
1

A Blockchain-Based Audit Mechanism for Trust
and Integrity in IoT-Fog Environments

Ismael Martinez, Abdelhakim Senhaji Hafid, Michel Gendreau

Abstract—The full realization of smart city technology is
dependent on the secure and honest collaboration between
IoT applications and edge-computing. In particular, resource
constrained IoT devices may rely on fog-computing to alleviate
the computing load of IoT tasks. Mutual authentication is
needed between IoT and fog to preserve IoT data security, and
monetization of fog services is needed to promote the fog service
ecosystem. However, there is no guarantee that fog nodes will
always respond to IoT requests correctly, either intentionally or
accidentally. In the public decentralized IoT-fog environment, it
is crucial to enforce integrity among fog nodes. In this paper,
we propose a blockchain-based system that 1) streamlines the
mutual authentication service monetization between IoT and fog,
2) verifies the integrity of fog nodes via service audits, and 3)
discourages malicious activity and promotes honesty among fog
nodes through incentives and penalties.

Index terms— Internet of Things, fog computing,
blockchain, service auditing, mutual authentication, smart con-
tracts, zero-knowledge proof of membership

I. INTRODUCTION

THE Internet of Things (IoT) is an ever growing paradigm of
sensors and computing devices inter-connected through

the internet. IoT has emerged in both public and private sectors
with the main objective of facilitating our lives [1]. A wide
scale network of collaborative IoT applications is the first step
towards the implementation of smart cities [2].

Many IoT devices and applications rely on external compu-
tation and storage due to limited internal resources. Though
Cloud data-centers are heavily equipped to support any number
of IoT requests, network congestion near distant Cloud data-
centers may result in high response latency to IoT devices [3].
This high latency can be an inhibiting factor for certain
real-time IoT applications in health care [4], autonomous
vehicles [5], and multimedia [6].

Fog-computing is a computational extension of Cloud ser-
vices to the edge of the network. The fog layer is composed
of geographically distributed ‘micro data-centers’, or nodes,
that are positioned to support IoT with minimal latency [7].
Indeed, fog, alongside IoT and Cloud, are integral in creating
an energy-efficient network computing architecture for smart
cities [8], [9], [10].

I. Martinez is with the Department of Computer Science and Operations
Research, University of Montreal, Quebec, Canada H3C 3J7 (e-mail: is-
mael.martinez@umontreal.ca).

A. S. Hafid is with the Department of Computer Science and Opera-
tions Research, University of Montreal, Quebec, Canada H3C 3J7 (e-mail:
ahafid@iro.umontreal.ca).

M. Gendreau is with the Department of Mathematics and Indus-
trial Engineering, Polytechnique Montreal, Quebec, H3C 3A7, Canada
(email:michel.gendreau@polymtl.ca)

Current research in fog-computing focuses on the effective
design of fog infrastructures [10], and resource off-loading
policies from IoT to fog nodes [11]. However, such research
does not consider the mutual needs of IoT and fog. IoT devices
require real-time, secure and correct service from an authen-
ticated server. Fog nodes require payment and advertisement
for services from authenticated sources.

Furthermore, current work assumes that fog nodes always
behave with integrity. That is, IoT devices are meant to
blindly trust fog nodes even though it is possible that a
fog node returns a faulty response, either intentionally or
accidentally [12]. Indeed, the IoT-fog environment is trustless
and currently lacks accountability for fog nodes to behave
correctly. If IoT devices rely on fog nodes for computational
processing, it is critical that we ensure active fog nodes are
processing correctly, and eject malicious fog nodes from the
IoT-fog environment.

In addition, IoT networks can be easy to tamper with and
compromise without proper security measures. Blockchain
technologies have been studied as a possible solution to
provide security, privacy and access control to IoT due to
the decentralization, immutability and high transparency of
blockchain [13]. Hence, blockchain can be used to provide a
secure line of communication between IoT and fog via mutual
authentication [14]. Furthermore, blockchain can streamline
the payment process from IoT for fog computing services,
and enforce integrity among the fog nodes.

Based on observations of IoT-fog requirements, and lim-
itations of current work, there exists a need for a single
streamlined system in a trustless IoT-fog environment that
1) mutually authenticates IoT and fog prior to service, 2)
facilitates service payment from IoT to fog, 3) verifies and
holds malicious fog nodes accountable, and 4) benefits honesty
and discourages malicious activity among fog nodes.

Inspired by current data auditing techniques [15], we pro-
pose a service auditing process for fog-computing to enforce
computational integrity. To the best of our knowledge, this is
the first attempt to enforce the service integrity of fog via a
service auditing scheme. We also integrate current mutual au-
thentication [14], [16] and fog monetization schemes [17], [18]
into a single blockchain application, and leverage blockchain-
enabled fog nodes to decrease latency [19]. That is, we propose
the Fog Identity & Service Integrity Enforcement (FISIE)
system that streamlines IoT-fog authentication, service, mone-
tization, and integrity auditing through a single smart contract.
The FISIE smart contract described in this paper is a Proof-of-
Concept based on Ethereum [20]. However, any other smart-
contract capable blockchain platform would be compatible

ar
X

iv
:2

40
5.

00
84

4v
1

 [
cs

.C
R

]
 1

 M
ay

 2
02

4

2

with this system.
Our contributions are as follows:
• We review and summarize current literature related to

payment, service and mutual authentication.
• We propose a general architecture of heterogeneous IoT

and blockchain-enabled fog that is compatible with any
smart contract-enabled blockchain.

• We define a smart contract-based system for mutual
authentication, monetization, and service auditing.

• We describe a penality system to enforce service integrity.
• We discuss the security of the system, and analyze various

auditing scheduling policies for optimal system integrity.
The remainder of this paper is organized as follows. Sec-

tion II reviews the current contributions in related fields to
inspire our solution. Section III provides an overview of
the different components of the FISIE system. Section IV
provides background knowledge and configurations specifics
of blockchain, cryptography, and the IoT-fog physical layers.
Section V initializes the smart contract. Sections VI, VII and
VIII respectively define the identity management, payment
management and integrity verification functions of the smart
contract. Section IX describes how the smart contract functions
provide penalties and incentives for fog integrity. Section X
discusses the FISIE system security, and analyses the affects of
different sampling policies on long-term fog integrity. Finally,
section XI summarizes future work and concludes the paper.

II. RELATED WORK

We are interested in providing security and integrity to
the IoT-fog environment without significantly increasing com-
munication latency. Our reviewed literature focuses on the
state-of-the-art in a) IoT-fog security, b) data auditing of
fog, c) blockchain-based monetization, and d) blockchain-fog
integration.

A. IoT-fog security
Two of the key elements in providing security to any system

is the inclusion of authorization & authentication [13]. In
particular for the IoT-fog environment, we review implementa-
tions of access control for IoT data, and mutual authentication
between IoT and fog.

1) Authorization: An access control policy defines which
entities have the authority to access the data of which devices.
Access control policies may list individual valid entities, or
list attributes that entities must have to gain access [21]. A
micro server such as fog has sufficient storage and computing
resources to define and validate its own access control policy.
However, IoT devices have minimal resources, and may not be
able to store its own list of valid entities. In this case, the IoT
access control policies are stored in a separate trusted server
with sufficient resources.

Algarni et al. [22] propose a blockchain-based access con-
trol scheme for IoT. This scheme takes advantage of the
transparency and security of blockchain to house all IoT access
control policies. Since the blockchain itself cannot be hosted
on the IoT devices, the fog layer can be used to host the
blockchain and decrease communication latency between the
blockchain and IoT.

2) Authentication: The authorization process often works
in tandem with an authentication mechanism to prove the
identity of a communicating entity [21]. The authentication
process is crucial in protecting IoT and fog from security risks
such as man-in-the-middle attacks and replay attacks [23].
Secure authentication in IoT, fog and Cloud are often based
in standard encryption schemes such as RSA or elliptic curve
cryptography (ECC), though ECC is known to be more secure
than RSA for equivalent key sizes [24]. In the IoT-fog envi-
ronment, we are interested in mutual authentication, wherein
an IoT device and a fog node authenticate each other prior to
communicating and data sharing [25].

Singh and Chaurasiya [25] propose a lightweight mutual
authentication scheme with a centralized Cloud data-center as
a trusted third-party. Based on ECC, the Cloud data-center
sets all relevant cryptographic parameters, while IoT devices
and fog nodes store only their own public keys. That is,
private keys are stored on Cloud instead of the IoT/fog devices.
Though this scheme is lightweight, storing minimal data on
IoT devices, it requires absolute trust in the Cloud data-center.
In addition, requiring communication with the Cloud increases
communication latency for IoT.

