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Abstract—In 2021, the pioneering work on TypeNet showed
that keystroke dynamics verification could scale to hundreds
of thousands of users with minimal performance degradation.
Recently, the KVC-onGoing competition1 has provided an open
and robust experimental protocol for evaluating keystroke dy-
namics verification systems of such scale, including considerations
of algorithmic fairness. This article describes Type2Branch, the
model and techniques that achieved the lowest error rates
at the KVC-onGoing, in both desktop and mobile scenarios.
The novelty aspects of the proposed Type2Branch include: i)
synthesized timing features emphasizing user behavior deviation
from the general population, ii) a dual-branch architecture
combining recurrent and convolutional paths with various at-
tention mechanisms, iii) a new loss function named Set2set that
captures the global structure of the embedding space, and iv)
a training curriculum of increasing difficulty. Considering five
enrollment samples per subject of approximately 50 characters
typed, the proposed Type2Branch achieves state-of-the-art per-
formance with mean per-subject EERs of 0.77% and 1.03%
on evaluation sets of respectively 15,000 and 5,000 subjects for
desktop and mobile scenarios. With a uniform global threshold
for all subjects, the EERs are 3.25% for desktop and 3.61%
for mobile, outperforming previous approaches by a significant
margin.

Index Terms—Type2Branch, Set2set loss, keystroke dynamics,
behavioral biometrics, synthetic data, security

I. INTRODUCTION

KEYSTROKE Dynamics (KD) refers to the typing behav-
ior exhibited by human subjects, and it represents a form

of behavioral biometric trait, similar to gait [1], touch gestures
[2], [3], and signature [4], among others. In its most basic
form, keystroke dynamics is captured as discrete time events:
the times at which a key is pressed and released (typically in
Unix time format), along with the corresponding key code
(ASCII). Additional information, such as key pressure or
fingertip size, may be available based on specific hardware ca-
pabilities, for example as in BehavePassDB [5]. Consequently,
applications based on keystroke dynamics are generally cost-
effective, as they only require standard keyboards, which
currently serve as the primary means for inputting textual data
into digital systems, utilized by billions of users daily.

Behavioral biometrics, such as KD, currently do not achieve
the same recognition accuracy as their physiological counter-
parts, such as face, fingerprint, and iris. Nevertheless, they

Email: ngonzalez@lsia.fi.uba.com
1https://sites.google.com/view/bida-kvc/

offer the advantage of operating transparently, without requir-
ing the subject to perform any specific procedure. Typically,
biometric recognition-based security is the most prevalent
application of KD. This involves both operational modes: i)
verification: pairs of KD samples are captured, processed,
and matched while subjects engage in activities like writ-
ing an email or taking a test on educational platforms. It
can also serve as an additional layer of biometric security
alongside traditional knowledge-based passwords [6]; and ii)
identification: KD enables linking different accounts used
by the same individual by matching their typing behavior
among multiple samples from other subjects. Identifying or
shortlisting malicious users can contribute to digital forensics
applications, such as tackling toxicity, hate, and harassment on
social networks [7], protecting children from online grooming
[8], and combating the spread of fake news [9] and “Wikipedia
wars” [10].

Additionally, as other biometric characteristics that exhibit
patterns associated with demographic groups [11], [12], KD
studies have assessed predictability in gender [13], age [14],
emotions [15], and even mother tongue [16], representing an
unexplored, yet stimulating, field of research [17].

KD can be broadly categorized based on two criteria: i) the
type of acquisition device (keyboard), distinguishing between
desktop and mobile. Mobile touchscreens tend to exhibit
more variability due to differences in pose or typing activity
compared to desktop keyboards; and ii) concerning the text
format, it can be classified as free, fixed, or transcript. In
the case of free text, variations exist across different samples,
resulting in sparser, less structured data with a higher incidence
of typing errors. In contrast, fixed-text scenarios, such as
an intruder typing a victims password, aim for consistent
representation and lower error rates. Finally, transcript text
is considered a hybrid format, involving subjects reading,
memorizing, and typing a presented text. It is important to note
that composition (free text) and transcription tasks produce
equivalent evaluation results [18] when used for training. As
transcription is easier for the subjects, current large keystroke
dynamics datasets like the one used in this study have almost
exclusively adopted this modality for enrollment.

