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Abstract: Building height is an important indicator for scientific research and practical 

application. However, building height products with a high spatial resolution (10m) are still very 

scarce. To meet the needs of high-resolution building height estimation models, this study 

established a set of spatial-spectral-temporal feature databases, combining SAR data provided by 

Sentinel-1, optical data provided by Sentinel-2, and shape data provided by building footprints. 

The statistical indicators on the time scale are extracted to form a rich database of 160 features. 
This study combined with permutation feature importance, Shapley Additive Explanations, and 

Random Forest variable importance, and the final stable features are obtained through an expert 

scoring system. This study took 12 large, medium, and small cities in the United States as the 

training data. It used moving windows to aggregate the pixels to solve the impact of SAR image 

displacement and building shadows. This study built a building height model based on a random 

forest model and compared three model ensemble methods of bagging, boosting, and stacking. 

To evaluate the accuracy of the prediction results, this study collected Lidar data in the test area, 

and the evaluation results showed that its R-Square reached 0.78, which can prove that the 

building height can be obtained effectively. The fast production of high-resolution building height 

data can support large-scale scientific research and application in many fields.  

Keywords: Remote sensing; building height; Sentinel satellite; random forest model; model 

ensemble; feature selection 

Introduction 

Cities are the centers of human social and economic activity (X. Zhang et al., 2022). To 

accommodate the increasing population and save land resources, the buildings are 

inevitably growing on a three-dimensional scale, reflecting the increment in building 

height. In addition, building height is an important indicator for estimating energy 

consumption, material stock allocation, greenhouse gas emissions, urban heat island 

effects, distribution of population, and urban development plan. However, building height 

products with a high spatial resolution (10m) are still very scarce. Traditional in situ field 

surveys are an effective way to collect building information. However, it’s both time and 

labor-consuming and hard to update at a large scale frequently. The research in building 

height estimation has been rapidly advancing in recent years, with new techniques and 

technologies developed to increase accuracy and efficiency. It is mainly reflected in the 

combined use of multiple data sources and the improvement of building height estimation 

algorithms. 

The increasing availability of high-resolution satellite images has provided a 

better source for building height extraction than aerial photographs because they provide 

several advantages, including cost and accessibility. The satellite images commonly used 

in this field can be divided into SAR and optical. However, they have different imaging 

principles and resolutions (spatial, temporal, and spectral), which makes estimating 

building height more complex. The building height estimation methods vary according to 

the data, but it has indeed gone through rapid development in recent years. Colin-
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Koeniguer investigated the use of polarimetry to improve the estimation of the height of 

buildings in high-resolution synthetic aperture radar (SAR) images (Colin-Koeniguer & 

Trouvé, 2014). The use of deep learning algorithms (Cao & Huang, 2021), such as 

convolutional neural networks (CNNs), can be used to estimate building heights from 

aerial or satellite imagery (Amirkolaee & Arefi, 2019; Mou & Zhu, 2018). Wu et al. 

proposed an approach to estimate the 2020 building height for China at 10 m spatial 

resolution based on all-weather earth observations (radar, optical, and night light images) 

using the Random Forest (RF) model (Wu et al., 2023). Computer vision and machine 

learning techniques improve understanding of the urban environment and support more 

accurate building height estimates (Liu et al., 2020). A volumetric shadow analysis (VSA) 

method was proposed previously for the extraction of 3D building information (height, 

shape, and footprint location) and for handling occluded building footprints or shadows 

(Lee & Kim, 2013). However, the spatial resolution of the building height products is 

coarse (500m or coarser) among the existing models, limiting their broader applicability. 

On the other hand, the complexity of urban environments, including shadows, occlusions, 

and overlapping structures, can introduce challenges in estimating building heights 

accurately. For example, the double bounce (secondary scattering) phenomenon greatly 

affects the result, and the above studies didn’t consider this issue and its solution. All the 

secondary scattering echo energy will superimpose and converge at the bottom of the 

dihedral angle formed by the wall and the ground, thus generating a very strong echo 

signal, which appears as an extremely bright strip in the SAR image. And in many cases, 

the main contribution to buildings' radar cross section (RCS) comes from various 

secondary scattering. This phenomenon is especially prevalent in urban areas with 

densely distributed buildings. Overall, the accuracy of building height estimation 

algorithms depends on the quality of the input data and the algorithms' robustness. 

