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Abstract

Modular flavor symmetries refers to scenarios in which fermion masses respect modular symmetries.
Such scenarios have been studied in the bottom-up approach and have an explicit realization in string theory.
They rely on the remarkable properties of vector-valued modular forms.

1 Introduction

The standard model (SM) is remarkably successful in summarizing our current understanding of particle
physics. Currently experiments do not give us unambiguous hints for how particle physics beyond the SM
may look like. At the same time, the SM does not provide us with a theory of flavor, i.e. rather than explaining
the patterns of fermion masses it only describes them by introducing more than 20 continuous parameters.

2 Theories of flavor

Developing theories of flavor has been a longstanding theme in beyond the SM physics. Two main schemes
emerged:

1. mass hierarchies from Froggatt-Nielsen [1] (FN) and Randall-Sundrum [2] (RS) models,
2. flavor structures from non-Abelian discrete flavor symmetries [3].

While the former can convincingly explain hierarchies, they typically introduce numerous extra parameters
e.g. in the coefficients of terms in the Lagrange density. On the other hand, non-Abelian discrete symmetries
allow one to avoid relative coefficients. For instance, consider the alternating group of order 4, A4. At leading
order the neutrino mass matrix reads [4]
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where the v; denote the components of the vacuum expectation value (VEV) of a triplet flavon, and v, stands
for the VEV of the u-type Higgs of the minimal supersymmetric standard model (MSSM). This means that
the structure of the neutrino mass matrix is fixed by the A4 symmetry. However, it is nontrivial to explain
VEV patterns in which all v; are nonvanishing and their ratios are hierarchical. This conundrum sometimes
gets referred to as VEV alignment problem (see e.g. [5] for a discussion).

More recently, a new scheme emerged: modular flavor symmetries [6].! While the underlying symmetries
have infinitely many elements, this approach hosts non-Abelian finite groups and naturally gives rise to
hierarchies (cf. Figure 1).

*Based on invited talks at the 2024 Moriond EW and QCD sessions, to appear in the proceedings.
It is beyond the scope, and page limit, of these proceedings to fully summarize all related activities, see e.g. [7-11] for reviews and
more references.
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Figure 1: Modular flavor symmetries give rise to the attractive features of FN and RS models as well as
non-Abelian flavor symmetries while avoiding their problematic aspects.

3 Modular invariance and flavor

Modular symmetries are, in a way, the symmetries of tori. A torus defines a lattice, and modular
transformations are transformations of the lattice basis vectors which are such that the new basis vectors
span the same lattice. These transformations form the infinite group

SL(z,Z)={y=(‘CZ Z);a,b,c,deZ/\ad—bc=1}. @)
The so-called half-period ratio t transforms as
y at+b
T ct+d’ @)

and ‘sees’ only the group I := SL(2, Z)/Z,, where the nontrivial Z, element is given by diag(—1, —1). Models
of flavor are often based on the so-called congruence subgroups

T(N) = {)/ er: (i Z) - ((1) (1)) (mod N)} . @)

The quotients I'y := I'/T(N) are finite groups, for instance I's ~ A4. The important ingredient to tackle the
flavor problem are the so-called vector-valued modular forms [12] (VVMF), which, by definition, transform
under (3) as

fily v = (et + ) [pu()];; (D). )

Here, the f; furnish an n-dimensional representation under I'y, p,(y) is a representation matrix, and k
denotes the modular weight. The f; are further holomorphic functions of T and do not possess poles.
Crucially, these requirements make the VVMF unique.



This can be used to construct theories of flavor in which Yukawa couplings and mass matrices are modular
forms. For instance, in the Feruglio model [6] the pendant of (1), i.e. neutrino mass matrix, is proportional to

2Y1(T) —Y3(T) _YZ(T)
e My(1) = | -Ya(r) 2Ya(1) =Yi(7)] . (6)
-Y2(1) -Yi(r) 2Y3(7)

The proportionality factors contain the VEV of the so-called u-type Higgs of the MSSM, the see-saw scale
A as well as some factors from the Kéhler metric which depend on 7 and 7. Crucially, the Y; are known
modular functions, which can be written as [12]
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Here, 1 denotes the Dedekind n-function. For largish t := Im 7,
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This reveals that the entries of Y in (7) can accommodate hierarchies. Somewhat ironically, though, it turns
out that the best-fit point of this model is at T = i.2 In this model, 3 parameters predict 9 observables,

A ) 3 mass eigenvalues m; ,

predict o
Ret ¢ —— { 3 mixing angles 0;; , (10)
Im~t 3 phases (1 Dirac & 2 Majorana) .

