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Abstract 

Recent transformer-based ASR models have achieved word-error rates (WER) below 4%, 

surpassing human annotator accuracy, yet they demand extensive server resources, contributing 

to significant carbon footprints. The traditional server-based architecture of ASR also presents 

privacy concerns, alongside reliability and latency issues due to network dependencies. In 

contrast, on-device (edge) ASR enhances privacy, boosts performance, and promotes 

sustainability by effectively balancing energy use and accuracy for specific applications. This 

study examines the effects of quantization, memory demands, and energy consumption on the 

performance of various ASR model inference on the NVIDIA Jetson Orin Nano. By analyzing 

WER and transcription speed across models using FP32, FP16, and INT8 quantization on clean 

and noisy datasets, we highlight the crucial trade-offs between accuracy, speeds, quantization, 

energy efficiency, and memory needs. We found that changing precision from fp32 to fp16 

halves the energy consumption for audio transcription across different models, with minimal 

performance degradation. A larger model size and number of parameters neither guarantees 

better resilience to noise, nor predicts the energy consumption for a given transcription load. 

These, along with several other findings offer novel insights for optimizing ASR systems within 

energy- and memory-limited environments, crucial for the development of efficient on-device 

ASR solutions. The code and input data needed to reproduce the results in this article are open 

sourced are available on [https://github.com/zzadiues3338/ASR-energy-jetson]. 

Introduction 

Automatic Speech Recognition (ASR) transforms spoken language into written text. This 

technology has various applications such as dictation, accessibility features, hearable devices, 

voice-controlled assistants, and augmented/virtual reality environments. The field has seen 

significant advancements recently due to the adoption of deep learning methodologies for 

training and inferencing [Hinton et al., 2012]. Typically, cutting-edge ASR models operate on 

cloud-based frameworks where audio data from users is transmitted to servers for processing, 

with the results then sent back to the user. This setup, however, raises concerns about privacy and 

security of sensitive audio data and suffers from potential issues related to network dependency, 

such as latency and reliability.  

Generally, the focus in machine learning is on maximizing accuracy to achieve top results. 

However, research in GreenAI [Schwartz et al., 2020] indicates that beyond a certain point, 

minor accuracy enhancements (measured in Word Error Rate, or WER) lead to a 

disproportionately high increase in energy consumption for training and inference. The 

https://github.com/zzadiues3338/ASR-energy-jetson
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environmental impact of these technologies could exacerbate the global energy crisis as the use 

of deep learning in AI applications becomes more widespread [Cao et al., 2020 and, Strubell et 

al., 2020]. For ASR specifically, a more balanced approach might involve selecting models based 

on their energy consumption, accuracy, and overall performance. For instance, in on-device 

dictation apps, occasional minor errors might be acceptable if the application allows users to 

correct them through a keyboard or other input methods. While a lower WER generally enhances 

user experience, prioritizing a slightly higher WER that conserves battery life could be a wiser 

choice, supplemented by other user interface solutions to meet application needs.  

This paper explores these trade-offs in energy and accuracy for ASR processing at the edge, 

where it inherently safeguards user privacy and improves reliability by eliminating the need for 

internet connectivity. On-device ASR not only enhances data security and performance but also 

proves more energy-efficient. Unlike cloud processing that requires streaming audio to a server, 

on-device processing saves the energy costs associated with Wi-Fi/LTE connections, data 

transmission [Wu et al., 2019], and server computations, which are more energy-intensive due to 

the infrastructure of data centers.  

Previous research has explored on-device ASR capabilities using models like on other platforms 

like the Raspberry Pi [Gondi et al., 2021] DeepSpeech [Hannun et al., 2014], and Wav2Letter 

[Pratap et al., 2019]. The goal of this study is to quantify the trade-offs between accuracy, energy, 

and performance for ASR using a typical transformer-based model on edge devices. To the best 

of the author’s knowledge, this is the first study to evaluate ASR inference on edge GPU devices 

in terms of efficiency and performance. The NVIDIA Jetson Orin Nano was chosen for this 

project because it features a dedicated graphics processing unit (GPU), which is essential for 

efficiently processing deep learning tasks directly on the device. The Orin Nano strikes an 

optimal balance between power and compactness, making it ideally suited for edge AI 

applications. Its lightweight design allows for seamless integration into smaller devices, while 

still providing the computational capabilities necessary to handle complex AI loads without 

reliance on cloud computing resources. This makes the Jetson Orin Nano an excellent choice for 

developing energy-efficient, high-performance AI applications at the edge. The main 

contributions of this paper are outlined as follows: 

• Benchmarking ASR Models on GPU: We evaluate several leading ASR models by 

analyzing their Word Error Rate (WER) and power consumption on GPU-enabled 

devices. 