In this scenario, we propose a new approach for transcript
text KD-based biometric verification called Type2Branch.
Fig. 1 shows a graphical representation of the workflow
of Type2Branch. Type2Branch proposes several novelty as-
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Fig. 1: Graphical representation of the workflow of Type2Branch, the proposed biometric keystroke verification system.

pects that contribute to achieving a significant improvement
in the verification performance in comparison with existing
approaches in the literature. They can be listed as follows:

• We propose a two-branch model architecture with self-
attention modules, starting from the observation that
keystroke timings result from a combination of two
factors: a partially conscious decision process involving
what to type and an entirely unconscious motor process
pertaining to how to type [19]. The convolutional branch
is expected to excel at identifying common, short se-
quences, while the recurrent branch is expected to capture
the user’s time-dependent decision process.

• Previous Distance Metric Loss (DML) approaches such
as the SetMargin loss proposed by Morales et al. [20]
extend the triplet loss by considering pairs of sets of
samples instead of triplets. In this work, we propose the
Set2set loss, which extends this idea by considering K
sets at a time. This allows the model to map much more
effectively the latent hyperspace, leading to improved
recognition performance. As detailed in Sec. III, we use
an optimized implementation of the proposed Set2set loss
for computing speed, given that a naı̈ve implementation
of the deeply nested loop implicit in its formulation is
prohibitively slow even for small batches.

• Due to the recent popularity of synthetic data to overcome
challenges in biometrics [21], [22], we propose to extract
synthetic timing features from the general population
profile as part of the learning framework in order to allow
the model to learn more subject-specific features. The
synthetic features are generated with the tool reported at
[23], in which source code are publicly available.

• We designed a learning curriculum of increasing difficulty
in order to progressively show to the network the nearest,
i.e. harder to discriminate, users while at the same time
still including enough random sets for the model not to

lose track of the global structure of the embedding space.
In light of these, Type2Branch improves on the perfor-

mance of state-of-the-art models in the Keystroke Verification
Challenge - onGoing (KVC-onGoing)2 [17], [24], with 3.25%
global Equal Error Rate (EER) in the desktop task, and 3.61%
global EER in the mobile task, corresponding to the first place
in both tasks. Considering the mean per-subject distribution
(see Sec. V-C), the EERs achieved by Type2Branch are further
reduced to 0.77% and 1.03%, respectively. KVC was launched
to provide a public and reproducible way to benchmark KD-
based verification systems in desktop and mobile scenarios,
using large-scale databases (over 185,000 subjects in total)
and a standard experimental protocol. In addition, not only
the verification performance is considered in KVC, but also
the demographic fairness and privacy aspects of the biometric
systems. The KVC-onGoing extends its limited-time edition
within the 2023 IEEE International Conference on Big Data.

The remainder of the article is organized as follows: first, an
overview of previous related works is included in Sec. II. Then,
Sec. III provides a detailed presentation of all aspects of the
proposed Type2Branch. Sec. IV presents the datasets adopted,
while the experimental protocol is illustrated in Sec. V. Finally,
Sec. VI and Sec. VII respectively contain the analysis of the
results obtained and the article conclusive remarks.

II. RELATED WORK

A. Keystroke Dynamics for Biometric Verification

The idea of classifying subjects based on their typing behav-
ior dates back to the introduction of personal computers. In the
early days of keystroke dynamics, only mechanical (desktop)
keyboards were available, for which the literature is more
extensive in comparison with the more recent mobile settings
related to touchscreen devices. Additionally, the processing

2https://sites.google.com/view/bida-kvc/
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power and machine learning algorithms at the disposal of the
researchers were not nearly comparable to today’s scenario. In
fact, in biometrics, deep learning-based approaches have dra-
matically increased the recognition performance in comparison
with hand-crafted algorithms [25]. For a complete literature
review about KD, we invite the reader to consult [26], [27].
In the remainder of this section, the latest developments based
on deep learning approaches, which are most relevant to the
current research work, will be presented.

