goal is to modify the label-sets of the S-solution in order to get rid of the labels Pβ and Uβ. We
consider all nodes u that have at least one incident edge with a label-set that contains Pβ or Uβ.
Such nodes could be of three possible types.

• Type 1: all edges incident to u have Uβ in their label-set, and the number of edges incident
to u that have Pβ in their label-set is greater than ∆−∆+ 1. We will prove that there are
at most 3|S|/4 of these nodes, and we will define S′ as the nodes of S without these ones.

• Type 2: all edges incident to u have Uβ in their label-set, and the number of incident edges
having Pβ in their label-sets is at most ∆−∆′. We will prove that, at the cost of increasing the
number of colors by k, it is possible to assign, to the edges incident to these nodes, label-sets
not containing Ui nor Pi for any i, such that the constraints of the problem are satisfied. In
other words, we can assign label-sets containing only sets of colors and X, in such a way that
the constraints are satisfied on the subset of nodes S′ that remain, that is, on all the nodes
that are not of type 1.
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• Type 3: there is an edge e incident to u whose label-set does not contain Uβ. We will prove
that, if u satisfies the node constraint of lift(Π∆′−y(k, β)) for some y ∈ {1, . . . , x}, then it
also satisfies the node constraint of lift(Π∆′−y−1(k, β − 1)). In other words, at the cost of
decreasing by 1 the considered degree, we can always pick a labeling for u that does not use
Pβ or Uβ. Hence, we can solve Π̄∆′,x+1(k, β − 1) on u.

We do not modify the solution of the other nodes. In fact, the other nodes already satisfy the node
constraint of Π̄∆′,x(k, β − 1), and all the node configurations allowed by Π̄∆′,x(k, β − 1) are also
allowed by Π̄∆′,x+1(k, β − 1).

Type 1 nodes. Let u be a node of type 1. By assumption, for all edges e = {u, v}, if u ∈ S
and v /∈ S, the label-set assigned by u to e does not contain the label Pi for any i. In particular,
this holds for Pβ. Hence, all the edges incident to u whose label-sets contain Pβ have the other
endpoint in S. Recall that the edge constraint of Π̄∆′,x(k, β) requires that each pair of label-sets
assigned to an edge satisfies that, for every possible choice of labels over the pairs, the obtained
pair is in the edge constraint of Π∆′(k,β). Thus, for each edge of S it holds that, if the label-set
assigned to one half-edge contains Pβ, then the label-set assigned to the other half-edge does not.
Hence, the number of half-edges with the label Pβ in their label-set in the subgraph of G induced
by S is at most |S|∆/2, as there are at most |S|∆ half-edges between nodes in S, and the two
half-edges of the same edge cannot both have Pβ in their label-set. Since u is a type 1 node, by
assumption it has at least ∆ − ∆′ edges with label-sets containing Pβ, and these edges must be

part of the subgraph induced by S. It follows that type 1 nodes are at most |S|∆
2 · 1

∆−∆′ . Recall
that, by assumption, ∆ ≥ 3∆′. Thus, type 1 nodes are at most 3|S|/4. The set S′ is defined as the
set of nodes that remain in S after removing type 1 nodes. Observe that, since all edges incident
to u contain Uβ, and since Uβ is not compatible with Pi for any i, we get that there is no edge
e = {u, v} such that u ∈ S′ and v /∈ S′, satisfying that the label-set assigned by u on e contains Pi

for some i, as required.

Type 2 nodes. Let u be a node of type 2. We provide an entirely new assignment of label-sets
for the half-edges incident to u, that uses label-sets containing only subsets of {k+1, . . . , 2k}, and
X. We split the half-edges of u into two groups: a half-edge is a type-U edge if its label-set does
not contain Pβ, while it is a type-P edge if its label-set contains Pβ. An edge is a U -U edge if it is
composed of two type-U half-edges of nodes of type 2. Observe that nodes of type 2 can only be
neighbors via U -U edges, since all half-edges of type 2 nodes contain Uβ, which is not compatible
with Pβ. We thus get that, if we assign to all half-edges of u label-sets containing only subsets of
{k+1, . . . , 2k}, and X, the edge constraints are trivially satisfied on P -edges, and on U -edges that
are not part of U -U edges, since these labels are compatible with all the labels that are not subsets
of {k+ 1, . . . , 2k}, that is, all labels that could possibly be present on the other side of such edges.

