
Scaling Up the Quantum Divide and Conquer
Algorithm for Combinatorial Optimization

Cameron Ibrahim
Computer & Information Sciences

University of Delaware
Newark, DE

cibrahim@udel.edu

Teague Tomesh
Infleqtion

Chicago, IL
teague.tomesh@infleqtion.com

Zain Saleem
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, IL

zsaleem@anl.gov

Ilya Safro
Computer & Information Sciences

University of Delaware
Newark, DE

isafro@udel.edu

Abstract—Quantum optimization as a field has largely been
restricted by the constraints of current quantum computing
hardware, as limitations on size, performance, and fidelity mean
most non-trivial problem instances won’t fit on quantum devices.
Even proposed solutions such as distributed quantum computing
systems may struggle to achieve scale due to the high cost
of inter-device communication. To address these concerns, we
propose Deferred Constraint Quantum Divide and Conquer
Algorithm (DC-QDCA), a method for constructing quantum cir-
cuits which greatly reduces inter-device communication costs for
some quantum graph optimization algorithms. This is achieved
by identifying a set of vertices whose removal partitions the input
graph, known as a separator; by manipulating the placement of
constraints associated with the vertices in the separator, we can
greatly simplify the topology of the optimization circuit, reducing
the number of required inter-device operations. Furthermore, we
introduce an iterative algorithm which builds on these techniques
to find solutions for problems with potentially thousands of
variables. Our experimental results using quantum simulators
have shown that we can construct tractable circuits nearly three
times the size of previous QDCA methods while retaining a
similar or greater level of quality.

Index Terms—Quantum Computing, Hybrid Algorithm,
Graph Optimization

I. INTRODUCTION

Quantum advantage describes the potential speedup achiev-
able using quantum computers on tasks traditionally performed
on classical hardware, such as cryptography [1], machine
learning [2], and optimization [3]. However, many relevant
problems in these areas are fairly tractable for small inputs
using classical methods. In order to demonstrate an advantage,
we must push the boundary on the size of inputs that we
can solve using quantum computers, which are currently
constrained in both size and error rate [4].

Distributed quantum computing systems may provide the
solution to the issue of scalability [5]. Since the error rate

This project was funded in part by (1) DARPA under the ONISQ program
and (2) QNEXT the U.S. Department of Energy, Office of Science, National
Quantum Information Science Research Center.

of a quantum device tends to inflate as its size increases,
advocates of distributed quantum computing systems propose
to utilize a variety of smaller quantum devices connected by
means of quantum teleportation protocols. In the short term,
implementation of these systems would be constrained by
the cost of inter-device operations, which can add significant
overhead and decrease fidelity depending on what method is
used [6]–[8]. In order to successfully study the scalability of
these distributed quantum systems, we must then find ways to
work around this overhead.

Classical distributed systems similarly incur a significant
overhead on inter-device operations, which may lead to a
bottleneck in system performance [9]. Systems engineers
generally try to limit this bottleneck by mapping processes
to individual devices to minimize the necessity of inter-device
operations (e.g., this can be done by modeling communication
complexity using graph partitioning [10]). However, this is
only necessary insofar as the inter-device operations present a
bottleneck; once below a certain threshold, it becomes useful
to instead try to optimize for device utilization, ensuring that
the task at hand is making efficient use of the resources in the
distributed system.

These classical techniques inspired methods such as the
Quantum Divide and Conquer Algorithm (QDCA), which
attempts to decompose a single combinatorial optimization
problem into subproblems which can be solved on individual
quantum devices [11]. This decomposition models the input as
a graph, and attempts to minimize the amount of information
which must be passed between devices by applying graph
vertex partition algorithms to the underlying graph topology.
In the QDCA approach, the problem is solved by applying a
series of quantum gates known as mixers to each variable of
the problem. If the number of inter-device operations is still
prohibitive, the problem is sparsified by deactivating a subset
of these mixers in order to further reduce the number of inter-
device operations below a tractable threshold.

ar
X

iv
:2

40
5.