Existing building height studies and products based on satellite data are limited 

regarding spatial resolution and coverage. So, the main task of this study is to 1) establish 

a set of spatial-spectral-temporal feature databases combine the optical, SAR and 

morphology data; 2) build a robust model to obtain building heights with 10m resolution 

in the United States; and 3) analyse the building height distribution in Iowa. 

Study area and datasets  

To reduce the overfitting as possible, in model training, this work collected the reference 

building height ground-truth data from twelve cities: New York City, Boston, Austin, Des 

Moines, Las Vegas, Richmond, Salt Lake City, Chicago, Oklahoma City, Indianapolis, 

Baltimore, and Los Angeles. The selection size is 10 km * 10 km. These cities represent 

megacities to small cities, which can significantly reduce the uncertainty of location 

selection. The total number of training buildings is 729,109. Based on the model with 

inclusive training data, the author chose Iowa state as the testing area to evaluate the 

prediction accuracy. The city boundary of Iowa is downloaded from the Iowa Department 

of Transportation (https://data.iowadot.gov/datasets/IowaDOT::city-4/about), which is 

freely shared. 

This study used optical and SAR data from Sentinel -1 / 2 at 10 m resolution, downloaded 

from the Google Earth Engine platform, and all data were pre-processed by the GEE 

platform. The Sentinel-2 satellite carries a high-resolution multispectral imaging device 

with 13 bands, including three spatial resolutions of 10m, 20m, and 60m. This study used 

4 bands (Band 2, 3, 4, 8) with 10m resolution from 2015 to 2018. As all surface objects 

have a given and specific spectral profile, and a spectral band alone rarely corresponds 

https://data.iowadot.gov/datasets/IowaDOT::city-4/about
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with a measurable quantity (Szabo et al., 2016). Band ratios are often used in remote 

sensing studies, such as Normalized Difference Vegetation Index (NDVI) (Rouse et al., 

1974), Normalized Difference Water Index (NDWI) (Gao, 1996), Modified Normalized 

Difference Water Index (MNDWI) (Xu, 2006), and Land Surface Water Index (LSWI) 

(Xiao et al., 2004) indexes. I further extracted minimum, maximum, mean, median, and 

other statistical information in time scale for four bands and their four indices of Sentinel-

2. The relevant indexes are defined as follows: 

𝑀𝑁𝐷𝑊𝐼 =
𝜌𝐺𝑟𝑒𝑒𝑛−𝜌𝑆𝑊𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛+𝜌𝑆𝑊𝐼𝑅
                                                       (1) 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
                                                            (2) 

𝑁𝐷𝑊𝐼 =
𝜌𝐺𝑟𝑒𝑒𝑛−𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛+𝜌𝑁𝐼𝑅
                                                         (3) 

𝐿𝑆𝑊𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
                                                         (4) 

The Sentinel-1 satellite provides data from a dual-polarization C-band Synthetic 

Aperture Radar (SAR) instrument at 5.405GHz, which can penetrate clouds and fog and 

provide continuous images throughout the day and in all weather. Four imaging modes 

provide different resolutions and coverage; the Interferometric Wide Swath mode, among 

them, provides a large swath width of 250 km at a ground resolution of 5m×20m, with 

enhanced image performance compared to the conventional ScanSAR mode. This study 

adopts the VV (vertical transmit/vertical receive) and VH (vertical transmit/horizontal 

receive) polarization types. The VVH index based on the methods of the literature is also 

considered (X. Li et al., 2020). 

𝑉𝑉𝐻 = 𝑉𝑉 ∗ 𝛾𝑉𝐻                                                           (5) 

The reference Light Detection and Ranging (LiDAR) and Digital Elevation Model 

(DEM) data are included to get the reference height of the buildings, which can be 

downloaded from USGS (https://apps.nationalmap.gov/downloader/). Lidar point cloud 

data are the foundational data for 3DEP in the conterminous U.S. and contain the original 

three-dimensional information from which the DEM products are derived. Most of the 

data collected in 2014 and later meet 3DEP specifications for quality level 2 nominal 

pulse spacing and vertical accuracy.  

The building footprint data come from the Microsoft Maps 

(https://github.com/microsoft/USBuildingFootprints), which contain 129,591,852 

computer-generated building footprints derived using computer vision algorithms on 

satellite imagery. The pixel precision of this product reaches 94%. After collecting all of 

the building footprint data in the US, this study calculated their minimum bounding 

geometry in ArcGIS pro 3.0.0, including width, length, and orientation. Besides that, this 

study also calculated the near distance between buildings, which can show the building 

density. Figure 1 shows the vector building footprint distribution in Iowa. 