By the definition of type 2 nodes, there are at least ∆′ U -edges incident to u. Note that, by
right-closedness, if a label-set does not contain Pβ, then it cannot contain any Pi for any i < β
as well, due to the fact that if some configuration {ℓ,Pi} is allowed on the edges, then {ℓ,Pβ}
is also allowed. We thus get that U -edges do not contain any label Pi for any i. Recall that u
satisfies the node constraint of lift(Π∆′−y(k, β)), for some y ∈ {1, . . . , x}. Combining this with the
fact that U -edges do not contain any Pi, we get that, for any choice of ∆′ − y edges over the ∆′

U -edges (which is at least one choice), there exists a choice of labels from the label-sets of the
form ℓ(C)∆

′−y−(|C|−1)X|C|−1, where C is a subset of {1, . . . , k}. For each U -edge of u with assigned
label-set L, we assign the new label-set {ℓ({c + k | c ∈ C}) | ℓ(C) ∈ L} ∪ {X}, or in other words,
we discard Ui labels, and we shift each color by k. To all other edges (the P -edges) we assign the
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same label-set, which is the union of all the label-sets assigned to the U -edges. We obtain that
the constraint of lift(Π∆′−y(2k, β)) is satisfied on u. Moreover, since before shifting the colors by
k the edge constraint was satisfied, U -U edges still satisfy the edge constraint (because each color
is shifted by the same amount). As already discussed, the edge constraint are still satisfied on all
the other edges.

Type 3 nodes. Let u be a node of type 3, and let e be a half-edge incident to u whose label-set
does not contain Uβ. By assumption, u satisfies the node constraint of lift(Π∆′−y(k, β)), for some
y ∈ {1, . . . , x}. We show that, either we can just discard all Pβ and Uβ to satisfy lift(Π∆′−y(k, β−1)),
or, for any choice of ∆′ − y − 1 half-edges incident to u, there exists a choice over the label-sets
assigned to these half-edges that is in the node constraint of Π∆′−y−1(k, β − 1), and hence we can
discard all Pβ and Uβ to satisfy lift(Π∆′−y−1(k, β − 1)). Let M be an arbitrary set of ∆′ − y − 1
half-edges.

Suppose e /∈ M . Let M ′ = M ∪ {e}. We start by showing that, over the label-sets assigned
to the half-edges M ′ there exists a configuration that we can pick that does not use Pβ and Uβ,
and that if it uses Pi for some i < β, then Pi is not on e. Observe that, if a configuration {Pi, ℓ}
is allowed by the edge constraint of Π∆′(k,β), then the configuration {Uβ, ℓ} is also allowed. Thus,
by right-closedness, since the label-set of e does not contain Uβ, the label-set of e does also not
contain any label Pi for any i. Hence, over the half-edges M ′, we can pick a configuration that is
valid for Π∆′−y(k, β) that does not use Pi on e (for any i), and that does not use Uβ at all (since
it is not present on e). We consider two cases separately.

• The configuration for M ′ is of the form PiU
∆′−y−1
i , where i < β, and where Pi is not on e.

Then, on M , we can pick the configuration PiU
∆′−y−2
i .

• The configuration for M ′ is of the form ℓ(C)∆
′−y−(|C|−1)X|C|−1. Since, by right-closedness, all

label-sets contain X, we get that onM we can pick the configuration ℓ(C)∆
′−y−(|C|−1)−1X|C|−1.

Suppose now that e ∈ M . We consider two cases separately.

• There exists an edge e′ /∈ M such that, on M ′ = M ∪ {e′}, we can pick a configuration of

the form ℓ(C)∆
′−y−(|C|−1)X|C|−1, or of the form PiU

∆′−y−1
i (which must satisfy i < β, since e

does not contain Uβ nor Pβ) in which Pi is not picked from e′. Similarly as before, we obtain
that we can pick a configuration for M .

• For all edges e′ /∈ M , on M ′ = M ∪ {e′}, the only valid configurations that can be picked

is PiU
∆′−y−1
i for some i (which must satisfy i < β, since e does not contain Uβ), where

Pi is picked from the label-set of e′. We get that all edges that are not in M (which are
∆ − (∆′ − y − 1)) contain at least one Pi, for i < β, which, by right-closedness, it implies
that these edges contain Uj for all j. Consider an arbitrary choice of ∆′ − y edges of u: we

get that we can pick PiU
∆′−y−1
i , for some i < β. Hence, if we discard all Pβ and Uβ, node u

satisfies the node constraint of Π∆′−y(k, β − 1).