00
86

1v
1

 [
qu

an
t-

ph
]

 1
 M

ay
 2

02
4

The benefits of QDCA have previously been shown while
working with the Maximum Independent Set problem. This
is a classical NP-Hard graph optimization problem with a
wide variety of applications. This is a well studied problem
in quantum optimization [12], and will be the primary area of
focus for this paper.
Our contribution In order to address the limitations of QDCA
with regards to scalability and device utilization, we introduce
the Deferred Constraint Quantum Divide and Conquer Algo-
rithm (DC-QDCA). Our approach utilizes edge partitioning
in order to compute a k-way separator for our input graph.
By manipulating the position of constraints associated with
this separator, we can construct a circuit whose simplified
topology allows it to decomposed into k + 1 subcircuits.
The first k of these subcircuits are completely disconnected
from one another and can be run entirely in parallel with no
required inter-device operations. The final circuit corresponds
to our separator; for each vertex adjacent to the separator, we
must communicate its result to the separator circuit. We can
adjust the required number of inter-device operations solely
by deactivating mixers in the separator circuit, leaving each
of the other k subcircuits completely active.

Utilizing this approach, we are able to significantly increase
the number of vertices participating in the optimization of a
single circuit for a given budget of inter-device operations,
increasing the quality of the result. Moreover, for very large
graphs where it is infeasible to produce a connected circuit
with this approach, we introduce a method which iterates
over individual vertices in the separator and attempts to solve
the subgraph of partitions connected to that node. Using
this approach, we can acquire quality results for graphs with
several thousand vertices. Our approach directly benefits the
distributed quantum computing algorithms by scaling them up.

II. BACKGROUND & RELATED WORK

A. The Maximum Independent Set Problem

An undirected graph G = (V,E) with no loops and multi-
edges is a set V of vertices together with a set E ⊆

(
V
2

)
of

edges. An edge e and a vertex v are incident with one another
if v ∈ e. Two vertices u, v are adjacent if there exists an edge
e such that u, v ∈ e. The neighborhood N(v) of a vertex v is
the set of vertices adjacent to v.

An independent set is a subset S ⊆ V where no two vertices
u, v ∈ S are adjacent. An independent set S is maximal if for
all v ∈ V , S ∪ {v} is not an independent set. The maximum
independent set for a graph G is the maximal independent set
with largest cardinality.

The Maximum Independent Set Problem admits a formula-
tion as the following binary linear program:

max
∑
v∈V

xv,

such that xu + xv = 1 ∀uv ∈ E,
xv ∈ {0, 1} ∀v ∈ V.

Fig. 1: An edge partition assigns a label to each edge of a
graph G. The set of vertices with edges belonging to multiple
partitions (green) form a separator for the rest of the graph.

B. Vertex & Edge Partitioning

Graph partitioning is generally synonymous with graph
vertex partitioning, where the vertex set V of the graph is
split into k disjoint sets V1 ⊔ · · · ⊔ Vk. For k = 2, this is
commonly known as Graph Bisection. A vertex partitioning
solver will generally try to minimize the number of edges
crossing between individual partitions. In balanced vertex
partitioning, a constraint is added guaranteeing that no one
partition takes too great a portion of the graph. The full
formulation of balanced vertex partitioning is given by

min
V=V1⊔···⊔Vk

|{uv ∈ E | ∃i ̸= j : v ∈ Vi ∧ u ∈ Vj}|

st ∀i, |Vi| ≤ (1 + ϵ)

⌈
|V |
k

⌉
.

By comparison, graph edge partitioning attempts to split the
edge set E into disjoint sets E1 ⊔ · · · ⊔Ek. Edge partitioning
has seen success in process assignment in classical distributed
systems for systems which a few processes with a large
number of required interactions with other processes [13].
Dual to the notion of an edge partition is the idea of a vertex
separator, the set of vertices S which are incident to at least
two edges assigned to different partitions.

A vertex separator induces a vertex partition V = V1 ⊔
· · · ⊔ Vk ⊔ S, where every edge in the graph either has one
end in the separator or both ends in a single partition. An
edge partitioning solver will generally try to find a solution
which minimizes the sum of the number of edge partitions
each vertex in the set is incident to. An analogous balance
constraint can also be defined, giving the final formulation

min
E=E1⊔···⊔Ek

∑
v∈V

|{i | ∃u ∈ N(v) : uv ∈ Ei}| − 1

such that ∀i, |Ei| ≤ (1 + ϵ)

⌈
|E|
k

⌉
.