In [28], it was demonstrated that a deep neural network
improved the performance of hand-crafted algorithms when
evaluated on the CMU database [29]. Neural network-based
approaches were also used for auxiliary tasks aimed at enhanc-
ing authentication performance, such as predicting digraphs
absent from enrollment samples by analyzing the relationships
between keystrokes [30]. A Convolutional Neural Network
(CNN) coupled with Gaussian data augmentation for the
fixed-text scenario was introduced in [31], while a neural
network was applied to RGB histograms derived from fixed-
text keystroke in [32]. Additionally, Multi-Layer Perceptron
(MLP) architectures have been investigated [33]. In [34], a
combination of convolutional and recurrent neural networks
(RNNs) was designed to extract higher-level keystroke features
from the SUNY Buffalo database [35]. The convolutional pro-
cess precedes feeding the sequence into the recurrent network
to better characterize the keystroke sequence. RNN variants
are widely used in keystroke biometrics, as seen in [36]
(bidirectional RNN), or in [37], where keystroke sequences
are structured as image-like matrices and processed by a CNN
combined with a Gated Recurrent Unit (GRU) network.

Generally speaking, the proliferation of machine learning
algorithms capable of analyzing and learning human behaviors
thrives on large-scale datasets. To this end, the Aalto databases,
proposed in two popular Human-Computer Interaction (HCI)
studies on people’s typing behavior on desktop [38] and
mobile devices [39], are extremely useful. These databases
were collected by the User Interfaces3 group of Aalto Univer-
sity (Finland). The desktop4 [38] database comprises around
168,000 subjects, while the mobile5 [39] one encompasses
approximately 60,000 subjects. As can be seen in Table I, the
size of such databases is significantly greater than other public
databases, effectively reflecting the challenges associated with
current massive application usage.

The work of Acien et al. [25] is among the first studies
that adopted Aalto databases [38] for biometrics purposes.
In addition to this, a novelty aspect of their work is the
introduction of Long Short-Term Memory (LSTM) Recurrent
Neural Networks (RNNs) trained with triplet loss [46], that are
employed with an off-line approach (i.e. a common recognition
model is trained to extract salient features in the user’s
biometric traits on a dataset before being deployed for user
classification). They analyzed to what extent deep learning
models are able to scale in keystroke biometrics to recognize
users from a large pool while attempting to minimize the

3https://userinterfaces.aalto.fi/
4https://userinterfaces.aalto.fi/136Mkeystrokes/
5https://userinterfaces.aalto.fi/typing37k/

TABLE I: Some of the most important public keystroke dynamics
databases in chronological order.

Database Scenario No. of
Subjects

Text
Format

Strokes per
Subject

GREYC
(2009) [40] Desktop 133 Fixed ∼800

CMU
(2009) [29] Desktop 51 Fixed ∼400

BiosecurID
(2010) [41] Desktop 400 Free ∼200

RHU
(2014) [42] Desktop 53 Fixed ∼600

Clarkson I
(2014) [43] Desktop 39 Fixed, free ∼20k

SUNY
(2016) [35] Desktop 157 Transcript,

free ∼17k

Clarkson II
(2017) [44] Desktop 103 Free ∼125k

Aalto Desktop
(2018) [38] Desktop 168k Transcript ∼750

Aalto Mobile
(2019) [39] Mobile 37k Transcript ∼750

HuMIdb
(2020) [45] Mobile 600 Fixed ∼20

BehavePassDB
(2022) [5] Mobile 81 Free ∼100

amount of data per user required for enrollment. This system,
called TypeNet, was able to verify subjects’ identities when the
amount of data per user is scarce, using only 5 enrollment sam-
ples and 1 test sample per user, with 50 characters typed per
sample. TypeNet maps input data into a learned representation
space that reveals a “semantic” structure based on distances.
Such approach is known as Distance Metric Learning (DML)
method. In [20], a novel DML method, called SetMargin loss
(SM-L), was proposed to address the challenges associated
with transcript-text keystroke biometrics in which the classes
used in learning and inference are disjoint. SM-L is based
on a learning process guided by pairs of sets instead of pairs
of samples, as contrastive or triplet loss consider, allowing
to enlarge inter-class distances while maintaining the intra-
class structure of keystroke dynamics. This led to improved
recognition perfomance with TypeNet.

