
Published as a conference paper at ICLR 2024

S2AC: ENERGY-BASED REINFORCEMENT LEARNING
WITH STEIN SOFT ACTOR CRITIC

Safa Messaoud1†, Billel Mokeddem1∗, Zhenghai Xue2∗, Linsey Pang3, Bo An4,2,
Haipeng Chen5†, Sanjay Chawla1†

1Qatar Computing Research Institute, Hamad Bin Khalifa University, 2School of Computer Science and
Engineering, Nanyang Technological University, 3SalesForce, 4Skywork AI, 5Data Science, William & Mary
{smessaoud,bmokeddem,schawla}@hbku.edu.qa, zhenghai001@e.ntu.edu.sg
panglinsey@gmail.com, boan@ntu.edu.sg, hchen23@wm.edu
∗ Equal contribution † Corresponding authors

ABSTRACT

Learning expressive stochastic policies instead of deterministic ones has been
proposed to achieve better stability, sample complexity, and robustness. Notably, in
Maximum Entropy Reinforcement Learning (MaxEnt RL), the policy is modeled
as an expressive Energy-Based Model (EBM) over the Q-values. However, this
formulation requires the estimation of the entropy of such EBMs, which is an open
problem. To address this, previous MaxEnt RL methods either implicitly estimate
the entropy, resulting in high computational complexity and variance (SQL), or
follow a variational inference procedure that fits simplified actor distributions (e.g.,
Gaussian) for tractability (SAC). We propose Stein Soft Actor-Critic (S2AC), a
MaxEnt RL algorithm that learns expressive policies without compromising effi-
ciency. Specifically, S2AC uses parameterized Stein Variational Gradient Descent
(SVGD) as the underlying policy. We derive a closed-form expression of the en-
tropy of such policies. Our formula is computationally efficient and only depends
on first-order derivatives and vector products. Empirical results show that S2AC
yields more optimal solutions to the MaxEnt objective than SQL and SAC in the
multi-goal environment, and outperforms SAC and SQL on the MuJoCo bench-
mark. Our code is available at: https://github.com/SafaMessaoud/
S2AC-Energy-Based-RL-with-Stein-Soft-Actor-Critic

1 INTRODUCTION

S!AC
(ours)

SQL
(Haarnoja et al., ICML 17)

SAC
(Haarnoja et al., ICML 18)

Explicit entropy
evaluation

Num. SVGD steps = 0

Figure 1: Comparing S2AC to SQL and
SAC. S2AC with a parameterized pol-
icy is reduced to SAC if the number of
SVGD steps is 0. SQL becomes equiva-
lent to S2AC if the entropy is evaluated
explicitly with our derived formula.

MaxEnt RL (Todorov, 2006; Ziebart, 2010; Haarnoja et al.,
2017; Kappen, 2005; Toussaint, 2009; Theodorou et al.,
2010; Abdolmaleki et al., 2018; Haarnoja et al., 2018a;
Vieillard et al., 2020) has been proposed to address chal-
lenges hampering the deployment of RL to real-world
applications, including stability, sample efficiency (Gu
et al., 2017), and robustness (Eysenbach & Levine, 2022).
Instead of learning a deterministic policy, as in classical
RL (Sutton et al., 1999; Schulman et al., 2017; Silver et al.,
2014; Lillicrap et al., 2015), MaxEnt RL learns a stochas-
tic policy that captures the intricacies of the action space.
This enables better exploration during training and even-
tually better robustness to environmental perturbations at
test time, i.e., the agent learns multimodal action space distributions which enables picking the next
best action in case a perturbation prevents the execution of the optimal one. To achieve this, MaxEnt
RL models the policy using the expressive family of EBMs (LeCun et al., 2006). This translates
into learning policies that maximize the sum of expected future reward and expected future entropy.
However, estimating the entropy of such complex distributions remains an open problem.
To address this, existing approaches either use tricks to go around the entropy computation or make
limiting assumptions on the policy. This results in either poor scalability or convergence to suboptimal
solutions. For example, SQL (Haarnoja et al., 2017) implicitly incorporates entropy in the Q-function
computation. This requires using importance sampling, which results in high variability and hence
poor training stability and limited scalability to high dimensional action spaces. SAC (Haarnoja

1

ar
X

iv
:2

40
5.

00
98

7v
1

 [
cs

.L
G

]
 2

 M
ay

 2
02

4

https://github.com/SafaMessaoud/S2AC-Energy-Based-RL-with-Stein-Soft-Actor-Critic
https://github.com/SafaMessaoud/S2AC-Energy-Based-RL-with-Stein-Soft-Actor-Critic

Published as a conference paper at ICLR 2024

π("|$!)

π("|$")STACSQLSAC

!! !"

S!AC
Figure 2: S2AC learns a more optimal solution to the MaxEnt RL objective than SAC and SQL. We
design a multigoal environment where an agent starts from the center of the 2-d map and tries to
reach one of the three goals (G1, G2, and G3). The maximum expected future reward (level curves)
is the same for all the goals but the expected future entropy is different (higher on the path to G2/G3):
the action distribution π(a|s) is bi-modal on the path to the left (G2 and G3) and unimodal to the
right (G1). Hence, we expect the optimal policy for the MaxEnt RL objective to assign more weights
to G2 and G3. We visualize trajectories (in blue) sampled from the policies learned using SAC, SQL,
and S2AC. SAC quickly commits to a single mode due to its actor being tied to a Gaussian policy.
Though SQL also recovers the three modes, the trajectories are evenly distributed. S2AC recovers
all the modes and approaches the left two goals more frequently. This indicates that it successfully
maximizes not only the expected future reward but also the expected future entropy.

et al., 2018a), on the other hand, follows a variational inference procedure by fitting a Gaussian
distribution to the EBM policy. This enables a closed-form evaluation of the entropy but results
in a suboptimal solution. For instance, SAC fails in environments characterized by multimodal
action distributions. Similar to SAC, IAPO (Marino et al., 2021) models the policy as a uni-modal
Gaussian. Instead of optimizing a MaxEnt objective, it achieves multimodal policies by learning
a collection of parameter estimates (mean, variance) through different initializations for different
policies. To improve the expressiveness of SAC, SSPG (Cetin & Celiktutan, 2022) and SAC-NF
(Mazoure et al., 2020) model the policy as a Markov chain with Gaussian transition probabilities
and as a normalizing flow (Rezende & Mohamed, 2015), respectively. However, due to training
stability issues, the reported results in Cetin & Celiktutan (2022) show that though both models learn
multi-modal policies, they fail to maximize the expected future entropy in positive rewards setups.
We propose a new algorithm, S2AC, that yields a more optimal solution to the MaxEnt RL objective.
To achieve expressivity, S2AC models the policy as a Stein Variational Gradient Descent (SVGD)
(Liu, 2017) sampler from an EBM over Q-values (target distribution). SVGD proceeds by first
sampling a set of particles from an initial distribution, and then iteratively transforming these particles
via a sequence of updates to fit the target distribution. To compute a closed-form estimate of the
entropy of such policies, we use the change-of-variable formula for pdfs (Devore et al., 2012). We
prove that this is only possible due to the invertibility of the SVGD update rule, which does not
necessarily hold for other popular samplers (e.g., Langevin Dynamics (Welling & Teh, 2011)). While
normalizing flow models (Rezende & Mohamed, 2015) are also invertible, SVGD-based policy is
more expressive as it encodes the inductive bias about the unnormalized density and incorporates a
dispersion term to encourage multi-modality, whereas normalizing flows encode a restrictive class of
invertible transformations (with easy-to-estimate Jacobian determinants). Moreover, our formula is
computationally efficient and only requires evaluating first-order derivatives and vector products. To
improve scalability, we model the initial distribution of the SVGD sampler as an isotropic Gaussian
and learn its parameters, i.e., mean and standard deviation, end-to-end. We show that this results in
faster convergence to the target distribution, i.e., fewer SVGD steps. Intuitively, the initial distribution
learns to contour the high-density region of the target distribution while the SVGD updates result in
better and faster convergence to the modes within that region. Hence, our approach is as parameter
efficient as SAC, since the SVGD updates do not introduce additional trainable parameters.
Note that S2AC can be reduced to SAC when the number of SVGD steps is zero. Also, SQL becomes
equivalent to S2AC if the entropy is computed explicitly using our formula (the policy in SQL is
an amortized SVGD sampler). Beyond RL, the backbone of S2AC is a new variational inference
algorithm with a more expressive and scalable distribution characterized by a closed-form entropy
estimate. We believe that this variational distribution can have a wider range of exciting applications.
We conduct extensive empirical evaluations of S2AC from three aspects. We start with a sanity
check on the merit of our derived SVGD-based entropy estimate on target distributions with known
entropy values (e.g., Gaussian) or log-likelihoods (e.g., Gaussian Mixture Models) and assess its

2

Published as a conference paper at ICLR 2024

sensitivity to different SVGD parameters (kernel, initial distribution, number of steps and number
of particles). We observe that its performance depends on the choice of the kernel and is robust to
variations of the remaining parameters. In particular, we find out that the kernel should be chosen to
guarantee inter-dependencies between the particles, which turns out to be essential for invertibility.
Next, we assess the performance of S2AC on a multi-goal environment (Haarnoja et al., 2017) where
different goals are associated with the same positive (maximum) expected future reward but different
(maximum) expected future entropy. We show that S2AC learns multimodal policies and effectively
maximizes the entropy, leading to better robustness to obstacles placed at test time. Finally, we test
S2AC on the MuJoCo benchmark (Duan et al., 2016). S2AC yields better performances than the
baselines on four out of the five environments. Moreover, S2AC shows higher sample efficiency as it
tends to converge with fewer training steps. These results were obtained from running SVGD for
only three steps, which results in a small overhead compared to SAC during training. Furthermore, to
maximize the run-time efficiency during testing, we train an amortized SVGD version of the policy
to mimic the SVGD-based policy. Hence, this reduces inference to a forward pass through the policy
network without compromising the performance.

2 PRELIMINARIES

2.1 SAMPLERS FOR ENERGY-BASED MODELS

In this work, we study three representative methods for sampling from EBMs: (1) Stochastic Gradient
Langevin Dynamics (SGLD) & Deterministic Langevin Dynamics (DLD) (Welling & Teh, 2011),
(2) Hamiltonian Monte Carlo (HMC) (Neal et al., 2011), and (3) Stein Variational Gradient Descent
(SVGD) (Liu & Wang, 2016). We review SVGD here since it is the sampler we eventually use in
S2AC, and leave the rest to Appendix C.1. SVGD is a particle-based Bayesian inference algorithm.
Compared to SGLD and HMC which have a single particle in their dynamics, SVGD operates on a set
of particles. Specifically, SVGD samples a set of m particles {aj}mj=1 from an initial distribution q0
which it then transforms through a sequence of updates to fit the target distribution. Formally, at every
iteration l, SVGD applies a form of functional gradient descent ∆f that minimizes the KL-divergence
between the target distribution p and the proposal distribution ql induced by the particles, i.e., the
update rule for the ith particles is: al+1

i = ali + ϵ∆f(ali) with
∆f(ali) = Ealj∼ql

[
k(ali, a

l
j)∇alj log p(a

l
j) +∇aljk(a

l
i, a

l
j)
]
. (1)

Here, ϵ is the step size and k(·, ·) is the kernel function, e.g., the RBF kernel: k(ai, aj) = exp(||ai −
aj ||2/2σ2). The first term within the gradient drives the particles toward the high probability regions
of p, while the second term serves as a repulsive force to encourage dispersion.

2.2 MAXIMUM-ENTROPY RL
We consider an infinite horizon Markov Decision Process (MDP) defined by a tuple (S,A, p, r),
where S is the state space, A is the action space and p : S ×A× S → [0,∞] is the state transition
probability modeling the density of the next state st+1 ∈ S given the current state st ∈ S and
action at ∈ A. Additionally, we assume that the environment emits a bounded reward function
r ∈ [rmin, rmax] at every iteration. We use ρπ(st) and ρπ(st, at) to denote the state and state-action
marginals of the trajectory distribution induced by a policy π(at|st). We consider the setup of
continuous action spaces Lazaric et al. (2007); Lee et al. (2018); Zhou & Lu (2023). MaxEnt
RL (Todorov, 2006; Ziebart, 2010; Rawlik et al., 2012) learns a policy π∗(at|st), that instead of
maximizing the expected future reward, maximizes the sum of the expected future reward and entropy:

π∗ = argmaxπ
∑

t
γtE(st,at)∼ρπ

[
r(st, at) + αH(π(·|st))

]
, (2)

where α is a temperature parameter controlling the stochasticity of the policy andH(π(·|st)) is the
entropy of the policy at state st. The conventional RL objective can be recovered for α = 0. Note
that the MaxEnt RL objective above is equivalent to approximating the policy, modeled as an EBM
over Q-values, by a variational distribution π(at|st) (see proof of equivalence in Appendix D), i.e.,

π∗ = argminπ
∑

t
Est∼ρπ

[
DKL

(
π(·|st)∥ exp(Q(st, ·)/α)/Z

)]
, (3)

where DKL is the KL-divergence and Z is the normalizing constant. We now review two landmark
MaxEnt RL algorithms: SAC (Haarnoja et al., 2018a) and SQL (Haarnoja et al., 2017).