7 Conclusions and Open Questions

In this work, we have shown that essentially all lower bounds for the LOCAL model proved via
round elimination hold in the Supported LOCAL model as well. However, there are few exceptions,
that we leave as open questions.
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Our lower bounds for arbdefective colored ruling sets are only tight for constant values of β,
and we leave as an open question to determine whether this can be improved.

In [BBKO23], interesting lower bounds for the LOCAL model have been shown for problems on
hypergraphs. These problems have not been tackled in our work, and we leave as an open question
to determine their complexity in the Supported LOCAL model.
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A Example of Problems in the Black-White Formalism

The maximal matching problem on bipartite 2-colored graphs can be encoded in the black-white
formalism by the following constraints (see Figure 3 for an example of assignment of labels).

CW :

MO∆−1

P∆

CB:

M[OP]∆−1

O∆

The label M on an edge e indicates that e is in the matching, while the label O on e indicates
that e is not in the matching (M stands for “matched” while O stands for “other”). First of all,
notice that the black and white configurations are such that, for each (black or white) node v, M
is outputted on at most one incident edge of v. This guarantees that there is never more than
one edge incident to a node that is in the matching. We now go through the white and black
configurations separately, and show that the requirements of the maximal matching problem are
satisfied on both white and black nodes.

A white node v is matched if it outputs the configuration MO∆−1, which indicates that exactly
one incident edge to v is in the matching while the others are not. Then, a white node v is
unmatched if it outputs the configuration P∆. By the definition of the maximal matching problem,
we want to satisfy that, if a node is not matched, then all its neighbors are already matched with
someone else (otherwise the matching would not be maximal). Let {u, v} be any edge labeled P
where u is a black node and v is a white node. In order to satisfy maximality for the white nodes,
the black node u must be matched. In fact, the only black configuration that contains the label
P is the one that outputs M on exactly one incident edge, and thus maximality is satisfied on the
white nodes.

A black node u is matched if it outputs a configuration in M[OP]∆−1, guaranteeing that in this
case exactly one incident edge of u is in the matching. Moreover, this configuration says that the
edges incident to u that are not in the matching can be labeled either P or O. This indicates that
node u can accept pointer-labels P from white nodes, but it can also be neighbor to white nodes
that are matched with some other node different from u, and hence u accepts label U as well. Then,
a black node u that is not matched outputs the configuration O∆, and this satisfies the maximality
constraint on black nodes: indeed, all edges {u, v} having label O indicate that the white node v is
a matched node, since the only possible white configuration containing O is MO∆−1.

Therefore, the provided description in the black-white formalism satisfies, at all nodes, the
packing and covering constraints of the maximal matching problem.

The black diagram of the problem contains only the directed edge (P,O). The reason why this
edge is in the diagram is that, for any black configuration containing P, we can replace an arbitrary
amount of P with O and still obtain a configuration in the black constraint. We get that O is at
least as strong as P. Observe that no other pair of labels satisfies a similar property.

B Round Elimination in the Supported LOCAL Model

In this section, we show that the round elimination technique works in the Supported LOCAL
model as well. We start by defining two functions, R and R, that take as input a problem Π
in the black-white formalism, and output a problem Π′ in the black-white formalism. Then, the
function RE(Π) used in the rest of the paper is defined as RE(Π) := R(R(Π)). Consider a problem
Π = (Σ,CW ,CB) where: Σ denotes the set of possible labels of Π; CW denotes the white-node
constraint, and let dW be the size of the multisets in it; CB denotes the black-node constraint, and
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Figure 3: An example of a solution to the maximal matching problem in the black-white formalism.

let let dB be the size of the multisets in it. The problem Π′ = (Σ′, C ′
W ,C′

B) = R(Π) is defined as
follows.

