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MCMS: Multi-Category Information and
Multi-Scale Stripe Attention for Blind Motion

Deblurring
Nianzu Qiao, Lamei Di, and Changyin Sun

Abstract—Deep learning-based motion deblurring techniques
have advanced significantly in recent years. This class of tech-
niques, however, does not carefully examine the inherent flaws in
blurry images. For instance, low edge and structural information
are traits of blurry images. The high-frequency component
of blurry images is edge information, and the low-frequency
component is structure information. A blind motion deblurring
network (MCMS) based on multi-category information and
multi-scale stripe attention mechanism is proposed. Given the re-
spective characteristics of the high-frequency and low-frequency
components, a three-stage encoder-decoder model is designed.
Specifically, the first stage focuses on extracting the features of
the high-frequency component, the second stage concentrates on
extracting the features of the low-frequency component, and the
third stage integrates the extracted low-frequency component
features, the extracted high-frequency component features, and
the original blurred image in order to recover the final clear
image. As a result, the model effectively improves motion de-
blurring by fusing the edge information of the high-frequency
component and the structural information of the low-frequency
component. In addition, a grouped feature fusion technique is
developed so as to achieve richer, more three-dimensional and
comprehensive utilization of various types of features at a deep
level. Next, a multi-scale stripe attention mechanism (MSSA) is
designed, which effectively combines the anisotropy and multi-
scale information of the image, a move that significantly enhances
the capability of the deep model in feature representation. Large-
scale comparative studies on various datasets show that the
strategy in this paper works better than the recently published
measures.

Index Terms—Blind motion deblurring, high-frequency com-
ponent, low-frequency component, multi-scale stripe attention.

I. INTRODUCTION

THE relative motion between the object and the camera
is the fundamental factor in the formation of motion

blur images. For instance, the camera shakes or moves while
the object remains stationary. Alternatively, the object may be
moving irregularly or regularly while the camera remains still.
Additionally, some practical applications are incompatible
with the motion blur image that contains pixel displacement.
For example, autonomous driving, unmanned aircraft, un-
manned ships, and intelligent surveillance systems. Addition-
ally, a number of advanced semantic activities are adversely
affected by blurry images. For instance, image classification,
semantic segmentation, information dissemination [1], and
object recognition, etc. Therefore, the deblurring technique of

motion blur images has been a research highlight in the field
of computer vision.

Image motion deblurring has been approached in a number
of different ways. These tactics have been organized into two
main groups: deep learning-based procedures and conventional
techniques depend on a priori. Below is a detailed list of both
sorts of approaches’ development timelines.

Traditional methods based on prior. Pan et al. [2] suggestd
a blind motion deblurring solution derived from dark channel
prior, which exploits dark channel sparsity prior to repair
blurry images. An L0 sparse expression that can successfully
eliminate motion blur was created by Xu et al. [3]. A combined
channel prior created by Yan et al. [4] and formed from dark
and bright channels prior can successfully eliminate motion
blur. Chen et al. [5] designed a motion deblurring arrangement
derived from the local gradient maximum prior. Pan et al. [6]
designed a text image deblurring technique derived from L0
regularization prior of intensity and gradient. Dong et al. [7]
designed a approach to handle motion blur image outliers.
Bahat et al. [8] utilized quadratic blurring to thoroughly
evaluate the content information of blurry images and the
measure can effectively remove motion blur. Sheng et al. [9]
derived from depth map to effectively estimate the blur kernel
for the purpose of blurry image restoration.

Although the above traditional methods based on a priori
have achieved certain deblurring effects, this class of ways
also have several disadvantages: 1) this type of plans neces-
sitates multiple a priori information, necessitating immensely
challenging mathematical formulae for derivation. 2) These
procedures have severe limits since they demand high-quality
a priori knowledge. 3) Non-uniformly blurry images cannot
be handled by this kind of strategy. Because the blur kernel of
non-uniformly blurry images cannot be accurately estimated
using conventional approaches.