SAC is an actor-critic algorithm that alternates between policy evaluation, i.e., evaluating the Q-values
for a policy πθ(at|st):

Qϕ(st, at)← r(st, at) + γ Est+1,at+1∼ρπθ

[
Qϕ(st+1, at+1) + αH(πθ(·|st+1))

]
(4)

3

Published as a conference paper at ICLR 2024

and policy improvement, i.e., using the updated Q-values to compute a better policy:

πθ = argmaxθ
∑

t
Est,at∼ρπθ

[
Qϕ(at, st) + αH(πθ(·|st))

]
. (5)

SAC models πθ as an isotropic Gaussian, i.e., πθ(·|s) = N (µθ, σθI). While this enables computing
a closed-form expression of the entropy, it incurs an over-simplification of the true action distribution,
and thus cannot represent complex distributions, e.g., multimodal distributions.

SQL goes around the entropy computation, by defining a soft version of the value function Vϕ =
α log

(∫
A exp

(
1
αQϕ(st, a

′)
)
da′

)
. This enables expressing the Q-value (Eq (4)) independently from

the entropy, i.e., Qϕ(st, at) = r(st, at) + γEst+1∼p[Vϕ(st+1)]. Hence, SQL follows a soft value
iteration which alternates between the updates of the “soft” versions of Q and value functions:

Qϕ(st, at)← r(st, at) + γEst+1∼p[Vϕ(st+1)], ∀(st, at) (6)

Vϕ(st)← α log
(∫

A exp
(
1
αQϕ(st, a

′)
)
da′

)
, ∀st. (7)

Once the Qϕ and Vϕ functions converge, SQL uses amortized SVGD Wang & Liu (2016) to learn a
stochastic sampling network fθ(ξ, st) that maps noise samples ξ into the action samples from the
EBM policy distribution π∗(at|st) = exp

(
1
α (Q

∗(st, at)− V ∗(st))
)
. The parameters θ are obtained

by minimizing the loss Jθ(st) = DKL

(
πθ(·|st)|| exp

(
1
α (Q

∗
ϕ(st, ·)− V ∗

ϕ (st))
)

with respect to θ.
Here, πθ denotes the policy induced by fθ. SVGD is designed to minimize such KL-divergence
without explicitly computing πθ. In particular, SVGD provides the most greedy direction as a
functional ∆fθ(·, st) (Eq (1)) which can be used to approximate the gradient ∂Jθ/∂at. Hence, the
gradient of the loss Jθ with respect to θ is: ∂Jθ(st)/∂θ ∝ Eξ

[
∆fθ(ξ, st)∂fθ(ξ, st)/∂θ

]
. Note that

the integral in Eq (7) is approximated via importance sampling, which is known to result in high
variance estimates and hence poor scalability to high dimensional action spaces. Moreover, amortized
generation is usually unstable and prone to mode collapse, an issue similar to GANs. Therefore, SQL
is outperformed by SAC Haarnoja et al. (2018a) on benchmark tasks like MuJoCo.

3 APPROACH

We introduce S2AC, a new actor-critic MaxEnt RL algorithm that uses SVGD as the underlying
actor to generate action samples from policies represented using EBMs. This choice is motivated
by the expressivity of distributions that can be fitted via SVGD. Additionally, we show that we can
derive a closed-form entropy estimate of the SVGD-induced distribution, thanks to the invertibility
of the update rule, which does not necessarily hold for other EBM samplers. Besides, we propose
a parameterized version of SVGD to enable scalability to high-dimensional action spaces and non-
smooth Q-function landscapes. S2AC is hence capable of learning a more optimal solution to the
MaxEnt RL objective (Eq (2)) as illustrated in Figure 2.

3.1 STEIN SOFT ACTOR CRITIC

Like SAC, S2AC performs soft policy iteration which alternates between policy evaluation and policy
improvement. The difference is that we model the actor as a parameterized sampler from an EBM.
Hence, the policy distribution corresponds to an expressive EBM as opposed to a Gaussian.

Critic. The critic’s parameters ϕ are obtained by minimizing the Bellman loss as traditionally:

ϕ∗ = argminϕ E(st,at)∼ρπθ

[
(Qϕ(st, at)− ŷ)2

]
, (8)

with the target ŷ = rt(st, at) + γE(st+1,at+1)∼ρπ
[
Qϕ̄(st+1, at+1) + αH(π(·|st+1))

]
. Here ϕ̄ is an

exponentially moving average of the value network weights (Mnih et al., 2015).

Actor as an EBM sampler. The actor is modeled as a sampler from an EBM over the Q-values.
To generate a set of valid actions, the actor first samples a set of particles {a0} from an initial
distribution q0 (e.g., Gaussian). These particles are then updated over several iterations l ∈ [1, L],
i.e., {al+1} ← {al}+ ϵh({al}, s) following the sampler dynamics characterized by a transformation
h (e.g., for SVGD, h = ∆f in Eq (1)). If q0 is tractable and h is invertible, it’s possible to compute a
closed-form expression of the distribution of the particles at the lth iteration via the change of variable
formula Devore et al. (2012): ql(al|s) = ql−1(al−1|s)

∣∣det(I + ϵ∇alh(al, s))
∣∣−1

,∀l ∈ [1, L]. In
this case, the policy is represented using the particle distribution at the final step L of the sampler
dynamics, i.e., π(a|s) = qL(aL|s) and the entropy can be estimated by averaging log qL(aL|s) over
a set of particles (Section 3.2). We study the invertibility of popular EBM samplers in Section 3.3.

4

Published as a conference paper at ICLR 2024

𝑎!!

𝑎!"!

𝑞!(𝑎|𝑠)

𝑎!!
𝑎!#!

𝑞!(𝑎|𝑠)

S!AC(𝜙, 𝜃)S!AC(𝜙)

Figure 3: S2AC(ϕ, θ) achieves faster conver-
gence to the target distribution (in orange) than
S2AC(ϕ) by parameterizing the initial distribution
N (µθ, σθ) of the SVGD sampler.

Parameterized initialization. To reduce the
number of steps required to converge to the tar-
get distribution (hence reducing computation
cost), we further propose modeling the initial
distribution as a parameterized isotropic Gaus-
sian, i.e., a0 ∼ N (µθ(s), σθ(s)). The parame-
terization trick is then used to express a0 as a
function of θ. Intuitively, the actor would learn
θ such that the initial distribution is close to the
target distribution. Hence, fewer steps are re-
quired to converge, as illustrated in Figure 3.
Note that if the number of steps L = 0, S2AC is
reduced to SAC. Besides, to deal with the non-smooth nature of deep Q-function landscapes which
might lead to particle divergence in the sampling process, we bound the particle updates to be within
a few standard deviations (t) from the mean of the learned initial distribution, i.e., −tσθ ≤ alθ ≤ tσθ,
∀l ∈ [1, L]. Eventually, the initial distribution q0θ learns to contour the high-density region of the
target distribution and the following updates refine it by converging to the spanned modes. Formally,
the parameters θ are computed by minimizing the expected KL-divergence between the policy qLθ
induced by the particles from the sampler and the EBM of the Q-values:

θ∗=argmaxθEst∼D,aLθ ∼πθ

[
Qϕ(st, a

L
θ)
]
+ αEst∼D [H(πθ(·|st))]

s.t. − tσθ ≤ alθ ≤ tσθ, ∀l ∈ [1, L]. (9)

Here, D is the replay buffer. The derivation is in Appendix E. Note that the constraint does not
truncate the particles as it is not an invertible transformation which then violates the assumptions of
the change of variable formula. Instead, we sample more particles than we need and select the ones
that stay within the range. We call S2AC(ϕ, θ) and S2AC(ϕ) as two versions of S2AC with/without the
parameterized initial distribution. The complete S2AC algorithm is in Algorithm 1 of Appendix A.

3.2 A CLOSED-FORM EXPRESSION OF THE POLICY’S ENTROPY

A critical challenge in MaxEnt RL is how to efficiently compute the entropy termH(π(·|st+1)) in
Eq (2). We show that, if we model the policy as an iterative sampler from the EBM, under certain
conditions, we can derive a closed-form estimate of the entropy at convergence.
Theorem 3.1. Let F : Rn → Rn be an invertible transformation of the form F (a) = a + ϵh(a).
We denote by qL(aL) the distribution obtained from repeatedly applying F to a set of samples {a0}
from an initial distribution q0(a0) over L steps, i.e., aL = F ◦ F ◦ · · · ◦ F (a0). Under the condition
ϵ||∇alih(ai)||∞ ≪ 1, ∀l ∈ [1, L], the distribution of the particles at the Lth step is:

log qL(aL) ≈ log q0(a0)− ϵ
∑L−1

l=0
Tr(∇alh(al)) +O(ϵ2dL). (10)

Here, d is the dimensionality of a, i.e., a ∈ Rd and O(ϵ2dL) is the order of approximation error.
Proof Sketch: As F is invertible, we apply the change of variable formula (Appendix C.2) on the trans-
formation F ◦F ◦· · ·F and obtain: log qL(aL) = log q0(a0)−

∑L−1
l=0 log

∣∣det(I + ϵ∇alh(al))
∣∣. Un-

der the assumption ϵ||∇aih(ai)||∞ ≪ 1, we apply the corollary of Jacobi’s formula (Appendix C.3)
and get Eq. (10). The detailed proof is in Appendix F. Note that the condition ϵ||∇aih(ai)||∞ ≪ 1
can always be satisfied when we choose a sufficiently small step size ϵ, or the gradient of h(a) is
small, i.e., h(a) is Lipschitz continuous with a sufficiently small constant.
It follows from the theorem above, that the entropy of a policy modeled as an EBM sampler (Eq (9))
can be expressed analytically as:

H(πθ(·|s))=−Ea0θ∼q0θ
[
log qLθ (a

L
θ |s)

]
≈−Ea0θ∼q0θ

[
log q0θ(a

0|s)−ϵ
∑L−1

l=0
Tr

(
∇alθh(a

l
θ, s)

)]
. (11)

In the following, we drop the dependency of the action on θ for simplicity of the notation.

3.3 INVERTIBLE POLICIES

Next, we study the invertibility of three popular EBM samplers: SVGD, SGLD, and HMC as well as
the efficiency of computing the trace, i.e., Tr(∇alh(al, s)) in Eq (10) for the ones that are invertible.
Proposition 3.2 (SVGD invertibility). Given the SVGD learning rate ϵ and RBF kernel k(·, ·) with
variance σ, if ϵ≪ σ, the update rule of SVGD dynamics defined in Eq (1) is invertible.

5

Published as a conference paper at ICLR 2024

SVGD

ℋ(𝑞!) = 3.5

DLD

ℋ(𝑞!) = −25.93

SGLD

ℋ(𝑞!) = −11.57

HMC

ℋ(𝑞!) = −54.5

Initial Distribution

𝑞" = 𝒩(0, 6𝐼)

(a) Recovering the GT entropy

m

ℋ
(𝑞

!)

Kernel variance 𝜎

(b) Effect of σ on H(qL)

(𝑚, 𝐿)=
(𝑚, 𝐿)=
(𝑚, 𝐿)=
(𝑚, 𝐿)=

ℋ
(𝑞

!)

Target Distribution

(c) Effect ofm andL on H(qL)

Figure 4: Entropy evaluation results.

Proof Sketch: We use the explicit function theorem to show that the Jacobian∇aF (a, s) of the update
rule F (a, s) is diagonally dominated and hence invertible. This yields invertibility of F (a, s). See
detailed proof in Appendix G.3.
Theorem 3.3. The closed-form estimate of log qL(aL|s) for the SVGD based sampler with an RBF
kernel k(·, ·) is
log qL(aL|s)≈ logq0(a0|s)+ ϵ

mσ2

L−1∑
l=0

m∑
j=1,al ̸=al

j

k(alj , a
l)
(
(al−alj)⊤∇al

j
Q(s, alj)+

α

σ2
∥al−alj∥2−dα

)
.

