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Abstract—A combinatorial optimization problem is to find an
optimal solution under the constraints. This is one of the potential
applications for quantum computers. Quantum Random Access
Optimization (QRAO) is the quantum optimization algorithm
that encodes multiple classical variables into a single qubit to
construct a quantum Hamiltonian, thereby reducing the number
of qubits required. The ground energy of the QRAO Hamiltonian
provides a lower bound on the original problem’s optimal value
before encoding. This property allows the QRAO Hamiltonian to
be used as a relaxation of the original problem, and it is thus
referred to as a quantum relaxed Hamiltonian. In the Branch-
and-Bound method, solving the relaxation problem plays a signif-
icant role. In this study, we developed Quantum Relaxation based
Branch-and-Bound (QR-BnB), a method incorporating quantum
relaxation into the Branch-and-Bound framework. We solved
the MaxCut Problem and the Travelling Salesman Problem in
our experiments. In all instances in this study, we obtained the
optimal solution whenever we successfully computed the exact
lower bound through quantum relaxation. Internal strategies,
such as relaxation methods and variable selection, influence the
convergence of the Branch-and-Bound. Thus, we have further
developed the internal strategies for QR-BnB and examined how
these strategies influence its convergence. We show that our
variable selection strategy via the expectation value of the Pauli
operators gives better convergence than the naive random choice.
QRAO deals with only unconstrained optimization problems, but
QR-BnB can handle constraints more flexibly because of the
Branch-and-Bound processes on the classical computing part. We
demonstrate that in our experiments with the Travelling Sales-
man Problem, the convergence of QR-BnB became more than
three times faster by using the information in the constraints.

Index Terms—Quantum Applications, Optimization, Branch-
and-Bound, Quantum Relaxation, Maximum Cut, Travelling
Salesman Problem, Hybrid Algorithm, Performance Evaluation

I. INTRODUCTION

Combinatorial optimization problems involve finding a solu-
tion that minimizes (or maximizes) an objective function under
constraints [1]–[3]. Various problems, such as the Vehicle
Routing Problem, Crew Scheduling Problem, and Facility
Location Problem, can be formulated as Combinatorial op-
timization problems. Therefore, various classical algorithms
have been proposed to obtain an optimal or practically useful
solution. The branch-and-bound method is a classical exact
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solution algorithm [4], [5]. Its techniques are widely used
in many commercial and non-commercial software programs,
such as Gurobi [6] and CBC [7].

Recent developments in both hardware and software in
quantum computation have led to various potential applica-
tions. One application that draws attention is the combinatorial
optimization problem [8]. Current quantum devices, which
lack error correction and have fewer than a few hundred
physical qubits, are called Noisy Intermediate Scale Quantum
(NISQ) devices [9], [10]. The Quantum Approximate Opti-
mization Algorithm (QAOA) [11], [12] is a NISQ algorithm
for combinatorial optimization inspired by adiabatic quantum
computation [13]–[15]. QAOA encodes a combinatorial opti-
mization problem into an Ising Hamiltonian and searches its
ground state as an optimal solution. QAOA and its variants
have been applied to various NP-hard problems [12] such
as the MaxCut problem [11], [16] and the graph coloring
problem [17], [18].

QAOA has some issues as a method for solving combina-
torial optimization problems. The first issue is the number of
qubits required to describe the problem. We need as many
qubits as the number of classical bits in the mathematical
model. Several quantum optimization algorithms have been
proposed to reduce the number of required qubits [19]–[22].
Quantum Random Access Optimization (QRAO) is a method
to reduce the number of qubits by encoding multiple classical
bits into a small number of qubits using a Quantum Random
Access Code (QRAC) [19], [23], [24]. QAOA only uses the
Pauli Z operators to encode the problem into the Hamiltonian.
However, in QRAO, Pauli X,Y operators are also used to
encode. Due to the difference between the QRAO Hamiltonian
H̃ and the Ising Hamiltonian H , these ground states are
different. The ground state of H̃ can be an entangled quantum
state. Therefore, a rounding algorithm must be applied to
obtain a classical solution from the ground state of H̃ . Fuller
et al. showed that QRAO provides an approximate solution
with the approximation ratio under an appropriate Rounding
algorithm [19]. Moreover, they showed that the ground energy
of H̃ becomes a lower bound on the original problem.

The second issue with QAOA is the handling of constraints.
The constrained optimization problem must be converted to
Quadratic Unconstrained Binary Optimization (QUBO) using
the relaxation method, such as the Penalty method, to encode
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into the Ising Hamiltonian. Relaxation of constraint is a
problem-independent technique, but it requires tuning weights
of penalty terms. Since tuning weights is an optimization
problem, tuning weights in problems with many constraints
becomes challenging. Quantum Alternating Operator Ansatz
has been proposed to overcome this problem [25]. However,
it requires the design of a problem-specific quantum circuit,
which tends to increase circuit depth.