• Impact of Noise on WER: An assessment is conducted to understand how ambient noise 

in the dataset influences the accuracy (WER) of these models. 

• Comprehensive Performance Evaluation: A detailed analysis is provided that considers 

the effects of model size, quantization type, and the impact of noise and model type on 

key performance metrics such as processing time, WER, and power usage. 
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• Optimal Configurations for Edge Deployment: Our findings aim to identify the most 

efficient and effective configurations for deploying ASR technologies in environments 

where power consumption is a critical concern. 

The rest of the paper is structured as follows: In the background section we discuss high-level 

working of ASR and the models used in this study. In the experimental setup, we go through the 

steps for preparing the model and experimental setting up for model inferencing and energy 

consumption measurements. In the results section we cover the impact of quantization, noise in 

audio signal, and their interplay with model performance. Finally, we conclude with a summary 

and outlook. 

Automatic Speech Recognition  

ASR, or Automatic Speech Recognition, involves transforming audio signals into text. 

Fundamentally, ASR employs an acoustic model, a pronunciation model, and a language model 

to transcribe raw audio into text. With the advent of deep learning (DL) systems components of 

ASR have been enhanced using architectures like CNNs [Gu et al., 2018] and RNNs [Graves, 

2012]. This led to the development of end-to-end and sequence-to-sequence models that 

streamline both the training and deployment of ASR systems. The most effective end-to-end 

systems utilize techniques such as connectionist temporal classification (CTC) [Graves et al., 

2016], recurrent neural network transducers, and attention-based encoder-decoder frameworks 

[Bahdanau et al., 2017]. The transformer, initially developed for machine translation [Vaswani, et 

al., 2017], has been adapted for ASR to handle audio inputs rather than text [Baevski et al., 

2020]. Optimized Attention architectures have recently been shown to improve the power 

efficiency of ASR models (Li et al., 2023). 

ASR is demanding in terms of CPU/GPU compute resources and memory usage. Key 

considerations for implementing ASR on edge devices include CPU/GPU capacity, memory, 

storage, energy/battery life, and thermal management, especially for mobile or wearable 

technology. Challenges include fewer model updates compared to cloud-based systems, which 

allow for continuous enhancements and quick fixes, a lack of real-time data for ongoing model 

refinement, and insufficient metadata for debugging [Véstias et al. 2019]. Despite these issues, 

the advantages of on-device processing, such as enhanced privacy, reliability, and energy 

efficiency, outweigh these challenges and must be addressed by the edge AI community. 

The tests performed for this study used the following models: whisperx (Bain et al., 2023), distil-

whisper (Gandhi et al., 2023), speechT5 (Ao et al., 2022), wav2vec2 (Baevski et al., 2020), 

HuBERT (Hsu et al., 2021), WavLM (Chen et al., 2023). UniSpeech (Wang et al., 2021) and 

SpeechLM (Zhang et al., 2022). Table 1 provides a summary of the models used in this study.  

Table 1: Summary of ASR models used in the study. 

Model name Params, M Size on disk, MB Compute Type 

whisperx-tiny 39 151 float32 
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whisperx-tiny 39 151 float16 

whisperx-tiny 39 151 int8 

whisperx-small 244 967 float32 

whisperx-small 244 967 float16 

whisperx-small 244 967 int8 

whisperx-base 74 290 float32 

whisperx-base 74 290 float16 

whisperx-base 74 290 int8 

whisperx-medium 769 1492 float16 

whisperx-medium 769 1492 int8 

distil_whisper-large-v2 756 1510 float16 

distil_whisper-medium 394 790 float16 

distil_whisper-small 166 332 float16 

Hubert-large 315 1260 float16 

wavLM-base 94 378 float16 

unispeech 315 1270 float16 

speecht5_asr 154 606 float16 

wav2vec2-large 315 1270 float16 

 

Data  

70 audio tracks in .flac format from a subdirectory from the LibriSpeech (Panayotov et al., 2015) 

open database (https://openslr.org/) were used as inputs for the text transcription. The audio 

frequency is 16 kHz, has very high signal quality i.e., high signal to noise ratio and audio 

duration varies between 3 seconds to 5 seconds.  