C. Circuit Cutting and Knitting

A distributed quantum computing (DQC) system consists
of a collection of smaller quantum computing devices which
are networked together via inter-device operations [14]. In this
way, they can have a large number of effective qubits, without
the negative effects of increasing the number of qubits within
a single device, such as increased error rates [15].

In order to map a circuit designed for a single device
onto a DQC, we utilize a technique known as circuit cutting.
This method decomposes a single circuit into a number of
subcircuits which will be mapped to individual devices in
the DQC; the results of one subcircuit will be correlated
with the initial state of another, communicated using inter-
device operations [16]–[18]. These input-output pairings can
be represented as cuts on the wires or gates of the quantum
circuit. Dual to the notion of circuit cutting is circuit knitting,
where individual subcircuits are recombined to acquire an
overall solution [17].

There is a considerable cost associated with mapping single
device circuits to a DQC. In particular, without quantum meth-
ods of communicating between devices such as teleportation,
the cost of classical methods for reconstructing the result of
a single circuit evaluated on a DQC is exponential in the
number of cuts required to decompose the circuit [17]. This
places considerable constraints on what circuits can currently
be evaluated using these methods.

D. QAOA and Quantum Divide and Conquer

Maximum Independent Set can similarly be formulated
in terms of quantum operations. This problem has previ-
ously been studied in the context of hybrid quantum-classical
optimization, where classical optimization methods such as
gradient descent are used to optimize the parameters of a
quantum circuit which outputs a valid solution to the given
problem [19], [20]. These types of parameterized circuits are
generally called ansatz.

In this setting, the Maximum Independent Set objective is
known as the Hamming weight of the solution bitstring x ∈
{0, 1}|V |. The Hamming Weight function can be represented
in terms of quantum operations as

C =
∑
v∈V

1− Zv

2
,

where Zv is the Pauli-Z operator applied to the qubit corre-
sponding to vertex v [11]. For an ansatz ψ with parameters
θ, the loss function which is minimized in order to find an
optimal independent set is given by the expectation

L(θ) = −E
[
⟨ψ(θ)|C|ψ(θ)⟩

]
.

The Quantum Approximate Optimization Algorithm
(QAOA) is a class of algorithms for combinatorial
optimization which follow this ansatz construction approach
[19]. The ansatz in QAOA is generally constructed using an
initial state |s⟩ and p alternating layers of parametrized phase
unitaries UC(θ) and mixing unitaries UM (θ)

|ψ(θ)⟩ = Up
C(θ)U

p
M (θ) · · ·U1

C(θ)U
1
M (θ)|s⟩,

where

Uk
C(θ) = exp{−iθC,kC}, Uk

M (θ) = exp{−iθM,kM}

for some problem dependent operator M . Accelerating QAOA
and making it more practical is of great importance [21], [22].

In this paper, we build upon a specific variant of QAOA
known as QDCA. In QDCA, the mixing unitaries UM are
defined such that they enforce the constraints of the relevant
combinatorial optimization problem [20]. The mixing unitary
UM (θ) is defined such that Uk

M (θ) =
∏

v∈V Pv(θM,k,v),
where each Pv(α) = exp{−iαMv} is a partial mixer on the
wire corresponding to the vertex v. For Maximum Independent
set, Mv is defined as

Mv := Xv

∏
u∈N(v)

1 + Zu

2
,

where Xv is the Pauli-X operator on the qubit corresponding
to the vertex v. In words, Mv will flip xv if and only if none
of its neighbors are in the |1⟩ state.