The ground energy of the QRAO Hamiltonian H̃ gives a
lower bound on the original problem. The problem is known
as quantum relaxation. Solving relaxation problems is a major
subroutine of the branch-and-bound method, the classical
exact solution method. In [26], we proposed the concept of
Quantum Relaxation based Branch-and-Bound (QR-BnB), a
quantum-classical hybrid algorithm using quantum relaxation
within the framework of classical branch-and-bound methods,
and showed that QR-BnB works by conducting experiments
on a single small instance of the MaxCut problem. QR-
BnB consists of two fundamental processes: the branching
process, which divides the problem into subproblems, and the
bounding process, which evaluates the subproblem by solving
the quantum relaxation problem and prunes the subproblem
tree. The branching and bounding processes are performed on
the classical device, and the quantum device is used only to
solve the subproblem’s quantum relaxation problem. QR-BnB
requires less qubits than QAOA due to quantum relaxation.

In this paper, we developed QR-BnB to handle combinato-
rial optimization problems more efficiently. It is known that
the performance of the branch-and-bound algorithm depends
on various internal strategies, such as what kind of relaxation
method is applied, how to select fixing variables, and how
to branch the subproblem tree. In this study, we examined
several internal strategies to investigate the appropriate strategy
for QR-BnB through detailed experiments using the MaxCut,
an unconstrained optimization problem, and the Travelling
Salesman Problem, a constrained optimization problem. The
optimal solution was obtained for all problem instances when
an exact lower bound on quantum relaxation was obtained.
In this case QR-BnB provides the optimal solution with
guarantees. We developed variable selection strategies using
the expectation value of Pauli operators. Our variable selection
strategies always give better convergence than Random selec-
tion of the fixing variables. We further examine the treatment
of constraints in QR-BnB by branching strategies using con-
straints information. In particular, QR-BnB converged faster
when using a branching strategy with constraints information
than a branching strategy without constraints information.

We also performed experiments where the lower bound of
the relaxation solution was computed using the Variational
Quantum Eigensolver (VQE) [27] to evaluate its availability
for NISQ devices. In this case, QR-BnB cannot guarantee
optimality due to the heuristic nature of VQE. However, we
found that QR-BnB provides an optimal solution in almost all
cases, even in the VQE case.

The structure of this paper is as follows: In Sec. II, we
explain QRAO which is the essential component of this

study. Sec. III explains QR-BnB and its development in this
study. We discuss the experiment setting at Sec. IV and the
experimental results using QR-BnB for the Maxcut problem
and TSP at Sec. V. Finally, in Sec. VI, we summarize our
results and discuss future works.

II. QUANTUM RANDOM ACCESS OPTIMIZATION

Quantum Random Access Optimization (QRAO) [19], [23],
[24] is a quantum optimization algorithm that utilizes Quantum
Random Access Codes (QRAC) [28], [29]. The number of
qubits can be reduced compared to the conventional quan-
tum optimization algorithm using the Ising Hamiltonian [19].
QRAO consists of two steps. In the first step, we construct a
quantum relaxed Hamiltonian H̃ using QRAC and search for
its ground state. In the second step, we apply the rounding
algorithm to the quantum state ρ̃ to obtain the classical
solution. QRAO has been proposed for the (weighted) MaxCut
problem [19]. However, its construction can be applied to
the general Ising Hamiltonian, so we use the general Ising
Hamiltonian for the explanation.

A. Quantum Relaxed Hamiltonian

This subsection explains the construction of the relaxed
Hamiltonian using (3, 1, p)-QRAO as an example. (3, 1, p)-
QRAC encodes three classical bits x1, x2, x3 ∈ {0, 1} into a
single qubit as

ρ(x1, x2, x3)

=
1

2

(
I +

1√
3
((−1)x1X + (−1)x2Y + (−1)x3Z)

)
.

(1)

Three classical bits are encoded by mapping them to the Pauli
X,Y, Z operators of a single qubit. The success probability of
decoding for (3, 1, p)-QRAC is p = 1

2

(
1 + 1√

3

)
≈ 0.79. At

most 4n − 1 classical bits can be encoded in n qubits using
QRAC with p ≥ 1/2, so (3, 1, p)-QRAC is the maximum
encoding for a single qubit [30].

Next, we describe the construction of the relaxed Hamilto-
nian. In QAOA, optimization problems are encoded into the
Ising Hamiltonian as below:

H =
∑
ij

JijZiZj +
∑
i

hiZi. (2)

Since encoding uses only the Pauli Zi operators, H is diago-
nal, and its ground state corresponds to the classical optimal
solution. In QRAO, not only Pauli Zi operators but also Pauli
Xi, Yi operators are used to construct a relaxed Hamiltonian
H̃ . Since QRAO encodes multiple classical bits into a single
qubit to construct H̃ , we must first determine which classical
bits to map to which qubit. We define the interaction graph
G(E, V ) as an undirected graph composed of nodes vi, vj ∈ V
connected by edges such that Jij ̸= 0. The QRAO mapping
requires that adjacent classical bits on G(E, V ) be encoded in
different qubits. We can determine the mappings by solving
the vertex coloring problem on G(E, V ). We can employ the
greedy method to solve the vertex coloring problem since
obtaining a feasible solution rather than an optimal one is



sufficient. By solving the coloring problem, nodes vi, vj at
both ends of edge (i, j) ∈ E have different colors c(i) ̸= c(j).
Then, we assign up to three nodes vi ∈ Vc with each color
c ∈ C to each qubit. Consequently, the quantum relaxed
Hamiltonian H̃ corresponding to eq. (2) becomes