Later on, replicating the same experimental protocol as [25],
Stragapede et al. proposed TypeFormer [47]. TypeFormer was
developed starting from the Transformer model [48], with
several adaptations to optimize its recognition performance for
KD. The model consists of Temporal and Channel Modules
enclosing two Long Short-Term Memory (LSTM) recurrent
layers, Gaussian Range Encoding (GRE), a multi-head Self-
Attention mechanism, and a Block-Recurrent structure. In
several experiments, TypeFormer outperformed TypeNet in the
mobile environment, but not in the desktop case [17].

Recently, in [49], a novel approach called DoubleStro-
keNet for recognizing subjects using bigram embeddings
was proposed. This is achieved using a Transformer-based
neural network that distinguishes between different bigrams.
Additionally, self-supervised learning techniques are used to
compute embeddings for both bigrams and users. The au-
thors experimented with the Aalto databases, reaching very
competitive results in terms of recognition performance. In
such cases, while the ideas presented are very interesting, it is
often difficult to compare across different studies, which adopt

https://userinterfaces.aalto.fi/
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different experimental settings. To this end, the first attempt
to promote reproducible research and establish a baseline in
biometric recognition using keystroke biometrics was carried
out in 2016 in the form of a competition for KD by Morales
et al. [6], namely Keystroke Biometrics Ongoing Competition
(KBOC). A total of 12 institutions from 7 different countries
registered for the competition. In that case, the dataset used
consisted of keystroke sequences (fixed text) from 300 users
acquired in 4 different sessions.

Following this line of research, the Keystroke Verification
Challenge - onGoing (KVC-onGoing)6 was recently launched,
considering both Aalto databases (the desktop database was
used for Task 1, the mobile one for Task 2). A limited-
time edition of the challenge was held within the 2023 IEEE
International Conference on Big Data (IEEE BigData)7, which
is now made ongoing. The challenge is hosted on CodaLab8.
Thanks to the demographic (age, gender) labels present in
the original database, a study of the demographic differen-
tials in the scores was also carried out for purposes such
as privacy quantification and fairness, alongside a thorough
evaluation of the biometric verification performance. TypeNet
and TypeFormer were also benchmarked on the KVC, which
attracted the participation of 7 teams. Some of the teams
were able to outperform both TypeNet and TypeFormer on
both scenarios. In particular, the approach presented in this
paper, Type2Branch, holds the first position in both desktop
and mobile tasks in the KVC-onGoing. For more information
about the details of the competition, we invite the reader to
consult [17], [24].

B. Generation of Synthetic Features

KD verification systems have traditionally been assessed
under a zero-effort attack model. In other words, biometric
samples captured from different subjects are compared, but
no effort is made to emulate the characteristics of genuine
subjects. To this end, recent studies have demonstrated that
attacks employing statistical models and synthetic forgeries
can yield significant success rates [50], [51], raising concerns
that zero-effort approaches are overly optimistic.

In [52], the authors explored spoofing techniques leveraging
higher-order contexts and empirical distributions to generate
artificial samples of keystroke timings to improve existing
attacks. Additionally, they proposed a new general method for
the detection of synthetic forgeries to protect against sample-
level attacks, at the cost of a small penalty in overall accuracy.
A comprehensive evaluation of the proposed detection and
spoofing methods was carried out in two scenarios: the attacker
having access to all the legitimate user samples, and the
attacker having access to general population data only. One
of the proposed spoofing methods was able to double and
sometimes triple the false acceptance rates.

Following this line of research, in [53], the synthesis of
KD features was achieved based on universal, user-dependent,
and generative models. The synthetic features were used to

6https://sites.google.com/view/bida-kvc/
7https://bigdataieee.org/BigData2023/
8https://codalab.lisn.upsaclay.fr/competitions/14063

improve the training process of keystroke-based bot detection
systems. In their performance analysis, the authors considered
several aspects such as the amount of data available to train
the bot detector, the type of synthetic data used to model the
human behavior, and the input text dependencies.