Noise addition to clean audio data 

In the experimental setup, each audio track was subjected to a noise corruption process to 

simulate real-world audio degradation. Gaussian white noise was synthetically generated with a 

zero mean (μ=0) and unit standard deviation (σ=1). The noise was sampled to match the discrete 

length of the audio track's sample array, ensuring synchronous additive noise overlay. After its 

generation, the noise amplitude was attenuated by 10 decibels to temper its influence on the 

underlying signal. The attenuated noise was then algebraically added to the original audio track 

to produce a noisy version (Figure 2). This mixture was achieved using an overlay process that 

maintains the original audio track’s temporal dynamics while introducing the stochastic 

characteristics of the white noise, thereby creating a composite signal that mirrors potential real-

life audio signal corruption encountered in noisy environments. 

https://openslr.org/
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Figure 2: Two examples of the input audio waveforms from the Librispeech audio corpus. Input 

to the models is a .flac file and output is txt file containing the transcripted text. In the examples 

shown, the clean audio sample (blue) is superimposed on the same audio with added Gaussian 

white noise (red). Duration of input files lie between 3 to 5 seconds.  

 

GPU Device and Experimental Setup  

The GPU device is interfaced through wireless keyboard and mouse, and the graphical user 

interface is done through the JetPack 5.1 OS that is installed on the Orin Nano (Figure 3). The 

deep learning code (Github link for the code provided) is run using Docker container due to 

overcome managing the complex library dependencies on the JetPack OS. Model inference is 

performed using a combination of the jetson-containers (https://github.com/dusty-nv/jetson-

containers) and the Huggingface framework. Detailed information about power consumption was 

extracted using the 'tegrastats' utility, which is inbuilt in the OS. Establishing baseline values for 

RAM and power consumption is imperative to determine the precise allocation of resources for 

deep learning tasks.  

https://github.com/dusty-nv/jetson-containers
https://github.com/dusty-nv/jetson-containers


6 

 

Baseline measurements of RAM and power were ascertained by running tegrastats for one 

minute during a period of inactivity on the Jetson device. This procedure resulted in baseline 

figures of 515 mW for CPU and GPU power combined, along with a RAM usage of 2273 MB. 

This baseline load originates from the Linux GUI and system idle processes. These baseline 

values were then subtracted from the total power and RAM consumption recorded during deep 

learning tasks to calculate the specific resources allocated to those processes. Each run of 

inference generated a log file detailing memory usage, model performance, and energy 

consumption, and the aggregation of these log files formed the basis of the raw data collected for 

subsequent evaluation. 

 

Figure 3: The NVIDIA Jetson Orin Nano board is housed inside a stainless-steel case. At the 

back are the power inlet, ethernet port, HDMI port and USB slots. The maximum power is 15 W, 

and the board is cooled by a fan assembly. 

 

Table 2: NVIDIA Jetson Orin Nano technical specifications 

GPU NVIDIA Ampere architecture with 1024 CUDA cores and 32 tensor cores 

CPU 6-core Arm® Cortex®-A78AE v8.2 64-bit CPU 1.5MB L2 + 4MB L3 

Memory 8GB 128-bit LPDDR5 68GB/s 

Power 7W - 15W 

Dimensions 100mm x 79mm x 21mm 
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The ASR model inference output is a .txt file, each corresponding to a single .flac audio input 

file. The output text and input text undergo a ‘normalization’ step wherein punctuation marks, 

special characters and any capitalization are removed. This step is done to ensure consistency 

between the characters in prediction and ground truth datasets. The metric used to evaluate 

transcription quality is word error rate. Word error rate (WER) is a metric that measures how 

accurately an automatic speech recognition (ASR) system performs. It's calculated by comparing 

the number of errors in the transcription text produced by an ASR system to a human 

transcription. The formula for calculating WER is:  

WER = (S+D+N)/N 

where S: number of substitutions, D: number of deletions, N: number of insertions. The second 

metric that is calculated is to gauge the inference time of models and is termed Real time 

transcription factor (RTF) - defined as the time taken of inference divided by the duration of the 

audio. For both metrics, a lower value implies better performance. 