Deep learning-based approach. Currently, deep learning has
achieved remarkable success in the field of image enhance-
ment. Examples include dehazing [10], water removal [11],
and super-resolution reconstruction [12], [13]. In the mean-
time, image deblurring has benefited from some advancements
in deep learning. For the first time, Chakrabarti et al. [14]
exploited pre-trained deep neural networks to estimate sharp
images. Nah et al. [15] designed a multi-scale neural network
to remove motion blur end-to-end. Tao et al. [16] designed
a recursive network by combining scale structures. Despite
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having fewer parameters, this network requires more time to
train as a result of recursion’s convergence property. Gao et al.
[17] designed a selective sharing technique and incorporated
skip connection to the internal submodule part. Zhang et al.
[18] advised a multi-scale multi-patch network. This network’s
deblurring ability has slightly increased compared to the multi-
scale network [15]. Park et al. [19] suggested an alternative
multi-scale multi-temporal deblurring plan. Additionally, the
technique includes recursive elements. Zamir et al. [20] carried
out an improved design based on [18], specifically by laterally
shifting the network structure in [18]. Esmaeilzehi et al. [21]
designed a lightweight residual network based on upsampling
and deblurring modules. Ji et al. [22] suggested a single
encoder-dual decoder network configuration to eliminate mo-
tion blur.

Although the currently suggested deep learning-based solu-
tions have achieved splendid outcomes, the aforementioned
plans still have certain shortcomings. Particularly, the sug-
gested deep learning-based methods emphasize the network
structure more than the properties of the motion blur images,
which are investigated less thoroughly. Liu et al. [23] incor-
porated high-frequency (HF) information into the deblurring
network, and the plan achieved sensational results. However,
this way simply considered the high-frequency information,
ignoring the significance of low-frequency (LF) information
for motion deblurring. Although the sharpness of the image is
immediately impacted by the quality of the HF information,
the LF information constitutes the bulk of the image’s struc-
ture. As a result, the quality of the LF information is tightly
tied to the sharpness of the image.

A motion deblurring network that integrates HF information
with LF information of images is suggested as a result of the
aforementioned findings.

II. RELATED WORKS

A. Physical Model of Motion Blur Images

From the literature [24], the physical model of the motion
blur images is shown in Eq. 1.

b = I ⊗ k + n. (1)

Where b is the blurry image, I is the sharp image, k is the
blur kernel, and n is the noise, ⊗ denotes the convolution
operation. As well known as blind motion blur, this work
deals with the situation when the blur kernel k is unknown.
Therefore, to remove the blind motion blur, it is necessary
to recover both the sharp image I and the blur kernel k.
The conventional algorithm recovers the sharp image I by
estimating the blur kernel k, while the deep learning algorithm
is end-to-end to recover the sharp image I .

B. HF Component and LF Component of the Image

It is straightforward to determine from the frequency of the
sound: HF implies high-pitch, such as birdsong or violins. On
the other hand, LF is low-pitch, such as a low voice or a bass
drum. The frequency of the sound is the rate at which the
sound wave oscillates. Where oscillation is usually measured

in cycles per second (Hz). This leads to the conclusion that
high-pitch is produced by HF wave and low-pitch is produced
by LF wave.

Similar comparisons can be made between sound and vision.
The rate of change of the pixel is what is known as the
frequency in an image. The image undergoes a series of
changes in the spatial dimension. Edge contours and texture
information are described in HF images, which are images
with rapid regional changes. Additionally, LF images are
images with gradual regional shifts that convey the primary
information in the image (structure and content).

Currently, there are numerous methods for dividing an
image into HF and LF components. For illustrate, the discrete
cosine transform [25], wavelet transform [26], and Framelet
[27]. In this study, the discrete cosine transform is applied to
segregate the image’s HF and LF components.

III. THE RECOMMENDED APPROACH

In this section, an image motion deblurring processing
technique called MCMS is designed as shown in Fig. 1.
MCMS is derived from an encoder-decoder structure, where
the encoder part contains three dimensions of information pro-
cessing and the decoder has three dimensions of information
reconstruction.