 

Figure 1. Building footprints in Iowa. 

https://apps.nationalmap.gov/downloader/
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Methods 

In this study, I developed a method to estimate building height from the Sentinel-1/2 and 

building footprint data and then calculated the building height of major states in the US. 

This model mainly included feature selection, construction, and ensemble parts (Fig. 2). 

The achievement of the final model was built up at each step, contributing to its overall 

effectiveness and accuracy. In the training part, the building height estimation model is 

object-based, and all dependent and independent variables are the median values within 

the range of the building footprint area. However, the resulting building height is a pixel-

based median value within the 10 m grid. The object-based model can help improve the 

training efficiency and reduce the effect of noise, and the pixel-based result can save 

space for storing the data, which is beneficial for large-scale applications. 

 

Figure 2. The framework of this work. 

Feature selection 

As a data pre-processing strategy, feature selection has proven effective and efficient in 

preparing data (especially high-dimensional data) for various data-mining and machine-

learning problems (J. Li et al., 2017). It usually can lead to better learning performance, 

i.e., higher learning accuracy, lower computational cost, and better model interpretability 

(Miao & Niu, 2016).  

Random forest variable importance ranking 

The random forest can not only realize the classification of remote sensing images 

but also play an important role in feature selection and dimensionality reduction (Y. 

Zhang et al., 2019). Samples are usually divided into training and verification samples. 

The verification samples are called Out-Of-Bag (Out-Of-Bag) because they do not 

participate in the classification. The Random Forest feature variable importance (VI) is 

calculated using the Out-Of-Bag-Error (OOBE) generated by the out-of-bag data. The 

formula is as follows: 

𝑉𝐼(𝑀𝐴) =
1

𝑁
∑ (𝐵𝑛𝑡

𝑀𝐴 − 𝐵𝑂𝑡

𝑀𝐴)𝑁
𝑡=1                                                 (6) 

Where VI represents the importance of feature variables, M𝐴 is a feature, N is the 

number of decision trees, an 𝐵𝑂𝑡

𝑀𝐴 and 𝐵𝑛𝑡

𝑀𝐴 are the OOBE of the t-th decision tree when 

the arbitrary feature values M𝐴 with and without adding noise interference. If noise is 
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randomly added to a certain feature M𝐴, the accuracy of the out-of-bag data is greatly 

reduced, which means that feature M𝐴 has a great influence on the classification result, 

and it shows that its importance is relatively high. Feature selection according to their 

importance ranking is also a commonly used method in feature extraction (Genuer et al., 

2010). 

SHapley Additive exPlanations  

SHapley Additive exPlanations, more commonly known as SHAP, are used to explain 

the output of Machine Learning models. It is based on Shapley values, which use game 

theory to assign credit for a model’s prediction to each feature or feature value. The 

SHapley value is the average marginal contribution of a feature value across all the 

possible combinations of features. A key part of this is the difference between the model’s 

prediction with feature i, and the model’s prediction without feature i. 

∅𝑖 =  ∑
|𝑆|!(|𝑀|−|𝑆|−1)!

|𝑀|!𝑆 ⊆ 𝑀 ∖ 𝑖 [𝑓(𝑆 ∪ 𝑖) − 𝑓(𝑆)]                               (7) 

S refers to a subset of features that doesn’t include the feature for which we’re 

calculating ∅𝑖, 𝑆 ∪ 𝑖 is the subset that includes features in S plus feature i, 𝑆 ⊆  𝑀 ∖  𝑖 
in the ∑ symbol is saying, all sets S that are subsets of the full set of features M, excluding 

feature i. 