H̃ =
∑
i,j

3JijPiPj +
∑
i

√
3hiPi, (3)

where Pi ∈ {Xi, Yi, Zi} is the Pauli operator corresponding
to node vi. The coefficient 3,

√
3 appears for ρ̃opt, the state in

which the optimal solution is encoded using (3, 1, p)-QRAC,
to satisfy Tr(H̃ρ̃opt) = OPT where OPT is the optimal
solution to the original problem. Since H̃ is not diagonal, the
ground state ρ̃ can be an entangled quantum state. Thus, ρ̃ does
not coincide with the optimal solution of the original problem.
There is also no guarantee that ρ̃ becomes ρ̃opt. Interestingly,
however, Tr(H̃ρ̃) gives a lower bound of the optimal value
on the original problem.

The number of qubits required for each color is nc =
⌈|Vc|/3⌉, which means that up to three times more com-
pression ratio can be achieved than in eq. (2). Note that the
compression ratio depends on the given Ising Hamiltonian. In
particular, if the given Ising Hamiltonian is fully connected,
no qubits are reduced.

The relaxed Hamiltonian for (2, 1, p)-QRAO can be con-
structed similarly. The only difference is the number of qubits
to be encoded in a single qubit and the coefficient of each
term, and the relaxed Hamiltonian for (2, 1, p)-QRAO is

H̃ =
∑
i,j

2JijPiPj +
∑
i

√
2hiPi, (4)

where Pi ∈ {Xi, Zi}. Recently, other QRAOs have also been
proposed [23].

B. Rounding Algorithms

Since the ground state ρ̃ of H̃ can be an entangled quantum
state, we need rounding algorithms to decode a classical solu-
tion from ρ̃. Fuller et al. proposed two rounding algorithms,
Magic State Rounding and Pauli Rounding [19]. The Magic
State Rounding is a method that decodes information from
three classical bits at once. This method has been proven to
have an approximation ratio of 5/9 for (3, 1, p)-QRAC and
5/8 for (2, 1, p)-QRAC in the MaxCut problem.

Pauli Rounding is a method that decodes classical informa-
tion by measuring the expected value Tr[Piρ̃] of the Pauli
operator Pi used to encode each classical variable for all
classical variables i ∈ V . Then, the sign is taken as the
value corresponding to the variable. Pauli Rounding has been
reported to yield better solutions in most cases compared to
Magic State Rounding by the numerical experiments [24].
However, unlike Magic State Rounding, Pauli Rounding does
not have approximation guarantees, even in the case of the
MaxCut problem.

Algorithm 1 Quantum Relaxation based Branch-and-Bound
with strategies

Input: Original Problem S
Output: optimal solution xinc

1: L← {S}, zinc ←∞
2: while L ̸= ∅ do
3: Take Ssub from L using tree search strategy
4: Encode Ssub into Relaxed Hamiltonian H̃
5: z̃subQR ← ground energy of H̃
6: z,x← objective value and state by Pauli Rounding
7: if z < zfes and x is feasible then
8: zinc ← z, xinc ← x
9: end if

10: if zfes < z̃subQR then
11: Go to line 2
12: end if
13: Choose index i by using variable selection strategy
14: Branch Ssub into set of subproblems using branching

strategy and add to L
15: end while
16: return xinc

III. QUANTUM RELAXATION BASED
BRANCH-AND-BOUND ALGORITHM

In this section, we describe the Quantum Relaxation based
Branch-and-Bound (QR-BnB) algotirhm and the strategy of
the algorithms examined in this study. The branch-and-bound
method is an algorithm for obtaining optimal solutions to
the combinatorial optimization problems [2], [4], [5]. Solving
the relaxation problem is a major subroutine of the branch-
and-bound method. QR-BnB uses quantum relaxation as its
relaxation problem. In QR-BnB, quantum devices are used
only to solve relaxation problems, while classical devices
are used for constraint-dependent processing and solution
construction.

A. Algorithm Flow

QR-BnB employs quantum relaxation within the branch-
and-bound method. The pseudocode for QR-BnB is shown
in Fig. 1. The algorithm consists of a branch process that
generates a subproblem tree and a bound process that prunes
the subproblem tree. We consider an optimization problem
with n binary variables and m constraints:

S : z∗ = min{xTQx : x ∈ X}, (5)

where X = {x ∈ {0, 1}n : Ax ≤ b} is the feasible set of the
problem, b ∈ Rm, A ∈ Rm×n, Q ∈ Rn×n.

First, we explain the branching process. The branching
process divides the feasible set into smaller subsets that do not
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θ(2k+1)n−1

)
Rz

(
θ(2k+2)n−1

)
Fig. 1: Variational quantum circuit of the Hardware-Efficient Ansatz used in the experiments.

overlap. In particular, if the problem has only binary variables,
this process generates two subproblems by fixing a variable:

S0 : z∗0 = min{xTQx : x ∈ X0},
S1 : z∗1 = min{xTQx : x ∈ X1},

(6)

where X0 = X ∩ {x : xi = 0}, X1 = X ∩ {x : xi = 1}.
We can repeat this process to generate smaller subproblems
by fixing additional variables from these X0, X1. The relation
between subproblems can be drawn as a tree. The root node
of this subproblem tree is the original problem S, and the
leaves correspond to the solutions to the problem. During the
search process, the solution to the problem S is found, and it
is stored as an incumbent solution xinc for the algorithm. The
final incumbent solution is the output of the algorithm.