Here, (·)⊤ denotes the transpose of a matrix/vector. Note that the entropy does not depend on any
matrix computation, but only on vector dot products and first-order vector derivatives. The proof is in
Appendix H.1. Intuitively, the derived likelihood is proportional to (1) the concavity of the curvature
of the Q-landscape, captured by a weighted average of the neighboring particles’ Q-value gradients
and (2) pairwise-distances between the neighboring particles (∼∥ali−alj∥2 · exp (∥ali−alj∥2)), i.e.,
the larger the distance the higher is the entropy. We elaborate on the connection between this formula
and non-parametric entropy estimators in Appendix B.
Proposition 3.4 (SGLD, HMC). The SGLD and HMC updates are not invertible w.r.t. a.
Proof Sketch: SGLD is stochastic (noise term) and thus not injective. HMC is only invertible if
conditioned on the velocity v. Detailed proofs are in Appendices G.1-G.2.
From the above theoretic analysis, we can see that SGLD update is not invertible and hence is not
suitable as a sampler for S2AC. While the HMC update is invertible, its derived closed-form entropy
involves calculating Hessian and hence computationally more expensive. Due to these considerations,
we choose to use SVGD with an RBF kernel as the underlying sampler of S2AC.

4 RESULTS

We first evaluate the correctness of our proposed closed-form entropy formula. Then we present the
results of different RL algorithms on multigoal and MuJoCo environments.

4.1 ENTROPY EVALUATION

This experiment tests the correctness of our entropy formula. We compare the estimated entropy
for distributions (with known ground truth entropy or log-likelihoods) using different samplers and
study the sensitivity of the formula to different samplers’ parameters. (1) Recovering the ground
truth entropy. In Figure 4a, we plot samples (black dots) obtained by SVGD, SGLD, DLD and
HMC at convergence to a Gaussian with ground truth entropyH(p) = 3.41, starting from the same
initial distribution (leftmost sub-figure). We also report the entropy values computed via Eq.(11).
Unlike SGLD, DLD, and HMC, SVGD recovers the ground truth entropy. This empirically supports
Proposition 3.4 that SGLD, DLD, and HMC are not invertible. (2) Effect of the kernel variance.
Figure 4b shows the effect of different SVGD kernel variances σ, where we use the same initial
Gaussian from Figure 4a. We also visualize the particle distributions after L SVGD steps for the
different configurations in Figure 9 of Appendix I. We can see that when the kernel variance is too
small (e.g., σ=0.1), the invertibility is violated, and thus the estimated entropy is wrong even at
convergence. On the other extreme when the kernel variance is too large (e.g., σ=100), i.e., when the
particles are too scattered initially, the particles do not converge to the target Gaussian due to noisy
gradients in the first term of Eq.(1). The best configurations hence lie somewhere in between (e.g.,
σ∈{3, 5, 7}). (3) Effect of SVGD steps and particles. Figure 4c and Figure 10b (Appendix. I) show
the behavior of our entropy formula under different configurations of the number of SVGD steps
and particles, on two settings: (i) GMM M with an increasing number of components M , and (ii)
distributions with increasing ground truth entropy values, i.e., Gaussians with increasing variances σ.
Results show that our entropy consistently grows with an increasing M (Figure 4c) and increasing σ
(Figure 10b), even when a small number of SVGD steps and particles is used (e.g., L = 10,m = 10).

6

Published as a conference paper at ICLR 2024

4.2 MULTI-GOAL EXPERIMENTS

!
=
0.2

!
=
1

!
=
10

!
=
20

'! '" '# '$ '% '&

(', ((()

Multigoal Environment

Figure 5: Multigoal env.

To check if S2AC learns a better solution to the max-entropy objective
(Eq (2)), we design a new multi-goal environment as shown in Figure 5.
The agent is a 2D point mass at the origin trying to reach one of the goals
(in red). Q-landscapes are depicted by level curves. Actions are bounded
in [−1, 1] along both axes. Critical states for the analysis are marked
with blue crosses. It is built on the multi-goal environment in Haarnoja
et al. (2017) with modifications such that all the goals have (i) the same
maximum expected future reward (positive) but (ii) different maximum
expected future entropy. This is achieved by asymmetrically placing the
goals (two goals on the left side and one on the right, leading to a higher
expected future entropy on the left side) while assigning the same final rewards to all the goals.
The problem setup and hyperparameters are detailed in Appendix J. (1) Multi-modality. Figure 6
visualizes trajectories (blue lines) collected from 20 episodes of S2AC(ϕ, θ), S2AC(ϕ), SAC, SQL
and SAC-NF (SAC with a normalizing flow policy, Mazoure et al. (2020)) agents (rows) at test time
for increasing entropy weights α (columns). S2AC and SQL consistently cover all the modes for
all α values, while this is only achieved by SAC and SAC-NF for large α values. Note that, in the
case of SAC, this comes at the expense of accuracy. Although normalizing flows are expressive
enough in theory, they are known to quickly collapse to local optima in practice Kobyzev et al. (2020).
The dispersion term in S2AC encodes an inductive bias to mitigate this issue. (2) Maximizing the
expected future entropy. We also see that with increasing α, more S2AC and SAC-NF trajectories
converge to the left goals (G2/G3). This shows both models learn to maximize the expected future
entropy. This is not the case for SQL whose trajectory distribution remains uniform across the
goals. SAC results do not show a consistent trend. This validates the hypothesis that the entropy
term in SAC only helps exploration but does not lead to maximizing future entropy. The quantified
distribution over reached goals is in Figure 12 of Appendix J. (3) Robustness/adaptability. To assess
the robustness of the learned policies, we place an obstacle (red bar in Figure 7) on the path to G2.
We show the test time trajectories of 20 episodes using S2AC, SAC, SQL and SAC-NF agents trained
with different α’s. We observe that, for S2AC and SAC-NF, with increasing α, more trajectories
reach the goal after hitting the obstacles. This is not the case for SAC, where many trajectories hit the
obstacle without reaching the goal. SQL does not manage to escape the barrier even with higher α.
Additional results on the (4) effect of parameterization of q0, and the (5) entropy’s effect on the
learned Q-landscapes are respectively reported in Figure 11 and Figure 14 of Appendix J.

S!
A
C
(𝜙
)

SA
C

SQ
L

S!
A
C
(𝜙
,𝜃
)

𝛼 = 0.2 𝛼 = 1 𝛼 = 10 𝛼 = 20

SA
C
-N
F

Figure 6: S2AC and SAC-NF learn to maxi-
mize the expected future entropy (biased towards
G2/G3) while SAC and SQL do not. S2AC con-
sistently recovers all modes, while SAC-NF with
smaller α’s does not, indicating its instability.

S!
A
C
(𝜙
)

SA
C

SQ
L

S!
A
C
(𝜙
,𝜃
)

𝛼 = 0.2 𝛼 = 1 𝛼 = 10 𝛼 = 20

SA
C
-N
F

Figure 7: S2AC and SAC-NF are more robust to
perturbations. Obstacle O is placed diagonally
at [−1, 1]. Trajectories that did and did not reach
the goal after hitting O are in green and red,
respectively.

7

Published as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps £105

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps £105

°500

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps £105

0

2000

4000

6000

8000

A
ve

ra
ge

R
et

ur
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps £105

0

500

1000

1500

2000

2500

3000

3500

4000

A
ve

ra
ge

R
et

ur
n

PPO

SAC-NF

DDPG

SAC

S2AC(¡, µ, √)

S2AC(¡, µ)

S2AC(¡)

SQL

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps £105

0

500

1000

1500

2000

2500

3000

3500

4000

A
ve

ra
ge

R
et

ur
n

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2 (d) Ant-v2 (e) Humanoid-v2

(f) Median (g) IQM (h) Mean (i) Optimality Gap (j) P(X>Y)

Figure 8: (a)-(e): Performance curves on the MuJoCo benchmark (training). S2AC outperforms SQL
and SAC-NF on all environments and SAC on 4 out of 5 environments. (f)-(i): Comparison of Median,
IQM, Mean, and Optimality Gap between S2AC and baseline algorithms. (j): The probabilities of
S2AC outperforming baseline algorithms.

4.3 MUJOCO EXPERIMENTS

We evaluate S2AC on five environments from MuJoCo (Brockman et al., 2016): Hopper-v2, Walker2d-
v2, HalfCheetah-v2, Ant-v2, and Humanoid-v2. As baselines, we use (1) DDPG (Gu et al., 2017), (2)
PPO (Schulman et al., 2015), (3) SQL (Haarnoja et al., 2017), (4) SAC-NF (Mazoure et al., 2020),
and (5) SAC (Haarnoja et al., 2018a). Hyperparameters are in Appendix K.
(1) Performance and sample efficiency. We train five different instances of each algorithm with
different random seeds, with each performing 100 evaluation rollouts every 1000 environment steps.
Performance results are in Figure 8(a)-(e). The solid curves correspond to the mean returns over the
five trials and the shaded region represents the minimum and maximum. S2AC(ϕ, θ) is consistently
better than SQL and SAC-NF across all the environments and has superior performance than SAC in
four out of five environments. Results also show that the initial parameterization was key to ensuring
the scalability (S2AC(ϕ) has poor performance compared to S2AC(ϕ, θ)). Figure 8(f)-(j) demonstrate
the statistical significance of these gains by leveraging statistics from the rliable library (Agarwal
et al., 2021) which we detail in Appendix K.

Hopper Walker2d HalfCheetah Ant

Action dim 3 6 6 8
State dim 11 17 17 111

SAC 0.723 0.714 0.731 0.708
SQL 0.839 0.828 0.815 0.836

S2AC(ϕ, θ) 3.267 4.622 4.583 5.917
S2AC(ϕ, θ, ψ) 0.850 0.817 0.830 0.837

Table 1: Action selection run-time on MuJoCo.

(2) Run-time. We report the run-time of action
selection of SAC, SQL, and S2AC algorithms in
Table 1. S2AC(ϕ, θ) run-time increases linearly
with the action space. To improve the scalability,
we train an amortized version that we deploy
at test-time, following (Haarnoja et al., 2017).
Specifically, we train a feed-forward deepnet
fψ(s, z) to mimic the SVGD dynamics during
testing, where z is a random vector that allows
mapping the same state to different particles.
Note that we cannot use fψ(s, z) during training
as we need to estimate the entropy in Eq (11), which depends on the unrolled SVGD dynamics
(details in Appendix K). The amortized version S2AC(ϕ, θ, ψ) has a similar run-time to SAC and
SQL with a slight tradeoff in performance (Figure 8).

5 RELATED WORK

MaxEnt RL (Todorov, 2006; Ziebart, 2010; Rawlik et al., 2012) aims to learn a policy that gets high
rewards while acting as randomly as possible. To achieve this, it maximizes the sum of expected
future reward and expected future entropy. It is different from entropy regularization (Schulman et al.,
2015; O’Donoghue et al., 2016; Schulman et al., 2017) which maximizes entropy at the current time
step. It is also different from multi-modal RL approaches (Tang & Agrawal, 2018) which recover
different modes with equal frequencies without considering their future entropy. MaxEnt RL has
been broadly incorporated in various RL domains, including inverse RL (Ziebart et al., 2008; Finn
et al., 2016), stochastic control (Rawlik et al., 2012; Toussaint, 2009), guided policy search (Levine &
Koltun, 2013), and off-policy learning (Haarnoja et al., 2018a;b). MaxEnt RL is shown to maximize
a lower bound of the robust RL objective (Eysenbach & Levine, 2022) and is hence less sensitive