The High-Frequency component (HF), Low-Frequency
component (LF) and the original blurred image together form
these three dimensions. In this paper, the design of the encod-
ing and decoding modules is borrowed from the Block module
in NAFNet [113]. Specifically, the encoder and decoder of
the high-frequency component and low-frequency component
branches each employ three Block modules. And the red box
part of the encoder of the third branch, which is responsible for
fusing the three kinds of information, specifically employs 28
Block modules. In order to fully exploit the value of various
types of information, this paper proposes an innovative feature
fusion strategy, which is summarized below.

A. MCMS Construction Details

Based on Retinex theory [36], it can be known that the
HF component of an image reflects the edge and texture
information of the image, while the LF component represents
the content and structure information of the image, as shown
in Fig. 2. Inspired by this, for the HF component and LF
component of motion blurred images, we adopt a staged
processing strategy.

The LF component represents the structural and contextual
information of an image. It embodies the characteristics of
large, smooth regions in the image with relatively few changes
and details, and plays an important role in processing the
basic elements of the image. Combining the characteristics
of the LF component and the structural self-similarity a priori
knowledge of the image [37], MCMS focuses on the extraction
of the structural information of the LF component, so that
it can recover the structural information of the image more
accurately.The HF component mainly reflects the detail and
change information of the image. It reflects the properties
of localized regions in the image, such as texture, edges,
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Fig. 1. The overall composition of MCMS.

                            (a)                                                     (b)                                                     (c)                                                      (d)                 

                         (e)                                                     (f)                                                     (g)                                                     (h)

Fig. 2. HF component and LF component of the blurry and sharp images. (a)
Blurry image.(b) Blurry HF component. (c) Locally enlarged version of the
blurry HF component. (d) Blurry LF component. (e) Sharp image.(f) Sharp
HF component. (g) Locally enlarged version of the sharp HF component (h)
Sharp LF component.

etc. The HF component usually contains more changes and
details and plays an important role in processing the detailed
features of the image. Inspired by the own properties of HF
components, MCMS pays more attention to the extraction of
local detail information of HF components, including edge and
texture information, so that it can recover the edge and texture
information of the image more accurately.

The MCMS’s unique design principles include:
First, the encoder and decoder structures in the first and

second stages are used for the processing of the HF component
and the LF component. Subsequently, the original blurred
image is processed by the encoder and decoder structures in
the third stage. In addition, the three types of features are
also fused in a multidimensional and all-encompassing way to
maximize the advantages of each type of feature.

B. Grouped Feature Fusion Module

In order to fully exploit various types of feature information
to enhance network performance, a grouped feature fusion
strategy is designed as shown in Fig. 3. Eq. 2 shows the
specific mathematical derivation process.
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Fig. 3. Example of grouped feature fusion.

[conv1× 1 (C1) ,

conv3× 3 (conv1× 1 (C1) + C2) ,

conv5× 5 (conv3× 3 (conv1× 1 (C1) + C2) , C3) ,

conv7× 7(conv5× 5(conv3× 3 (conv1× 1 (C1) + C2) ,

C3), C4)]

+ conv3× 3 (I1 + I2)

C1, C2, C3, C4 = chunk (conv3× 3 (I1 + I2)) .
(2)

where [·, ·, ·, ·] represents the Concat operation. conv1 × 1
represents the 1×1 convolution operation, conv3×3 represents
the 3 × 3 convolution operation, conv5 × 5 represents the
5 × 5 convolution operation, conv7 × 7 represents the 7 × 7
convolution operation. chunk represents the channel equal
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division operation.
The method fuses the information of the input feature maps

in the spatial dimension and the channel dimension. In the
spatial dimension, the two input feature maps are fused by
element-by-element summation. This approach enables the
new feature map to fully integrate the information of the two
input feature maps, thus showing richer characteristics in the
spatial dimension. In the channel dimension, the feature map is
divided into four sub-channels for convolutional computation
at four scales. This operation effectively extracts the multi-
scale information in the feature map, enabling the model to
capture the details and structure of the image at different scales
more comprehensively. It also enables the model to understand
the features of the image at different levels. Overall, grouped
feature fusion effectively improves the feature extraction ca-
pability of MCMS by finely extracting features in both the
channel dimension and the spatial dimension.