Furthermore, QDCA incorporates both vertex partitioning
and circuit knitting to scale to larger graphs. The QDCA
algorithm utilizes graph bisection to acquire a partition of the
vertex set V = V1 ⊔ V2. Individual ansatz are constructed
for each of the induced subgraphs corresponding to these
partitions. Vertices which are incident to an edge which crosses
between these two vertex sets are referred to as cut nodes, and
are given by the set Q ⊆ V . A certain number of “hot” nodes
are then chosen from Q; these hot nodes are used to knit the
constructed ansatz together to allow gradient information flow
between the two circuits. The remaining “cold” nodes have
their mixers deactivated, removing them from consideration
for the solution for this circuit so as to remove the possibility
of an invalid solution. In this way, decreasing the number
of “hot” nodes decreases the number of required inter-device
operations at the cost of decreased solution quality.

III. DEFERRED CONSTRAINT DIVIDE AND CONQUER

In this section, we attempt to alleviate the issue of mixer
deactivations in order to improve the quality-scalability trade-
off in QDCA. To do so, we introduce the Deferred Constraint
Quantum Divide and Conquer Algorithm (DC-QDCA). We do
so in order to simplify the structure of the circuit, which in
turn allows for a greater number of active mixers.

The power of the deferred constraint approach lies in the
simplicity with which we can compute its overhead. The
number of wire cuts required to split a deferred constraint
circuit is exactly equal to the size of the neighborhood of
the separator,

⋃
v∈S N(v) \ S. By trying to minimize this

quantity, we minimize the number of cuts required to separate
the circuit. Once a separator is chosen, we have the option to
sparsify it, removing vertices until the number of required cuts
is within our budget. This process is equivalent to deactivating
the mixers corresponding to those vertices in the separator.

A. Construction of the QC-QDCA Circuit

A key insight enabling DC-QDCA is that if a vertex v has
a neighbor u, where u was not in the independent set in the
initial state and u has not yet had a partial mixer applied to it,
then a partial mixer on v does not have to check the current
state of u. Given an ordering v1, . . . , v|V | ∈ V of the vertices
of the input graph which matches the ordering of partial mixers

(a)

(b)

Fig. 2: Example of circuit simplification. Circuit (a) is simpli-
fied into (b) by removing unnecessary connections.

in the circuit, this can be expressed in terms of gate operations
as

Mv := Xv

∏
vj∈N

1 + Zvj

2
, N := {vj ∈ N(vi) | j < i}.

This is reflected in Fig. 2, where for an initial state correspond-
ing to the empty set, the partial mixer for each vertex only
needs to check the wires corresponding to neighbors coming
before it in the order.

Without circuit cutting, this benefit may seem negligible.
However, this reduction in the number of connections between
wires can significantly reduce the number of required inter-
device operations. Consider a vertex separator V = V1 ⊔ · · · ⊔
Vk ⊔ S of the input graph. Each edge of the graph is either
contained completely in one partition, has at least one end in
S. If the mixers corresponding to the vertices in S are placed
at the end of the circuit, then no gate earlier in the circuit will
need to connect two wires from different partitions. As a result,
if we identify partition subcircuits ψi corresponding to each
partition Vi, as well as a separator subcircuit ψS corresponding
to S, no inter-device operations will need to be used between
any two ψi, ψj . This is construction is demonstrated in Fig.
3, where deferring the separator produces a circuit with three
subcircuits. Notably, this construction also means that each of
the partition subcircuits can be executed completely in parallel,
even on a classical simulator.

The number of cuts required to split the circuit in this way
is then going to be

⋃
v∈S N(v) \ S, which is the number of

vertices not in the separator whose value must be communi-
cated to the separator circuit. Each individual subcircuit ψ will
be constructed as in QDCA, but using the simplified mixers
defined in this section. The overall DC-QDCA circuit has the

(a) 5 node path graph

(b) A deferred constraint circuit.

Fig. 3: Example using a vertex separator (Red) with two
partitions (Blue, Yellow). The DC-DQCA circuit is separated
into 3 subcircuits using cuts on wires 1 and 3, corresponding
to nodes adjacent to the separator.

form

ψ(θ) := ψS(θ)

k∏
i=1

ψi(θ).

In order to further simplify the circuit, we order the partial
mixers of the graph in order of neighborhood size, |N(v)|.
This is a criterion used in some greedy algorithms for Maxi-
mum Independent set, and leads to an an order in which there
few vertices with neighbors earlier in the order [23]. When
combined with the simplified mixers defined in this section,
this can in practice reduce the number of wire connections
within each subcircuit.