8

Published as a conference paper at ICLR 2024

to perturbations in state and reward functions. From the variational inference lens, MaxEnt RL
aims to find the policy distribution that minimizes the KL-divergence to an EBM over Q-function.
The desired family of variational distributions is (1) expressive enough to capture the intricacies
of the Q-value landscape (e.g., multimodality) and (2) has a tractable entropy estimate. These two
requirements are hard to satisfy. SAC (Haarnoja et al., 2018a) uses a Gaussian policy. Despite having
a tractable entropy, it fails to capture arbitrary Q-value landscapes. SAC-GMM (Haarnoja, 2018)
extends SAC by modeling the policy as a Gaussian Mixture Model, but it requires an impractical
grid search over the number of components. Other extensions include IAPO (Marino et al., 2021)
which also models the policy as a uni-modal Gaussian but learns a collection of parameter estimates
(mean, variance) through different initializations. While this yields multi-modality, it does not
optimize a MaxEnt objective. SSPG (Cetin & Celiktutan, 2022) and SAC-NF (Mazoure et al., 2020)
respectively improve the policy expressivity by modeling the policy as a Markov chain with Gaussian
transition probabilities and as a normalizing flow. Due to training instability, the reported multi-goal
experiments in (Cetin & Celiktutan, 2022) show that, though both models capture multimodality,
they fail to maximize the expected future entropy in positive reward setups. SQL (Haarnoja et al.,
2017), on the other hand, bypasses the explicit entropy computation altogether via a soft version of
value iteration. It then trains an amortized SVGD (Wang & Liu, 2016) sampler from the EBM over
the learned Q-values. However, estimating soft value functions requires approximating integrals via
importance sampling which is known to have high variance and poor scalability. We propose a new
family of variational distributions induced by a parameterized SVGD sampler from the EBM over
Q-values. Our policy is expressive and captures multi-modal distributions while being characterized
by a tractable entropy estimate.
EBMs (LeCun et al., 2006; Wu et al., 2018) are represented as Gibbs densities p(x) = expE(x)/Z,
where E(x) ∈ R is an energy function describing inter-variable dependencies and Z =

∫
expE(x)

is the partition function. Despite their expressiveness, EBMs are not tractable as the partition
function requires integrating over an exponential number of configurations. Markov Chain Monte
Carlo (MCMC) methods (Van Ravenzwaaij et al., 2018) (e.g., HMC (Hoffman & Gelman, 2014),
SGLD (Welling & Teh, 2011)) are frequently used to approximate the partition function via sampling.
There have been recent efforts to parameterize these samplers via deepnets (Levy et al., 2017; Gong
et al., 2018; Feng et al., 2017) to improve scalability. Similarly to these methods, we propose a
parameterized variant of SVGD (Liu & Wang, 2016) as an EBM sampler to enable scalability to high-
dimensional action spaces. Beyond sampling, we derive a closed-form expression of the sampling
distribution as an estimate of the EBM. This yields a tractable estimate of the entropy. This is opposed
to previous methods for estimating EBM entropy which mostly rely on heuristic approximation, lower
bounds Dai et al. (2017; 2019a), or neural estimators of mutual information (Kumar et al., 2019).
The idea of approximating the entropy of EBMs via MCMC sampling by leveraging the change of
variable formula was first proposed in Dai et al. (2019b). The authors apply the formula to HMC
and LD, which, as we show previously, violate the invertibility assumption. To go around this, they
augment the EBM family with the noise or velocity variable for LD and HMC respectively. But the
derived log-likelihood of the sampling distribution turns out to be –counter-intuitively– independent
of the sampler’s dynamics and equal to the initial distribution, which is then parameterized using a
flow model (details in Appendix B.2). We show that SVGD is invertible, and hence we sample from
the original EBM, so that our derived entropy is more intuitive as it depends on the SVGD dynamics.
SVGD-augmented RL (Liu & Wang, 2016) has been explored under other RL contexts. Liu et al.
(2017) use SVGD to learn a distribution over policy parameters. While this leads to learning diverse
policies, it is fundamentally different from our approach as we are interested in learning a single
multi-modal policy with a closed-form entropy formula. Castanet et al. (2023); Chen et al. (2021)
use SVGD to sample from multimodal distributions over goals/tasks. We go beyond sampling and
use SVGD to derive a closed-form entropy formula of an expressive variational distribution.

6 CONCLUSION

We propose S2AC, an actor-critic algorithm that yields a more optimal solution to the MaxEnt RL
objective than previously proposed approaches. S2AC achieves this by leveraging a new family
of variational distributions characterized by SVGD dynamics. The proposed distribution has high
expressivity, i.e., it is flexible enough to capture multimodal policies in high dimensional spaces,
and a tractable entropy estimate. Empirical results show that S2AC learns expressive and robust
policies while having superior performance than other MaxEnt RL algorithms. For future work, we
plan to study the application of the proposed variational distribution to other domains and develop
benchmarks to evaluate the robustness of RL agents.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

Bo An is supported by the National Research Foundation Singapore and DSO National Laboratories
under the AI Singapore Programme (AISGAward No: AISG2-GC-2023-009). Haipeng Chen is
supported by William & Mary FRC Faculty Research Grants.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. NeurIPS, 2021.

I. Ahmad and Pi-Erh Lin. A nonparametric estimation of the entropy for absolutely continuous
distributions (corresp.). IEEE Trans. Inf. Theory, 1976.

Jan Beirlant and M.C.A van Zuijlen. The empirical distribution function and strong laws for functions
of order statistics of uniform spacings. J. Multivar. Anal., 1985.

Jan Beirlant, Edward J Dudewicz, László Györfi, Edward C Van der Meulen, et al. Nonparametric
entropy estimation: An overview. IJSRMSS, 1997.

Laura T Bernhofen, Edward J Dudewicz, Janos Levendovszky, and Edward C van der Meulen.
Ranking of the best random number generators via entropy-uniformity theory. AJMMS, 1996.

Peter J. Bickel and Leo Breiman. Sums of Functions of Nearest Neighbor Distances, Moment Bounds,
Limit Theorems and a Goodness of Fit Test. Ann. Probab., 1983.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai Gym. arXiv preprint arXiv:1606.01540, 2016.

Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial neural
networks. Science, 2017.

Nicolas Castanet, Olivier Sigaud, et al. Stein variational goal generation for adaptive exploration in
multi-goal reinforcement learning. 2023.

Edoardo Cetin and Oya Celiktutan. Policy gradient with serial markov chain reasoning. NeurIPS,
2022.

Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang, Jiaming Song, Yu Wang,
and Yi Wu. Variational automatic curriculum learning for sparse-reward cooperative multi-agent
problems. NeurIPS, 2021.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Noel Cressie. Power results for tests based on high-order gaps. Biometrika, 1978.

Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, and Niao He. Kernel exponential
family estimation via doubly dual embedding. In AISTAT, 2019a.

Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, and Dale Schuurmans. Exponential
family estimation via adversarial dynamics embedding. NeurIPS, 2019b.

Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Calibrating
energy-based generative adversarial networks. arXiv preprint arXiv:1702.01691, 2017.

Jay L Devore, Kenneth N Berk, Matthew A Carlton, et al. Modern mathematical statistics with
applications. Springer, 2012.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In ICML, 2016.

Edward J Dudewicz and Edward C Van Der Meulen. Entropy-based tests of uniformity. JASA, 1981.

10

Published as a conference paper at ICLR 2024

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. In ICLR, 2022.

Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein variational
gradient descent. arXiv preprint arXiv:1707.06626, 2017.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In ICML, 2016.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-based
models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125, 2020.

Xun Gao and Lu-Ming Duan. Efficient representation of quantum many-body states with deep neural
networks. Nature communications, 2017.

Wenbo Gong, Yingzhen Li, and José Miguel Hernández-Lobato. Meta-learning for stochastic gradient
mcmc. arXiv preprint arXiv:1806.04522, 2018.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey Levine. Q-prop:
Sample-efficient policy gradient with an off-policy critic. In ICLR, 2017.

László Györfi and Edward C. van der Meulen. Density-free convergence properties of various
estimators of entropy. CSDA, 1987.

Tuomas Haarnoja. Acquiring diverse robot skills via maximum entropy deep reinforcement learning
(Ph.D. thesis). University of California, Berkeley, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In ICML, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Peter Hall. On powerful distributional tests based on sample spacings. JMVA, 1986.

Hideitsu Hino and Noboru Murata. A conditional entropy minimization criterion for dimensionality
reduction and multiple kernel learning. Neural Comput., 2010.

Matthew D Hoffman and Andrew Gelman. The No-U-Turn sampler: Adaptively setting path lengths
in hamiltonian monte carlo. JMLR, 2014.

Aleksandr Vasil’evich Ivanov and MN Rozhkova. On properties of the statistical estimate of the
entropy of a random vector with a probability density. Problemy Peredachi Informatsii, 1981.

Harry Joe. Estimation of entropy and other functionals of a multivariate density. Ann. Inst. Stat.
Math., 1989.

Hilbert J Kappen. Path integrals and symmetry breaking for optimal control theory. JSTAT, 2005.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
review of current methods. PAMI, 2020.

Lyudmyla F Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 1987.

Rithesh Kumar, Anirudh Goyal, Aaron Courville, and Yoshua Bengio. Engan: Latent space mcmc
and maximum entropy generators for energy-based models. ICLR, 2019.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Reinforcement learning in continuous
action spaces through sequential monte carlo methods. NeurIPS, 2007.

11

Published as a conference paper at ICLR 2024

Erik G Learned-Miller and John W Fisher III. Ica using spacings estimates of entropy. JMLR, 2003.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-based
learning. Predicting Structured Data, 2006.

Kyowoon Lee, Sol-A Kim, Jaesik Choi, and Seong-Whan Lee. Deep reinforcement learning in
continuous action spaces: a case study in the game of simulated curling. In ICML, 2018.

Sergey Levine and Vladlen Koltun. Guided policy search. In ICML, 2013.

Daniel Levy, Matthew D Hoffman, and Jascha Sohl-Dickstein. Generalizing hamiltonian monte carlo
with neural networks. arXiv preprint arXiv:1711.09268, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Haozhe Liu, Bing Li, Haoqian Wu, Hanbang Liang, Yawen Huang, Yuexiang Li, Bernard Ghanem,
and Yefeng Zheng. Combating mode collapse in gans via manifold entropy estimation. AAAI,
2022.

Qiang Liu. Stein variational gradient descent as gradient flow. NeurIPS, 2017.

Qiang Liu and Dilin Wang. Stein variational gradient descent: a general purpose bayesian inference
algorithm. In NeurIPS, 2016.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng. Stein variational policy gradient. UAI,
2017.

Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics and
econometrics. John Wiley & Sons, 2019.

Shie Mannor, Dori Peleg, and Reuven Rubinstein. The cross entropy method for classification. In
ICML, 2005.

Joseph Marino, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue. Iterative amortized
policy optimization. NeurIPS, 2021.

Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging
exploration in off-policy algorithms via normalizing flows. In CoRL, 2020.

Roger G Melko, Giuseppe Carleo, Juan Carrasquilla, and J Ignacio Cirac. Restricted boltzmann
machines in quantum physics. Nature Physics, 2019.

Safa Messaoud. Toward More Scalable Structured Models. PhD thesis, University of Illinois
Urbana-Champaign, 2021.

Safa Messaoud, David Forsyth, and Alexander G Schwing. Structural consistency and controllability
for diverse colorization. In ECCV, pp. 596–612, 2018.

Safa Messaoud, Maghav Kumar, and Alexander G Schwing. Can we learn heuristics for graphical
model inference using reinforcement learning? In CVPR Workshops, pp. 766–767, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
2011.

Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
gradient and q-learning. arXiv preprint arXiv:1611.01626, 2016.

Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory prediction with latent belief
energy-based model. In CVPR, pp. 11814–11824, 2021.

12

Published as a conference paper at ICLR 2024

Liam Paninski. Estimation of entropy and mutual information. Neural Comput., 2003.

Fernando Pérez-Cruz. Estimation of information theoretic measures for continuous random variables.
In NeurIPS, 2008.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems VIII,
2012.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML.
PMLR, 2015.

Édgar Roldán, Jérémie Barral, Pascal Martin, Juan MR Parrondo, and Frank Jülicher. Quantifying
entropy production in active fluctuations of the hair-cell bundle from time irreversibility and
uncertainty relations. New J. Phys., 2021.

Reuven Y. Rubinstein and Dirk P. Kroese. The Cross Entropy Method: A Unified Approach To Com-
binatorial Optimization, Monte-Carlo Simulation (Information Science and Statistics). Springer-
Verlag, 2004.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines for
collaborative filtering. In ICML, 2007.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE, 2001.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. NeurIPS, 1999.

Yunhao Tang and Shipra Agrawal. Boosting trust region policy optimization by normalizing flows
policy. arXiv preprint arXiv:1809.10326, 2018.

F.P. Tarasenko. On the evaluation of an unknown probability density function, the direct estimation of
the entropy from independent observations of a continuous random variable, and the distribution-
free entropy test of goodness-of-fit. Proceedings of the IEEE, 1968.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral control approach
to reinforcement learning. JMLR, 2010.

Emanuel Todorov. Linearly-solvable markov decision problems. In NeurIPS, 2006.

Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and Giuseppe
Carleo. Neural-network quantum state tomography. Nature Physics, 2018.

Marc Toussaint. Robot trajectory optimization using approximate inference. In ICML, 2009.