Results and discussion 

Table 3: Energy use and inference time for fp16 precision, clean audio (duration: 328 seconds) 

Model Name Param, M Size, MB Time, s RAM, MB Energy, J WER 

whisperx-tiny 39 151 64.3 4028 67 8.92 

whisperx-small 244 967 151.7 4450 515 5.01 

whisperx-base 74 290 78.0 4029 155 7.4 

whisperx-med 769 1492 343.7 5260 1471 3.7 

DW-large-v2 756 1510 154.4 4260 825 3.92 

DW-medium 394 790 101.7 3417 468 4.03 

DW-small 166 332 62.2 2933 251 3.37 

Hubert-large 315 1260 30.5 4131 47 2.39 

wavLM-base 94 378 21.9 3397 25 12.62 

unispeech 315 1270 27.4 4123 45 35.8 

speecht5_asr 154 606 124.9 3616 168 11.86 

wav2vec2-lg 315 1270 26.0 3995 37 4.13 

 

Impact of noise audio on ASR Model Performance 

The performance of various Automatic Speech Recognition (ASR) models in handling noise 

reveals a complex relationship between model architecture, memory usage, parameter count, and 

energy efficiency (Table 3). The Word Error Rate (WER) under noisy conditions acts as a pivotal 

indicator of model robustness, with its increase from clean to noisy conditions highlighting the 

susceptibility of each model to auditory interference. 
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Figure 4: Impact of noisy audio input on the word error rate for tested models. 

 

Larger models, such as whisperx-medium with 769 million parameters, and distil-whisper-large-

v2 with 756 million parameters, demonstrate lower WERs in noisy environments (14.25 and 

12.3, respectively), indicating that a higher number of parameters can potentially confer noise 

resilience (Figure 4). However, this comes at the cost of increased memory usage and energy 

consumption, as seen with whisperx-medium which uses 5260 MB of RAM and 1471 J of 

energy, suggesting a trade-off between noise robustness and computational resources. In contrast, 

HuBERT-large, despite having a moderate parameter count of 315 million, exhibits exceptional 

noise resilience (WER increasing from 2.39 to 10.66) with a relatively lower energy requirement 

(47 J). This suggests that parameter count alone does not dictate noise resilience and that model 

architecture plays a significant role. 

On the other end of the spectrum, models with fewer parameters such as Distil-whisper-small 

(166 million parameters) and wav2vec2-large (315 million parameters) show a notable increase 

in WER when dealing with noise, indicating less robustness to acoustic disturbances. The Distil-

whisper-small model, for instance, has a WER increase from 3.37 to 17.08, and while it 

consumes less RAM (2933 MB) and energy (251 J), its effectiveness in a noisy environment is 

compromised (Figure 4). It's noteworthy that memory usage does not consistently predict noise 

resilience, as wavLM-base with 3397 MB RAM usage underperforms in noisy conditions (WER 

of 63.87) compared to other models with similar or even higher memory demands. 
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In summary, the data reflects that while there is a tendency for models with larger parameter 

counts and higher energy consumption to maintain lower WERs in noisy conditions, this is not a 

universal rule. Models like HuBERT-large defy this trend by offering a balance between noise 

resilience, energy efficiency, and RAM usage. These insights underscore the necessity for a 

holistic approach to model selection for edge GPU deployment, considering not only the acoustic 

performance in diverse environments but also the operational constraints of power and memory. 