• Let us first define C′
B. Let S be the maximal set satisfying the following two properties: (i) for

all {L1, . . . , LdB} ∈ S it holds that, for all i, Li ∈ 2Σ\{∅}; (ii) for all (ℓ1, . . . , ℓdB ) ∈ L1×. . .×LdB
it holds that {ℓ1, . . . , ℓdB} is in CB. Then, C′

B is defined as the set S where we remove all
configurations {L1, . . . , LdB} such that there exists another configuration {L̄1, . . . , L̄dB} ∈ S
and a permutation ϕ, such that Li ⊆ L̄ϕ(i) for all i, and there exists at least one i such that the
inclusion is strict. The removed configurations are called non-maximal, while the remaining
ones are called maximal.

• Σ′ ⊆ 2Σ contains all the sets that appear at least once in some configuration in CB.

• CW is defined as all configurations {L1, . . . , LdW } such that the following two properties hold:
(i) for all i, Li ∈ Σ′; (ii) there exists (ℓ1, . . . , ℓdW ) ∈ L1 × . . .× LdW such that {ℓ1, . . . , ℓdW } is
in CW .

We now define R(Π). Let (Σ′, C ′
B,C

′
W ) = R((Σ, CB, CW )). The problem R(Π) is defined as

(Σ′, C ′
W ,C′

B). In other words, R is defined similarly as in R, but the role of the black and white
constraints are reversed.

We start by proving a lemma that states how the complexity of Π is related, in the Supported
LOCAL model, with the complexities of R(Π) and R(Π).

Lemma B.1. Let Π = (Σ, CW , CB) be a problem in the black-white formalism, where ∆′ denotes
the size of the multisets in CW and r′ the size of the multisets in CB. Let G be a bipartite 2-colored
support graph, and let n denote the number of nodes of G, ∆ the maximum degree of the white
nodes of G, and r the maximum degree of the black nodes of G. Let G′ be the class of all subgraphs
of G such that for every G′ ∈ G′, each white node of G′ has degree at most ∆′ and each black node
of G′ has degree at most r′. Let T := T (n,∆, r,∆′, r′) ≥ 1 be an integer such that
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1. the girth of G is at least 2T + 4, and

2. there exists a deterministic white (resp. black) algorithm A that solves Π in T rounds for each
input graph G′ ∈ G′ (and support graph G).

Then, there also exists a deterministic black (resp. white) algorithm A∗ that solves Π′ := R(Π)
(resp. Π′ := R(Π)) in T − 1 rounds for each input graph G′ ∈ G′ (and support graph G).

Proof. Due to symmetry, it suffices to prove the lemma for the case that A is a white algorithm,
A∗ a black algorithm, and Π′ = R(Π). Let A be a deterministic white algorithm satisfying the
properties stated in the lemma. We start by defining A∗, and then prove that it indeed solves Π′

in the required runtime.
Consider a graph G′ ∈ G′ and a black node v of G′, and let e = {v, w} be an edge of G′ incident

to v. Let ZT−1(v) denote the subgraph of G induced by all nodes in distance at most T − 1 from v.
Let G∗ ⊆ G′ denote the class of all graphs G∗ ∈ G′ containing v for which the information

stored in the nodes of ZT−1(v) (in particular regarding which edges are part of the input graph) is
identical in G∗ and G′ (which in particular implies that G∗ contains e and w). Let Le ⊆ Σ denote
the set of all output labels L such that there exists a graph G∗ ∈ G∗ such that w outputs L on edge
e when executing A with input graph G∗.

Let e1, . . . , ey denote the edges incident to v in G′. We now define the output of v on the edges
ei according to A∗ as follows. Let L∗

e1 , . . . ,L
∗
ey denote an arbitrary sequence of y subsets of Σ

satisfying

1. L∗
ei ⊇ Lei for each 1 ≤ i ≤ y,

2. for any choice (L1, . . . , Ly) ∈ L∗
e1 × · · · × L∗

ey , we have {L1, . . . , Ly} ∈ CB, and

3. for any sequence L′
e1 , . . . ,L

′
ey satisfying L∗

ei ⊆ L′
ei for all 1 ≤ i ≤ y and L∗

ei ̸⊆ L′
ei for at least

one 1 ≤ i ≤ y, there exists a choice (L1, . . . , Ly) ∈ L′
e1×· · ·×L′

ey such that {L1, . . . , Ly} /∈ CB.

(If no such sequence L∗
e1 , . . . ,L

∗
ey exists, we can assume that L∗

ei is defined as Lei for each 1 ≤ i ≤ y,
but we will see that this cannot happen.) Now, A∗ is defined so that v outputs L∗

ei on ei for each
1 ≤ i ≤ y. This concludes the definition of A∗.