Don Van Ravenzwaaij, Pete Cassey, and Scott D Brown. A simple introduction to markov chain
monte–carlo sampling. Psychon. Bull. Rev., 2018.

Oldrich Vasicek. A Test for Normality Based on Sample Entropy. JSTOR, 2015.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. In
NeurIPS, 2020.

Dilin Wang and Qiang Liu. Learning to draw samples: With application to amortized mle for
generative adversarial learning. arXiv preprint arXiv:1611.01722, 2016.

13

Published as a conference paper at ICLR 2024

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In ICML,
2011.

Ying Nian Wu, Jianwen Xie, Yang Lu, and Song-Chun Zhu. Sparse and deep generalizations of the
frame model. Annals of Mathematical Sciences and Applications, 2018.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv preprint arXiv:1507.04888, 2015.

Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of
descriptor and generator networks. IEEE PAMI.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet. In ICML,
2016.

Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and Ying Nian Wu.
Generative voxelnet: learning energy-based models for 3d shape synthesis and analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(5), 2020.

Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. Learning cycle-
consistent cooperative networks via alternating mcmc teaching for unsupervised cross-domain
translation. In AAAI, volume 35, pp. 10430–10440, 2021a.

Jianwen Xie, Zilong Zheng, and Ping Li. Learning energy-based model with variational auto-encoder
as amortized sampler. In AAAI, 2021b.

Jianwen Xie, Yaxuan Zhu, Jun Li, and Ping Li. A tale of two flows: Cooperative learning of langevin
flow and normalizing flow toward energy-based model. arXiv preprint arXiv:2205.06924, 2022.

Yang Zhao, Jianwen Xie, and Ping Li. Learning energy-based generative models via coarse-to-fine
expanding and sampling. In ICLR, 2021.

Zilong Zheng, Jianwen Xie, and Ping Li. Patchwise generative convnet: Training energy-based
models from a single natural image for internal learning. In CVPR, pp. 2961–2970, June 2021.

Mo Zhou and Jianfeng Lu. Single timescale actor-critic method to solve the linear quadratic regulator
with convergence guarantees. JMLR, 2023.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI, 2008.

14

Published as a conference paper at ICLR 2024

Supplementary Material

A SUMMARY

In this paper, we propose a new variational distribution that we use to model the actor in the context
of actor-critic MaxEntr RL algorithms. Our distribution is induced by an SVGD sampler with a
parametrized initial distribution (isotropic Gaussian). It enables fitting multi-modal distribution
(e.g., EBM) and is characterized by a closed-form entropy estimate. Hence, it addresses the major
bottleneck in classical MaxEntr RL algorithms. Our derivation is based on the unique invertibility
property of the SVGD sampler, which is not satisfied for other popular samplers (e.g., SGLD, HMC).
The key to achieving scalability was to learn the initial Gaussian distribution such that it contours
the high-density region of the target distribution, by limiting particles’ updates to be always within
few standard deviations of the mean of this Gaussian. This resulted in better and faster exploration
of the relevant regions of the target distribution. Our proposed approach S2AC is summarized in
Algorithm 1.The rest of the supplementary is organized as follows:

• Appendix B provides additional related work on the entropy estimation.
• Appendix C introduces additional preliminaries on EBM samplers, the change of variable

formula and the Jacobi formula.
• Appendix D provides the derivation of the optimal policy for the MaxEntr RL objective.
• Appendix E provides the derivation of the actor objective.
• Appendices F-H provide proofs for theorems related to (1) a generic closed-form expression

of log-likelihood of inverible samplers, (2) discussion of samplers invertibility and (3)
closed-form likelihood derivation for SVGD.

• Appendices I-K provide additional results for the (1) entropy evaluation, (2) multigoal
environment, and (3) MuJoCo environments.

Algorithm 1 Stein Soft Actor Critic (S2AC)

1: Initialize parameters ϕ, θ, hyperparameter α, and replay buffer D ← ∅
2: for each iteration do
3: for each environment step t do
4: Sample action particles {a} from πθ(·|st)
5: Select at ∈ {a} using exploration strategy
6: Sample next state st+1 ∼ p(st+1|st, at)
7: Update replay buffer D ← D ∪ (st, at, rt, st+1)
8: for each gradient step do
9: Critic update:

10: Sample particles {a} from an EMB sampler πθ(·|st+1)
11: Compute entropyH(πθ(·|st+1)) using Eq.(11)
12: Update ϕ using Eq.(8)
13: Actor update:
14: Update θ using Eq.(9)

15

Published as a conference paper at ICLR 2024

B ADDITIONAL RELATED-WORK

B.1 ENTROPY

The differential entropy Cover (1999); Shannon (2001) of a p-dimensional random variable X with a
probability density function p(x) is defined by: H(p) = −

∫
p(x) ln p(x)dx. The differential entropy

plays a central role in information and communication theory, statistics Tarasenko (1968), signal
processing Vasicek (2015); Learned-Miller & III (2003), machine learning and pattern recognition
Mannor et al. (2005); Rubinstein & Kroese (2004); Hino & Murata (2010); Liu et al. (2022);
Wulfmeier et al. (2015). For example, Max-Entropy RL Wulfmeier et al. (2015); Haarnoja et al.
(2017; 2018a) methods augment the expected reward objective with an entropy maximization term
which results in learning multi-modal policies and more robustness. Recently, Liu et. al Liu et al.
(2022) propose maximizing the entropy of the discriminator distribution to combat mode collapse. In
statistical mechanics entropy appears as the negative of the rate function to quantify the fluctuations
around thermodynamic equilibrium Roldán et al. (2021). Estimating the differential entropy for
expressive distributions is a challenging problem as it requires computing a closed-form expression
of the probability density function. Several non-parametric approaches Beirlant et al. (1997); Györfi
& van der Meulen (1987); Paninski (2003); Pérez-Cruz (2008) based on approximating the entropy
using samples D = {xi}|D|

i=1 from p(x), have been proposed in the literature. These methods can be
classified into (1) plug-in estimates Ahmad & Lin (1976); Ivanov & Rozhkova (1981); Joe (1989)
which approximate p(x) via a kernel density estimate, (2) samples spacing Beirlant & van Zuijlen
(1985); Cressie (1978); Dudewicz & Van Der Meulen (1981); Hall (1986) and (3) nearest-neighbor
distances based estimates Bernhofen et al. (1996); Bickel & Breiman (1983); Kozachenko & Leonenko
(1987) which express the entropy in terms of pairwise distances between the samples (larger distances
imply higher entropy). Next, we review the work on entropy estimation of Energy-Based-Models
(EBMs).

B.2 ENTROPY OF EBMS

In this work, we are interested in computing entropy estimates for the class of EBMs LeCun et al.
(2006) represented as Gibbs densities p(x) = expE(x)

Z , where E(x) ∈ R is an energy function
describing inter-variable dependencies and Z =

∫
expE(x) is an intractable partition function.

EBMs provide a unified framework for many probabilistic and non-probabilistic approaches, par-
ticularly for learning and inference in structured models and are widely used in computer science
(e.g., semantic segmentation, colorization, image generation, inverse optimal control, collaborative
filtering) Salakhutdinov et al. (2007); Messaoud et al. (2018); Zhao et al. (2021); Gao et al. (2020);
Xie et al. (2020); Zheng et al. (2021); Carleo & Troyer (2017); Messaoud et al. (2020); Xie et al.
(2021a); Pang et al. (2021); Messaoud (2021); Xie et al. (2016); Xie et al.; 2021b; 2022) and physics
Carleo & Troyer (2017); Gao & Duan (2017); Torlai et al. (2018); Melko et al. (2019) (e.g., to
model the wavefunctions of quantum systems). To estimate the entropy of EBMs, previous methods
mostly rely on heuristic approximation, lower bounds Dai et al. (2017; 2019a), or neural estimators
of mutual information to approximate the entropy Kumar et al. (2019). The idea of approximating the
entropy of EBMs via the one from an MCMC sampler by leveraging the change of variable formula
was first proposed by Dai et al. (2019b). Specifically, the authors apply the formula to HMC and
LD which, as we show in Appendix. G, violate the invertibility assumption. To go around this, the
authors propose augmenting the EBM family with the noise or velocity variable for, respectively, LD
and HMC, i.e., sampling from p(x) is replaced with sampling from p(x, v) or p(x, ξ). The authors
assume that the sampler update rule is invertible with respect to the augmented samples (x, v) and
(x, ξ). However, computing the determinant of the update rule with respect to the augmented variable
is always equal to 1 in this case. Hence, the resulting log-likelihood of the sampling distribution
is, counter-intuitively, independent of the sampler’s dynamics and equal to the initial distribution,
i.e., log qL(aL) = log q0(a0), which the author model using a flow model. Differently, we show that
SVGD is invertible, our entropy depends on the dynamics of SVGD, we still sample from the original
EBM p(x) and our initial distribution is a simple Gaussian. Similarly to the non-parametrized entropy
estimates described above, our formula leverages pairwise distances between the neighboring samples.
Differently, our formula is also based on the curvature of the energy function E(x) (measured by a
weighted average of neighboring particle gradients∇xE(x)). Hence maximizing our derived entropy
results in the intuitive effect of learning smoother energy landscapes.

16

Published as a conference paper at ICLR 2024

C ADDITIONAL PRELIMINARIES

In the following, we review (1) additional samplers for EBMs, (2) the change of variable formula and
(3) the corollary of the Jacobi’s formula.

C.1 ADDITIONAL SAMPLERS FOR EBMS

SGLD (Welling & Teh, 2011) is a popular Markov chain Monte Carlo (MCMC) method for sampling
from a distribution. It initializes a sample a0 from a random distribution, and then in each step l + 1
it adds the gradient of the current proposal distribution p(a) to the previous sample al, together with
a Brownian motion ξ∼N(0, I). We denote the step size as ϵ. The iterative update for SGLD is:

al+1 = al + ϵ∇al log p(al) +
√
2ϵξ. (12)

DLD are equivalent to SGLD without the noise term, i.e.,

al+1 = al + ϵ∇al log p(al). (13)

HMC is another popular variant of MCMC samplers. The most commonly used discretized Hamil-
ton’s equations are the leapfrog method (Neal et al., 2011). The three (half) steps of leapfrog updates
in HMC are:

vl+1/2 = vl + (ϵ/2)∇a log p(al+1)

al+1 = al + ϵvl+1/2

vl+1 = al+1 + (ϵ/2)∇a log p(al+1)

(14)

Here vl is interpreted the velocity at iteration l (assuming unit mass) and al is the “location” of a
sample in a distribution.

C.2 CHANGE OF VARIABLE FORMULA

We first introduce the concept of an invertibile function.
Definition C.1 (Invertibile transformation). Transformation F : Z → X is invertible iff F (·) is
bijective, i.e., simultaneously injective and surjective: (i) F (·) is injective iff for any z, z′ ∈ Z,
F (z) = F (z′) ⇒ z = z′; (ii) F (·) is surjective iff for every x ∈ X , there exists some z ∈ Z such
that F (z) = x.

According to change of variable formula, the following holds when F : Z → X is an invertible
function:

pX(x) = pZ(z)
∣∣∣det∂F−1(x)

∂x

∣∣∣ = pZ(z)
∣∣∣det∂F (z)

∂z

∣∣∣−1

C.3 A COROLLARY OF JACOBI’S FORMULA

An important corollary of Jacobi’s Formula (Magnus & Neudecker, 2019) states that, given an
invertible matrix A, the following equality holds:

log(detA) = Tr (logA) = Tr
(∑∞

k=1
(−1)k+1 (A − I)k

k

)
.

The second equation is obtained by taking the power series of logA. Hence, under the assumption
∥A− I∥∞ ≪ 1, we obtain:

log(detA) ≈ tr(A− I).