As can be seen from Fig. 1, feature fusion mainly occurs
in the third stage: feature fusion of the HF component, the LF
component and the original blurred image feature map.

Fig. 4 illustrates the feature fusion process. Feature fusion
helps to obtain richer, more three-dimensional and more com-
prehensive feature information, which further improves the
performance of the whole network. Eq. 3 shows the specific
mathematical derivation process.

3 C

+

21G

Grouped Feature Fusion Module

inI

G

C Channel Dimension Concat

4

down

down AvgPool

Fig. 4. Feature fusion process.

FE = [E3 (E2 (E1 (I0))) , d (FLFE
+ FHFE

)] ,

I0 = G (Iin, FO) ,

FO = FHFD
⊕ FLFD

.

(3)

where [·, ·] represents the Concat operation. I0 represents
the feature fusion result of LF component, HF component
and original blurred image. Iin represents the original blurred
image. FHFE

represents the encoder output features of the HF
component. FLFE

represents the encoder output features of the
LF component. d represents the average pooling operation.
G represents grouped feature fusion. FO denotes the sum of
FHFD

(decoder output features of HF component) and FLFD

(decoder output features of LF component). ⊕ denotes the
element-by-element summation operation in spatial dimension.
E1, E2, and E3 represent the feature extraction operations of
encoder 1, 2, and 3, respectively.

C. Multi-scale Stripe Attention Mechanism

Li et al. [38] proposed a stripe self-attention mechanism
based on image anisotropy property, which is an effective
vertical and horizontal stripe self-attention. Therefore, we
further evolve this mechanism into a stripe attention mech-
anism applicable to CNN models. Although this mechanism
can improve the accuracy of the model to a certain extent,
its limitation is that it only considers the single-scale stripe
attention and ignores the actual multi-scale information.

Many current studies have demonstrated the advantages of
multiscale. Multiscale methods possess the ability to efficiently
extract information at different scales and help expand the per-
ceptual range of the extracted information. Based on this back-
ground, we design a multiscale striped attention mechanism,
which skillfully combines image anisotropy and multiscale
information, thus further enhancing the feature representation
capability of the depth model.

We innovatively design a multi-scale stripe attention mech-
anism. The mechanism has the capability of selectively ex-
tracting the multi-scale spatial weights of the feature map.
Its unique feature is that it eliminates the effects of spatial
distance and single scale of similar features, which helps
connectivity between similar fuzzy regions. Overall, the multi-
scale stripe attention mechanism demonstrates three significant
advantages. First, it utilizes the anisotropic properties of im-
ages to extend the receptive field of the attention mechanism.
Second, the mechanism skillfully incorporates the advantages
of multi-scale to effectively enhance the generalization per-
formance of the attention mechanism. Finally, it implicitly
enhances the weight of edge information, a property that plays
an important role in the field of image deblurring. This is
because the motion blur of an image is mainly concentrated
on the edge information, and that blur has similarity.

Fig. 5 clearly shows the operation flow of the whole multi-
scale stripe attention mechanism. Firstly, the input feature map
I of size C ×H ×W is Conv1 × 1 to generate the feature
map Î of C/8 × H × W . Then, Î is directly converted to
(C/8 )×HW ’s feature map A. At the same time, Î generates
(C/8 ) × (HW/4 )’s feature map B, (C/8 ) × (HW/16 )’s
feature map C, and (C/8 ) × (HW/64 )’s feature map D
through Avgpool and Reshape operations at three sizes, 2 ×
2, 4 × 4, and 8 × 8, respectively, as shown in the following
expressions.

A = Re (C1×1 (I)) ,

B = Re (D2×2 (C1×1 (I))) ,

C = Re (D4×4 (C1×1 (I))) ,

D = Re (D8×8 (C1×1 (I))) .

(4)

where Re stands for Reshape operation. D2×2, D4×4 and
D8×8 stand for 2× 2-scale Avgpool, 4× 4-scale Avgpool and
8× 8-scale Avgpool respectively. C1×1 is Conv1× 1.