Permutation feature importance 

Permutation feature importance directly measures feature importance by 

observing how random re-shuffling (thus preserving the distribution of the variable) of 

each predictor influences model performance. A feature is “important” if shuffling its 

values increases the model error because, in this case, the model relied on the feature for 

the prediction. A feature is “unimportant” if shuffling its values leaves the model error 

unchanged because, in this case, the model ignored the feature for the prediction. The 

following equations can conclude the process: 

𝑒𝑜𝑟𝑖𝑔 = 𝐿 (𝑦, 𝑓(𝑋))                                                                   (8) 

𝑒𝑝𝑒𝑟𝑚 = 𝐿 (𝑌, 𝑓(𝑋𝑝𝑒𝑟𝑚))                                                              (9) 

       F𝐼𝑗 = 𝑒𝑝𝑒𝑟𝑚 − 𝑒𝑜𝑟𝑖𝑔                                                              (10) 

𝑓(𝑋) is the trained model, X is the feature matrix, y refers the target vector, and 

the 𝐿 (𝑦, 𝑓(𝑋)) is the measured error. First, we need to estimate the original model error 

𝑒𝑜𝑟𝑖𝑔  (e.g. mean squared error) based on equation 7; for each feature j ∈ {1, … , p}, 

degenerate feature matrix 𝑋𝑝𝑒𝑟𝑚  by permuting feature j in the data X. This breaks the 

association between feature j and true outcome y, and then estimate the error 𝑒𝑝𝑒𝑟𝑚 based 

on the predictions of the permuted data (equation 8). Next step is calculating permutation 

feature importance as a difference based on equation 9. Finally, sort features by 

descending FI. 

Model ensemble 

Ensemble learning is a general meta-approach to machine learning that combines 

the predictions from multiple models to achieve better predictive performance. In this 

study, I compared three main classes of ensemble learning methods (bootstrap 

aggregation, stacked generalization, and boosting). Bootstrap aggregation, also known as 

bagging, is a machine-learning ensemble technique that combines the predictions of 
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multiple models to produce a more accurate and stable prediction. The basic idea behind 

bagging is to create multiple copies of the original dataset by random sampling with 

replacement. Each copy is then used to train a separate model on the data. Stacked 

generalization, also known as stacking, is a machine learning ensemble technique that 

hierarchically combines multiple models to improve the overall prediction accuracy. In 

stacking, a set of base models is trained on the original data, and their predictions are then 

used as input features for a higher-level model called the meta-model. Boosting is a 

machine learning ensemble technique that combines the predictions of multiple weak 

models to create a strong model that can make more accurate predictions. In boosting, a 

series of base models, called weak learners, are trained sequentially, with each subsequent 

model learning from the errors of its predecessor. The outputs are a weighted average of 

the predictions. 

Model Optimization 

Figure 3 illustrate the causes and manifestations of the double bounce 

phenomenon. Taking SAR images as an example, when the signal from the satellite hits 

the target building, it will be reflected in the surroundings due to the influence of the 

shape and material of the target building, causing the signal strength of the surrounding 

objects to be higher than its signal strength. In addition, in the optical image, since the 

imaging time of each image is 10 am, the shadow of the building appears on the other 

side of the building, which makes the radiation intensity of the image different from that 

of the ground object itself. This phenomenon has little impact on low- and medium-

resolution products, but it becomes one of the non-negligible problems in high-resolution 

building height prediction. 

 

Figure 3. Satellite signal double bounce schematic diagram (H indicates building height, 

and x indicates the shadow length). 

In order to solve this problem, this work built a 50m buffer zone around each 

building and then collected the median reference height of each zone as the training data. 

For the final prediction, this work built a 50m*50m moving window for each pixel and 

calculated the median value of this window as the new pixel value. This study performed 

a sensitivity analysis of the derived buffer distance and moving window size. The 50m 

was chosen from 10m, 30m, 50m, 80m, and 100m.   

In addition, this study selected the pixels from the 1% - 99% threshold in pixel 

statistics to remove the noise effect. The height values were also logarithmically 

transformed, often used to reduce the skewness of a measurement variable. The converted 

reference height value ranges from 0-6.7, based on which this study divided it into steps 

of 0.01 and calculated the median within each 0.01 interval. In this way, the representative 
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values of different features in each height interval can be obtained, effectively removing 

the errors caused by the data. 

Results 

Preliminary model selection and comparison 

For the model comparison, this study chose 9 machine learning models as a 

preliminary comparison to run the same 15,000 training and testing samples. The models 

are Recursive Partitioning and Regression Trees (RPART), Linear models (LM), 

Generalized Linear Models (GLM), Generalized Linear Models using the Lasso and 

Elastic-Net penalties (GLMNET), Random Forest regression (RF), K-Nearest Neighbors 

(KNN), Support Vector Machine with Radial Basis Function (SVM-RBF), Gaussian 

Process Regression (GPR), Generalized Additive Models (GAM) and Gradient Boosting 

(GAMBoost). The results show in Table 1. This study chose the first four machine 

learning methods (GLM, RF, SVM-RBF, and GAMBoost) to do the model ensemble test. 