B. Separator Sparsification

While the DC-QDCA algorithm produces a circuit requiring
only a small number of cuts, this can still quickly become
intractable due to the exponential cost of overhead associ-
ated with inter-device-communication. As such, we require
some way to simplify the problem so that it may still be
tractably evaluated. In this section, we present two approaches
to achieving tractability, one through sparsification and one
through iteration.

As the number of cuts required to split the QC-QDCA
circuit is given

⋃
v∈S N(v) \ S, one approach to decreasing

this cost is to remove vertices, deactivating their associated
mixers, in order to decrease the size of the neighborhood
adjacent to the separator. In this paper, we choose a subset
of the separator by fixing an ordering of the vertices in
the separator and iteratively attempting to add them to a
candidate set. By maintaining the current neighborhood of
the candidate set, rather than evaluating the neighborhoods
of each vertex independently, we are able to capture vertices

with overlapping neighborhoods that are not going to increase
the number of required cuts. We once again utilize an ordering
based on neighborhood size in order to prioritize vertices with
few connections to the rest of the graph. This approach is
appropriate when only a few vertices need to be removed
to produce a tractable circuit, one which can solve the input
problem using a single circuit. This approach is summarized
as Alg. 1.

Algorithm 1: Deferred Constraint Quantum Divide
and Conquer Algorithm (Single Circuit)

Input : A graph G = (V,E), a number of partitions
k, an imbalance ϵ, an optimizer opt, a cut
budget b, and a number of shots s

Output: A bitstring encoding an independent set of G
parts, S ← edgepartition(G, k, ϵ)
S′ ← {}
N ← {}
sort s1, . . . , s|S| ∈ S by |N(si)|
for si ∈ S do
N ′ ← N ∪ (N(vi) \ S)
if |N ′| ≤ b then

N ← N ′

S′ ← S′ ∪ {vi}
end

end
ψ, θ ← circuitgen(G, parts, S′)
θ∗ ← opt(L, ψ, θ)
X ← sample(ψ, θ∗, s)
return argmaxx∈X

∑
v∈V xv

If the size of the separator is significant, this sort of
sparsification likely isn’t tractable. In this case, it likely isn’t
feasible to find a solution for the entire graph with only a
single circuit. As an alternative to the sparsification approach,
one could try an iterative strategy, where small subproblems
are solved and recombined for find an overall solution. In
this case, the local subproblems in question are defined by
the subset of partitions connected by a single vertex s in the
separator, {Vi | i ≤ k, |N(s) ∩ Vi| > 0}.

Together with s, these form an induced subgraph which can
be solved to find a local part of the solution for the overall
graph. The rest of the current solution remains fixed. Any
mixers that may produce a conflict with the fixed solution is
deactivated.

By iterating over all vertices in the separator, we generate
a set of subproblems which covers the entire graph. Over the
course of multiple sweeps, we can find and refine a global
solution for the input graph. This approach is highly scalable,
and can be used to find solutions for graphs with several
thousand vertices. This algorithm is given as Alg. 2.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the DC-
QDCA using the Pennylane library, evaluated on University

Algorithm 2: Deferred Constraint Quantum Divide
and Conquer Algorithm (Iterative)
Input : A graph G = (V,E), a number of partitions

k, an imbalance ϵ, an optimizer opt, a cut
budget b, a number of shots s, and a number
of iteratations iter

Output: A bitstring encoding an independent set of G
x← [0] ∗ |V |
parts, S ← edgepartition(G, k, ϵ)
sort s1, . . . , s|S| ∈ S by |N(si)|
for 1 ≤ i ≤ iter do

for si ∈ S do
if |N | ≤ b then

local← {p ∈ parts | ∃u ∈ p : si ∈ N(u)}
L← {si} ∪ {u | ∀p ∈ local, ∀u ∈ p}
L← {v ∈ L | ∃u ∈ N(v) : x[u] = 1}
local← {p \ L | p ∈ local}
ψ, θ ← circuitgen(G, local, {si} \ L)
θ∗ ← opt(L, ψ, θ)
X ← sample(ψ, θ∗, s)
xlocal ← argmaxx∈X