Next, A is processed by Reshape and multiplied directly
by B and processed by Softmax function to generate the
horizontal stripe attention weight matrix Sx

1 of size HW ×
(HW/4 ). Similarly, B is processed by Reshape and mul-
tiplied directly by A and processed by Softmax function to
generate the longitudinal stripe attention weight matrix Sy

1 of
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Fig. 5. Feature fusion process for the three locations. (a) The feature fusion process for the first position. (b) The feature fusion process for the second
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size (HW/4 )×HW . This analogy generates the horizontal
stripe attention weight matrix Sx

2 with size HW×(HW/16 ),
the horizontal stripe attention weight matrix Sx

3 with size
HW × (HW/64 ), the vertical stripe attention weight matrix
Sy
2 with size (HW/16 ) × HW , and the vertical stripe

attention weight matrix Sy
3 with size (HW/64 )×HW . The

specific expression is as follows:

Sx
1 = S (Re (A)×B) ,

Sy
1 = S (Re (B)×A) ,

Sx
2 = S (Re (A)× C) ,

Sy
2 = S (Re (C)×A) ,

Sx
3 = S (Re (A)×D) ,

Sy
3 = S (Re (D)×A) .

(5)

where S denotes the Softmax function.
In the next step, Sx

1 is multiplied by Sy
1 , Sx

2 is multiplied
by Sy

2 , and Sx
3 is multiplied by Sy

3 , and the three results
obtained are summed. Then, the summed results are processed
by Softmax function to generate the HW ×HW ’s attention
weight matrix F . Next, I is Reshape processed to get R
of C × HW . Then, R and F are multiplied and Reshape
processed to generate the attention feature map. Finally, the
attention feature map is summed with the residuals I to get
the final output O. The specific mathematical expression is as
follows.

O = Re (R× S (Sx
1 × Sy

1 + Sx
2 × Sy

2 + Sx
3 × Sy

3 )) + I. (6)

D. Loss Function

The loss function in this paper contains three components,
LHF , which evaluates the quality of the HF component, LLF ,
which evaluates the quality of the LF component, and LO,
which evaluates the quality of the restored image. Where LHF

consists of L1 loss, the following are its specific expressions.

LHF = L1 = ∥XHF − YHF ∥ . (7)

LLF = L1 = ∥XLF − YLF ∥ . (8)

Where XHF is the restored HF component, YHF is the
corresponding HF component of ground truth, XLF is the re-
stored LF component, YLF is the corresponding LF component
of ground truth.

LO consists of L1 loss and MSFR loss [30], the specific
expression is shown below.

LO =L1 + LMSFR =∥ X − Y ∥
+ γ ∥ φ(X)− φ(Y ) ∥ .

(9)

Where X is the restored image, Y is the corresponding
ground truth, γ = 0.1 is the weighting factor. φ is the
fast Fourier transform (FFT) that transfers image signal to
the frequency domain. LO can evaluate the quality of the
recovered image in both the time and frequency domains.

Finally, the final loss function LT is derived by combining
the three types of loss functions, as shown in Eq. 8.

LT = LHF + LLF + LO. (10)

IV. EXPERIMENTS

In the experimental section, a variety of current state-of-
the-art deep learning algorithms are employed for relevant
comparative studies, including DeepDeblur [15], SRN [16],
PSS-NSC [17], DMPHN [18], MT-RNN [19], MPR-Net [20],
XYDeblur [22], NAFNet [40] and MSFS-Net [41]. Next, the
experiments will be described in detail, including qualitative
and quantitative comparison tests, ablation analysis on atmo-
spheric image datasets (containing three publicly available
datasets) and underwater image datasets (collected and pro-
duced by ourselves), in order to comprehensively evaluate the
algorithms’ performance and effectiveness.
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                                                            (a)                                                                                                                           (b)                     

                                                            (c)                                                                                                                           (d)                     

                                                            (e)                                                                                                                           ( f)                     

                                                            (g)                                                                                                                           (h)                     

                                                            (i)                                                                                                                            (j)                     

             (k)                                                                                                                           ( l)

Fig. 6. Qualitative results of different ways on the GoPro dataset. (a) Blurry images. (b) DeepDeblur [15]. (c) SRN [16]. (d) PSS-NSC [17]. (e) DMPHN
[18]. (f) MT-RNN [19]. (g) MPR-Net [20]. (h) XYDeblur [22]. (i) NAFNet [40]. (j) MSFS-Net [41]. (k) MCMS. (l) Ground-truth.