Instead, we consider the use of a decentralized blockchain
for the authentication process. Current contributions [14], [16],
[26] use a smart contract-based scheme to register or remove
identification information from IoT devices and fog nodes.
Once registered, the information is stored and queried from a
trusted off-chain table. However, these schemes rely on an
additional centralized registration authority to generate and
store keys for IoT devices and fog nodes [14], [16]. Giving
a centralized authority this level of control over the system’s
private keys is a potential security risk. Instead, we propose to
limit the use of any off-chain resources, and keep all private
keys on their respective devices.

Patwary et al. [26] propose a blockchain-based mutual
authentication scheme that uses the physical fog location data
as part of the authentication process. Though the use of
centralized resources are limited, this scheme only works with
stationary IoT devices and fog nodes since authentication relies
on a static location validation. Instead, we seek to implement
a generalized authentication scheme that allows for device
mobility without compromising IoT-fog security.

B. Data auditing of Fog

Several contributions propose a similar data auditing scheme
to verify the data replica cache of edge servers [12], [15], [27].
A vendor who has previously cached its own data to edge
servers may request the hash of the data replica from edge
servers. The vendor compares the hash with its own data hash
to verify the data integrity of an edge server.

Zikratov et al. [28] propose a data auditing scheme based
on a private blockchain. Data is distributed to clients and is
also stored on the blockchain. Periodically, the client data is
downloaded and verified with the blockchain data by a third
party auditor.

Tian et al. [29] address the problem of data auditing in
a public IoT-fog environment. They propose to tag IoT data

3

which is sent to a fog node which places its own tag, and then
sends it to the Cloud. A third party auditor can then verify
the integrity of the fog nodes via a zero-knowledge proof of
integrity.

In both cases [28], [29], absolute cooperation is needed from
fog nodes to honestly share or allow access to its server data.
This level of trust cannot be guaranteed in a trustless system.

C. Blockchain-based Monetization

Service payments from IoT to fog have been previously
considered by means of blockchain smart contracts [17], [18].
Debe et al. [17] consider a monetization smart contract in
which IoT devices deposit Ether, which are then used to pay
for fog services. Huang et al. [18] use a smart contract to hold
a collateral deposit from IoT until the IoT device directly pays
the fog node. If payment is not processed in a timely manner,
the collateral is given to the fog node.

The system by Huang et al. [18] uses a commitment-based
sampling approach in which the IoT devices samples a portion
of the result from the fog node, to decide whether to pay or
not. In such a case that the IoT device is not satisfied with the
fog results and decides not to pay, it may start a dispute with
a third party to retrieve its deposit.

Note, that this proposed system [18] requires a separate
blockchain transaction for the 1) initial deposit, 2) a confir-
mation of deposit from fog, 3) sending a separate payment
from IoT to fog, 4) then returning the deposit to IoT. This
payment process can be costly in blockchain fees due to
the total number of required transactions. Furthermore, this
process requires verification of the result from the IoT device,
which may not be computationally possible from resource-
constrained devices.

D. Blockchain-fog integration

Fog nodes are geographicaly distributed, and blockchains
are replicated and hosted on distributed servers. Therefore,
it is reasonable to combine these concepts to minimize the
communication latency between fog nodes and the blockchain.
Blockchain-enabled fog nodes are fog nodes that use a portion
of their resources to host a copy of the blockchain. By doing
so, all communication delay between fog and blockchain is
eliminated. Almadhoun et al. [23] uses blockchain-enabled
fog nodes for IoT authentication – a process whose speed is
highly dependent on communication delay between IoT, fog
and blockchain. The resource requirements of the blockchain
can be further reduced by using ‘light nodes’ which use block
summarization to reduce the amount of data stored on the fog
node [19], [30], [31]. In particular, in this paper we store only
blockchain data relevant to the authentication and auditing
processes.

E. Summary of Reviewed Literature

None of the reviewed contributions consider a penalty or
action to be taken if a fog node or edge server is found
to be corrupted. If the corruption is accidental, then the
appropriate server could be given the correct data. However,

if the corrupted data is malicious, then there is no penalty to
stop the server from continuing to alter cached or processed
IoT data. At worst, a fog node that returns malicious data is
simply not paid [18].

In public systems, a call-and-response process of requesting
a proof of data integrity from servers must be taken. However,
there is no incentive given for the data servers to comply with
the audit [12], [15], [27]. To validate service integrity, it is
left to the IoT device to verify the work done by the fog is
correct before giving payment, a task which is not always
computationally feasible by resource constrained IoT [18].
Even in private networks [28], it may not be reasonable to
have a third party auditor with full accessibility of client files
without major privacy concerns of individuals.

The focus of this paper is to validate the service integrity of
fog nodes who are meant to support IoT. We take inspiration
from related work to form the FISIE system, a blockchain-
based system that streamlines IoT-fog mutual authentication,
fog service monetization, and verification of fog integrity. We
also recognize the benefits of integrating blockchain within
the fog layer for low-latency mutual authentication. We find
the addition of an incentive and penalty mechanism to be
necessary to enforce auditing cooperation from fog nodes and
overall IoT-fog system integrity. A comparison of the proposed
FISIE system with other contributions is shown in Table I.

III. FISIE SYSTEM OVERVIEW

The FISIE system aims to 1) streamline IoT-fog mutual
authentication and fog service monetization, 2) verify the
integrity of fog nodes via external service auditing, and 3)
promote the honest collaboration between IoT and fog via
incentives and penalties. These objectives are accomplished
via the Identity & Integrity Management Smart Contract
(IIMSC) which interacts with IoT, fog, and an oracle – an
off-chain semi-trusted third-party. A generalized blockchain
structure will increase the likelihood by others of adopting the
FISIE system. Hence, though our default implementation uses
Ethereum [20], other implementations may use smart contract-
capable blockchain platforms such as Solana1 or Layer 2
platforms such as Arbitrum2 or Optimism3 for scalability and
lower processing fees [32], [33].

The key processes of IIMSC are summarized as 1) Identity
Management, 2) Payment Management, and 3) Integrity Verifi-
cation. The key processes of IIMSC are shown in Fig. 1. These
key components are summarized below, and further explored
in sections VI, VII, and VIII. These three components offer
incentives and penalties for fog nodes to behave honestly (see
Section IX).

A. Identity Management

IIMSC defines lookup tables that hold information about
IoT and fog blockchain addresses, current token holdings,
and fog reputation. These lookup tables are used for mutual

1https://solana.com/
2https://arbitrum.io/
3https://www.optimism.io/
4IoT icons by https://www.avsystem.com

https://www.avsystem.com

4

Contribution

Mutual
Authentication

Fog Service
Monetization

Resource
Constrained
IoT-Compatible

Immutable
(Blockchain)

Fog
Penalization

Fog
Honesty
Verification

Public
Fog
Auditing

Penalization
for Malicious
Fog

Debe [17] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Almadhoun [23] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Singh [25] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Patwary [26] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Tian [29] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Huang [18] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

FISIE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table I: Inspiration for the FISIE system is taken from various contributions.

Figure 1: The main objectives of the FISIE system is to use
a blockchain smart contract to 1) facilitate authentication and
service and payment between IoT devices4and fog nodes, and
2) enforce service integrity among fog nodes.

authentication between IoT devices and fog nodes. Prior to
participating in the FISIE system, all IoT devices and fog
nodes must register with IIMSC. The blockchain addresses
are used both to validate an entity’s identity, as well as to
forward payment. Current IoT token holdings are listed to
ensure IoT devices have enough funds to pay for fog services.
Fog devices have two fields for current token holdings – one
for a collateral deposit to use the FISIE system, and another
to accrue fog service payments. Both collateral deposit and
a fog’s reputation score give indication of a fog node’s past
behaviour, whether honest or malicious, i.e., their reliability.
Hence, IoT devices may filter candidate fog nodes to which it
is comfortable sending data based on a fog’s reliability.

B. Payment Management

Once an IoT-fog pair has authenticated each other, an IoT
device may send its request to the fog node for service. This
is done off-chain via ECC encryption [34]. Once service is
complete and successfully returned to the IoT device, a pre-
determined amount is transferred from the IoT device’s funds
to the fog node’s service payment funds via IIMSC lookup
tables. That is, all funds remain within IIMSC until the fog
node withdraws them.

C. Integrity Verification

To the best of our knowledge, there does not exist any
research contributions in the enforcement of fog service in-
tegrity. We seek to implement a fog service auditing mecha-
nism based on a call-and-response for the service output from

fog nodes for an IoT request. Unlike previous contributions,
we include both an incentive to encourage fog nodes to
participate in the call-and-response, and a penalty in the case
the fog node fails the service audit.

We assume that IoT devices have limited resources and are
therefore unable to verify the correctness of fog node’s service.
Therefore, we define a service auditing scheme to allow an
oracle to verify the integrity of fog nodes without revealing
its identity. Indeed, if a fog node was aware that it was being
audited by the oracle, it may change it’s behaviour. Instead,
by using a Zero-Knowledge Proof of Membership [35], the
oracle disguises itself as another IoT device, encouraging the
fog node to behave as it normally does.