∑
v∈V xv

end
end

end
return x

of Delaware Caviness cluster. Our testing uses a collection
of real world graphs from the Suite Sparse Matrix Collection
[24], as well as a Random 3-Regular graph and a Connected
Watts-Strogatz graph. The code for this project, the graphs we
tested on, and a summary of the collected data will be available
at [25]. Our primary source of comparison will be the original
QDCA implementation, found at [26]. Where optimal results
were required in order to give an approximation ratio, we used
the classical KaMIS library [27], while for the calculation of
vertex separators we used an edge partition provided by the
KaHIP library [28].

A. Single Circuit Inputs

For these tests, we compare directly with QDCA on a
collection of small inputs for which we can construct a circuit
covering the majority of the graph. For DC-DQVA, each of
these graphs are partitioned into 2-4 parts. We are primarily
concerned with number of inactive mixers and how that relates
to the quality of the result. A large number of inactive mixers
means a large portion of the graph is not being considered in
the optimization, and further applications of the circuit may be
required to find a solution. Both approaches in this test were
given a cut budget of 6, allowing us to compare the difference
in coverage given the same amount of overhead. Both random
graphs where generated with 16 vertices, while the real world
graphs are up to size 25.

In Fig. 4, we see that DC-QDCA tends to produce circuits
with a fraction of the inactive mixers in QDCA. In some cases,
DC-QDCA is able to capture the entire graph with no inactive

LFA
T5

(14, 16)

Watt
s S

tro
gatz

(16, 32)

Random
 Regular

(16, 24) LF1
0

(18, 32)
GD01_b

(18, 26)
GD02_a

(23, 59)
Ragusa1

6

(24, 58)

0

5

10

15

In
ac

tiv
e

M
ixe

rs QDCA
DC-QDCA

(a)

LFA
T5

(14, 16)

Watt
s S

tro
gatz

(16, 32)

Random
 Regular

(16, 24) LF1
0

(18, 32)
GD01_b

(18, 26)
GD02_a

(23, 59)
Ragusa1

6

(24, 58)

0

5

10

M
IS

 S
ize

QDCA
DC-QDCA

(b)

Fig. 4: Comparison of DC-QDCA with QDCA with respect
to mixer activations on a number of small graphs with size
(|V |, |E|). Fig 4a shows the significant decrease in inactive
mixers achieved by DC-QDCA while Fig 4b shows the ac-
companying increase in quality.

mixers whatsoever. Notably, there is not a perfect correlation
between inactive mixers and final quality.

However, we can see that where the difference in inactive
mixers is greatest, so too is the difference in quality. In fact,
on each of these graphs, DC-QDCA was able to achieve an
optimal result, whereas QDCA fell short on several, especially
those where it had a great number of inactive mixers, such as
Ragusa16 or GD02 a.

B. Iterative Approach

To demonstrate the application of the iterative version of
our algorithm, we look at a collection of 4 large real world
graphs from the Suite Spares Matrix Collection. In particular,
we look at both citation and reference networks, as a well as
a network representation of the US power grid. The largest
of these graphs, USpowergrid, requires a full 250 partitions
in order to get the size of the largest partition small enough
to be reasonably tractable. A full list of parameters used for
each individual graph is available at [25].

Our initial results in Fig. 5, are highly promising, achieving
an approximation ratio as high as 97%. Moreover, an increase
in size does not necessarily correlate with a decrease in the
quality of this iterative method, as some of our best results
were achieved for the largest graph USpowergrid.

To more closesly examine the behavior of our iterative
method, we demonstrate the quality of the solution overtime
in Fig. 6. Here, we see the increase in quality over several
hundred circuit applications over two full sweeps of the itera-
tive method. Here we see a significant amount of improvement

Erdos981 Roget
SmaGri

USpowerGrid
0.90
0.92
0.94
0.96
0.98
1.00

Ap
pr

ox
im

at
io

n
Ra

tio

Fig. 5: Approximation ratios for a collection of real world
graphs using iterative DC-QDCA.