A. Experimental Settings

The Pytorch framework is utilized to implement MCMS,
which is trained on an NVIDIA GeForce RTX 3090 graphics
card. The batch size is set to 8 during the training phase, and
the learning rate is set to 0.0001. Furthermore, the size of the
input images is randomly cropped to 256 × 256 in order to
boost training efficiency.

B. Datasets

The GoPro [15] dataset is exploited to train and test our
model. It consists of 3214 blurry and sharp image pairs. Where
the images size are 1280 × 720. 2103 image pairs from the

GoPro dataset are employed to train the model. Meanwhile,
assess the generalizability of the model. The trained model on
the GoPro dataset is used for testing on the RealBlur [33] and
RWBI [39] dataset. Whereas the RealBlur dataset consists of
4738 blurry and sharp image pairs. The RWBI dataset contains
a total of 3112 blurred images. Since there is no corresponding
ground truth in the RWBI dataset, only qualitative comparison
experiments can be conducted in this dataset.

C. Assessment Indicators

In this paper, SSIM and PSNR are adopted as the quantita-
tive indexes of the experimental results. Among them, SSIM
is a metric to measure structural similarity. It evaluates the
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image quality in three aspects of brightness, contrast, and
structure respectively in a stereoscopic way. The value range of
SSIM is [0, 1], and a larger value means better image quality.
PSNR mainly measures the magnitude of the error between the
recovered image and Ground-truth. Therefore, it is an error-
sensitive measure. Its larger value indicates that the image
quality is closer to Ground-truth.

D. Performance Comparison

In this research, we conduct qualitative and quantitative
experiments on the GoPro and RealBlur datasets, respectively.
Qualitative experiment is conducted on the RWBI dataset. The
in-depth experimental findings are displayed below.

1) Comparison Experiments on The GoPro Dataset: Qual-
itative results. Fig. 6 presents the qualitative evaluation results
for the GoPro test dataset. From the figure, it can be seen that
compared to other models, MCMS demonstrates significant
advantages in processing both the de-blurring effect and the
quality of visual perception. The other models have more or

less residual motion blur problems in the processing results,
which are not completely eliminated. Taking the face region as
an example, the performances of various models are evaluated
meticulously.

Quantitative results. Table 1 presents the quantitative
results of the different plans on the GoPro dataset. It is quite
evident that MCMS excels in both evaluation metrics.

Therefore, it can be concluded that the MCMS developed
in this study both produces the best outcomes when compared
to other approaches after combining the qualitative and quan-
titative comparison results.

2) Comparison Experiments on The RealBlur Dataset:
Next, relevant qualitative and quantitative experiments were
conducted on the RealBlur test dataset with the aim of
comprehensively evaluating the comprehensive performance of
MCMS. Specific experimental results are presented below.

Qualitative results. Fig. 7 shows the test results on the
RealBlur test dataset. Observing the processing results of each
model in the face region in Fig. 7, it can be found that
DeepDeblur and PSS-NSC do improve the clarity compared

                (g)                                 (h)                                   (i)                                  (j)                                  (k)                                  (l)               

                (a)                                  (b)                                 (c)                                  (d)                                  (e)                                  (f)  

Fig. 7. Qualitative results of different plans on the RealBlur dataset. (a) Blurry images. (b) DeepDeblur [15]. (c) SRN [16]. (d) PSS-NSC [17]. (e) DMPHN
[18]. (f) MT-RNN [19]. (g) MPR-Net [20]. (h) XYDeblur [22]. (i) NAFNet [40]. (j) MSFS-Net [41]. (k) MCMS. (l) Ground-truth.
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE GOPRO