17

Published as a conference paper at ICLR 2024

D DERIVATION OF THE MAXENT RL OPTIMAL POLICY

In this section, we prove that the solution π∗ of the MaxEnt RL objective

max
π

J(π) ≡
∑
t

E(st,at)∼ρπ

[
γt
(
r(at, st)− α log π(·|st)

)]
(15)

is π∗ =
exp(1

αQ(s,a))

Z . Here, Q(s, a) is the soft Q-function defined as

Q(s, a) = E(st,at)∼ρπ

[∑
t

γt
(
r(at, st)− α log p(π(·|st))

)
|s0 = s, a0 = a

]
= r(a, s) + αH(π(·|s)) + Eπ(a′|s)ρπ(s′)

[
Q(s′, a′)

]
. (16)

Consequently, we deduce that π∗ is also the solution of the expected KL divergence:

π∗ = argminπ
∑
t

Est∼ρπ
[
DKL

(
π(·|st)∥ exp(Q(st, ·)/α)/Z

)]
. (17)

Proof. We express the MaxEnt loss as a function of Q(s, a), i.e., J(π) = E(s,a)∼ρπ

[
Q(s, a)

]
. To

find π∗ = argmaxπ J(π) under the constraint
∫
a
π(a|s)da = 1, we evaluate the Lagrangian (with

λ ∈ R being the Lagrange multiplier):

L(π, λ) = E(s,a)∼ρπ

[
Q(s, a)

]
+ λ

(∫
a

π(a|s)da− 1
)
, (18)

and compute ∂L(π,λ)
∂π(a|s) :

∂L(π, λ)
∂π(a|s)

=
∂

∂π(a|s)

(∫
s

∫
a

π(a|s)ρπ(s)Q(s, a)da ds+ λ
(∫

a

π(a|s)da− 1
))

=
∂

∂π(a|s)

(
π(a|s)ρπ(s)

(
r(a, s)− α log π(a|s) + Eπ(a′|s)ρπ(s′)

[
Q(s′, a′)

]))
+ λ

= ρπ(s)
(
r(a, s) + Eπ(a′|s)ρπ(s′)[Q(s′, a′)]

)
− αρπ(s)

∂

∂π(a|s)

(
π(a|s) log π(a|s)

)
+ λ

= ρπ(s)
(
r(a, s) + Eπ(a′|s)ρπ(s′)[Q(s′, a′)]

)
− αρπ(s)

(
log π(a|s) + 1

)
+ λ.

Setting ∂L(π,λ)
∂π(a|s) to 0:

∂L(π, λ)
∂π(a|s)

= 0 ⇐⇒
(
r(a, s) + Eπ(a′|s)ρπ(s′)[Q

π(s′, a′)]
)
− α+

λ

ρπ(s)
= α log π(a|s)

⇐⇒ 1

α

(
r(a, s) + Eπ(a′|s)ρπ(s′)[Q(s′, a′)]

)
− 1 +

λ

αρπ(s)
= log π(a|s)

⇐⇒ π(a|s) =
exp

(
1
α

(
r(a, s) + Eπ(a′|s)ρπ(s′)[Q(s′, a′)]

))
exp

(
1− λ

αρπ(s)

)
⇐⇒ π(a|s) =

exp
(

1
α

(
r(a, s) +H(π(·|s)) + Eπ(a′|s)ρπ(s′)[Q(s′, a′)]

))
exp

(
1− λ

αρπ(s)

)
⇐⇒ π(a|s) =

exp
(

1
αQ(s, a)

)
exp

(
H(π(·|s))

α + 1− λ
αρπ(s)

) (19)

We choose λ such that
∫
a
π(a|s)da = 1, i.e.,

18

Published as a conference paper at ICLR 2024

∫
a

exp
(

1
αQ(s, a)

)
exp

(
H(π(·|s))

α +1− λ
αρπ(s)

)da=1⇐⇒λ=−αρπ(s)
(
log

∫
a

exp
(1

α
Q(s, a)

)
da−H(π(·|s))

α
−1

)
.

(20)
Hence, π∗(a|s) = exp(1

αQ(s, a))/
∫
a
exp(1

αQ(s, a)). A similar proof follows for any state and
action pairs. Trivially, π∗ is also the global minimum of Eq.(17).

E DERIVATION OF THE ACTOR OBJECTIVE (EQ.(9))

In the following, we prove that the objective

argmin
θ

Est∼D

[
DKL

(
πθ(·|st)

∣∣∣∣∣∣ exp(1

α
Qϕ(st, ·)

)
/Z(ϕ)

)]
is equivalent to

argmax
θ

Est∼D,at∼πθ(at|st)

[
Qϕ(st, at)

]
+ Est

[
αH(πθ(at|st))

]
,

with D being a replay buffer.

Proof.

θ∗ = argmin
θ

Est∼D

[
DKL

(
πθ(·|st)

∣∣∣∣∣∣ exp(1

α
Qϕ(st, ·)

)
/Z(ϕ)

)]
= argmin

θ
Est∼D,at∼πθ(at|st)

[
log(πθ(at|st))−

(1

α
Qϕ(st, at)− logZ(ϕ)

)]
= argmin

θ
Est∼D,at∼πθ(at|st)

[
log(πθ(at|st))−

1

α
Qϕ(st, at)

]
= argmax

θ
Est∼D,at∼πθ(at|st)

[
− log(πθ(at|st)) +

1

α
Qϕ(st, at)

]
= argmax

θ
Est∼D,at∼πθ(at|st)

[1
α
Qϕ(st, at) +H(πθ(at|st))

]
= argmax

θ
Est∼D,at∼πθ(at|st)

[
Qϕ(st, at)

]
+ Est∼D

[
αH(πθ(at|st))

]

19

Published as a conference paper at ICLR 2024

F PROOF OF THEOREM 3.1

Theorem. Let F : Rn → Rn be an invertible transformation of the form F (a) = a + ϵh(a). We
denote by qL(aL) the distribution obtained from repeatedly (L times) applying F to a set of action
samples (called “particles”) {a0} from an initial distribution q0(a0), i.e., aL = F ◦ F ◦ · · · ◦ F (a0).
Under the condition ϵ||∇aih(ai)||∞ ≪ 1, the closed-form expression of log qL(aL) is:

log qL(aL) = log q0(a0)− ϵ
L−1∑
l=0

Tr(∇alh(al)). (21)

Proof. Based on the change of variable formula (Appendix C.2), when for every iteration l ∈ [1, L],
the transformation al = L(al−1) (of the action sampler in our paper) is invertible, we have:

ql(al) = ql−1(al−1)

∣∣∣∣det dal

dal−1

∣∣∣∣−1

,∀l ∈ [1, L].

By induction, we derive the probability distribution of sample aL:

qL(aL) = q0(a0)

L∏
l=1

∣∣∣∣det dal

dal−1

∣∣∣∣−1

= q0(a0)

L−1∏
l=0

∣∣det (I + ϵ∇alh(al)
)∣∣−1

By taking the log for both sides, we obtain:

log qL(aL) = log q0(a0)−
L−1∑
l=0

log
∣∣det (I + ϵ∇alh(al)

)∣∣ .
Let A = I + ϵ∇alh(al), under the assumption ϵ||∇aih(ai)||∞ ≪ 1, i.e., ||A− I||∞ ≪ 1, we apply
the corollary of Jacobi’s formula (Appendix C.3) and get

log qL(aL) ≈ log q0(a0)−
L−1∑
l=0

Tr
(
(I + ϵ∇alh(al))− I)

)
+O(ϵ2dL)

≈ log q0(a0)− ϵ
L−1∑
l=0

Tr
(
∇alh(al)

)
+O(ϵ2dL).

Here, d is the action space dimension.

20

Published as a conference paper at ICLR 2024

G SAMPLERS INVERTIBILITY PROOFS

We start by state the implicit function theorem which we will be using in the following proofs.
Theorem G.1 (Implicit function theorem). Let f : Rn → Rn be continuously differentiable on
some open set containing a, and suppose det (Jf(a)) = det (∇af(a)) ̸= 0. Then, there is some
open set V containing a and an open W containing f(a) such that f : V → W has a continuous
inverse f−1 :W → V which is differentiable ∀y ∈W .

G.1 STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Proposition (SGLD). The SGLD update in Eq.(12) is not invertible.

Proof. We show that SGLD are not invertible using two different methods: (1) We show that SGLD
is not a bijective transformation, (2) Using the implicit function theorem, we show that the Jacobian
of the dynamics is not invertible.

G.1.1 METHOD1: SGLD IS NOT INVERTIBLE ⇐⇒ SGLD IS NOT A BIJECTION

The update rule F (·) for SGLD and DGLD are given by Eq.(12) and Eq.(13), respectively. In the
following, we drop the dependency on the time step for ease of notation.

Injectivity is equivalent to checking: F (a1) = F (a2) =⇒ a1 = a2. This, however, doesn’t hold in
case of SGLD as the noise terms ξ1 and ξ2 can be chosen such that the equality

a1 + ϵ∇a1 log p (a1) +
√
2ϵξ1 = a2 + ϵ∇a2 log p (a2) +

√
2ϵξ2

holds with a1 ̸= a2. Therefore, SGLD is not injective. The same holds for DGLD, where the
equality a1 +∇a1 log p (a1) = a2 +∇a2 log p (a2) can be valid for a1 ̸= a2. A counter-example:
a1 = a2 + η and η +∇a1 log p (a1) = ∇a2 log p (a2), with η being an arbitrary constant.

Surjectivity is equivalent to checking: ∀al+1 ∈ Rd,∃al ∈ Rd s.t. al+1 = F (al). Assume that
al+1 = al + ϵ∇al log p

(
al
)
, and al ∈ Rd, we can always choose an adaptive learning rate ϵ such

that ϵ∇al log p
(
al
)
= al+1 − al .

G.1.2 METHOD2: IMPLICIT FUNCTION THEOREM

We compute the derivative of the update rule in Eq 12 with respect to a: JF = I + ϵ∇2
a log p(a). It’s

possible for JF not to be invertible, e.g., in case I = −ϵ∇2
a log p(a). Hence, in general F (a) is not

guaranteed to be a bijection.

G.2 HAMILTONIAN MONTE CARLO (HMC)

Proposition (HMC). The HMC update in Eq.(14) is not invertible w.r.t. a.

Neal et al. (2011) show that HMC update rule is only invertible with respect to the (a, v), i.e., when
conditioning on v. Since v is sampled from a random distribution, it has the effect of the noise
variable in SGLD. Hence, a similar proof applies.

G.3 STEIN VARIATIONAL GRADIENT DESCENT

Proposition (SVGD). Under the assumption that ϵ≪ σ, the update rule of SVGD dynamics defined
in Eq.(1) with an RBF kernel is invertible.

G.3.1 METHOD2: SVGD IS INVERTIBLE ⇐⇒ SVGD IS A BIJECTION

Injectivity. The equality F (a1) = F (a2):

a1+
ϵ

m

m∑
j=1

[k (aj , a1)∇aj log p (aj)−∇ajk (aj , a1)] = a2+
ϵ

m

m∑
l=1

[k (al, a2)∇alg (al)−∇alk (al, a2)]

is too complex to hold for a solution other than a1 = a2 given the sum over multiple particles on
both sides and the dependency on the kernel.

=⇒ not obvious (depends on the Kernel)

21

Published as a conference paper at ICLR 2024

Surjectivity. Similarly, to Langevin dynamics, surjectivity can be achieved by choosing a suitable
learning rate.

G.3.2 METHOD 2: IMPLICIT FUNCTION THEOREM

We start by proving the proposition above for the 1-Dimensional case, i.e., a ∈ R. Then, we extend
the proof to the multi-dimensional case, i.e., a ∈ Rd.
1-Dimensional Case. We prove that F is invertible by showing that F is bijective, which is equivalent
to showing that F is strictly monotonic, i.e.,∇aiF (ai) > 0 or∇aiF (ai) < 0, ∀ai.
Computing the derivative of the SVGD update (Eq. 1) rule w.r.t ai results in:

∇aiF (ai) = 1 +
ε

m

m∑
i=1

∇aik (ai, aj)∇ajg (aj) +∇ai∇ajk (ai, aj) .

For k(ai, aj) = e−
∥ai−aj∥

2

2σ2 , we have:


∇ajk(ai, aj) =

−2(ai−aj)
2σ2 k(ai, aj) =

−(ai−aj)
σ2 k(ai, aj)

∇ajk(ai, aj) =
(ai−aj)
σ2 k(ai, aj)

∇ai∇aj = 1
σ2 k(ai, aj)

(
1− 1

σ2 ∥ai − aj∥2
)

Hence,

∇aiF (ai) = 1 +
ϵ

m

m∑
i=1

k(ai, aj)

σ2

(
−(ai − aj)∇aj log p(aj) + 1− ∥ai − aj∥

σ2

)
.

Next, under the condition ϵ < σ, we show that ∇aiF (ai) > 0, ∀ai. This is equivalent to showing
that∇aiF (ai) > −1.