The branching process expands the subproblem tree, which
is no different from a brute-force search. The bound process
reduces the size of the subproblem tree by evaluating and
pruning the tree. The subproblem Ssub is evaluated by the
optimal value of quantum relaxation z̃subQR . We denote the
objective value of the feasible and optimal solution of the
original problem S as zfes, z∗ respectively, and the optimal
value of the relaxation problem as z̃QR. As mentioned in
section II-A, z̃QR gives a lower bound on the optimal value
of S. zfes gives an upper bound on the optimal value of S.
Therefore, relation z̃QR ≤ z∗ ≤ zfes holds. On the other hand,
since the feasible set of the subproblem is more bounded than
S, the objective value of the relaxed subproblem z̃subQR does not
necessarily satisfy z̃subQR ≤ zinc where zinc is the objective value
of the incumbent solution. This implies that no solution in the
feasible set of the relaxation problem for this subproblem is
better than the incumbent solution. Thus, we prune the branch
below this subproblem.

One advantage of using quantum relaxation is that it can
solve problems involving second-order objective functions,
such as the eq. (5), which cannot be solved by simple linear
relaxation. Moreover, although the subproblems are evaluated

by quantum relaxation, the search for the solution itself
is performed using the branching process, so the difficulty
of handling constraints in the quantum algorithm can be
indirectly avoided by pruning infeasible solutions from the
subproblem tree when searching for solutions. A detailed
discussion about the feasibility evaluations of the subproblem
is in the Appendix.

B. Strategies in Branch-and-Bound

In branch-and-bound methods, convergence can be very
slow if we cannot prune the subproblem tree efficiently. It is
known that convergence speed depends on internal operations.
For this purpose, various methods have been proposed for
internal operation strategies [5]. In this study, we examined
several strategies to determine how changes in these strategies
affect QR-BnB’s convergence. We investigate three strategies:
the variable selection strategy, the branching strategy, and
the tree search strategy. In this subsection, we describe these
strategies and improvements specific to QR-BnB.

First, we describe the variable selection strategy for choos-
ing the variables to be fixed. In the case of linear relaxation, the
solution is obtained as continuous values. There are two simple
variable selection methods that utilize continuous values. In
the Least Fractional rule, the variable closest to 1 or 0 is fixed.
On the other hand, the Most Fractional rule fixes the variable
farthest from 1 or 0. Unlike these methods, the Random rule
selects variables to be fixed regardless of continuous values.
In the case of quantum relaxation, since the relaxed solution is
in a quantum state, only the Random rule can be applied. To
overcome this issue, in this study, we developed a variable
selection method through the expectation value Tr[Piρ̃] of
the Pauli operator Pi in the obtained quantum state ρ̃. We
use Tr[Piρ̃] as the continuous value in the linear relaxation



1. These expectation values allow QR-BnB to use the Least
Fractional and Most Fractional rules as variable selection
strategies.

Obtaining a better incumbent solution with zinc close to the
optimal value at an early stage of the algorithm is crucial for
reducing the branches to be explored. In the naive application
of QR-BnB, the solution to the original problem can only be
obtained when we arrive at the leaves of the subproblem tree.
As we mentioned above, we computed the expectation value
Tr[Piρ̃] for variable selection strategies. Since taking the sign
of Tr[Piρ̃] is Pauli Rounding, we apply Pauli Rounding to
each subproblem of QR-BnB to obtain one solution for the
original problem to increase the frequency of zinc updates.

The branching strategy is a strategy for branching the
subproblem tree. The most basic branching strategy is the Bi-
nary Branch, which generates two subproblems by fixing one
variable, as discussed in section III-A. However, for problems
with specific constraints, we can branch the subproblem tree
more efficiently with information about the constraints. Let us
consider the problem with the onehot constraint

∑
k∈K xk =

1. Once the variable xi in the onehot constraint is fixed to 1,
the other variables must be 0. Therefore, we can fix multiple
variables simultaneously as xi = 1, xk = 0 (k ∈ K/{i}). In
this study, we call this method the Onehot Branch.

The tree search strategy is a method for determining the
search order of a subproblem tree. A general tree search
algorithm can be used for this. In this study, we examined
three search methods: Depth First Search (DFS), Breath First
Search (BrFS), and Best First Search (BFS).

IV. EXPERIMENT SETTINGS

In this study, we solve the MaxCut problem and Travelling
Salesman Problems (TSP) as examples of unconstrained and
constrained optimization problems. First, we describe these
problems and their setup below.

MaxCut problem divides the node set V of an undirected
graph G(V,E) into two subsets. The problem is to maximize
the sum of the number of edges where the nodes at both ends
of the edges are assigned to different subsets. The MaxCut
problem on an undirected graph G(V,E) is formulated by the
following mathematical model:

max
s

1

2

∑
(i,j)∈E

(1− sisj), (7)

with the spin variable si ∈ {−1, 1} indicating the assignment
to each subset. Since this problem is a maximization problem,
we reversed the sign of the problem and solved it as a mini-
mization problem. In this study, we evaluated the performance
of QR-BnB by randomly generating 3-regular graphs with 100
samples, each from 16 to 24 nodes.