From the definition of A∗, it is immediate that in order to compute the output for each incident
edge (according to A∗), it suffices for a black node v to collect all information contained in ZT−1(v).
Hence, the runtime of A∗ is T−1, as desired. It remains to show that A∗ produces a correct solution
for Π′ = (Σ′, C ′

W , C ′
B).

We first show that for each white node w of degree ∆′, the multiset of labels that A∗ outputs
on w’s incident edges in G′ is contained in C ′

W . By the definition of A∗, for each edge e of G′, the
set Le contains the label that A outputs on e when executed with input graph G′. Now, if we select
this label for each edge incident to w in G′, then we obtain a multiset of labels that is contained
in CW (by the correctness of A), which implies that the multiset of labels that A∗ outputs on w’s
incident edges in G′ is indeed contained in C ′

W (by the definition of C ′
W ).

Now we prove that for each black node v of degree r′, the multiset of labels that A∗ outputs on
v’s incident edges in G′ is contained in C ′

B. Again, let e1, . . . , ey denote the edges incident to v in
G′ (where y = r′), and, for each 1 ≤ i ≤ y, let wi denote the endpoint of e1 that is not v.

We first show that for any choice (L1, . . . , Ly) ∈ Le1 × · · · × Ley , we have {L1, . . . , Ly} ∈ CB.
For a contradiction, assume that this is not true, and let (L1, . . . , Ly) ∈ Le1 × · · · × Ley such that
{L1, . . . , Ly} /∈ CB. By the definition of A∗, it follows that for each 1 ≤ i ≤ k, there exists a graph
G′

i such that
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1. ZT−1(v) is identical in G′ and G′
i, and

2. wi outputs Li on ei when executing A with input graph G′
i.

Recall that in A, each white node wi decides on the output on ei based solely on the information
contained in the subgraph ZT (wi) of G induced by all nodes in distance at most T from wi. For
each 1 ≤ i ≤ y, let Exti denote the graph induced by the nodes of ZT (wi) that are not contained
in ZT−1(v). Observe that, due to the fact that the girth of G is at least 2T +4, the subgraphs Exti
are pairwise disjoint and nonadjacent (i.e., for i ̸= j, no node of Exti is identical or adjacent to a
node from Extj). Hence, by the definition of the graph class G′, there is a graph Ĝ ∈ G′ such that,
for each 1 ≤ i ≤ y, ZT (wi) is identical in Ĝ and G′

i. It follows that, for each 1 ≤ i ≤ y, node wi

outputs Li on ei when executing A with input graph Ĝ. However, this yields a contradiction to
the correctness of A as the configuration {L1, . . . , Ly} produced on the edges of Ĝ incident to v is
not contained in CB. Thus, we obtain that for any choice (L1, . . . , Ly) ∈ Le1 × · · · × Ley , we have
{L1, . . . , Ly} ∈ CB.

This in particular implies that there exist the subsets L∗
e1 , . . . ,L

∗
ey satisfying properties (1) to

(3) as defined during the construction of A∗. Moreover, properties (1) and (3) imply that the
configuration {L∗

e1 , . . . ,L
∗
ey} is actually a maximal configuration (by the definition of maximality).

Hence, {L∗
e1 , . . . ,L

∗
ey} ∈ C ′

B, by the definition of C ′
B. We conclude that A∗ produces a correct

solution for Π′ = (Σ′, C ′
W , C ′

B).

We now show what can be obtained by applying Lemma B.1 multiple times. In the following,
an algorithm that is able to solve Π on (G,G′) in time T denotes an algorithm that solves Π in T
rounds on all the input graphs G′′ ∈ G′ when the support graph is G.

Theorem B.2. Let Π = (Σ, CW , CB) be a problem in the black-white formalism, where ∆′ denotes
the size of the multisets in CW and r′ the size of the multisets in CB. Let G be a bipartite 2-colored
support graph, and let g denote the girth of G. Let G′ be the class of all subgraphs of G such that for
every G′ ∈ G′, each white node of G′ has degree at most ∆′ and each black node of G′ has degree at
most r′. Let Π =: Π0,Π1, . . . ,Πk be a lower bound sequence. Assume that there is no deterministic
0-round white algorithm that bipartitely solves Πk on (G,G′). Then, bipartitely solving Π with a
deterministic white algorithm requires min{2k, g−4

2 } rounds on (G,G′).