After a preliminary model comparison, the random forest model was selected as the 

training model in our study.  

Table 1. The accuracy of different models 

Model min 1st Qu median mean 3rd Qu max 

RPART 0.42 0.45 0.51 0.50 0.53 0.60 

GLM 0.01 0.61 0.62 0.53 0.64 0.68 

GLMNET 0.60 0.62 0.64 0.64 0.65 0.69 

LM 0.01 0.61 0.62 0.53 0.64 0.68 

RF 0.68 0.72 0.74 0.74 0.76 0.80 

KNN 0.45 0.50 0.53 0.53 0.55 0.64 

SVM-RBF 0.68 0.71 0.73 0.73 0.75 0.78 

GPR 0.60 0.61 0.63 0.63 0.65 0.69 

GAMBoost 0.65 0.66 0.68 0.68 0.69 0.72 

Feature Database 

To meet the needs of building height estimation models with a resolution of 10 

meters, this study has established a set of spatial-spectral-temporal feature databases, 

combining SAR data provided by Sentinel-1, optical data provided by Sentinel-2, and 

shape data provided by building footprints. The average, median, standard deviation, 

percentage, and other statistical indicators on the time scale are extracted to form a rich 

database of 160 features. At the same time, combined with permutation feature 

importance, Shapley Additive Explanations, Random Forest variable importance, and 

manual selection methods, the final stable features are obtained through repeated 

experiments and an expert scoring system for model training and application. Table 2 

shows the selected 13 features. 

Table 2. Feature selection results 

Random Forest Permutation 
SHapley Additive 

exPlanations 
Final choice 

LSWI_skew MBG_Width MBG_Width LSWI_skew 

MBG_Width MBG_Length NDVI_skew MBG_Width 

MBG_Length NDVI_skew MBG_Length MBG_Length 
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LSWI_kurtosis LSWI_skew NDWI_skew LSWI_kurtosis 

NDVI_skew MNDWI_skew NDBI_p100 NDVI_skew 

NDWI_skew VVH_skew LSWI_p0 NDWI_skew 

NDVI_interquatile_range LSWI_kurtosis B8_p0 B3_p10 

B4_p10 NDWI_skew B6_mean NDVI_interquatile_range 

MNDWI_kurtosis NDBI_p100 VH_p100 B4_p10 

B3_p10 VV_p100 NDVI_p100 VV_mean 

VVH_stdDev B5_p10 LSWI_kurtosis VH_mean 

B5_p10 NDVI_p100 B3_p10 VVH_stdDev 

NDBI_skew B3_p10 LSWI_skew VVH_mean 

Model Performance 

In this study, the model performance includes two parts, the training performance 

of this model and the model’s prediction performance. I evaluated the performance of 

building height models using all reference building height from LiDAR in twelve US 

cities, and compared the estimated building height. To make sure the accuracy of 

reference data, I also collected the building height data published from government 

officially, such as the Des Moines 

(https://www.dsm.city/city_of_des_moines_gis_data/). 

For the training performance of the model, there are 471 processed samples 

involved in this model because I divided the original samples into 0.01 interval steps 

based on the log transformation of building heights, which also is designed to consider 

the training efficiency. The results are shown in Figure 4. In this model, 98.72% of 

variables can be explained, and the Mean of squared residuals is 0.049. Our model has 

been proven to have the strong power to predict the building height in 10m resolution.  

 

Figure 4. The accuracy of training data. 

This study randomly selected 12,000 samples from raw data and predicted their 

building heights. Figure 5 shows the predicted and reference log transformation of 

building height. The R2 could reach 0.782, which is an acceptable accuracy compared 

with the most up-to-date building height products, whose accuracy is usually around 0.6. 

Like the figure of the training accuracy, the model did well when the building height was 

between the middle range (LHeight is between 1 and 4) but did worse when the building 

height was tall. 
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Figure 5. The accuracy of testing data. 

Building Height Distribution in Iowa 

In Iowa, there are a total of 2,074,904 buildings, which cover 2,855,860,281 pixels 

at 10-m resolution satellite images. The predicted results show that the minimum building 

height is 1.23m while the highest is 539.68m. The mean value of building height in Iowa 

is 5.24m. Figure 6 shows the overall building distribution in Iowa and a detailed example 

in Des Moines. 