1Tr[Piρ̃] satisfies −1 ≤ Tr[Piρ̃] ≤ 1. The value closest to 0 is fixed for
the Most Fractional rule, and the values closest to 1 and −1 are fixed for the
Least Fractional rule.

TSP is the problem in finding the shortest tour of N cities.
This problem can be formulated as

min
x

∑
t

∑
ij

dijxi,txj,t+1 mod N

s.t.

N−1∑
i=0

xi,t = 1 ∀t ∈ {0, 1, . . . , N − 1},

N−1∑
t=0

xi,t = 1 ∀i ∈ {0, 1, . . . , N − 1},

(8)

using the variable xi,t ∈ {0, 1}, which is 1 when a salesman in
a city i at time t. The problem has two onehot constraints for
time and city, so that Onehot Branch can be applied. QRAO
requires transforming constrained optimization problems into
the Ising Hamiltonians. Therefore, we transformed eq. (8) into
the following QUBO:

min
∑
t

∑
ij

dijxi,txj,t+1 mod N

+A
∑
t

(
N−1∑
i=0

xi,t − 1

)2

+B
∑
i

(
N−1∑
t=0

xi,t − 1

)2

,

(9)

using the Penalty method. We then generated the Ising Hamil-
tonian by transforming the binary variables into spin variables.
We set A = B = 1 in our experiment. We evaluated
the performance of QR-BnB using 100 instances of 4-city
problems randomly distributed in [0, 1]2 as problem instances.

In this study, we changed the variable selection strategy, the
branching strategy, the tree search strategy, and the quantum
relaxation method to evaluate the convergence speed of QR-
BnB. We used two methods to calculate the lower bound by
quantum relaxation in QR-BnB. One is the computation of
optimal lower bounds by exact diagonalization, and the other is
by Variational Quantum Eigensolver (VQE) [27]. We refer to
the QR-BnB employing exact lower bound calculations as QR-
BnB-Exact and the version using VQE as QR-BnB-VQE. We
used hardware-efficient ansatz [31] for the variational quantum
circuit of VQE. It consists of parameterized RY, RZ gates
and CNOT entangling layers. In this experiment, we used a
linear entangler for the entangling layer (Fig. 1) and varied
the number of layers k from 1 to 3. For the optimization
of the parameter in the variational quantum circuit, we used
the Nakanishi-Fuji-Todo (NFT) algorithm [32] which is the
gradient free-type optimizer designed for hardware-efficient
ansatz. When the unfixed variables in QR-BnB were less
than three bits, we performed a brute-force search without
encoding into the quantum state. We used Qamomile2, a
quantum optimization library, to generate the quantum relaxed
Hamiltonian, and qiskit [33] and QURI Parts3, an open source
library for quantum computation to implement the algorithm.
To obtain the optimal solution of the problems for comparison,

2https://github.com/Jij-Inc/Qamomile
3https://github.com/QunaSys/quri-parts
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Fig. 2: Nnodes dependence of Neval for the Maxcut problem with QR-BnB-Exact. (a) Best First Search. (b) Breath First Search.
(c) Depth First Search, showing changes in convergence with different tree search strategies. Each line color corresponds to
the variable selection strategies, and each mark corresponds to the quantum relaxation methods. (2, 1, p)-QRAO with the Least
Fractional rule converges fastest regardless of the search strategy chosen.

(c)(a) (b)

Fig. 3: (a) Comparison of the size of the quantumness gap by quantum relaxation methods. The quantumness gap of (2, 1, p)-
QRAO is always smaller than that of (3, 1, p)-QRAO. (b) Nnodes dependences of Popt for MaxCut problem with QR-BnB-VQE
and naive (2, 1, p)-QRAO. QR-BnB-VQE always gives better success probability than the naive QRAO. (c) Nnodes dependences
of Neval for MaxCut problem with QR-BnB-VQE. QR-BnB-VQE always provides better convergence than QR-BnB-Exact.

we linearized the problem employing the Glover-Woolsey
method [34] and solved it with CBC [7].

V. RESULTS

A. MaxCut Problem

First, we investigate the performance of QR-BnB on uncon-
strained optimization problems using the MaxCut problem. We
analyze the average number of evaluations of the quantum
relaxation problems Neval until converging the branch-and-
bound process. Figure 2 (a)-(c) show the dependence of Neval

on the problem size Nnodes when using QR-BnB-Exact. QR-
BnB-Exact gave optimal solutions for all problem instances
for all methods. Note that the optimality of the solutions is

guaranteed by QR-BnB-Exact due to the branch-and-bound
process. (a), (b) and (c) are the results when BFS, BrFS, and
DFS are employed as the tree search strategies, respectively.
The color indicates the variable selection method, and the mark
indicates the quantum relaxation method. For (2, 1, p)-QRAO,
the dependence on the tree search strategy is small, but for
(3, 1, p)-QRAO, BFS converges faster than DFS. Therefore,
in the following, we will focus on the case of BFS (Fig. 2(a)).
Next, we consider the dependence on the variable selection
method. Regardless of the quantum relaxation method, the
Least Fractional rule converges the fastest. Similar results have
been reported in the previous study of classical branch-and-
bound algorithm [35].
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Fig. 4: Comparison of Neval for various strategies in TSP. Using the Onehot Branch always provides faster convergence than
the Binary Branch.