D. Penalty & Incentive Mechanisms

The existence of an auditor in itself acts as a deterrent to
malicious behaviour from fog nodes. If a fog node is found
to return a faulty response, we employ a penalty mechanism
to both reduce the fog node’s collateral deposit and reputation
score. If the audit is successful, the fog node’s reputation score
may increase up to a fixed cap. A higher reputation score may
lead to more service requests from IoT, and hence more service
payments. Therefore, such a reward also acts as an incentive
for fog nodes to behave honestly.

IV. DOMAIN BACKGROUND & CONFIGURATIONS

In this section, we provide background knowledge of
blockchain, the IoT-fog environment, and cryptography, and
define their role in the FISIE system.

A. Blockchain

Public blockchains, such as Bitcoin and Ethereum, are
decentralized ledgers that enforce block consensus across all
immutable blockchain nodes, which allows them to oper-
ate in a trustless environment [36]. Public blockchains also
provide pseudo-anonymity, fault tolerance, and auditability.
Blockchain technology is viewed as a key technology in
adding security & privacy to IoT and industrial IoT (IIoT)
applications [37].

1) Smart Contracts: A smart contract is an agreement
between two or more parties that self-executes when specific
conditions are met [38]. A smart contract on the blockchain
benefits from the same immutability, persistency and auditabil-
ity as other blockchain transactions. A common use case for

5

blockchain smart contracts is providing access control of IoT
data, which can mitigate security & privacy issues in IoT [39].
The FISIE system’s implementation of the Identity & Integrity
Management Smart Contract (IIMSC) is compatible with any
smart contract-capable blockchain.

2) Oracles: Often, a smart contract is dependent on real-
world data to determine when its execution conditions are
satisfied. However, the blockchain is isolated from the real-
world internet environment, creating a need for a separate
entity to convey the appropriate external information to the
blockchain. An oracle is an off-chain third-party that is used to
inject external data into smart contracts. Since oracles operate
off-chain, it is necessary to validate the trustworthiness of both
the oracle and the external data sources [40]. For this reason,
centralized oracles are not often used since the validity of the
communicated data from a single centralized entity cannot be
trusted. Instead, multiple decentralized oracles are often used
to cross-verify each other and create a trusted data feed [41].
The FISIE system relies on external decentralized oracles to
audit fog nodes and trigger the appropriate smart contracts.

B. Elliptic Curve Cryptography – Definitions & Settings

The FISIE system uses elliptic curve cryptography (ECC),
a public-key cryptographic method that uses a globally agreed
upon elliptic curve and base point over a finite field to generate
public and private keys [34].

Consider the finite field Fp for large prime number p. Over
the elliptic curve E, beginning from a base point G, we select
a secret key k and derive the public key P as

P = k ·G (1)

where we ‘add’ (·) G k times over the finite field of E.
1) The elliptic curve: Bitcoin and Ethereum use the

secp256k1 system for the Elliptic Curve Digital Signature
Algorithm (ECDSA) [42] to sign blockchain transactions. The
secp256k1 elliptic curve is defined as

E : y2 = x3 + 7, (2)

and produces 256-bit keys [43], [44]. Unlike other contri-
butions that trust a third party to define the elliptic curve
parameters and generate device keys [14], [25], we will
simplify the process and use the built-in ECC parameters of
these blockchains for secure IoT-fog communication.

2) Encryption: Suppose entity A has public key PA and
private key kA, and entity B has public key PB and private
key kB . Then a symmetric key can be formed between A and
B since,

kBPA = kB · (kAG) = kA · (kBG) = kAPB . (3)

Using this symmetric key, we can encrypt and decrypt a
message between A and B using a symmetric encryption
algorithm such as AES [34], [45].

3) ECDSA: ECDSA is the primary signature genera-
tion and verification algorithm in Bitcoin and Ethereum
blockchains [44]. No transaction is accepted by the blockchain
without a valid signature. Suppose a user A submits a signature
to a verifier B. ECDSA enables a verifier B to recover the

public key PA from a valid signature s. Hence, there is no
need for A to submit PA to B. For the remainder of this
paper, every signature used is an ECDSA signature.

4) One-way hash function: We define the function H :
{0, 1}∗ 7→ {0, 1}256 as a secure, one-way 256-bit hash
function. Examples of viable hash functions with this prop-
erty are SHA-256 and Keccak-256 used by Bitcoin and
Ethereum ECDSA respectively [36], [20]. Importantly, these
hash functions also derive a user’s address by hashing the
user’s public key. The address of a user with public key P is
defined as the last 20 bytes of the hash H(P) [20]. We define
the operation ||n to be the n-byte right hand truncation of a
value. Hence, a user with public key P has address H(P)||20.

C. Physical Architecture

Our proposed architecture is meant to be as general as
possible so it may fit any existing IoT-fog infrastructure. Both
IoT devices and fog nodes are heterogeneous and distributed.
The architecture is divided into an IoT layer, a fog layer, and
a Cloud layer. For simplicity of discussion, we consider the
blockchain as part of the fog layer.

1) IoT layer: The IoT layer is composed of devices with
varying resource capabilities and requirements from higher
layers. We focus our approach on devices with limited com-
puting/storage resources that require processing from the fog
layer, and may send data to the Cloud layer for long-term
storage. We define I as the set of IoT devices in the FISIE
system. All IoT devices in I have at least enough resources to
store the necessary encryption keys and to communicate with
higher layers.

2) Fog layer: The fog layer is composed of fog nodes,
oracles, and blockchain nodes for a smart contract-capable
blockchain. We define F as the set of fog nodes and O as the
set of oracles in the FISIE system. The fog nodes in F have
varying resource capabilities, and some may have sufficient
resources to run a light blockchain node [30], a blockchain
oracle [41], or both. Blockchain nodes may exist separately,
or within a fog node, i.e., blockchain-enabled fog nodes [19].

3) Cloud layer: The Cloud layer is composed of mega
data-centers capable of long-term data storage and substantial
computing power [46]. Data that require storage may come
from the fog layer after it has been processed, or directly from
the IoT layer.

V. IIMSC - INITIALIZATION

Beginning in this section, and continuing in sections VI,
VII and VIII, we define in detail the functionalities of IIMSC,
including its initial parameters and tables. Every function of
IIMSC takes a signature s as a final argument, which is
validated via ECDSA before executing the function. Therefore,
we omit the signature validation from the description of IIMSC
functions. The functions and lookup tables of IIMSC are
designed to 1) facilitate the mutual authentication process,
2) provide security and accountability to the IoT-fog service
payment process, and 3) enable incentive and penalty mech-
anisms for fog integrity. A summary of all IIMSC functions
are provided in Table II and are described in future sections.

6

Table II: A summary of IIMSC functions

Initialisation Initialisation()

Registration IoT_registration(Ether Eu)

Fog_registration(Ether Eu)

Oracle_registration()

Funds IoT_add_funds(Ether Eu)

IoT_withdraw_funds(float u)

Fog_withdraw_funds(float u)

Removal IoT_remove()

Fog_remove()

Payment IoT_fog_payment(float d)

Audit result Fog_reward(Address af, Ring sign. Rω)

Fog_penalize(Address af, Ring sign. Rω)

A. Lookup tables

Secure mutual authentication schemes rely on a trusted
third-party to validate the identity of each authenticating mem-
ber [23], [25]. Therefore, we propose that IoT devices and fog
nodes register with respective IoT and fog lookup tables on the
blockchain. The registration process uses ECDSA signatures
to initially confirm the identity of the registering party. Hence,
all registration information on the lookup tables are publicly
accessible and pre-verified. To register with the blockchain, we
require a payment deposit from IoT devices, and a collateral
deposit from fog nodes. These deposited amounts are reflected
in the lookup tables. Since our default implementation uses
Ethereum, all mentions of payments, funds and deposits will
use the Ether cryptocurrency [20].

For each IoT device i ∈ I , the fields in the IoT lookup table
TI are defined as

• IoTAddress: The address of the IoT device i, which is
also the truncated hash of the IoT public key H(Pi)||20.

• AvailFunds: The available funds of IoT device i. These
funds are used to pay for fog services.

For record ti ∈ TI of IoT device i, we denote these entries as
ti.A, and tf .AF respectively.

For each fog node f ∈ F , the fields in the fog lookup table
TF are defined as

• FogAddress: The address of the fog node f , which is
also the truncated hash of the IoT public key H(Pf)||20.

• Deposit: The collateral deposit given by fog node f . A
portion of the deposit may be lost as a penalty for failing
a service audit.

• AvailFunds: The available funds of fog node f . Available
funds come from IoT service payments and may be
withdrawn at the fog node’s discretion.

• Reputation: The reputation score of fog node f . This
reputation score is updated based on the results of a
service audit. IoT devices may choose which fog nodes
to work with based on their respective reputation scores.

For record tf ∈ TF of fog node f , we denote these entries as
tf .A, tf .AF , tf .D, and tf .R respectively.