In our proposed Type2Branch, the generation of synthetic
data is incorporated as part of the learning framework to
represent the average typing behavior of the entire training
population, with the objective of reflecting how the behavior of
each subject shows distinguishable patterns in comparison with
the population profile. We adopt the implementation presented
in [23].

III. TYPE2BRANCH: PROPOSED SYSTEM

Fig. 1 shows a graphical representation of the workflow
of Type2Branch. We describe next the key modules of our
proposed keystroke verification system.

A. Terminology and Definitions

A keystroke dynamics sample w is a sequence w1, . . . ,wM ,
of fixed length M , of tuples of the form

(ki, t
P
i , t

R
i )

where ki is the integer key code corresponding to the i–th
keystroke, tPi is the timestamp of its key press event, and tRi
is the timestamp of its key release event.

A class is given by the set of samples of a single subject. We
assume that the number N of samples in each class, is fixed.
A batch consists of NK samples, where all the N samples
of K selected classes are included. The n–th sample of the
k–th class is denoted as wk

n and its corresponding embedding
vector as xk

n.
The center of the embeddings for the k–th set is denoted as

µ(k) and is calculated in the form

µ(k) =
1

N

N∑
i=1

xk
i (1)

The mean radius r(k) of the k–th set embeddings cluster is
given by

r(k) =
1

N

N∑
i=1

d(xi
k, µ(k)) (2)

Using the above definition, the radius penalty for a batch
is defined as

LRP =
1

K

K∑
k=1

∣∣∣∣r(k)R
− 1

∣∣∣∣ (3)

where the term R, defined as

R =
1

K

K∑
k=1

r(k) (4)

is the mean radius over all classes.

https://sites.google.com/view/bida-kvc/
https://bigdataieee.org/BigData2023/
https://codalab.lisn.upsaclay.fr/competitions/14063
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Fig. 2: Representation of the feature extraction process. The key code sequence is used to generate synthetic timings based on
the general population profile, which are considered together with the original keystroke timings.

B. Input Features

Fig. 2 shows a representation of the feature extraction
process. The key code sequence of the sample is used to gen-
erate synthetic timings; for this purpose, a general population
profile trained with all available samples is used. The synthetic
timings, together with the original key codes and keystroke
timings, are used as input features.

In total, five input features per keystroke are used to train
the model: VK, the integer key code; two classical timing
features, and two synthetic timing features. The classic timing
features are HT, the hold time (interval between key press
and release events), and FT, the flight time (interval between
the previous and current key press events). The corresponding
synthetic timing features, SHT and SFT, are used to reflect
how the typing style of the subject differs from that of the
general population. All timing features are scaled to seconds
and clipped to a maximum value of 10.

The two classic input features, hold time (HT) and flight
time (FT), are calculated as

tHT
i = tRi − tPi (5)

tFT
i = tPi − tPi−1 for i > 0, or 0 otherwise (6)

The synthetic features are calculated using the finite context
modelling method [52], [54], here denoted by S. Given a
target sample w, the method S outputs a new sample wS with
the same keystroke sequence but synthesized hold times and
flight times. For this purpose, it requires a profile A, which
consists of a set of samples that represent the behavior to
be synthesized; whether that of a specific subject, a group of
subjects, or, in the scope of this study, that of the general
population as a whole. Symbolically,

wS = S(A,w) (7)

where wS , in the same way as w, is also a sequence
wS

1 , . . . ,w
S
n of length n of tuples of the form

(ki, t
SP
i , tSR

i ) (8)

Briefly, the finite context modelling method attempts to match,
for each key, short keystroke sequences that precede it in
the sample w with similar sequences that can be found in
the profile A. In this way, statistical distributions for each
keystroke timing are inferred, which can then be sampled to
output the final synthesized timings [52], [54].

Here, the profile A used to generate the synthetic input
features collects all the samples in the development set, with
the objective of representing the average typing behavior
of the entire training population. For each sample w, the
corresponding wS is generated using the tool [23] and the
two synthetic features are calculated as

sHT
i = tHT

i − (tSR
i − tSP

i ) (9)

sFT
i = tFT

i − (tSP
i − tSP

i−1) (10)

The resulting feature vector for each keystroke is thus

(ki, t
HT
i , tFT

i , sHT
i , sFT

i ) (11)

which is the input the model receives during training, valida-
tion, and evaluation.