1 2 3
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
op

t

(a)

QR-BnB-VQE Binary Branch
QR-BnB-VQE Onehot Branch
(2, 1, p)-QRAO

1 2 3
k

0

50

100

150

200

250

300

350

N
ev

al

(b)

QR-BnB-Exact Binary Branch
QR-BnB-Exact Onehot Branch
QR-BnB-VQE Binary Branch
QR-BnB-VQE Onehot Branch
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provide an optimal solution. (b) k dependeces for Neval for TSP with QR-BnB-VQE. The Onehot Branch provides faster
convergence than the Binary Branch.

Next, we focus on Neval dependence on the quantum
relaxation method. Neval for (2, 1, p)-QRAO is always smaller
than for (3, 1, p)-QRAO, indicating that (2, 1, p)-QRAO is
always faster converging. In the classical branch-and-bound
method, the integrality gap, the ratio of the optimal values
of the original problem and its linear relaxation problem,
is related to convergence speed. In particular, convergence
can be faster when the integrality gap is small. Therefore,

we consider the quantumness gap, which is the ratio of the
optimal value of the original optimization problem and the
quantum relaxation problem, to be similar in the case of linear
relaxation. As shown in Fig. 3 (a), the quantumness gap is
larger for (3, 1, p)-QRAO than for (2, 1, p)-QRAO. As in the
case of the integrality gap, the convergence speed varies with
the size of the quantumness gap. In the case of both quantum
relaxation methods, the quantumness gap is independent of



Nnodes.
Next, we investigated the behavior of QR-BnB-VQE. The

optimal value of quantum relaxation z̃QR and the expectation
value obtained by VQE

〈
ψ(θ)|H̃|ψ(θ)

〉
have the relation〈

ψ(θ)|H̃|ψ(θ)
〉
≥ z̃QR. Here, θ denotes the parameters of

the variational quantum circuit, and the equal sign is held when
the optimal parameter θ∗ is obtained. Therefore, if θ∗ could
not be obtained, there is a possibility that the relaxed solution
of the subproblem which should be z̃QR ≤ zfes is evaluated
as
〈
ψ(θ)|H̃|ψ(θ)

〉
≥ zfes. This implies that the subproblems

that should not be pruned are pruned. Therefore, we evaluated
the success probability Popt of obtaining the optimal solution
in QR-BnB-VQE in Fig. 3 (b). In this experiment, we used
the fastest convergence setting in QR-BnB-Exact, the Least
Fractional rule and BFS, and (2, 1, p)-QRAO as quantum re-
laxation methods. Because the convergence of QR-BnB-VQE
may be slowed down when the optimal solution branches were
pruned by mistake, we set the upper limit of the number of
evaluations at 2000 for (2, 1, p)-QRAO terminated QR-BnB-
VQE and evaluated the solutions obtained up to this point.
In all cases, QR-BnB-VQE has a higher success probability
than naive (2, 1, p)-QRAO. Popt for QRAO decreases with
increasing Nnodes, while that for QR-BnB-VQE is almost
Nnodes independent. In particular, for k = 1, 2, Popt ≥ 0.98
in all problem sizes. On the other hand, for k = 3, Popt tends
to decrease as Nnodes increases.

Figure 3 (c) shows the system size dependence of the
number of evaluations required when an optimal solution was
obtained using VQE. The Neval in QR-BnB-VQE is always
less than in QR-BnB-Exact. It is because

〈
ψ(θ)|H̃|ψ(θ)

〉
≥

z̃QR, so the quantum relaxation gap is estimated to be small
even when the lower bound is obtained. Moreover, in QR-
BnB-VQE, the dependence on the number of nodes is smaller
than in QR-BnB-Exact.

B. Travelling Salesman Problem
We also solve TSP using QR-BnB as an example of

a constrained optimization problem. Since TSP has onehot
constraints, we can apply Onehot Branch and Binary Branch.
We first investigated how these branching methods affect the
performance of QR-BnB-Exact in Fig. 4 . As with the MaxCut
problem, optimal solutions were obtained for all problem
instances in this experiment. Figure 4 compares convergence
between Binary Branch and Onehot Branch. The horizontal
axis indicates the combination of tree search strategies and
variable selection strategies. Each bar represents Neval when
using Binary Branch and Onehot Branch for (3, 1, p)-QRAO
and (2, 1, p)-QRAO, respectively. In all settings, convergence
was improved when using Onehot Branch compared to Binary
Branch. In particular, even in the case of BFS and Least Frac-
tional rule, where Binary Branch was the fastest, using Onehot
Branch was more than three times faster. It is attributed to the
fact that more variables can be fixed in a single branching
operation, reducing the size of the branches that need to be
explored. In the Binary Branch, as in the MaxCut problem,

(2, 1, p)-QRAO requires fewer evaluations for convergence
than (3, 1, p)-QRAO in most cases. However, interestingly, in
the case of the Most Fractional rule, (3, 1, p)-QRAO provides
faster convergence. Therefore, Neval does not depend on the
quantumness gap but rather on the interplay between the
selected internal strategies and the gap. On the other hand,
in Onehot Branch, Neval is almost the same, indicating that
the influence of the branching method is more significant than
that of the quantum relaxation method.