This means that this model is dramatically overconstrained. It is still remarkably consistent with data, and
can be made fully consistent by introducing one, admittedly ad hoc, parameter [17].

4 Modular invariant holomorphic observables
The predictive power of modular flavor symmetries relies on three key ingredients,
@ modular covariance/invariance (cf. Section 3),

(@) meromorphy, i.e. the couplings do not depend on 7, and

@ the couplings remain finite for all values of 7.

In the respective models, these requirements fix the superpotential. It turns out that, in specific cases, they
directly fix observables [18]. This is true e.g. in the Feruglio model [6], where [18]
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with m") from (6) are meromorphic modular invariant functions, i.e. fulfill requirements @ and @ The
I;; are known to be renormalization group (RG) invariant [19]. At the same time, the [;; are functions that
depend only on the physical neutrino masses, mixing angles and phases. Two combinations of the I;; even
fulfill ©3). This allows one to obtain a large amount of information of the model directly from the theory of
modular forms.

2Generally, modular symmetries give rise to linearly realized symmetries at certain critical points [13-15], which lead to characteristic
patterns of mass matrices. Small departures of 7 from the critical values can be related to supersymmetry (SUSY) breaking [16].



5 Origin of modular flavor symmetries

While modular flavor symmetries have been proposed in the bottom-up approach, Yukawa couplings are
known to be modular forms in certain explicit string models [20-23], including the so-called toroidal orbifolds
(see [24] for a recent review). The latter are, as their name suggests, based on tori and, therefore, it is not
too surprising that they exhibit modular symmetries. Crucially, this means that modular flavor symmetries
emerge from a consistent scheme of quantum gravity. More recently, these symmetries have been explored
further, which has led to the so-called eclectic scheme [25-28], which unifies modular symmetries, traditional
family symmetries, R symmetries and outer automorphisms like the C# transformation under one umbrella.
Modular flavor symmetries arise also from magnetized tori [29-31].

Given that modular flavor symmetries have a ultraviolet (UV) completion, it is instructive to compare
bottom-up and top-down models [32]. Both approaches use VVMEF to describe fermion masses. In explicit
string models, the modular weights of quarks and leptons (and other matter fields) are small, indeed often
fractional, whereas in phenomenological models they are sometimes taken to be rather large, thus allowing
for several contractions to contribute to the fermion mass matrices. This introduces several freely adjusted
parameters in the bottom-up approach, giving rise to models that reproduce data, something that this is
much harder in the top-down approach.

6 Some open questions and challenges

6.1 Problems with kinetic terms

While modular flavor symmetries constrain the superpotential very strongly, the non-holomorphic Kéhler
potential is far less restricted. In fact, the effective field theory (EFT) expansion of the Kahler potential [33]

7
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contains infinitely many terms beyond the so-called minimal term proportional to ag. Even moderate values
of the ;> coefficients lead to changes of the predicted values of observables which exceed the experimental
error bars by far [33]. It should be stressed that higher-order terms in the Kédhler potential are essential for the
viability of the model as the soft SUSY breaking terms rely on them. Furthermore, attempts to suppress them
completely in UV complete models appear hard, if not impossible [34]. Nonetheless, a proof-of-principle
solution to the problem in which the impact of these terms does not exceed the experimental uncertainties
exists [35], but more research in this direction will be needed to arrive at a fully convincing picture. Note that
these extra terms can also be used in order to improve the fit of a given model [36], though at the expense of
introducing more parameters and thus reducing the predictive power of the scheme.

6.2 Is SUSY indispensable?

A key ingredient of modular flavor models so far is holomorphy, (Z), which is implemented by imposing
SUSY. Given the absence of clear signals for low-energy SUSY, one may ask whether it is possible to define a
nonsupersymmetric version of modular flavor symmetries. It has been pointed out [29,31] that in certain
scenarios low-energy SUSY may not be crucial to have mass matrices described by modular forms. However,
to date there is no complete model illustrating these points.

7 Outlook

Modular flavor symmetries are a rather new and exciting scheme allowing us to tackle the flavor problem.
This scheme may constitute the most concrete way of figuring out what completes the SM in the UV. Models
in this realm can be highly predictive, and can be tested in the foreseeable future. It remains a challenge for
the future to build predictive models which are fully consistent with observation and in which the theoretical
uncertainties are smaller than the experimental ones.
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