∇aiF (ai) > −1 ⇐⇒
ϵ

mσ2

m∑
j=1

k(ai, aj)

(
−(ai − aj)∇aj log paj (aj) + 1− ∥ai − aj∥

2

σ2

)
> −1

We compute a lower bound on the LHS and investigate when it’s strictly larger than −1.
We can safely assume that −3σ ≤ k(ai, aj)(ai − aj) ≤ 3σ and −3σ ≤ k(ai, aj)∥ai −
aj∥2 ≤ 3σ. We compute the lower bound as:

∑m
j=1

ϵα
mσ2

(
−3σ∥∇xj

log p(xj)∥+ 1− (3σ)2

σ2

)
=

ϵα
mσ2

(
−3σ

∑m
j=1 ∥∇xj log p(xj)∥ − 8m

)
. This results in:

∇aiF (ai)>
ϵα

mσ2

−3σ m∑
j=1

∥∇aj log p(aj)∥−8m

>−1 ⇐⇒
m∑
j=1

∥∇aj log p(aj)∥<
mσ

3ϵα
−8m
3σ

(22)

Hence, maxaj ∥∇aj log p(aj)∥< σ
3ϵα−

8
3σ . The LHS is guaranteed to be a large positive number

when ϵ≪ σ.

Multi-Dimensional Case. We assume that log p(aj) is continuously differentiable. Note that in
practice, this can be easily satisfied by choosing the activation function to be Elu instead of Relu. We
can easily show that:

∇aiF (ai) = I +
ϵ

mσ2

m∑
i=1

k(ai, aj)

(
−∇aj log p(aj)(ai − aj)⊤ −

1

σ2
(ai − aj)(ai − aj)⊤ + I

)
Next, we will show that ∇aiF (ai) is diagonally dominated and is, hence, invertible, i.e.,
det(∇aih(ai)) ̸= 0. For this, we show that∇aih(ai)|kl < 1, ∀k, l ∈ [1, d].

∇aih(ai)|kl =
1

m

m∑
i=1

k(ai, aj)
(
−∂

a
(k)
j

log p(aj)(a
(l)
i − a

(l)
j)− (a

(k)
i − a

(k)
j)(a

(l)
i − a

(l)
j) + 1

)
Following the proof in Section G.3.2 for the 1-Dimensional case, we show that∇aih(ai)|kl ≪ 1 if
σ ≪ ϵ.

22

Published as a conference paper at ICLR 2024

H DERIVATION OF CLOSED-FORM LIKELIHOOD FOR SAMPLERS

H.1 PROOF OF THEOREM 3.3

Theorem. The closed-form estimate of the log-likelihood log qL(aL|s) for the SVGD-based sampler
with an RBF kernel k(·, ·) is

log qL(aL|s) ≈ log q0(a0|s)− ϵ

mσ2

L−1∑
l=0

m∑
j=1

al ̸=al
j

k(alj , a
l)
(
−(al − alj)

⊤∇al
j
Q(s, alj)−

α

σ2
∥al − alj∥2 + dα

)
,

where d is the feature space dimension.

Proof. We generate a chain of samples using SVGD starting from a0 ∼ q0, and following the update
rule al+1

i ← ali + ϵ h(ali, s), where h(ali, s) = Ealj∼ql
[
k(ali, a

l
j)∇aljQ(s, alj) +∇aljk(a

l
i, a

l
j)
]

and

k(ali, a
l
j) = exp (−∥ali−a

l
j∥

2

2σ2). This update rule is the optimal direction in the reproducing kernel
Hilbert space of k(·, ·) for minimizing the KL divergence objective (actor loss):

π∗ = argminπ
∑
t

Est∼ρπ
[
DKL

(
π(·|st)∥ exp(Q(st, ·)/α)/Z

)]
. (23)

According to Proposition 3.2, the iteration step (Eq.(1)) is invertible. Hence, following Theorem 3.1
and substituting h(ali, s) with the above formula for SVGD, for each action particle aLi we obtain:

log qL(aLi) ≈ log q0(a0i)−
1

m

L−1∑
l=0

m∑
j=1

ali ̸=a
l
j

[
Tr

(
∇ali(k(a

l
i, a

l
j)∇aljQ(s, alj))

)
︸ ︷︷ ︸

1⃝

+Trα
(
∇ali∇aljk(a

l
i, a

l
j)
)

︸ ︷︷ ︸
2⃝

]
.

Note that we empirically approximate the expectation in h(ali, s) by an empirical mean over particles
that are different from ali, in order to avoid computing Hessians in the derivation below. Next we
compute simplifications for terms 1⃝ and 2⃝ respectively. In the following, we denote by (·)(k) the
k-th dimension of the vector.

Term 1⃝:

Tr
(
∇ali(k(a

l
j , a

l
j)∇aljQ(s, alj))

)
= Tr

(
∇alik(a

l
j , a

l
j)(∇aljQ(s, alj))

⊤ + k(alj , a
l
j)∇ali∇aljQ(s, alj))

)
=

d∑
t=1

∂k(alj , a
l
j)

∂(ali)
(t)

∂Q(s, alj)

∂(ali)
(t)

+ 0

= (∇alik(a
l
j , a

l
j))

⊤∇aljQ(s, alj)

= − α

σ2
k(alj , a

l
j)(a

l
i − alj)⊤∇aljQ(s, alj)

Term 2⃝:

Tr
(
∇ali∇aljk(a

l
i, a

l
j)
)

= αTr

(
∇ali

(
1

σ2
k(ali, a

l
j)(a

l
i − alj)

))
=

α

σ2
Tr

(
∇alik(a

l
i, a

l
j)(a

l
i − alj)⊤ + k(ali, a

l
j) · I

)
=

α

σ2
Tr

(
− 1

σ2
k(ali, a

l
j)(a

l
i − alj)(ali − alj)⊤ + k(ali, a

l
j) · I

)
=

α

σ2

d∑
t=1

(
− 1

σ2
k(ali, a

l
j)(a

l
i − alj)(t)(ali − alj)(t) + k(ali, a

l
j)

)
= − α

σ4
× k(ali, alj)∥ali − alj∥2 +

α

σ2
× d× k(ali, alj)

= k(ali, a
l
j)

(
− α

σ4
∥ali − alj∥2 +

dα

σ2

)

23

Published as a conference paper at ICLR 2024

By combining Terms 1⃝ and 2⃝, we obtain:

log qL(aLi)≈ log p0(a0i)−
ϵ

mσ2

L−1∑
l=0

m∑
j=1

k(alj , a
l
j)
(
−(ali − alj)⊤∇aljQ(s, alj)−

α

σ2
∥ali − alj∥2+dα

)
Proof done if we take a generic action particle ai in place of a.

24

Published as a conference paper at ICLR 2024

I ADDITIONAL RESULTS: ENTROPY EVALUATION

The SVGD hyperparameters for this set of experiments are summarized in Table 2. We include
additional figures for (1) the effect of (2) the kernel variance (Figure 9) and (2) number of SVGD
steps and particles (Figure 10).

Table 2: Parameters

Parameter Value

Figure 4a-4b Target distribution p=N ([−0.69, 0.8], [[1.13, 0.82], [0.82, 3.39]])
Initial distribution q0 = N ([0, 0], 6I)

Figure 4c Target distribution pGMMM
=
∑M
i=1N ([0, 0], 0.1I)/M

Initial distribution q0 = N ([0, 0], 6I)

Default Learning rate ϵ = 0.5
SVGD Number of steps L = 200

parameters Number of particles m = 200
Kernel variance σ = 5

Kernel variance 𝜎!
0.1 1.0 3.0 5.0 7.0 10.0 100.0

N
um

be
r o

f p
ar

ic
le

s 𝑚

10

20

100

200 ℋ 𝑞! = 0.74

ℋ 𝑞! = −67.01

ℋ 𝑞! = 2.94

ℋ 𝑞! = 2.60

ℋ 𝑞! = 3.38

ℋ 𝑞! = 3.3

ℋ 𝑞! = 3.36

ℋ 𝑞! = 3.34

ℋ 𝑞! = 3.41

ℋ 𝑞! = 3.21

ℋ 𝑞! = 3.51

ℋ 𝑞! = 2.66

ℋ 𝑞! = 4.48

ℋ 𝑞! = 1.16

ℋ 𝑞! = 2.69

ℋ 𝑞! = −50.1

ℋ 𝑞! = 3.1

ℋ 𝑞! = 2.57

ℋ 𝑞! = 3.48

ℋ 𝑞! = 3.31

ℋ 𝑞! = 3.44

ℋ 𝑞! = 3.11

ℋ 𝑞! = 3.55

ℋ 𝑞! = 3.57

ℋ 𝑞! = 3.76

ℋ 𝑞! = 2.1

ℋ 𝑞! = 4.72

ℋ 𝑞! = 1.37

ℋ 𝑞! = 4.28

ℋ 𝑞! = −10.14

ℋ 𝑞! = 4.27

ℋ 𝑞! = 2.52

ℋ 𝑞! = 3.82

ℋ 𝑞! = 2.48

ℋ 𝑞! = 3.99

ℋ 𝑞! = 1.84

ℋ 𝑞! = 4.21

ℋ 𝑞! = 1.48

ℋ 𝑞! = 4.37

ℋ 𝑞! = 1.12

ℋ 𝑞! = 4.98

ℋ 𝑞! = 1.41

ℋ 𝑞! = 4.18

ℋ 𝑞! = −6.75

ℋ 𝑞! = 2.69

ℋ 𝑞! = 1.54

ℋ 𝑞! = 4.11

ℋ 𝑞! = 2.6

ℋ 𝑞! = 3.94

ℋ 𝑞! = 1.79

ℋ 𝑞! = 4.21

ℋ 𝑞! = 1.28

ℋ 𝑞! = 4.05

ℋ 𝑞! = 1.71

ℋ 𝑞! = 4.55

ℋ 𝑞! = 1.63

Figure 9: Visualization of the particles after L steps of SVGD for the different configurations of
kernel variance σ and number of particles m in Figure 4b.

25

Published as a conference paper at ICLR 2024

(𝑚, 𝐿)=
(𝑚, 𝐿)=
(𝑚, 𝐿)=
(𝑚, 𝐿)=

(a) GMM distributions

(𝑚, 𝐿)=
(𝑚, 𝐿)=
(𝑚, 𝐿)=
(𝑚, 𝐿)=

(b) Gaussian distributions

Figure 10: Sensitivity of our entropy formula to the number of SVGD steps (L) and particles (m).
Our entropy consistently increases with increasing σ and increasing number of GMM components,
even when a small number of SVGD steps and particles is used e.g., L = 10,m = 10.

J ADDITIONAL RESULTS: MULTI-GOAL RESULTS

Hyperparameters are reported in Table 3. Additionally, we include results for (1) the effect of
the parametrization of the initial distribution (Figure 14), (2) the entropy heatmap (Figure 13), (3)
the effect of the entropy on the learned Q-landscapes (Figure 14 and Figure 15), (4) the robust-
ness/adaptability of the learned policies (Figure 16) and (5) Amortized S2AC results (Figure 17).

Table 3: Hyperparameters for multi-goal environment.

Hyperparameter Value

Training
Optimizer Adam

Learning rate 3 · 10−4

Batch size 100

Deepnet
Number of hidden layers (all networks) 2

Number of hidden units per layer 256
Nonlinearity ReLU

RL

Discount factor γ 0.8
Replay buffer size |D| 106

Target smoothing coefficient 0.005
Target update interval 1

SVGD

initial distribution q0 N (0, 0.3I)
Learning rate ϵ 0.01

Number of steps L 10
Number of particles m 10

Particles range (num. std) t 3

Kernel variance σ =
∑

i,j ∥ai−aj∥2

4(2 logm+1)

0 10000 20000 30000 40000 50000
Training steps

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

(s
)

s = se
s = so
s = sb

x-coordinate
y-coordinate

(a) Mean µθ(s)

0 10000 20000 30000 40000 50000
Training steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(s
)

s = se
s = so
s = sb

x-coordinate
y-coordinate

(b) Standard deviation σθ(s)

Figure 11: Trends of x and y coordinates for the mean and standard deviation of the parameterized
initial distribution for some critical states, during training.

26

Published as a conference paper at ICLR 2024

Distribution of reached goals for the multi-goal environment. Figure 12 shows the distribution of
reached goals for S2AC/SAC for the agents in Figure 6. Trajectories are collected from 20 episodes
of 20 different agents trained with 20 different seeds for each algorithm. We observe that with higher
α’s, more agent trajectories converge to the left two goals (G2 and G3), which is not the case for SAC
and SQL. This shows that S2AC learns a more optimal solution to the MaxEnt objective in Eq.(2).