By default, the lookup tables are implemented on-chain.
Alternatively, the tables may be placed off-chain and managed

by a reverse oracle, i.e., an outbound oracle that executes
on behalf of the blockchain [47]. In this case, we add an
additional column to both tables labeled ‘LastUpdateHeader’.
For each table record, the ’LastUpdateHeader’ field contains
the blockchain header associated with the latest record update.
By referencing this hash in the lookup tables, we also enforce
immutability on the values of the off-chain lookup table.

In addition, we define an on-chain oracle lookup table
TO to register any oracle that wishes to participate in the
service auditing process. TO has a single field OracleAddress,
denoted to.A for record to ∈ TO of oracle o ∈ O.

B. Initialization

The Initialization function is the constructor of
IIMSC. It creates the IoT, fog and oracle lookup tables
{IIMSC.TI , IIMSC.TF , IIMSC.TO}, and sets the following
parameters:

• the minimum, initial and maximum reputation scores
{IIMSC.RMin, IIMSC.RInit, IIMSC.RMax}, where
IIMSC.RMin ≤ IIMSC.RInit ≤ IIMSC.RMax

• the reputation penalty and reward
{IIMSC.r−, IIMSC.r+}, where IIMSC.r− > IIMSC.r+

• the fog collateral deposit amount IIMSC.D and penalty
deposit deduction IIMSC.d−

It is important that the reward r+ is smaller than the penalty r−

to deter fog nodes from behaving outside of what is expected.

C. IIMSC pooled funds

During registration process, IoT devices, fog nodes and
the oracles each submit deposits, either for payments or as
collateral. These funds are ‘moved’ during the payment and
penalty processes. All funds deposited into IIMSC are pooled
within the smart contract, and the individual token holdings
are detailed in the lookup table for each device. Hence, any
payments that occur through IIMSC have no actual transfer
of payments between devices. Rather, the lookup table values
are updated, and token changes are realized upon withdrawal.

VI. IIMSC – IDENTITY MANAGEMENT

The objective of the identity management functions of
IIMSC is to facilitate mutual authentication between IoT
and fog. Prior to sending a request, the IoT device must
authenticate a fog node by verifying it is registered in TF

and has a sufficient reputation score. Likewise, the fog node
must authenticate the IoT device to ensure it is registered in
TI and has sufficient funds to pay the fog node.

A. Registration

Once IIMSC has initialized, any entity that wishes to partake
in the FISIE system must first register with the blockchain.

1) IoT registration: The IoT_registration function
takes an itial Ether deposit Eu of amount u > 0 from IoT
device i ∈ I . After ensuring ai = H(Pi)||20 is not already in
TI , the values ti.A ← ai and ti.AF ← u are added to new
record ti ∈ TI .

7

2) Fog registration: The Fog_registration function
takes a deposit Ed of amount d for fog node f ∈ F , with
d ≥ IIMSC.D. An amount IIMSC.D is used for the deposit,
and the remainder v = d− IIMSC.D is set as the initial avail-
able funds. The reputation of f is set to the initial reputation
r = IIMSC.RInit. After ensuring af = H(Pf)||20 is not
already in TF , the values tf .A ← af , tf .D ← IIMSC.D,
tf .AF ← v and tf .R ← r are added to the new record
tf ∈ TF .

3) Oracle registration: An oracle o ∈ O with public key
PΩ must register with the blockchain in order to securely
communicate its oracle results. Therefore, we define a function
Oracle_registration to create a record to ∈ TO with
to.A← H(PΩ)||20.

B. Removal

If an IoT device i ∈ I no longer wishes to be a part of the
network, it may call the IoT_remove function. All available
funds under the record H(Pi)||20 are returned to IoT device
i, and the record is removed from TI .

A fog node may request to exit the system, or it may be re-
moved forcefully by IIMSC. In both cases, the Fog_remove
function is executed. If the Fog_remove function is initiated
by the fog node, then the remaining deposit and available funds
under the record H(Pf)||20 is returned to fog node f , and the
record is removed from TF . If at any point the fog deposit
reaches zero or the reputation score falls below IIMSC.RMin,
the Fog_remove function is automatically triggered, the
remaining available funds and deposit (if any) are returned
and the fog node is removed from TF .

C. Mutual Authentication

We outline the mutual authentication process between an
IoT device i ∈ I and a fog node f ∈ F .

1) IoT device i sends a signature si to fog node f .
2) Fog node f will recover Pi from si, and query H(Pi)||20

as the address of i from the IoT lookup table TI .
3) If the IoT address is found in step 2), continue with step

4). If not, mutual authentication fails.
4) Fog node f sends a signature sf to IoT device i.
5) IoT device i will simultaneously

(a) recover Pf from sf and query H(Pf)||20 as the address
of f from the IoT lookup table TF .

(b) verify that the reputation score tf .R meets the reputa-
tion threshold i.R set by i.

6) If the fog address is found and the reputation threshold
is met in step 5), continue to step 7). If not, mutual
authentication fails.

7) IoT device i and fog node f have successfully completed
mutual authentication, and established a symmetric key
Pfki = Pikf for secured communication. They may
begin to collaborate.

The mutual authentication process is summarized in Fig. 2.

Figure 2: The mutual authentication process. Recall, every
function takes a signature, from which the associated public
key is recovered.

VII. IIMSC – PAYMENT MANAGEMENT

The objective of the payment management functions of
IIMSC is to streamline the IoT-fog service payment process,
while also providing security and accountability. Since all
payment transactions are posted on the blockchain, visibility of
payment records can be used in the case of a payment dispute.
Once an IoT device and fog node are mutually authenticated,
the IoT device may send any computation requests to the fog
node in exchange for a portion of deposited funds.

A. Addition and withdrawal of funds

Once a device has registered with IIMSC, it may add or
withdraw funds used for service payments.

1) IoT funds: After an IoT device i has registered with
the blockchain, it may add additional funds to its avail-
able reserve. The IoT_add_funds function takes additional
funds Eu of amount u > 0. The record ti ∈ TI where
ti.A = H(Pi)||20 is updated with ti.AF ← ti.AF +u. Simi-
larly, the IoT_withdraw_funds may be used to withdraw
an amount u ∈ (0, ti.AF] from the available funds. Then, the
record ti ∈ TI is updated with ti.AF ← ti.AF − u and Eu

Ether is sent to IoT device i.
2) Fog funds: Once fog node f begins to service IoT

requests, it will accumulate payments in its available funds.
Fog node f may request to withdraw an amount u ≤
tf .AF through the Fog_withdraw_funds function. The
Fog_withdraw_funds function takes an amount to with-
draw u ∈ (0, tf .AF]. The record tf ∈ TI where tf .A =
H(Pf)||20 is updated with ti.AF ← ti.AF−u, and Eu Ether
is sent to f .

B. IoT-Fog service and payment

Once the mutual authentication process is successfully
completed and a symmetric key Pikf = Pfki has been
established between i ∈ I and f ∈ F , IoT device i may
request computational support from fog node f via symmetric

8

encryption. We outline the IoT-fog service process between
IoT device i and fog node f .

1) IoT device i transmits a proposed payment d, a package
g, and the signature si of the transaction to fog node f .

2) If f doesn’t accept, it sends a ‘reject’ return statement
OR lets the request time out. The process ends.

3) Else, f processes package g and gets result τ .
4) The fog node f returns result τ to IoT device i.
5) IoT device i triggers the IoT_fog_payment function

with parameters: agreed payment d and IoT signature si.
6) The IoT_fog_payment function verifies signature si,

and transfers an amount d from ti.AF to tf .AF , ti ∈ TI ,
tf ∈ TF .

The service and payment process is summarized in Fig. 3.

C. Matching, Bargaining, and Disputes

The default implementations of mutual authentication and
service payment described above are streamlined, without
consideration of fog selection, price bargaining or payment
disputes. In reality, there is room for flexibility to address these
concerns in these processes.

Prior to mutual authentication, IoT devices must select to
which fog node it wishes to contact for service. There exist
many, more sophisticated matching algorithms for pairing IoT
devices with fog nodes based on proximity and available fog
resource capacity [48].

Once devices have been authenticated and the IoT device
submits its request with proposed payment, the fog node may
counter-offer. That is, the IoT device and fog node may enter
into a round of bargaining to determine an agreed price [49].
Indeed, the matching and bargaining processes can even be
combined into an auction-based process whereby fog nodes
are matched by bidding on the IoT request [50].

Once the service process is complete and the fog node has
returned the processed result τ of package g, it is up to the
IoT device to trigger the IoT_fog_payment function. If it
does not within a reasonable amount of time, the fog node may
start a dispute with a decentralized dispute resolution platform
such as Kleros5 [51]. Conversely, if the IoT device does not
recieve a response from the fog in a timely manner, the IoT
device may start a dispute. These dispute resolution processes
may prove to be costly for IoT devices and fog nodes, thus
incentivizing timely processing of IoT requests, and timely
triggering of the payment smart contract.