Impact of model quantization on energy consumption 

The influence of quantization on energy consumption in ASR models is markedly apparent when 

comparing the whisperx series across different data types (Figure 5). Quantization refers to the 

process of constraining an input from a large set to output in a smaller set, typically in the 

context of reducing the precision of the model weights [Gholami et al., 2021]. In the case of 

whisperx-tiny with 39 million parameters, quantizing from float32 to float16 reduced energy 

consumption by ~50 %, from 126 to 67 joules, a significant reduction that highlights the 

potential of lower-precision computations in energy savings. The whisperx medium model 

returned out of memory error in the fp32 precision mode. Further quantization to int8 only 

marginally increased energy use to 96 joules, still below that of the float32 implementation, 

suggesting a beneficial trade-off between energy efficiency and precision reduction. 

 

Figure 5: Impact of quantization on the energy consumption of whisperx models.  

For whisperx-small and whisperx-base models with 244 and 74 million parameters respectively, 

we observe a similar pattern. The whisperx-small model saw a near halving in energy usage 

when quantized from float32 (1003 joules) to float16 (515 joules), with only a slight increase to 

530 joules for the int8 version. Whisperx-base model's energy consumption also dropped from 

336 joules in float32 to 155 joules in float16, and a minimal uptick to 169 joules for int8. 

The whisperx-medium model, having the highest parameter count of 769 million, demonstrates 

the impact of quantization on larger models. With quantization from float16 to int8, energy 
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consumption decreased from 1471 joules to 1420 joules. Although this reduction is less 

pronounced than in models with fewer parameters, it underscores the significance of quantization 

in optimizing energy efficiency across various model sizes. The consistent pattern across all 

models suggests that adopting lower precision data types through quantization can offer 

substantial energy savings, which is crucial for energy-constrained environments such as edge 

computing (Table 4). Notably, the reduction in energy consumption does not strictly correlate 

with a decrease in model size on disk, indicating that energy savings from quantization stem 

from reduced computational complexity rather than merely storage size. These findings are 

integral to the deployment strategies of ASR models, especially in applications where energy 

efficiency is paramount. 

Table 4: WER, Energy consumption and RAM usage for whisperx quantized models  

Model Precision Time, s Mem MB Energy J WER WER-noisy 

whisperx-tiny float32 72.3 4273 126 8.92 40.04 

whisperx-tiny float16 64.3 4028 67 8.92 40.04 

whisperx-tiny int8 60.5 3944 96 8.92 41.57 

whisperx-small float32 218.4 4892 1003 5.01 18.61 

whisperx-small float16 151.7 4450 515 5.01 18.82 

whisperx-small int8 155.3 4078 530 5.22 17.85 

whisperx-base float32 97.8 4296 336 7.4 28.94 

whisperx-base float16 78.0 4029 155 7.4 28.84 

whisperx-base int8 80.1 3908 169 7.83 30.69 

whisperx-medium float16 343.7 5260 1471 3.7 14.25 

whisperx-medium int8 339.0 4651 1420 3.92 13.82 

 

Assessing impact of model quantization on WER in clean and noisy audio  

Quantization's impact on WER degradation as audio transitions from clean to noisy is nuanced 

across the models tested (Figure 6). Notably, whisperx-tiny maintains identical WER in clean 

audio across float32 and float16 quantization but exhibits a slight increase with int8, hinting at a 

potential threshold in precision reduction that affects noise robustness.  
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Figure 6: Impact of model quantization on word error rate (WER) for clean (left) and noisy 

audio (right) in whisperx models. 

In larger models, such as whisperx-small and whisperx-base, the trend is less straightforward. 

For example, whisperx-small shows an unexpected dip in WER with int8 quantization in noisy 

audio, which may suggest a model-specific interaction between quantization and noise handling 

capabilities. The whisperx medium model returned out of memory error in the fp32 precision 

mode. Whisperx-medium presents a minimal increase in WER when moving from clean to noisy 

audio with int8 compared to float16, implying that the effect of quantization on noise 

performance may become less pronounced with increased model complexity. The slight uptick in 

WER with more aggressive quantization does not appear to be strictly tied to either disk size or 

memory usage, suggesting that the inherent noise processing ability of each model's architecture 

plays a more significant role in WER resilience amidst quantization levels. Considering the 

combined results of power consumption and WER, it’s evident that using fp16 over fp32 

precision leads to significant drop in energy consumption with negligible performance 

degradation.  