Finally, we present the results of solving the TSP using
QR-BnB-VQE. Here, the experiment was conducted using the
Least Fractional rule, BFS, and (2, 1, p)-QRAO as a quantum
relaxation method, which had the fastest convergence of the
Binary Branch and Onehot Branch in QR-BnB-Exact. Figure 5
(a) shows the dependence of the success probability Popt

of QR-BnB-VQE and VQE for naive (2, 1, p)-QRAO on the
number of layers k. In the case of QR-BnB-VQE, we obtain
the optimal solution for both Onehot and binary branches in all
instances. However, in the case of naive (2, 1, p)-QRAO, Popt

decreases with increasing k. Next, we show Neval for QR-
BnB-VQE in Fig. 5 (b). As with QR-BnB-Exact, the Onehot
Branch provides faster convergence than the Binary Branch in
QR-BnB-VQE, indicating that the Onehot Branch improves
convergence speed in both cases. Moreover, Neval for QR-
BnB-VQE is similar to that of QR-BnB-Exact, suggesting that
QR-BnB-Exact and QR-BnB-VQE exhibit similar behavior
when solving TSP instances.

VI. SUMMARY

QR-BnB is an algorithm that combines quantum relaxation
and branch-and-bound methods. QR-BnB provides a guaran-
teed optimal solution if we can obtain the exact lower bound of
the subproblem through the quantum relaxation problem. The
quantum device only solves the quantum relaxation problem,
so we only need fewer qubits compared to QAOA. In this
study, we developed QR-BnB by examining several internal
strategies, particularly branching methods using constraints
and variable selection methods through the expectation value
of Pauli operators. Moreover, we performed detailed experi-
ments on these internal strategies to investigate the dependence
of QR-BnB convergence on internal strategies. In Sec. V, we
solved the MaxCut problem and TSP using QR-BnB. Using
QR-BnB-Exact, which evaluates the exact lower bounds for
each subproblem, optimal solutions were obtained in all the
experiments in this study. In our experiment, (2, 1, p)-QRAO
with a smaller quantumness gap converges faster than (3, 1, p)-
QRAO in most settings. We have examined several variable
selection strategies, and the Least Fractional rule we developed
in this study provides better convergence than the Random
rule. In a comparison of branching strategies, the Onehot
Branch, which uses constraint information, is more than three
times faster than the Binary Branch in solving TSP. In this
study, we have also examined QR-BnB-VQE, which solves the
quantum relaxation problem using VQE. Due to the heuristic
nature of VQE, QR-BnB-VQE cannot guarantee the optimality
of the solution. However, even in QR-BnB-VQE, we have



obtained the optimal solutions in most instances. Moreover,
the convergence of QR-BnB-VQE is faster than that of QR-
BnB-Exact.

We only considered relatively simple internal strategies of
the classical side to evaluate the performance of QR-BnB. On
the other hand, for practical use, efficiency can be improved
by incorporating more complicated strategies on the classical
side of branch-and-bound methods and combining continuous
and quantum relaxation.

One major direction for future study is to realize a method
for systematically reducing the quantumness gap, similar to
the cutting plane [36], [37], which can reduce the integrality
gap. The classical solver is based on the Branch-and-Cut
algorithm[38], which combines the cutting plane method and
Branch-and-Bound. Therefore, a more efficient branch-and-
cut solver can be established if a more efficient cutting plane
method can be developed for quantum relaxation rather than
linear relaxation. Another major direction is to realize a more
suitable quantum relaxation method. In this study, we have
used a Hamiltonian constructed of QRAOs as the quantum
relaxation. It should be noted that a sufficient condition for
quantum relaxation is to provide a lower bound on the original
problem and that QRAO is not the only option for quantum
relaxation. Therefore, it is expected to develop a new quantum
relaxation that can encode more qubits while keeping the
quantumness gap small.
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APPENDIX
FEASIBILITY EVALUATION

In the branch-and-bound method, the constraints are eval-
uated at the branch process, and subproblems that do not
satisfy the constraints can be pruned. In this appendix, we
discuss how to evaluate constraint violation. We concentrate
our discussion on linear equality constraints

∑
iArixi = br or

linear inequality constraints
∑

iArixi ≤ br based on eq. (5).
Let I be the set of indices of all variables in the problem,

and let J ⊂ I be the set of indices of fixed variables. The
linear constraint

∑
i∈I Arixi = br can then be rewritten

as
∑

i∈I\J Arixi = br −
∑

j∈J Arjxj = b̃r. Here, b̃r is
the constant part, including the constants created by fixing
the variables. Thus, the linear constraint retains its form for
fixed variables. Therefore, in the following, all constraints are
assumed to be after the variables are fixed, and the sums
are taken for I \ J . We also define the upper and lower
bounds of

∑
iArixi for each constraint as sup(

∑
iArixi) =∑

i|Ari>0Ari and inf(
∑

iArixi) =
∑

i|Ari<0Ari respec-
tively.