Proof. Assume for a contradiction that there is a deterministic white algorithm solving Π on (G,G′)
in min{2k, g−4

2 } − 1 rounds. If min{2k, g−4
2 } − 1 is even, let A be such an algorithm, otherwise let

A be a deterministic white algorithm solving Π on (G,G′) in min{2k, g−4
2 } rounds. In either case,

the runtime T of A is even; hence, by applying Lemma B.1 iteratively T times, we obtain that
there is a white 0-round algorithm solving ΠT/2 on (G,G′). (Note that since the runtimes of the
algorithms considered in the iterative applications of Lemma B.1 decrease with each iteration and
2min{2k, g−4

2 }+ 2 ≤ g, the premises of Lemma B.1 are satisfied in each iteration.)
If T = 2k, we obtain a contradiction to the assumption in the theorem that there is no 0-round

white algorithm that solves Πk on (G,G′). Hence, assume T ̸= 2k, which implies T < 2k, by the
definition of T . As we obtained that there is a white 0-round algorithm solving ΠT/2 on (G,G′),
trivially there exists also a white (2k − T )-round algorithm A′ solving ΠT/2 on (G,G′) (and, as T
is even, also 2k − T is even). By applying Lemma B.1 another 2k − T times (starting from ΠT/2

and A′), we obtain that there is a white 0-round algorithm solving solving Πk on (G,G′), yielding
the desired contradiction.

In the following, by girth of a hypergraph G we denote half of the girth of the incidence graph
of G. Recall that the rank of a hyperedge e is |e|.
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Corollary B.3. Let Π = (Σ, CW , CB) be a problem in the black-white formalism, where ∆′ denotes
the size of the multisets in CW and r′ the size of the multisets in CB. Let G be a support hypergraph,
and let g denote the girth of G. Let G′ be the class of all subhypergraphs of G such that for every
G′ ∈ G′, each node of G′ has degree at most ∆′ and each hyperedge of G′ has rank at most r′.
Let Π =: Π0,Π1, . . . ,Πk be a lower bound sequence. Assume that there is no deterministic 0-
round algorithm that non-bipartitely solves Πk on (G,G′). Then, non-bipartitely solving Π with
deterministically requires min{k, g−4

2 } rounds on (G,G′).

Proof. This directly follows from Theorem B.2 from the usual equivalence between hypergraphs
and bipartite 2-colored graphs, where a node, resp. hyperedge, in the hypergraph corresponds to a
white node, resp. black node, in the bipartite graph and there is an edge between a white node w
and a black node v in the bipartite graph if and only if the hypergraph node corresponding to w is
contained in the hyperedge corresponding to v.

C Randomized Lower Bounds

In the LOCAL model, it is known that, for all problems Π belonging to a large family of problems
Π called component-wise verifiable (which includes all problems in the black-white formalism), the
deterministic and randomized complexity of Π cannot differ by too much, and in particular that
the deterministic complexity of Π on instances of size n is at most the randomized complexity
of Π on instances of size 2n

2
. This result was first proved for randomized algorithms using an

amount of random bits that is bounded as a function of n and ∆ [CKP19], and then extended
to all randomized algorithms [DDL+23]. We show that such statements hold in the Supported
LOCAL model as well. We first state the result that is known in the LOCAL model, adapted to
our restricted setting of problems in the black-white formalism.

Lemma C.1 ([CKP19, DDL+23], rephrased). Let Π be a problem in the black-white formalism.
Let DΠ(n, c) be the deterministic complexity of Π in the LOCAL model, when the ID space is
{1, . . . , nc}, and let RΠ(n) be the randomized complexity of Π in the LOCAL model, for algorithms
with failure probability bounded by 1/n. Let Gn,c be the set of possible instances of size n with ID
assignments from {1, . . . , nc}. Then,

DΠ(n, c) ≤ RΠ(|Gn,c|+ 1).

In [CKP19, DDL+23], |Gn,c| is bounded as follows:

• The number of possible graphs of size n are at most 2(
n
2) (we can describe each graph by a

bit-string representing whether an edge is present or not, and there are at most
(
n
2

)
edges).

• The number of possible ID assignments in G are 2cn logn for some constant c, since to each
node we assign an ID in {1, . . . , nc}.