VIII. IIMSC – INTEGRITY VERIFICATION

By occasionally checking the processing results of fog
nodes, we can add a level of integrity and trust to the IoT-
fog environment. We rely on trusted decentralized oracles to
audit and verify the integrity of fog nodes. An oracle o ∈ O
uses two key pairs – one registered as an ‘IoT device’ and one
registered as an oracle. All audits are submitted by the address
associated to the IoT lookup table TI , so that fog nodes believe
the audit is a normal IoT request. This is crucial to verify the
natural behavior of a fog node when not under supervision.

5https://kleros.io/

Figure 3: The IoT-fog processing and payment workflow.

Figure 4: A ring signature, zero-knowledge proof of member-
ship, hides the identity of the oracle among IoT.

A. Ring Signature - Proof of Membership

Suppose oracle o ∈ O has two key pairs (Pω, kω) and
(PΩ, kΩ). Prior to auditing, oracle o registers itself with the
blockchain as an IoT device using key pair (Pω, kω), and as
an oracle using key pair (PΩ, kΩ). These key pairs result in
different hashes across different tables. Therefore, the identity
of oracle o on the IoT table is not known to fog nodes nor
the blockchain. Hence, when submitting an audit result to the
blockchain, the oracle must prove that the audit came from a
valid IoT service request. In other words, it must prove that it
belongs to the IoT lookup table without revealing the identity
of its IoT address.

This problem relates to the class of zero knowledge proofs
for set membership [35], which have been proven essential in
blockchain applications [52]. Given the information publicly
available in the IoT lookup table, we choose to implement a
ring signature scheme [53].

Let PI be the set of public keys from table TI . We choose
some enumerated subset P̄ ⊆ PI containing Pω such that
|P̄ | = n and P̄ = {P1, P2, . . . , Pn} where Pω = Pj for some
1 ≤ j ≤ n.

An oracle with key-pair (Pω, kω) = (Pj , kj) builds a ring
signature of message m over the elliptic curve of prime p and
base point G as follows:

1) Choose a random integer q ∈ [0, p− 1].
2) Calculate Tj = (xj , yj) = q ·G.
3) ∀i = 1, . . . , n, i ̸= j, pick random integers σi ∈ [0, p−1].

9

4) for i = j + 1, . . . , n, 1, . . . , j − 1:
ci = H(m|xi−1)
Ti = (xi, yi) = σi ·G+ ci · Pi

5) cj = H(m|xj−1)
6) σj = q − cjkj .

Let σ = [σ1, . . . , σn] and P = [P1, . . . , Pn]. Oracle o submits
(c1,σ,P).

1) Verification: The verifier (IIMSC) begins with c1, and
caluclates

T1 = (x1, y1) = σ1 ·G+ c1 · P1

for i = 2, . . . , n:
ci = H(m|xi−1)
Ti = (xi, yi) = σi ·G+ ci · Pi

c′1 = H(m|xn).
The ring signature is accepted if c1 = c′1.

2) Correctness: : By the original choice of Tj = q ·G, the
final choice of sj ‘closes’ the ring. That is,

Tj = σj ·G+ cjPj

= (q − cjkj) ·G+ cjkj ·G
= q ·G.

B. Reward & Penalty Functions

IIMSC alters the deposit and reputation scores of fog nodes
based on the results of a service audit. Both the Fog_reward
and Fog_penalize functions take a ring signature Rω from
an oracle o ∈ O. If the ring signature is valid, then there exists
an address in TI that belongs to oracle o.

1) Passed audit: When a fog node f ∈ F passes a service
audit sent by oracle o ∈ O with public key PΩ, the oracle
calls the Fog_reward function which takes the fog address
af and a ring signature Rω . After verifying H(PΩ)||20 is in
TO, af is in TF and verifying the validity of ring signature
Rω , the function increases the fog reputation by an amount
IIMSC.r+, up to a maximum IIMSC.RMax. That is, tf .R ←
min{tf .R+ IIMSC.r+, IIMSC.RMax}.

2) Failed audit: When a fog node f ∈ F fails a service
audit sent by oracle o ∈ O with public key PΩ, the oracle calls
the Fog_penalize function which takes the fog address
af and a ring signature Rω . After verifying H(PΩ)||20 is in
TO, af is in TF , and verifying the validity of ring signature
Rω , the function 1) decreases the fog reputation by an
amount IIMSC.r−, and 2) decreases the deposit by an amount
IIMSC.d−, or to 0, whichever is higher. That is, tf .R ←
tf .R − IIMSC.r− and tf .D ← max{tf .D − IIMSC.d−, 0}.
The lost deposit is distributed among the registered IoT
devices. If the updated reputation t.R falls below IIMSC.RMin,
or if the updated deposit t.D reaches 0, then Fog_remove
is automatically called on f .

C. Service Audit

We define the IoT address aω = H(Pω)||20 and oracle
address aΩ = H(PΩ)||20 as the two addresses used by oracle
o ∈ O for fog and blockchain communication respectively.

1) Oracle o and fog node f mutually authenticate and
establish a symmetric key Pωkf = Pfkω .

2) Oracle o sends a package g to f following the process in
section VII-B.

3) Simultaneously, oracle o

a) waits for request response τf from f .
b) calculates the expected output τω of g.

4) Oracle o computes a ring signature Rω = {c1,σ,P } and
compares the fog result τf with the expected result τω .

a) If τf = τΩ, fog node f has passed the service audit.
Oracle o calls the Fog_reward function with fog
address af , oracle signature sΩ, and ring signature Rω .

b) Else, if τf ̸= τΩ, and f has failed the service audit.
Oracle o calls the Fog_penalize function with fog
address af , oracle signature sΩ, and ring signature Rω .

1) Oracle payment: When an oracle o executes a service
audit, it takes time and uses processing resources for the
benefit of the FISIE system. In addition, since oracle o is
disguising a service audit as an IoT service request, it must
pay a service fee to the audited fog node. In both cases, the
oracle should be fairly compensated and reimbursed for its
efforts.

By default, IIMSC takes a service fee from IoT devices
whenever a call to IoT_fog_payment(d) is made. That
is, IIMSC takes a small portion of the service payment d as
the service fee. These fees are pooled by IIMSC. A portion
of the pool is used to pay the oracles, and the rest is used to
pay the owners of the smart contract.

2) Scheduling policy: The audit scheduling policy defines
how often oracles can execute service audits. By default, one
oracle completes one service audit every η requests, where
η is defined by IIMSC. A large η ensures that more than
enough fees have been collected to pay the oracle fairly, but
may not result in frequent enough service audits. In contrast,
a small η results in more, frequent service audits, but would
require larger fees to be taken from IoT service payments to
cover the oracle costs. Other more sophisticated scheduling
policies [54], [55] can be considered for service auditing that
take into account the overall health of the system. This is left
for future work.

IX. IIMSC – PENALTY & INCENTIVE MECHANISMS

The lookup tables, IIMSC parameters, and integrity verifi-
cation functions are used to provide incentives and penalties
for fog nodes to encourage integrity.

A. Fog monetization

An IoT device i ∈ I may request service from a fog node,
in exchance for a proposed payment d, where d ≤ ti.AF .
That is, the IoT device has sufficient available funds to satisfy
the proposed payment. Once a fog node has serviced an IoT
request, the IoT device pays the fog node for its services. This
IoT payment provides a monetary incentive to fog nodes
to service IoT. A service payment from an IoT device is
deducted from its available funds in TI , which is the total of
all previously deposited and unspent funds, in IIMSC, from
the IoT during or after registration.

10

B. Fog collateral deposit

Upon registry, a fog node f ∈ F has collateral deposit
tf .D = IIMSC.D. Periodically, a service audit is sent out
to fog node f by an oracle posing as an IoT device. The fog
node, unaware the request is from an oracle, would respond to
the request normally, either with a correct or faulty response.
If the response is incorrect, i.e., fog node f has failed the
service audit, then a portion of the fog deposited funds tf .D
are deducted from TF and redistributed to IoT. This loss of
collateral provides a monetary penalty to fog nodes if they
fail a service audit. If a fog node loses its entire deposit, i.e.,
tf .D = 0, then the fog node is removed from TF , and hence,
from the FISIE system.

By default, the collateral deposit amount IIMSC.D is fixed,
and any additional deposit is converted to available funds.
Alternatively, a possible implementation of IIMSC could allow
for flexible deposit amounts, and a more sophisticated deposit
deduction or reduction mechanisms [56]. For example, IIMSC
could decrease the required deposit from long-term behaving
fog nodes. In this case, the additional deposit over the newly
reduced deposit threshold is converted to available funds that
the fog node may withdraw. This implementation provides an
additional incentive to fog nodes to behave properly over the
long-term.