DATASET. RED VALUES INDICATE THE BEST RESULTS, BLUE VALUES
REPRESENT SUB-OPTIMAL PERFORMANCE

Methods PSNR (↑) SSIM (↑)
DeepDeblur [15] 29.23 0.9160

SRN [16] 30.26 0.9342
PSS-NSC [17] 30.92 0.9421
DMPHN [18] 31.20 0.9451
MT-RNN [19] 31.15 0.9450
MPR-Net [20] 32.66 0.9589
XYDeblur [22] 30.97 0.9501
NAFNet [40] 33.69 0.9668

MSFS-Net [41] 32.73 0.9592
MCMS 33.87 0.9671

to the original motion blurred image, but there is still a slight
motion blur problem. The processing results of SRN, DMPHN,
XYDeblur, MT-RNN, MPR-Net, NAFNet and MSFS-Net, on
the other hand, are better than DeepDeblur and PSS-NSC in
terms of visualization, but the same slight motion blurring
defect exists. Further comparing the performance of each
model in the face region, it can be clearly seen that the results
of the MCMS developed in this paper exhibit the highest
clarity and effectively eliminate the motion blur problem.

In the license plate region of Fig. 7, the differences in the
results of the models can be clearly observed. DeepDeblur,
SRN, PSS-NSC, MPR-Net, XYDeblur, DMPHN, MT-RNN,
and MSFS-Net achieved some deblurring effect, but they
still have serious artifacts and motion blurring problems in
their processing results. In contrast, the results of NAFNet
are improved in terms of visual effects and are better than
the results processed by the above algorithms. However, the
results of these models still have slight motion blur problems.
In comparison, the MCMS model developed in this paper
demonstrates significant advantages in terms of clarity and
content integrity, and its processing results are more favorable.

Quantitative results. Table 2 demonstrates the quantitative
comparison results of different algorithms, which provides a
clear data basis for judging the performance of each model.
As can be seen from Table 2, the optimal scores in both PSNR
and SSIM metrics are obtained by the MCMS model designed
in this paper. Compared with the motion deblurring model
MSFS-Net, the model in this paper was improved in the PSNR
metric and slightly reduced in the SSIM metric.

As mentioned above, the results of the combined qualita-
tive and quantitative evaluation can confirm that the MCMS
exhibits the best results through the experiments performed on
the RealBlur dataset.

3) Comparison Experiments on The REBI Dataset: Since
the RWBI dataset does not contain the corresponding ground
truth, the corresponding qualitative experiment is the only
feasible way to evaluate it in this part of the comparison
experiment.

Qualitative results. Fig. 8 demonstrates the test results
on the RWBI dataset. Observing the processing results of
each model in the English word region in Fig. 8, it can be
found that DeepDeblur and MSFS-Net show some motion
deblurring effect when processing large font letters, while
no significant improvement is seen for small font letters.The

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE REALBLUR

DATASET. RED VALUES INDICATE THE BEST RESULTS, BLUE VALUES
REPRESENT SUB-OPTIMAL PERFORMANCE

Methods PSNR (↑) SSIM (↑)
DeepDeblur [15] 27.87 0.8270

SRN [16] 28.56 0.8671
PSS-NSC [17] 26.52 0.8570
DMPHN [18] 28.42 0.8602
MT-RNN [19] 28.44 0.8620
MPR-Net [20] 28.70 0.8731
XYDeblur [22] 26.85 0.8593
NAFNet [40] 28.32 0.8570

MSFS-Net [41] 28.97 0.9080
MCMS 29.13 0.8936

motion deblurring effect of SRN, PSS-NSC, DMPHN, MT-
RNN, MPR-Net, NAFNet and XYDeblur do not have signifi-
cant motion deblurring effects. It can be clearly seen through
careful observation that the MCMS model developed in this
paper exhibits the highest clarity and achieves the optimal
processing results.

In the white-framed glass wall region of Fig. 8, the differ-
ences in the results of the models are obvious.The processing
results of DeepDeblur, SRN and PSS-NSC show more obvious
distorted regions, which significantly affect the image integrity.
Although the processing results of DMPHN, MT-RNN and
XYDeblur have serious detail loss. the results of MPR-Net,
NAFNet and MSFS-Net are relatively clearer, but the motion
deblurring effect in the detail region is not outstanding. In con-
trast, the MCMS model designed in this paper performs better
in terms of clarity and content integrity, and its processing
results are superior.