0 100 200 300
Iteration

0

100

200

300

400

500

600

700

In
de

pe
nd

en
t S

et
 S

ize

Fig. 6: Shows the progress of iterative DC-QDCA on the
SmaGri network over two sweeps of the iterative method.

initially, which slowly tapers of as we approach the optimum,
noted by the dotted line. This behavior is highly promising,
demonstrating that given access to fast quantum hardware,
we could feasibly find high quality solutions for graphs with
several thousand vertices, without actually requiring a device
or system of devices which support several thousand qubits.

V. CONCLUSION AND FUTURE WORK

Scalability in quantum computing will remain one of the
preeminent obstacles to achieving wide scale use in practice
for the foreseeable future. In particular, it is a considerable
barrier to demonstrating practical applications of quantum op-
timization. Previous attempts to address this problem include
QDCA, which utilized a divide and conquer approach to the
Maximimum Independent Set problem. We demonstrate an
approach to achieve scalability in a distributed setting, utilizing
edge partitioning and separator sparsification to lower commu-
nication costs and improve results over QDCA. Moreover, we
introduced an iterative variant of our algorithm which allows
us to find high quality solutions on real world graphs with
several thousand vertices. Ongoing efforts are being made
to show the broad applicability of these methods to other
optimization problems, as well as expanding on existing results
through improved heuristics.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation:
Discrete logarithms and factoring,” in Proceedings 35th
annual symposium on foundations of computer science,
Ieee, 1994, pp. 124–134.

[2] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne,
R. Salzmann, D. Scheiermann, and R. Wolf, “Training
deep quantum neural networks,” Nature communica-
tions, vol. 11, no. 1, p. 808, 2020.

[3] D. Herman, C. Googin, X. Liu, Y. Sun, A. Galda, I.
Safro, M. Pistoia, and Y. Alexeev, “Quantum computing
for finance,” Nature Reviews Physics, vol. 5, no. 8,
pp. 450–465, 2023.

[4] J. Preskill, “Quantum computing in the nisq era and
beyond,” Quantum, vol. 2, p. 79, 2018.

[5] D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, “To-
wards a distributed quantum computing ecosystem,” IET
Quantum Communication, vol. 1, no. 1, pp. 3–8, 2020.

[6] X.-M. Hu, Y. Guo, B.-H. Liu, C.-F. Li, and G.-C. Guo,
“Progress in quantum teleportation,” Nature Reviews
Physics, vol. 5, no. 6, pp. 339–353, 2023.

[7] T. Ayral, F.-M. L. Régent, Z. Saleem, Y. Alexeev, and
M. Suchara, “Quantum divide and compute: Exploring
the effect of different noise sources,” SN Computer
Science, vol. 2, no. 3, p. 132, 2021.

[8] T. Ayral, F.-M. Le Régent, Z. Saleem, Y. Alexeev, and
M. Suchara, “Quantum divide and compute: Hardware
demonstrations and noisy simulations,” in 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI),
IEEE, 2020, pp. 138–140.

[9] D. P. Woodruff and Q. Zhang, “When distributed
computation is communication expensive,” Distributed
Computing, vol. 30, no. 5, pp. 309–323, 2017.

[10] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz, “Recent advances in graph partitioning,” in
Algorithm Engineering: Selected Results and Surveys,
L. Kliemann and P. Sanders, Eds. Springer International
Publishing, 2016.

[11] T. Tomesh, Z. H. Saleem, M. A. Perlin, P. Gokhale,
M. Suchara, and M. Martonosi, “Divide and conquer
for combinatorial optimization and distributed quan-
tum computation,” in 2023 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE),
vol. 01, 2023, pp. 1–12.

[12] T. Tomesh, Z. H. Saleem, and M. Suchara, “Quan-
tum local search with the quantum alternating operator
ansatz,” Quantum, vol. 6, p. 781, 2022.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C.
Guestrin, “{Powergraph}: Distributed {graph-parallel}
computation on natural graphs,” in 10th USENIX sym-
posium on operating systems design and implementation
(OSDI 12), 2012, pp. 17–30.