C. Batch structure

The number N of samples per subject and the number K
of subjects per batch is fixed, for a total of NK samples per
batch. During epoch zero, the K subjects to be included in
each batch are randomly chosen from all those available in the
development set, with reposition between batches but making
sure no batch includes repeated subjects.

For epochs m > 0, the objective of the training curriculum
is to progressively show to the model the nearest, i.e. harder
to discriminate, subjects while at the same time still including
enough random sets for the model not to lose track of the
global structure of the embedding space. For this reason, each
batch includes:

• One sequential subject, in the same order as they appear
in the development set, without restarting the pointer to
the current subject between epochs.
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Fig. 3: Type2Branch: proposed dual-branch (recurrent and convolutional) embedding model for distance metric learning.

TABLE II: Type2Branch: Main hyperparameters.

Hyperparameter Layers Value
Number of units GRU/dense 512
Number of units embedding 64
Filters conv1D 256, 512, 1024
Kernel size conv1D 6
Activation GRU layers tanh
Activation conv1D/dense ReLU
Dropout rate 0.5

• m nearest subjects, determined as those whose centers
of their embeddings are the m nearest to the center of
the embeddings of the sequential subject. The embedding
centers are calculated at the start of each epoch.

• K−1−m random subjects chosen from all those available
in the development set, with reposition between batches
but making sure no batch includes repeated subjects.

D. Model Architecture

The proposed Type2Branch architecture uses two branches,
one recurrent and one convolutional, to learn how to embed
the input samples into a lower dimensional space. Fig. 3 shows
the details of the proposed architecture. Sample similarity is
finally measured by using the Euclidean distance between their
respective embeddings, as traditionally done in DML.

The choice of the architecture is motivated by the observa-
tion that keystroke timings result from a combination of two
factors: a partially conscious decision process involving what
to type and an entirely unconscious motor process pertaining to
how to type [19]. The convolutional branch is expected to excel
at identifying common, short sequences, while the recurrent
branch is expected to capture the subjects’s time-dependent
decision process. The rationale for combining both is described
in Section VI-B, where one of the pilot experiments shows that
a dual-branch model outperforms a purely recurrent or purely
convolutional, single-branch model with an equivalent number
of trainable parameters.

The proposed model is composed of four main modules: a
small data preparation module whose only purpose is to embed
the key code into a small dimensional space and normalize
the input, the recurrent and convolutional branches that give
the name to the proposed Type2Branch model, and a final
embedding module. The main hyperparameters of the model
are listed in Table II.

The recurrent branch comprises two bidirectional GRU
layers (512 units), while the convolutional branch features
three blocks of 1D convolution, each with an increasing
number of filters (256, 512, and 1024, with kernel size equal
to 6) and utilizes global average pooling. Temporal attention
serves as the first layer of both branches. Scaled dot-product
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self attention is applied between the recurrent layers, whereas
channel attention follows each convolutional layer.

At the embedding module, the outputs of both branches
are concatenated, and the final embedding vector is produced
by three dense layers. Batch normalization and dropout are
applied after each processing layer in all modules.

E. Set2set Loss Function - Motivation

The objective of the Set2set loss function is to minimize the
EER of a keystroke dynamics verification system, operating
under the conditions of one-shot evaluation. Moreover, it is
assumed that a uniform global detection threshold is used
across all subjects. There is no loss of generality in this
assumption, as will be shown later.

In this scenario, the system makes a verification decision
with a single reference sample per subject. In other words,
it outputs a measure of similarity between a pair of samples:
one that certainly belongs to the legitimate subject, and another
from the subject under scrutiny. If the similarity value is below
the global threshold, the sample is flagged as legitimate, or
otherwise as an impostor.