E. Ablation Analysis

In this paper, ablation experiments are implemented on the
GoPro test dataset to validate the performance of each module.
The grouped feature fusion module significantly enhances the
feature extraction capability of MCMS by accurately extract-
ing feature information in channel and spatial dimensions.
Meanwhile, the MSSA module further enhances the feature
representation capability of MCMS by skillfully combining
the anisotropy and multi-scale information of images. These
two modules play a key role in enhancing the performance of
MCMS.

The ablation study is shown below:

• -w Grouped feature fusion, MCMS contains only the
grouped feature fusion module;

• -w MSSA, MCMS contains only MSSA.

Qualitative results. Fig. 9 demonstrates the results of
motion deblurring. By comparing the original motion blurred
images, it can be found that although both -w grouped feature
fusion and -w MSSA have achieved some deblurring effect,
there are still obvious distorted pixels. In contrast, the MCMS
model applying all modules performs well in motion deblur-
ring and significantly improves the clarity and overall quality
of the image.

Quantitative results.
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Table 3 details the quantitative results of the defuzzification
study, which provides intuitive data to support the model
performance. Each of the three experiments carried out in this
paper delves into the role of different modules in terms of
motion deblurring effects. In the first experiment, the model
uses only the grouped feature fusion module and obtains a
PSNR value of 33.69 and an SSIM value of 0.9630 on the
GoPro test dataset.In the second experiment, the model uses
only the MSSA module and obtains a PSNR value of 33.75 and
an SSIM value of 0.9648 on the same dataset.As can be clearly
observed from Table 3, although the both the first and second
experiments have been successful, the highest PSNR and
SSIM values of DNMCMS are achieved when both modules
are used simultaneously. This fully proves the importance of
the combination of the grouped feature fusion module and the
MSSA module for improving the model motion deblurring
performance.

TABLE III
QUANTITATIVE COMPARISON OUTCOMES OF DIVERSE COMPONENTS ON

THE GOPRO DATASET.

Distillation component Assessment of indicators
Grouped feature fusion MSSA PSNR SSIM

✓ × 33.69 0.9630
× ✓ 33.75 0.9648
✓ ✓ 33.87 0.9671

V. CONCLUSION

In this paper, a three-stage encoder-decoder model is de-
signed based on the unique characteristics of high-frequency
and low-frequency components to deal with the motion blur
problem of images more effectively. The model is able to
extract the edge information of the high-frequency component
and the structural information of the low-frequency compo-
nent, so as to improve the quality of the image in a specific
stage. Through this three-stage design, this paper is able to bet-

                                                            (a)                                                                                                                           (b)                     

                                                            (c)                                                                                                                           (d)                     

                                                            (e)                                                                                                                           ( f)                     

                                                            (g)                                                                                                                           (h)                     

                                                            (i)                                                                                                                            (j)                     

             (k)                      

Fig. 8. Qualitative results of different plans on the RWBI dataset. (a) Blurry images. (b) DeepDeblur [15]. (c) SRN [16]. (d) PSS-NSC [17]. (e) DMPHN
[18]. (f) MT-RNN [19]. (g) MPR-Net [20]. (h) XYDeblur [22]. (i) NAFNet [40]. (j) MSFS-Net [41]. (k) MCMS.
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                       (a)                                                      (b)                                                      (c)                        

                            (d)                                                      (e)       

Fig. 9. Ablation comparison results. (a) Blurry images. (b) Results of -w
Grouped feature fusion. (c) Results of -w MSSA. (d) Includes results from
all modules. (e) Ground-truth

ter utilize the information of different frequency components
in the image, thus improving the motion deblurring capability.

In addition, this paper develops a grouped feature fusion
technique that aims to comprehensively fuse various types of
features. This technique can effectively integrate feature infor-
mation from different stages, enabling the model to understand
and process the image more comprehensively. Meanwhile,
an MSSA module is designed which significantly enhances
the feature representation capability of the deep model. This
module empowers the model to adaptively focus on different
parts of the image at different scales, which in turn captures the
details and structural information in the image more accurately.
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