 

Figure 6. Predicted building height in Iowa (left) and Des Moines (right). 

There are 99 counties in Iowa (Figure 7). Geographically, Southeast, Central, and 

Northwest Iowa have higher average building heights than the state average, while the 

Southwest has generally shorter building heights. At the county level, four cities have a 

maximum building height greater than 200: Pottawattamie County, Muscatine County, 

Wapello County, and Polk county. And Scott County, Polk County, Sioux County and 

Black Hawk County have the highest mean building height. 
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Figure 7. The mean building height distribution in Iowa at the county level. 

The counties with a land area greater than 2000 square kilometers, sorted by area, 

are Woodbury County, Kossuth County, Plymouth County, Pottawattamie County, and 

Clayton County. But in order of building footprint area, the counties are Polk County, 

Linn County, Scott County, Black Hawk County, Johnson County, Dubuque County, 

Pottawattamie County, and Woodbury County. The level of construction development in 

each county is different. Still, in order of the proportion of construction to land area, the 

top five counties are Polk County, Scott County, Linn County, Black Hawk County, 

Johnson County, and Dubuque County.  

Discussion 

Overfitting is a fundamental issue in supervised machine learning, which prevents 

us from perfectly generalizing the models to fit observed data on training data, as well as 

unseen data on the testing set. Because of the presence of noise, the limited size of training 

set, and the complexity of classifiers, overfitting happens (Ying, 2019). We can see from 

Figures 4 and 5 that the variables on the two sides (low and high height) have higher 

inaccuracy, which has many possible reasons. The first reason is that the reference height 

may be inaccurate, especially for high buildings; for example, many buildings counted 

the height of the antenna in its overall height. The second reason is the double bounce 

effects in the image. A moving window of 50m*50m will also make smaller buildings 

over-consider the influence of surrounding pixels. For example, the moving windows 

make the surrounding non-building pixels be considered to re-calculate the new pixels, 

thereby reducing or enhancing its original signal intensity, and its influence is mainly 

based on the surrounding condition of the building. The third reason is that the spatial 

resolution cannot cover the size of some buildings, resulting in the signal not representing 

the reality of the building height; that is to say, the height of many buildings does not 

reach 10m. The fourth reason is related to the building materials; the characteristics of 

different materials affect the signal strength of SAR images, especially for glass and 

concrete. The last reason is the shape of the roof; rough surface scattering, such as that 

caused by a garden or swimming pool, is most sensitive to VV scattering. In addition, the 

urban pattern and influencing factors of various cities are different, resulting in the model 

trained in one city being unable to be well applied to other cities. Although this study 

hopes to weaken this phenomenon by using training data from 12 cities across the country, 

a model cannot fit all cities all the time. For example, a city in New York versus a 

Midwestern US city will have different test accuracy.  
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Considering that I hope to apply this model nationwide or even globally, the 

calculation of the building shape and the complexity of the model pose a test. Therefore, 

this article only considers commonly used machine learning models and does not consider 

deep learning algorithms, although deep learning has demonstrated good application 

capabilities in various fields. The author will test several deep learning algorithms to 

comprehensively consider the accuracy and operating efficiency of the model. 

Therefore, there are associated uncertainties in the derived building height data 

from the definition of building height, backscatter coefficients from the Sentinel-1 data, 

and the proposed building height model. Author will consider different models based on 

urban density in the following research. 

Conclusion 

To meet the needs of building height estimation models with a resolution of 10 meters, 

this study has established a set of spatial-spectral-temporal feature databases, combining 

SAR data provided by Sentinel-1, optical data provided by Sentinel-2, and shape data 

provided by building footprints. The feature database has a total of 160 features, including 

the average, median, standard deviation, percentage, and other statistical indicators on the 

time scale. To get robust model results, this study combined three feature selection 

methods, which are permutation feature importance, Shapley Additive Explanations, and 

Random Forest variable importance methods. This study built a building height model 

using a random forest machine learning model based on the bagging ensemble method. 

The innovation of the article is mainly to use a building-based rather than a pixel-based 

method and to use buffering to solve the difficulty of multiple scattering of SAR data. 

The proposed model has relatively good accuracy and could be used for large-scale 

applications for fast production of high-resolution building heights. The article uses Iowa 

as an example to predict building height. High-resolution building height data can support 

scientific research and production applications in many fields. 
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