C. Fog reputation

Fog nodes are given a reputation score in lookup table
TF . The reputation score is updated by IIMSC based on the
results of a service audit. That is, the reputation in TF is
decreased if a fog node fails a service audit, and is increased
if it passes. An IoT device may filter the fog nodes based on
their reputation score before choosing where to send a request.
Therefore, it is beneficial to the fog node to always behave
properly, as to have a higher reputation and the possibility
for more IoT requests, i.e., IoT payments. This provides a
service incentive to fog nodes if they pass a service audit.
Conversely, a loss of reputation provides a service penalty to
fog nodes if they fail a service audit. Every fog node begins at
the same initial reputation score IIMSC.RInit, can increase
up to a fixed maximum score IIMSC.RMax, and is removed
from the system if the score falls below a minimal reputation
threshold IIMSC.RMin.

By default, IIMSC will decrease and increase the reputation
score by a fixed IIMSC.r− and IIMSC.r+ respectively, where
IIMSC.r− > IIMSC.r+. However, more sophisticated strate-
gies for calculating [57] and updating [58] reputation score can
be used, taking into account factors such as the number of IoT
requests, and service level agreement (SLA) compliance [59].

D. Fog deposit distribution

If a fog node fails an audit, an amount d− is deducted from
its collateral deposit on the fog lookup table TF . The associ-
ated Ether Ed− is still attached to IIMSC. Hence, we choose
to distribute the amount IIMSC.d− amount among a subset of
IoT devices Ī ⊆ I by updating available funds in the lookup
table TI by an equivalent amount. That is, for each i ∈ Ī , we

select an amount di > 0 such that
∑

i∈Ī di = IIMSC.d−, and
increase the available funds ti.AF ← ti.AF + di,∀i ∈ Ī .

By default, IIMSC distributes the deducted deposit from
f ∈ F equally among all IoT devices by an amount d−/n
where n = |TI |. Other distributions strategies are possible,
such as distributing only to IoT devices that have previously
been serviced by f in either an equal or weighted manner.

X. SIMULATION OF INTEGRITY

To the best of our knowledge, no other contribution provides
both an incentive and a penalty mechanism to enforce the
integrity of an IoT-fog system. We first discuss the security
of the FISIE system. To determine the effectiveness of our
proposed system, we execute an auditing simulation over a set
of malicious nodes. We also define several auditing scheduling
policies to compare their effectiveness amongst each other.

A. Security Analysis – Discussion

The FISIE system streamlines the IoT-fog mutual authen-
tication, service and payment processes while maintaining
secure and accountable IoT-fog communication.

1) Encrypted Communication: All direct communication
between IoT and fog is encrypted by a 256-bit ECC protocol.
A 256-bit ECC key size ensures a high level of security com-
parable to a 2072-bit RSA key size – the former encryption
standard [24], [60]. Furthermore, the secp256k1 elliptic
curve proposed is already used by most blockchains [42].
Hence, there is no need for external third parties to define
the system cryptographic parameters [25], which preserves the
security of the FISIE system.

2) Lookup Tables: For a particular IoT device or fog node,
its address on the lookup table is its blockchain address,
which is generated from the hash of its public key. When
device A communicates with device B, B verifies the address
of A on the lookup tables by extracting the public key of
A from its signature, which is generated by its secret key.
That is, some third entity C cannot impersonate A unless C
possess the secret key of A. Hence, the security of the mutual
authentication and identity verification, is equivalent to the
security of the 256-bit ECC protocol used [24].

3) Payment: All payments are recorded on the blockchain
via IIMSC. Hence, any disputes that may arise can be verified
against the blockchain to ensure the accuracy of all claims.
Furthermore, since all entities are registered with IIMSC,
future implementations could freeze IoT assets until a dispute
is resolved, or add a reputation score to IoT devices to track
how often they default on service payments.

4) Ring Signature: An oracle uses an IoT address aω to
pose as an IoT device when interacting with a fog node.
The oracle then submits its audit results to IIMSC using an
oracle address aΩ. The oracle audit submission includes a ring
signature, which is a zero-knowledge proof of membership
to prove the audit was done with an IoT address, without
revealing which. Since all blockchain records are public, fog
nodes can see which IoT devices are in the ring, and therefore
could potentially be the oracle. The probability that any IoT
address in the ring belongs to the oracle is 1/n for a ring of

11

n IoT addresses, which diminishes as n increases. However,
a larger n requires more logging space on the blockchain and
more verification computation from IIMSC, which could be
costly. Hence, a balance is required to increase n as much as
is reasonable. Alternatively, oracle o may send a ring signature
Rω with a large n to a secondary computing oracle such as
TrueBit6 for transparent verification. The computing oracle
then sends the result to IIMSC. This process would allow for
larger ring signatures, thus increasing audit security, without
inflating the cost of the smart contract.

B. Auditing sampling policies

For a set of fog nodes F and a size C, we sample a distinct
subset FC from F of C nodes. Service audits are executed
over members in FC either sequentially or simultaneously.
The purpose of clustering fog nodes even when executing
sequentially is to limit the number of repeated audits to the
same fog node in a short time period. That is, a larger size
C increases the expected time between audits to the same fog
node. Each sampling policy defines a specific way that clusters
are sampled.

1) Random sampling: Clusters of size C are sampled
randomly without repetition from the set F . This sampling
method weighs all members equally, and makes no distinction
between fog nodes who have previously passed their service
audits, and those who haven’t.

2) Weighted sampling: This sampling assigns a weight to
each fog node, based on their previous audit history. The
weights are initialized to be uniform. If a fog node fails a
service audit, the weight is increased, denoting that this fog
node should be audited more often. Similarly, if a fog node
passes a service audit, we decrease the weight, indirectly
giving audit priority to all other fog nodes. In practice, this
method would require an oracle to keep a separate internal log
of fog audit history.

3) BIBD sampling: This method is based on combinatorial
design theory [61] where we build a series of finite balanced
sets [62] of fog nodes FB . We define the (F ,B, B)-balanced
incomplete block design (BIBD) as a series of blocks, i.e.,
subsets of F , that are of size B and have each fog node appear
in B distinct blocks. The (F ,B, B)-BIBD is computed at the
beginning of the simulation, and is re-computed every time a
fog node is ejected from the system.

C. Auditing cost

We assign each fog node f ∈ F a random ‘malicious rate’
mf ∈ [0.4, 1], a probability that the next request response will
be faulty. By the definition of Fog_penalize, a fog node
penalty will deduct a portion of the fog deposit, and remove
the fog node from the system once that deposit reaches 0. For
our simulation, we set each fog deposit to 3 and enforce a
penalty of -1. That is, a fog node is removed from the system
if it fails 3 service audits. For this simulation, we suppose the
malicious rate of each fog node does not change in response
to an audit result. The simulation is executed 1000 times per

6https://truebit.io/

(a) Mean, G = 5 (b) Mean, G = 25

(c) Variance, G = 5 (d) Variance, G = 25

Figure 5: The means and variances of auditing costs necessary
to expel all malicious nodes.

audit scheduling policy. We show the average of the results in
Fig. 5a and 5b, and the variance of the results in Fig. 5c and 5d.
From the results, the weighted sampling method consistently
outperforms both random sampling and BIBD sampling in
both mean and variance. Between random and BIBD methods,
BIBD sampling performs marginally better. It is noted that
using a larger cluster size C has no significant effect on the
auditing cost.

D. State of the system

Now we suppose that a fog node may alter it’s malicious
rate in response to a service audit result. If a fog node fails
a service audit, we decrease the malicious rate by a random
fraction. Two scenarios may result: 1) the fog node adjusts
its malicious rate slowly towards 0 and redeems its reputation
score, thus staying in the system, or 2) the fog node fails more
service audits before fully redeeming its reputation score, and
is ejected from the system. In both cases, the integrity of the
overall system increases. We observe this trade-off between
the number of malicious nodes and the integrity of the system
by simulating the state of the system over time. For these
simulations, we set IIMSC.RMin = 0, and IIMSC.RInit =
IIMSC.RMax = 10.

1) By malicious rate: When a fog node fails a service audit,
we decrease its malicious rate. Therefore, we expect the overall
malicious rate to decrease over time. If a fog node is ejected
from the system, then only fog nodes with lower malicious
rates would stay in the system, further supporting our hypoth-
esis. Indeed, as seen in Fig. 6a, there is a significant drop in
the malicious rate over the first several audits. As expected,
the overall reputation score initially drops, but slowly recovers
once the majority of the fog nodes begin to behave properly.

12

(a) By mean malicious rate

(b) By number of fog nodes

Figure 6: The integrity of the FISIE system over time

The redemption of the overall reputation score of the system
is quicker with the weighted sampling method.

2) By number of fog nodes: Though not as drastic of a
drop as the malicious rate, we do observe a decrease in the
number of total fog nodes. Over time, fog nodes who have not
sufficiently decreased their malicious rate are ejected from the
system. A smaller pool of fog nodes, mostly composed of
honorable fog nodes, will increase the total average reputation
score. This is seen in the direct trade-off between increased
reputation score and decreased number of fog nodes in Fig. 6b.
The decrease in the number of active fog nodes is more drastic
with the weighted sampling method. Over both simulation
results, it is clear that the Weighted sampling method reaches
full integrity in a shorter amount of time.