Impact of model quantization on model inference speed and memory usage  

The Real-Time Factor (RTF) reflects the speed of ASR models during transcription, with 

quantization type emerging as a significant factor influencing this metric (Figure 7, left). For 

whisperx-tiny, quantization from float32 to int8 results in a lower RTF, suggesting faster 

processing times and improved efficiency. This reduction in RTF is also observed in whisperx-

small when moving from float32 to float16, although the switch to int8 does not yield further 

RTF improvement, indicating a possible optimal point of computational balance between float16 

and int8 for this model. The whisperx medium model returned out of memory error in the fp32 

precision mode. The whisperx-base shows a minimal difference in RTF between float16 and int8, 

implying a negligible impact of aggressive quantization on real-time performance for this model 

size. Moreover, the whisperx-medium model maintains a relatively high RTF even after 

quantization, which might be attributed to its larger size and higher RAM usage.  
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Figure 7: Impact of quantization on real time transcription factor, RTF (left) and the RAM usage 

(right) for whisperx models. 

Quantization leads to a consistent reduction in memory requirements (Figure 7, right). For the 

whisperx-tiny model, quantization to float16 and int8 decreases memory usage from 4273 MB to 

4028 MB and 3944 MB, respectively, demonstrating how lower precision formats can conserve 

memory resources. This pattern is consistent across the models-these results illustrate that 

memory usage declines with model quantization without necessarily affecting the size on disk 

proportionally.  

Summary and conclusion 

The interplay between Word Error Rate (WER), energy consumption, inference time, and 

memory usage present a multidimensional perspective on the performance of speech recognition 

models (Figure 8). Lower WER indicates better performance in clean audio, but this often 

correlates with higher energy usage and longer inference times, as seen with the whisperx-

medium model. This model, while yielding a low WER of 3.7, consumes the most energy and 

has the longest inference time, emphasizing a trade-off between accuracy and efficiency. 

Conversely, models like HuBERT-large achieve the lowest WER of 2.39 with much less energy 

and in a shorter time, showing that high efficiency and strong performance are achievable 

together. Memory usage does not show a direct correlation with WER, as models with both high 

and low memory footprints can achieve low WERs. The challenge lies in balancing these 

aspects; models must be optimized not just for accuracy but for operational efficiency, especially 

for applications where resources are constrained. This balance is crucial for the practical 

deployment of ASR models in real-world edge devices. The robustness of speech recognition 

models in the presence of noise significantly affects their practical utility, as indicated by the 

Noisy WER values (Figure 9). 
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Figure 8: Scatterplot of word error rate and energy consumption for clean audio. 

The whisperx-medium model shows remarkable resilience with its WER increasing to 14.25 in 

noisy environments, yet it demands substantial energy and has a high inference time, which 

could be a limitation for real-time applications. On the other hand, models like HuBERT-large 

not only maintain a low WER in clean conditions but also exhibit strong noise resistance, with a 

WER of 10.66 and lower energy consumption, positioning it as an optimal choice for efficiency 

and reliability.  

However, models such as wavLM-base and unispeech struggle with noise, showing a significant 

spike in WER, despite lower energy usage and quicker inference times. This suggests that while 

some models are energy and time efficient, their performance under noisy conditions might 

render them unsuitable for environments where noise is unavoidable. 
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Figure 9: Scatterplot of word error rate and energy consumption for noisy audio. 

Memory usage, once again, does not predict noise resilience, as models with both higher and 

lower memory usage show varying levels of noise WER. Considering the combined results of 

power consumption and WER, it’s evident that using fp16 over fp32 precision leads to 

significant drop in energy consumption with negligible performance degradation.  

This comparative analysis underscores the delicate balance between accuracy, energy 

consumption, inference speed, and memory usage in the deployment of speech recognition 

models on edge GPUs, especially under noisy conditions. The observations show that no single 

model excels in all areas (although, the HuBERT-large model comes quite close). Thus, the 

choice of model for deployment will depend heavily on the specific constraints and requirements 

of the use case. The ideal model would offer a blend of low WER in noisy conditions, reasonable 

energy consumption, and fast inference times.  
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