S!AC(𝜙, 𝜃)
SAC
SQL

(a) α = 0.2

S!AC(𝜙, 𝜃)
SAC
SQL

(b) α = 1

S!AC(𝜙, 𝜃)
SAC
SQL

(c) α = 10

S!AC(𝜙, 𝜃)
SAC
SQL

(d) α = 20

Figure 12: Distribution of reached goals for S2AC, SAC and SQL with different α’s. The x-axis
denotes different goals. The y-axis represents the ratio of trajectories that reach the goal.

Entropy heatmap of S2AC in the multi-goal environment. Figure 13 shows the entropy heatmap of
S2AC with different α’s. A brighter color corresponds to higher entropy. For S2AC, the higher α, the
higher the entropy on the left quadrant compared to the right one, i.e., the more contrast between the
left and the right quadrants. For instance, In Figure 13d (S2AC, α = 20), notice a clear green/yellow
patch spanning the left side, while the right side is mostly dark blue except for the edges.

(a) S2AC, α = 0.2 (b) S2AC, α = 1 (c) S2AC, α = 10 (d) S2AC, α = 20

Figure 13: The entropy heatmap of S2AC in the multi-goal environment for different α

Smoothness of the Q-landscapes. To assess the effect of the entropy, we visualize the Q-landscapes
corresponding to six typical states s ∈ {so, sa, sb, sc, sd, se} (marked in blue on the upper left
of Figure 14) across different trajectories to the goal and report their associated entropy H(·|s)
(bottom left of Figure 14). The blue dots correspond to 10 SVGD particles at convergence. We
observe that the Q-landscape becomes smoother with increasing α. For instance, notice how the
modes for state sc become more connected. Quantified measurements of smoothness are in Fig-
ure 15. We use two metrics M1 and M2 to measure the smoothness of the learned Q-landscape:
(1) M1: the average over the L1-norm of the gradient of the Q-value with respect to the ac-
tions across trajectories, i.e., Eτ∼π(a|s)

[
E(st,at)∈τ

[||∇atQ(st,at)||1
d

]]
. (2) M2: The average over

the L1-norm of the Hessian of the Q-value with respect to the actions across trajectories, i.e.,
Eτ∼π(a|s)

[
E(st,at)∈τ

[
1
d2

∑
i,j |∇2

atQ(st, at)|i,j
]]

. Figure 15 shows that increasing α leads to con-
sistently smaller gradients (Figure 15a) and less curvature (Figure 15b). Hence, the entropy results in
a smoother landscape that helps the sampling convergence.

27

Published as a conference paper at ICLR 2024

𝛼
=
0.
2

𝛼
=
1

𝛼
=
10

𝛼
=
20

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠% 𝑠&Multigoal Environment

𝐺', 𝐺(𝐺)

ℋ
(𝑞

!)

Figure 14: Results on the multi-goal environment. Increasing α yields smoother landscapes (e.g., so).
Notice how the modes become more connected (e.g., for s = sa with increasing α). The entropy at
the different states is reported in the lower left figure.

0.2 1.0 10 20
Entropy weight

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

Av
er

ag
e

gr
ad

ie
nt

 n
or

m

(a) Average gradient across trajectories

0.2 1.0 10 20
Entropy weight

30

32

34

36

38

40

Av
er

ag
e

he
ss

ia
n

no
rm

(b) Average Hessian across trajectories

Figure 15: Quantitative evaluation of the smoothness the Q-landscape of S2AC for different α’s.

Parametrization of q0. In Figure 11, we visualizes the coordinates of the mean µθ(s) and standard
deviation σθ(s) of q0θ at different states s ∈ {so, se, sb} in the multigoal environment. As training
goes on, µθ(s) shifts closer to the nearest goals. For example, µθ(sb) becomes more positive during
the training as it is shifting to G1. Additionally, the model learns a high variance σθ(s) for the
multimodal state so and becomes more deterministic for the unimodal ones (e.g., se and sb). As a
result, in Figure 7, we observe that S2AC(ϕ, θ) requires a smaller number of steps to convergence
than S2AC(ϕ).

Entropy estimation. Figure 14 shows that the entropy is higher for states on the left side due to the
presence of two goals, as opposed to a single goal on the right side (e.g.,H(πθ(·|sa))<H(πθ(·|so))).
Also, the entropy decreases when approaching the goals (e.g., H(πθ(·|sd)) < H(πθ(·|sb)) <
H(πθ(·|so))). The same is valid along the paths to goal G1.

Robustness/Adaptability. In Figure 16, we report the distribution of reached goals after hitting an
obstacle for S2AC, SAC and SQL for different α’s. Notice that S2AC robustness, measured by the
probability of reaching the goal for S2AC is consistently increasing with increasing α. Intuitively,
exploration is better with large values of α, leading to better learning of the Q-landscape. In other
words, from a given state, the agent is more likely to have explored more sub-optimal ways to reach
the goal. So, when the optimal path is blocked with the barrier, the agents trained with S2AC are
more likely to have learned several other ways to go around it. This is different from SAC, when the
policy is uni-modal (Gaussian) and the agents are only able to escape the barrier and get to the goal
for large α’s (α ∈ 10, 20). However, robustness in the case of SAC trained with large α’s come at the
expense of performance, i.e., increased number of steps (See row 3 in Figure 7). Besides, note that
the number of SAC agents reaching the goals for α = 20 is less than the one for α = 10. This is due
to the fact that higher α’s lead to higher stochasticity and less structured exploration (the standard

28

Published as a conference paper at ICLR 2024

S!AC
SAC
SQL

Figure 16: Distribution of reached goals after hitting an obstacle for S2AC, SAC and SQL.

deviation of the Gaussian becomes very large). SQL fails to reach the goals once the obstacle is
added. This shows that the implicit entropy in SQL is not as efficient as the explicit entropy in SAC
and S2AC.

Amortized S2AC. In Figure 17, we report results of the amortized version of S2AC, i.e., S2AC(ϕ, θ, ψ)
on the multigoal environment. Performance and robustness are comparable with the non-amortized
version S2AC(ϕ, θ) while having a faster inference (feedforward pass through fψ(s, z)).

S!
A
C
(𝜙
,𝜃
,𝜓
)

𝛼 = 0.2 𝛼 = 1 𝛼 = 10 𝛼 = 20

(a) Performance of S2AC(ϕ, θ, ψ) on the Multigoal environment

𝛼 = 0.2 𝛼 = 1 𝛼 = 10 𝛼 = 20

S!
A
C
(𝜙
,𝜃
,𝜓
)

(b) Performance of S2AC(ϕ, θ, ψ) on the Multigoal environment with obstacles

Figure 17: Performance of Amortized S2AC on the Multigoal environment

29

Published as a conference paper at ICLR 2024

K ADDITIONAL RESULTS: MUJOCO

Table 4 lists the S2AC hyper-parameters used in our experiments. Additionally, we give details on
accelerating S2AC.

Table 4: Hyperparameters

Hyperparameter Value

Training
Optimizer Adam

Learning rate 3 · 10−4

Batch size 100

Deepnet

Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Number of samples per minibatch 256

Nonlinearity ReLU

RL

Target smoothing coefficient 0.005
Discount γ 0.99

Target update interval 1
Entropy weight α 1.0 for all environments, 0.2 Ant

Replay buffer size |D| 106

SVGD

initial distribution q0 N (0, 0.5I)
Learning rate ϵ 0.1

Number of steps L (S2AC(ϕ)) 20
Number of steps L (S2AC(ϕ, θ)) 3

Number of particles m 10
Particles range (num. std) t 3

Kernel variance σ =
∑

i,j ∥ai−aj∥2

4(2 logm+1)

Computational Efficiency. Compared to SAC, running SVGD for L steps requires L additional
back-propagation passes through the Q-network and a factor of m (number of particles) increase in
the memory complexity. In order to improve the efficiency of S2AC, we limit the number of particles
m to 10/20 and the number of SVGD steps L to 10/20.

Additionally, we experiment with the following amortized version of S2AC. Specifically, we train a
deepnet fψ(s, z) to mimic the SVGD dynamics during testing, where z is a random vector that allows
mapping the same state to different particles. Note that we cannot use this deepnet during training as
we need to estimate the closed-form entropy which depends on the SVGD dynamics. One way to
train fψ(s, z) is to run SVGD to convergence and train fψ(s, z) to fit SVGD outputs. This however
requires collecting a large training set of state action pairs by repeatedly deploying the policy. This
might be slow and result in low coverage of the states that are rarely visited by the learned policy and
hence result in poor robustness in case of test time perturbations. We instead propose an incremental
approach in which ψ is iteratively adjusted so that the network output a = fψ(s, z) changes along
the Stein variational gradient direction that decreases the KL divergence between the policy and the
EBM distribution, i.e.,

∆fψ(z, s) =
1

m

m∑
i=1

k(ai, fψ(s, z))∇aiQ(s, ai) + α∇aik(ai, fψ(s, z)) (24)

Note that ∆fψ is the optimal direction in the reproducing kernel Hilbert space, and is thus not strictly
the gradient of Eq.(5), but it still serves a good approximation, i.e., ∂J

∂at
∝ ∆fψ, as explained by

Wang & Liu (2016). Thus, we can use the chain rule and backpropagate the Stein variational gradient
into the policy network according to

∂J(s)

∂ψ
∝ Ez

[
∆fψ(s, z)

∂fψ(z, s)

∂ψ

]
. (25)

30

Published as a conference paper at ICLR 2024

to learn the optimal sampling network parameters ψ∗. Note that the amortized network takes
advantage of a Q-value that estimates the expected future entropy which we compute via unrolling
the SVGD steps using Eq (3.3).

The modified S2AC algorithm is described in Algorithm 2.

Algorithm 2 Stein Soft Actor Critic (S2AC) with Amortized policy (test-time)

1: Initialize parameters ϕ, θ, ψ, hyperparameter α, and replay buffer D ← ∅
2: for each iteration do
3: for each environment step t do
4: Sample action particles {a} from πθ(·|st)
5: Select at ∈ {a} using exploration strategy
6: Sample next state st+1 ∼ p(st+1|st, at)
7: Update replay buffer D ← D ∪ (st, at, rt, st+1)
8: for each gradient step do
9: Critic update:

10: Sample particles {a} from an EMB sampler πθ(·|st+1)
11: Compute entropyH(πθ(·|st+1)) using Eq.(11)
12: Update ϕ using Eq.(8)
13: Actor update:
14: Update θ using Eq.(9)
15: Update ψ using Eq.(25)

Evaluation with the Rliable Library. Performances curves in Figure 8 are averaged over 5 random
seeds and then smoothed using Savitzky-Golay filtering with window size 10. Additionally, we report
metrics from the Rliable Library (Agarwal et al., 2021) in Fig. 8, including

• Median: Confidence interval of the median performance of each algorithm across different
seeds, averaged over different MuJoCo environments.

• Mean: Confidence interval of the average performance of each algorithm across different
seeds and environments.

• IQM (Interquantile means): Instead of computing the average performance on all trials,
IQM shows the mean of the middle 50 percent of performance across different seeds.

• Optimality Gap: The area between results curve of baseline algorithms and the horizontal
line at the average performance of S2AC (ϕ, θ).

• Probability of improvement over baselines: The average probability that S2AC (ϕ, θ) can
make performance improvements over baseline algorithms.

The parameterized version of S2AC has the best performance among baselines in all the considered
metrics. It has a probability of ∼65% in outperforming SAC-NF and ∼80% in outperforming IAF.

31

	Introduction
	Preliminaries
	Samplers for Energy-based Models
	Maximum-Entropy RL

	Approach
	Stein Soft Actor Critic
	A Closed-Form Expression of the Policy's Entropy
	Invertible Policies

	Results
	Entropy Evaluation
	Multi-goal Experiments
	Mujoco Experiments

	Related Work
	Conclusion
	Summary
	Additional Related-work
	Entropy
	Entropy of EBMs

	Additional Preliminaries
	Additional Samplers for EBMs
	Change of Variable Formula
	A Corollary of Jacobi's Formula

	Derivation of the MaxEnt RL optimal policy
	Derivation of the actor objective (Eq.(9))
	Proof of Theorem 3.1
	Samplers Invertibility Proofs
	Stochastic Gradient Langevin Dynamics
	Method1: SGLD is not invertible -3mu SGLD is not a bijection
	Method2: Implicit function theorem

	Hamiltonian Monte Carlo (HMC)
	Stein Variational Gradient Descent
	Method2: SVGD is invertible -3mu SVGD is a bijection
	Method 2: Implicit function theorem

	Derivation of Closed-Form Likelihood for Samplers
	Proof of Theorem 3.3

	Additional Results: Entropy Evaluation
	Additional Results: Multi-goal Results
	Additional Results: MuJoCo