First, consider the equality constraint
∑

iArixi = b̃r. b̃r
must be between the upper and lower bounds that can be made

with unfixed variables to satisfy the constraint condition. This
implies

inf

(∑
i

Arixi

)
≤ b̃r ≤ sup

(∑
i

Arixi

)
. (10)

If this condition is not satisfied, there is no feasible solution
under the current fixed variables. Thus, we can prune this
subproblem. This condition is a necessary condition for the
continuous relaxation of the constraint. Therefore, even if this
condition is satisfied, there is a possibility that a feasible
solution does not exist.

Next, consider the inequality constraint
∑

iArixi ≤ b̃r. We
can consider two cases. The first case is when there is no
feasible solution. This case is achieved when the lower bound
exceeds b̃. We can write it as follows:

b̃r < inf

(∑
i

Arixi

)
. (11)

In this case, the subproblem can be pruned. Another case is
that the constraint is always satisfied no matter what choice is
made in the remaining variables. This case is when the upper
bound is less than b̃. It can be written as follows:

sup

(∑
i

Arixi

)
≤ b̃r. (12)

This constraint can be ignored in this and subsequent subprob-
lems.
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[3] M. Conforti, G. Cornuéjols, and G. Zambelli, In-

teger Programming (Graduate Texts in Mathemat-
ics). Springer International Publishing, 2014, ISBN:
3319110071.

[4] A. H. Land and A. G. Doig, “An automatic method
of solving discrete programming problems,” Economet-
rica, vol. 28, no. 3, pp. 497–520, 1960.

[5] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C.
Sewell, “Branch-and-bound algorithms: A survey of
recent advances in searching, branching, and pruning,”
Discrete Optim., vol. 19, pp. 79–102, Feb. 2016.

[6] Gurobi Optimization, LLC, Gurobi Optimizer Reference
Manual, 2023. [Online]. Available: https://www.gurobi.
com.

[7] J. Forrest, T. Ralphs, S. Vigerske, et al., Coin-or/cbc:
Release releases/2.10.11, version releases/2.10.11, Oct.
2023. DOI: 10.5281/zenodo.10041724. [Online]. Avail-
able: https://doi.org/10.5281/zenodo.10041724.

[8] A. Abbas, A. Ambainis, B. Augustino, et al., “Quantum
optimization: Potential, challenges, and the path for-
ward,” Dec. 2023. arXiv: 2312.02279 [quant-ph].

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.5281/zenodo.10041724
https://doi.org/10.5281/zenodo.10041724
https://arxiv.org/abs/2312.02279


[9] J. Preskill, “Quantum computing in the NISQ era and
beyond,” en, Quantum, vol. 2, no. 79, p. 79, Aug. 2018.

[10] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, et al.,
“Noisy intermediate-scale quantum algorithms,” Rev.
Mod. Phys., vol. 94, no. 1, p. 015 004, Feb. 2022.

[11] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum
approximate optimization algorithm,” Nov. 2014. arXiv:
1411.4028 [quant-ph].

[12] K. Blekos, D. Brand, A. Ceschini, et al., “A review
on quantum approximate optimization algorithm and its
variants,” Jun. 2023. arXiv: 2306.09198 [quant-ph].

[13] T. Kadowaki and H. Nishimori, “Quantum annealing
in the transverse ising model,” Phys. Rev. E, vol. 58,
pp. 5355–5363, 5 Nov. 1998. DOI: 10.1103/PhysRevE.
58.5355. [Online]. Available: https://link.aps.org/doi/
10.1103/PhysRevE.58.5355.

[14] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,
“Quantum computation by adiabatic evolution,” Jan.
2000. arXiv: quant-ph/0001106 [quant-ph].

[15] T. Albash and D. A. Lidar, “Adiabatic quantum com-
putation,” Rev. Mod. Phys., vol. 90, no. 1, p. 015 002,
Jan. 2018.

[16] M. Chalupnik, H. Melo, Y. Alexeev, and A. Galda,
“Augmenting qaoa ansatz with multiparameter problem-
independent layer,” in 2022 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE),
2022, pp. 97–103. DOI: 10 . 1109 / QCE53715 . 2022 .
00028.

[17] Z. Tabi, K. H. El-Safty, Z. Kallus, et al., “Quan-
tum optimization for the graph coloring problem with
space-efficient embedding,” in 2020 IEEE International
Conference on Quantum Computing and Engineering
(QCE), 2020, pp. 56–62. DOI: 10 . 1109 / QCE49297 .
2020.00018.

[18] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, “Hybrid
quantum-classical algorithms for approximate graph
coloring,” Quantum, vol. 6, p. 678, Mar. 2022, ISSN:
2521-327X. DOI: 10 . 22331 / q - 2022 - 03 - 30 - 678.
[Online]. Available: https://doi.org/10.22331/q-2022-
03-30-678.

[19] B. Fuller, C. Hadfield, J. R. Glick, et al., “Approximate
solutions of combinatorial problems via quantum relax-
ations,” Nov. 2021. arXiv: 2111.03167 [quant-ph].

[20] B. Tan, M.-A. Lemonde, S. Thanasilp, J. Tangpanitanon,
and D. G. Angelakis, “Qubit-efficient encoding schemes
for binary optimisation problems,” en, Quantum, vol. 5,
no. 454, p. 454, May 2021.
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