[14] M. Caleffi, M. Amoretti, D. Ferrari, D. Cuomo, J.
Illiano, A. Manzalini, and A. S. Cacciapuoti, “Dis-

tributed quantum computing: A survey,” arXiv preprint
arXiv:2212.10609, 2022.

[15] T. Tomesh, P. Gokhale, V. Omole, et al., “Supermarq: A
scalable quantum benchmark suite,” in 2022 IEEE In-
ternational Symposium on High-Performance Computer
Architecture (HPCA), IEEE, 2022, pp. 587–603.

[16] T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Sim-
ulating large quantum circuits on a small quantum
computer,” Physical review letters, vol. 125, no. 15,
p. 150 504, 2020.

[17] C. Piveteau and D. Sutter, “Circuit knitting with classi-
cal communication,” IEEE Transactions on Information
Theory, 2023.

[18] K. Mitarai and K. Fujii, “Overhead for simulating a non-
local channel with local channels by quasiprobability
sampling,” Quantum, vol. 5, p. 388, 2021.

[19] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D.
Lukin, “Quantum approximate optimization algorithm:
Performance, mechanism, and implementation on near-
term devices,” Physical Review X, vol. 10, no. 2,
p. 021 067, 2020.

[20] Z. H. Saleem, T. Tomesh, B. Tariq, and M. Suchara,
“Approaches to constrained quantum approximate opti-
mization,” SN Computer Science, vol. 4, no. 2, p. 183,
2023.

[21] H. Ushijima-Mwesigwa, R. Shaydulin, C. F. Negre,
S. M. Mniszewski, Y. Alexeev, and I. Safro, “Multi-
level combinatorial optimization across quantum archi-
tectures,” ACM Transactions on Quantum Computing,
vol. 2, no. 1, pp. 1–29, 2021.

[22] A. Galda, E. Gupta, J. Falla, X. Liu, D. Lykov, Y. Alex-
eev, and I. Safro, “Similarity-based parameter transfer-
ability in the quantum approximate optimization algo-
rithm,” Frontiers in Quantum Science and Technology,
vol. 2, p. 1 200 975,

[23] A. Kako, T. Ono, T. Hirata, and M. M. Halldórsson,
“Approximation algorithms for the weighted indepen-
dent set problem in sparse graphs,” Discrete Applied
Mathematics, vol. 157, no. 4, pp. 617–626, 2009.

[24] T. A. Davis and Y. Hu, “The university of florida sparse
matrix collection,” ACM Transactions on Mathematical
Software (TOMS), vol. 38, no. 1, pp. 1–25, 2011.

[25] C. Ibrahim, Mis qce2024. [Online]. Available: https :
//github.com/cameton/MIS QCE2024.

[26] T. Tomesh, Dqva-and-circuit-cutting. [Online]. Avail-
able: https : / / github . com / teaguetomesh / dqva - and -
circuit-cutting.

[27] D. Hespe, C. Schulz, and D. Strash, “Scalable kernel-
ization for maximum independent sets,” ACM Journal
of Experimental Algorithmics, vol. 24, no. 1, 1.16:1–
1.16:22, 2019.

[28] S. Schlag, C. Schulz, D. Seemaier, and D. Strash,
“Scalable Edge Partitioning,” in Proceedings of the 21th
Workshop on Algorithm Engineering and Experimenta-
tion (ALENEX), SIAM, 2019, pp. 211–225.

https://github.com/cameton/MIS_QCE2024
https://github.com/cameton/MIS_QCE2024
https://github.com/teaguetomesh/dqva-and-circuit-cutting
https://github.com/teaguetomesh/dqva-and-circuit-cutting

	Introduction
	Background & Related Work
	The Maximum Independent Set Problem
	Vertex & Edge Partitioning
	Circuit Cutting and Knitting
	QAOA and Quantum Divide and Conquer

	Deferred Constraint Divide and Conquer
	Construction of the QC-QDCA Circuit
	Separator Sparsification

	Simulation Results
	Single Circuit Inputs
	Iterative Approach

	Conclusion and Future Work