XI. FUTURE WORK AND CONCLUSIONS

A key aspect of IoT security is ensuring the integrity of the
fog nodes that interact with IoT. In this paper, we proposed
a general architecture for heterogeneous IoT and blockchain-
enabled fog nodes. We defined a smart contract-based system

for mutual authentication, monetization, and fog integrity
enforcement. Finally, we analyzed the security of our system,
and analysed the simulation results of our proposed service
auditing over several audit scheduling policies. We found the
weighted sampling method to increase system integrity in
fewer total audits, hence lower blockchain cost.

In this study, the construction and analysis of the proposed
system is theoretical. In future work, we will build a Proof of
Concept model to study the feasibility of blockchain-enabled
fog nodes, the actual incurred latency of mutual authentication
and IoT task processing, and the actual behaviour of fog nodes
over time. Furthermore, we will test various audit scheduling
policies based on the real-time results of the system. Finally,
we will include a data auditing mechanism in a public system
to expand the scope of fog integrity. In a public IoT-fog envi-
ronment with decentralized fog devices, integrity enforcement
of fog will keep the environment safe and stable for IoT,
and enable the expansion of IoT applications with the full
cooperation of fog towards a real-world smart city [2].

ACKNOWLEDGEMENT

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), [CGS D
- 558695 - 2021].

REFERENCES

[1] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of things is a revolu-
tionary approach for future technology enhancement: a review,” Journal
of Big data, vol. 6, no. 1, pp. 1–21, 2019.

[2] C. Zhang, “Design and application of fog computing and internet of
things service platform for smart city,” Future Generation Computer
Systems, vol. 112, pp. 630–640, 2020.

[3] CISCO, “Fog computing and the internet of things: Extend the cloud to
where the things are,” tech. rep., 2015. Accessed: 2021-09.

[4] G. L. Santos, P. T. Endo, M. F. F. da Silva Lisboa, L. G. F. da Silva,
D. Sadok, J. Kelner, T. Lynn, et al., “Analyzing the availability and
performance of an e-health system integrated with edge, fog and cloud
infrastructures,” Journal of Cloud Computing, vol. 7, no. 1, p. 16, 2018.

[5] C. Yu, B. Lin, P. Guo, W. Zhang, S. Li, and R. He, “Deployment and
dimensioning of fog computing-based internet of vehicle infrastructure
for autonomous driving,” IEEE Internet of Things Journal, vol. 6, no. 1,
pp. 149–160, 2019.

[6] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and
C. S. Hong, “A proximal algorithm for joint resource allocation and
minimizing carbon footprint in geo-distributed fog computing,” in 2015
International Conference on Information Networking (ICOIN), pp. 324–
329, IEEE, 2015.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pp. 13–16, 2012.

[8] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.
Abawajy, “Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,” IEEE access, vol. 5,
pp. 9882–9910, 2017.

[9] A. Giordano, G. Spezzano, and A. Vinci, “Smart agents and fog
computing for smart city applications,” in International Conference on
Smart Cities, pp. 137–146, Springer, 2016.

[10] I. Martinez, A. S. Hafid, and A. Jarray, “Design, resource management
and evaluation of fog computing systems: A survey,” IEEE Internet of
Things Journal, 2020.

[11] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R. Buyya, “Resource
allocation and task scheduling in fog computing and internet of every-
thing environments: A taxonomy, review, and future directions,” ACM
Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–38, 2022.

[12] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Auditing cache
data integrity in the edge computing environment,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1210–1223,
2020.

13

[13] M. A. Khan and K. Salah, “Iot security: Review, blockchain solutions,
and open challenges,” Future generation computer systems, vol. 82,
pp. 395–411, 2018.

[14] G. Cheng, Y. Chen, S. Deng, H. Gao, and J. Yin, “A blockchain-based
mutual authentication scheme for collaborative edge computing,” IEEE
Transactions on Computational Social Systems, vol. 9, no. 1, pp. 146–
158, 2021.

[15] L. Qiao, Y. Li, F. Wang, and B. Yang, “Lightweight integrity auditing of
edge data for distributed edge computing scenarios,” Ad Hoc Networks,
vol. 133, p. 102906, 2022.

[16] J. Wang, L. Wu, K.-K. R. Choo, and D. He, “Blockchain-based
anonymous authentication with key management for smart grid edge
computing infrastructure,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 3, pp. 1984–1992, 2019.

[17] M. Debe, K. Salah, M. H. U. Rehman, and D. Svetinovic, “Monetization
of services provided by public fog nodes using blockchain and smart
contracts,” IEEE Access, vol. 8, pp. 20118–20128, 2020.

[18] H. Huang, X. Chen, Q. Wu, X. Huang, and J. Shen, “Bitcoin-based
fair payments for outsourcing computations of fog devices,” Future
Generation Computer Systems, vol. 78, pp. 850–858, 2018.

[19] G. Liu, J. Wu, and T. Wang, “Blockchain-enabled fog resource access
and granting,” Intelligent and Converged Networks, vol. 2, no. 2,
pp. 108–114, 2021.

[20] V. Buterin, “Ethereum white paper,” tech. rep., 2013.
[21] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang, “A survey on access

control in the age of internet of things,” IEEE Internet of Things Journal,
vol. 7, no. 6, pp. 4682–4696, 2020.

[22] S. Algarni, F. Eassa, K. Almarhabi, A. Almalaise, E. Albassam, K. Al-
subhi, and M. Yamin, “Blockchain-based secured access control in an
iot system,” Applied Sciences, vol. 11, no. 4, p. 1772, 2021.

[23] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah,
“A user authentication scheme of iot devices using blockchain-enabled
fog nodes,” in 2018 IEEE/ACS 15th international conference on com-
puter systems and applications (AICCSA), pp. 1–8, IEEE, 2018.

[24] S. Kalra and S. K. Sood, “Secure authentication scheme for iot and
cloud servers,” Pervasive and Mobile Computing, vol. 24, pp. 210–223,
2015.

[25] S. Singh and V. K. Chaurasiya, “Mutual authentication scheme of iot
devices in fog computing environment,” Cluster Computing, vol. 24,
pp. 1643–1657, 2021.

[26] A. A.-N. Patwary, A. Fu, S. K. Battula, R. K. Naha, S. Garg, and
A. Mahanti, “Fogauthchain: A secure location-based authentication
scheme in fog computing environments using blockchain,” Computer
Communications, vol. 162, pp. 212–224, 2020.

[27] Y. Ding, Y. Li, W. Yang, and K. Zhang, “Edge data integrity verification
scheme supporting data dynamics and batch auditing,” Journal of
Systems Architecture, vol. 128, p. 102560, 2022.

[28] I. Zikratov, A. Kuzmin, V. Akimenko, V. Niculichev, and L. Yalansky,
“Ensuring data integrity using blockchain technology,” in 2017 20th
Conference of Open Innovations Association (FRUCT), pp. 534–539,
IEEE, 2017.

[29] H. Tian, F. Nan, C.-C. Chang, Y. Huang, J. Lu, and Y. Du, “Privacy-
preserving public auditing for secure data storage in fog-to-cloud
computing,” Journal of Network and Computer Applications, vol. 127,
pp. 59–69, 2019.

[30] A. Palai, M. Vora, and A. Shah, “Empowering light nodes in blockchains
with block summarization,” in 2018 9th IFIP international conference on
new technologies, mobility and security (NTMS), pp. 1–5, IEEE, 2018.

[31] E. Reilly, M. Maloney, M. Siegel, and G. Falco, “An iot integrity-first
communication protocol via an ethereum blockchain light client,” in
2019 IEEE/ACM 1st International Workshop on Software Engineering
Research & Practices for the Internet of Things (SERP4IoT), pp. 53–56,
IEEE, 2019.

[32] A. Hafid, A. S. Hafid, and M. Samih, “Scaling blockchains: A compre-
hensive survey,” IEEE access, vol. 8, pp. 125244–125262, 2020.

[33] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using
rollups: A comprehensive survey,” IEEE Access, 2022.

[34] V. Kapoor, V. S. Abraham, and R. Singh, “Elliptic curve cryptography,”
Ubiquity, vol. 2008, no. May, pp. 1–8, 2008.

[35] E. Morais, T. Koens, C. Van Wijk, and A. Koren, “A survey on zero
knowledge range proofs and applications,” SN Applied Sciences, vol. 1,
pp. 1–17, 2019.

[36] D. Vujičić, D. Jagodić, and S. Randić, “Blockchain technology, bitcoin,
and ethereum: A brief overview,” in 2018 17th international symposium
infoteh-jahorina (infoteh), pp. 1–6, IEEE, 2018.