• Assume each node receives a reasonably small input, say of O(1) bits, then there are at most
2O(n) possible input assignments.

Thus, the number of possible instances is bounded by 2(
n
2)+cn logn+O(n) which, for large enough n,

is strictly less than 2n
2
. We thus get that, in the LOCAL model, DΠ(n, c) ≤ RΠ(2

n2
). On a high

level, in [CKP19], the statement of Lemma C.1 is proved as follows.
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• The randomized algorithm is simulated on all graphs G ∈ Gn,c, by telling it that there are 2n
2

nodes. The algorithm cannot detect the lie, since this situation is indistinguishable from the
case in which the algorithm is run on a larger graph (of exactly 2n

2
nodes) in which there is

a connected component that is G.

• In such a simulation, the failure probability of the algorithm is at most 1/2n
2
.

• By a union bound argument, there exists a function f that maps IDs into bit strings such
that, for all G ∈ Gn,c, if we run the randomized algorithm on G by using as random bits the
bits that are (deterministically) given by f , the algorithm succeeds on all nodes of G.

• A deterministic algorithm is obtained by running the randomized algorithm, where, instead
of using random bits, nodes use the bits given by f .

This proof requires to have some bound on the amount of random bits used by the algorithm,
and [DDL+23] shows how to remove this assumption.

While the Supported LOCAL model is strictly stronger than the LOCAL model, we can also
see the Supported LOCAL model as a special case of LOCAL in which the input given to the nodes
satisfies some special strong properties, in particular:

• All nodes know the graph G;

• Each node receives some additional input, that is, which of its incident edges are part of the
subgraph G′.

Moreover, we note that lying about the size of the graph in the Supported LOCAL model is still
possible. In fact, suppose that the support graph G has size n, and that we want to run an
algorithm by telling it that the number of nodes is N > n. Nodes can consistently imagine that
the support graph contains two components: one is G, and the other is an arbitrary graph of size
N − n. Hence, Lemma C.1 directly works in the Supported LOCAL model as well, but we need to
bound the possible instances differently. We bound the possible instances as follows.

• The number of possible graphs of size n are at most 2(
n
2).

• The number of possible ID assignments in G are 2cn logn for some constant c. However, since
all nodes know G, they can recompute a new ID assignment over the IDs {1, . . . , n}. Hence,
we can w.l.o.g. assume that the possible ID assigments are just n! ≤ 2n logn.

• Each edge is marked to specify whether it is part of the input graph or not. For this purpose,
1 bit of information per edge is sufficient, and hence there are at most 2n

2
input assignments.

We thus get that the number of possible instances is bounded by 2(
n
2) · 2n logn · 2n2 ≤ 23n

2
. Hence,

we obtain the following.

Lemma C.2. Let Π be a problem in the black-white formalism. Let DΠ(n) be the deterministic
complexity of Π in the Supported LOCAL model (which, w.l.o.g., does not depend on the size of the
ID space), and let RΠ(n) be the randomized complexity of Π in the Supported LOCAL model, for
algorithms with failure probability at most 1/n. Then,

DΠ(n) ≤ RΠ(2
3n2

).
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We show that a similar statement holds for hypergraphs as well. Recall that a hypergraph is linear
if each pair of hyperedges share at most one node. Consider the case in which each hyperedge has
size at least 2. Since hyperedges share at most one node, each node can be incident to at most n−1
hyperedges. Thus, there are at most n2 hyperedges in total. This implies that we can describe
all possible linear hypergraphs (where each hyperedge has size at least 2) with 22n

2⌈logn⌉ bits, by
using, for each node, 2n⌈log n⌉ bits to describe an array of n − 1 integers in {1, . . . , n2}. Then,
similarly as in the case of graphs, the possible ID assignments for the nodes are 2n logn, and there
are at most 2n

3
input assignments for the possible node-hyperedge pairs in order to describe the

input graph. Thus, we obtain the following.

Theorem C.3. Let Π be a problem in the black-white formalism. Let DΠ(n) be the deterministic
complexity of Π in the Supported LOCAL model (which, w.l.o.g., does not depend on the size of
the ID space), and let RΠ(n,∆, r) be the randomized complexity of Π in the Supported LOCAL
model, for algorithms with failure probability at most 1/n. Then, on linear hypergraphs where each
hyperedge has size at least 2,

DΠ(n) ≤ RΠ(2
4n3

).
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