[37] O. Bouachir, M. Aloqaily, L. Tseng, and A. Boukerche, “Blockchain and
fog computing for cyberphysical systems: The case of smart industry,”
Computer, vol. 53, no. 9, pp. 36–45, 2020.

[38] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-
Hani, “Blockchain smart contracts: Applications, challenges, and future
trends,” Peer-to-peer Networking and Applications, vol. 14, pp. 2901–
2925, 2021.

[39] A. Ouaddah, A. Abou El Kalam, and A. A. Ouahman, “Harnessing the
power of blockchain technology to solve iot security & privacy issues.,”
in ICC, pp. 7–1, 2017.

[40] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, “Trust-
worthy blockchain oracles: review, comparison, and open research
challenges,” IEEE access, vol. 8, pp. 85675–85685, 2020.

[41] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels,
F. Koushanfar, A. Miller, B. Magauran, D. Moroz, et al., “Chainlink 2.0:
Next steps in the evolution of decentralized oracle networks,” Chainlink
Labs, vol. 1, pp. 1–136, 2021.

[42] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, pp. 36–63, 2001.

[43] M. Qu, “Recommended elliptic curve domain parameters,” Certicom
Res., Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6, 1999.

[44] H. Mayer, “Ecdsa security in bitcoin and ethereum: a research survey,”
[45] J. Thakur and N. Kumar, “Des, aes and blowfish: Symmetric key

cryptography algorithms simulation based performance analysis,” In-
ternational journal of emerging technology and advanced engineering,
vol. 1, no. 2, pp. 6–12, 2011.

[46] M. Aazam and E.-N. Huh, “Dynamic resource provisioning through
fog micro datacenter,” in 2015 IEEE international conference on per-
vasive computing and communication workshops (PerCom workshops),
pp. 105–110, IEEE, 2015.

[47] R. Mühlberger, S. Bachhofner, E. Castelló Ferrer, C. Di Ciccio, I. Weber,
M. Wöhrer, and U. Zdun, “Foundational oracle patterns: Connecting
blockchain to the off-chain world,” in Business Process Manage-
ment: Blockchain and Robotic Process Automation Forum: BPM 2020
Blockchain and RPA Forum, Seville, Spain, September 13–18, 2020,
Proceedings 18, pp. 35–51, Springer, 2020.

[48] H. Tran-Dang and D.-S. Kim, “A survey on matching theory for
distributed computation offloading in iot-fog-cloud systems: Perspectives
and open issues,” IEEE Access, 2022.

[49] Y.-Y. Shih, C.-Y. Wang, and A.-C. Pang, “Fog computing service
provision using bargaining solutions,” IEEE Transactions on Services
Computing, vol. 14, no. 6, pp. 1765–1780, 2019.

[50] X. Peng, K. Ota, and M. Dong, “Multi-attribute based double auction
towards resource allocation in vehicular fog computing,” IEEE Internet
of Things Journal, 2020.

[51] J. Metzger, “Decentralized justice in the era of blockchain,” IJODR,
vol. 5, p. 69, 2018.

[52] Z. Xu and L. Chen, “Div: resolving the dynamic issues of zero-
knowledge set membership proof in the blockchain,” in Proceedings
of the 2021 international conference on management of data, pp. 2036–
2048, 2021.

[53] Y. F. Chung, Z. Y. Wu, and T. S. Chen, “Ring signature scheme for
ecc-based anonymous signcryption,” Computer Standards & Interfaces,
vol. 31, no. 4, pp. 669–674, 2009.

[54] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in 2011 sixth annual
ChinaGrid conference, pp. 3–9, IEEE, 2011.

[55] J. M. Schopf and F. Berman, “Stochastic scheduling,” in Proceedings of
the 1999 ACM/IEEE Conference on Supercomputing, pp. 48–es, 1999.

[56] R. Kozhan and G. Viswanath-Natraj, “Decentralized stablecoins and
collateral risk,” WBS Finance Group Research Paper, 2021.

[57] H. Yu, Z. Shen, C. Miao, C. Leung, and D. Niyato, “A survey of
trust and reputation management systems in wireless communications,”
Proceedings of the IEEE, vol. 98, no. 10, pp. 1755–1772, 2010.

[58] E. Bellini, Y. Iraqi, and E. Damiani, “Blockchain-based distributed trust
and reputation management systems: A survey,” IEEE Access, vol. 8,
pp. 21127–21151, 2020.

[59] R. Govindaraj, P. Govindaraj, S. Chowdhury, D. Kim, D.-T. Tran, and
A. N. Le, “A review on various applications of reputation based trust
management.,” International Journal of Interactive Mobile Technologies,
vol. 15, no. 10, 2021.

[60] A. Hamza and B. Kumar, “A review paper on des, aes, rsa encryption
standards,” in 2020 9th International Conference System Modeling and
Advancement in Research Trends (SMART), pp. 333–338, IEEE, 2020.

[61] D. R. Stinson, Combinatorial designs: constructions and analysis,
vol. 480. Springer, 2004.

14

[62] R. Bose and S. Shrikhande, “On the composition of balanced incomplete
block designs,” Canadian Journal of Mathematics, vol. 12, pp. 177–188,
1960.

ISMAEL MARTINEZ received the B.Sc. degree
in mathematics and computer science from Simon
Fraser University, BC, Canada in 2016. He is cur-
rently a fourth-year Ph.D candidate at the University
of Montreal, QC, Canada in Computer Science and
Operations Research. His research interests are in
network design of fog infrastructures, and security
of IoT-fog infrastructures via zero-knowledge proofs
and blockchain.

ABDELHAKIM SENHAJI HAFID is a Full Pro-
fessor at the University of Montreal. He is the
founding director of Network Research Lab and
Montreal Blockchain Lab. Prof. Hafid published over
260 journal and conference papers; he also holds
three US patents. Prior to joining U. of Montreal,
he spent several years, as senior research scientist, at
Bell Communications Research (Bellcore), NJ, US
working in the context of major research projects on
the management of next generation networks. Prof.
Hafid has extensive academic and industrial research

experience in the area of the communication networks and distributed systems.
His current research interests include Blockchain scalability and security,
Blockchain disruption of various industry segments, IoT, Fog/edge computing,
and intelligent transport systems.

MICHEL GENDREAU is the Department Chair
and Professor of operations research in the Depart-
ment of Mathematics and Industrial Engineering,
Polytechnique Montréal, Montreal, QC, Canada. He
has published more than 300 papers in peer-reviewed
journals and conference proceedings. He is also the
Co-Editor of six books.His main research interest
focuses on the application of operations research
methods to energy planning and to the management
of transportation and logistics systems. He was the
chair holder of the NSERC/Hydro- Québec Indus-

trial Chair on the Stochastic Optimization of Electricity Generation from 2009
to 2015. In 2001, he received the Merit Award of the Canadian Operational
Research Society in recognition of his contributions to the development of
O.R. in Canada. He was elected Fellow of INFORMS in 2010. In 2015, he
received the prestigious Robert Herman Lifetime Achievement Award of the
Transportation Science & Logistics Society of INFORMS.

	Introduction
	Related Work
	IoT-fog security
	Authorization
	Authentication

	Data auditing of Fog
	Blockchain-based Monetization
	Blockchain-fog integration
	Summary of Reviewed Literature

	FISIE System Overview
	Identity Management
	Payment Management
	Integrity Verification
	Penalty & Incentive Mechanisms

	Domain Background & Configurations
	Blockchain
	Smart Contracts
	Oracles

	Elliptic Curve Cryptography – Definitions & Settings
	The elliptic curve
	Encryption
	ECDSA
	One-way hash function

	Physical Architecture
	IoT layer
	Fog layer
	Cloud layer

	IIMSC - Initialization
	Lookup tables
	Initialization
	IIMSC pooled funds

	IIMSC – Identity Management
	Registration
	IoT registration
	Fog registration
	Oracle registration

	Removal
	Mutual Authentication

	IIMSC – Payment Management
	Addition and withdrawal of funds
	IoT funds
	Fog funds

	IoT-Fog service and payment
	Matching, Bargaining, and Disputes

	IIMSC – Integrity Verification
	Ring Signature - Proof of Membership
	Verification
	Correctness

	Reward & Penalty Functions
	Passed audit
	Failed audit

	Service Audit
	Oracle payment
	Scheduling policy

	IIMSC – Penalty & Incentive Mechanisms
	Fog monetization
	Fog collateral deposit
	Fog reputation
	Fog deposit distribution

	Simulation of Integrity
	Security Analysis – Discussion
	Encrypted Communication
	Lookup Tables
	Payment
	Ring Signature

	Auditing sampling policies
	Random sampling
	Weighted sampling
	BIBD sampling

	Auditing cost
	State of the system
	By malicious rate
	By number of fog nodes

	Future Work and Conclusions
	References
	Biographies
	ISMAEL MARTINEZ
	ABDELHAKIM SENHAJI HAFID
	MICHEL GENDREAU