Our initial point is the SetMargin loss proposed by Morales
et al. in [20], which itself extends the well-known triplet loss
function proposed by Schroff et al. [55]. Triplet loss aims
to minimize the distance between samples of the same class
while simultaneously enforcing a separation between samples
of different classes by, at least, a given margin. SetMargin loss
aims to capture better intra-class dependencies while enlarging
the inter-class differences in the feature space, particularly
along their boundaries where most classification errors occur,
by adding the context of the set to the learning process.

We further extend the SetMargin loss by letting it compare,
simultaneously, arbitrarily sized sets of sets instead of just
pairs of sets, while also including an additive penalty term to
encourage the model to embed all classes within hyperspheres
with similar average radii. The extension to arbitrarily sized
sets of sets, coupled with an adequate learning curriculum,
allows the loss function to capture both the global and local
structure of the embedding space more effectively. Incorpo-
rating an additive penalty to address variations in the average
radius among different classes improves the EER when using
a uniform global detection threshold, driving it closer to the
average EER achieved with optimal thresholds per subject.

F. Set2set Loss Function - Formulation

Let d(xm
i ,xn

j ) be the Euclidean distance between the em-
bedding vectors corresponding to the i–th sample of the m–th
class and the j–th sample of the n–th class, and define

L(xm
i ,xm

j ,xn
k ) = d2(xm

i ,xm
j )− d2(xm

i ,xn
k ) + α (12)

The Triplet Loss function [55] with anchor xm
i , positive xm

j ,
and negative xn

k is then

LTL(x
m
i ,xm

j ,xn
k ) = max {0, L(xm

i ,xm
j ,xn

k )} (13)

The roles of the classes m and n can be made symmetric by
defining

LSTL(m,n, i, j, k) = LTL(x
m
i ,xm

j ,xn
k ) + LTL(x

n
i ,x

n
j ,x

m
k )

(14)

and in terms of LSTL, the SetMargin Loss function [55] for
the m–th and n–th classes is given by

LSM (m,n) =

N∑
i=1

N∑
j=i+1

N∑
k=1

LSTL(m,n, i, j, k) (15)

Generalizing the above to the case when different classes have
a varying number of samples is trivial; however, the assump-
tion that all classes have N samples simplifies the exposition
and the implementation of the proposed loss function, while
allowing for significant optimizations in computing time when
the latter is vectorized. Now, using the previous LSM and the
radius penalty from equation (3), we can define the proposed
Set2set loss, which has the form

LS2S = β LRP +

K∑
m=1

K∑
n=m+1

LSM (m,n) (16)

where LRP is the radius penalty defined in equation (3). The
number of sets K is a parameter to be optimized; in general,
increasing K improves the performance until a certain limit
given by the capacity of the model.

In a practical implementation, the constant β must be small
enough so it does not interfere with the LSM terms when
encouraging the model to learn the structure of the embedding
space, but large enough to slowly but surely enforce the
normalization of the mean radii within the classes.

IV. DESCRIPTION OF DATABASES

The experimental framework being proposed relies on the
two most comprehensive and extensive public databases of
free-text keystroke dynamics available to date. The raw data
within the Aalto mobile keystroke database consists of Unix
timestamps capturing key press and release actions, each
timestamp having a 1 ms-resolution and being associated
with the specific ASCII code of the key pressed. The data
collection occurred through a mobile web application in a
completely unsupervised manner. Participants were instructed
to read, memorize, and type English sentences presented on
their smartphones. These sentences were randomly selected
from a pool of 1,525 sentences sourced from the Enron
mobile mail [56] and the Gigaword Newswire corpora [57].
Hence, the text format employed is transcript-text, meaning the
content was not formulated by the participants themselves, and
the sentences contained at least 70 characters. Additionally,
volunteers were instructed to type as quickly and accurately
as possible. Notably, the volunteers were scattered in 163
countries, with English native speakers constituting around
68% of the participant pool.

Both databases are available for download in the form
provided within the KVC9. They are organized into four
datasets, with some subjects being excluded due to insufficient

9https://codalab.lisn.upsaclay.fr/competitions/14063

https://codalab.lisn.upsaclay.fr/competitions/14063
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TABLE III: Demographic distributions of the provided datasets.
The rows represent different age groups, while the columns represent
genders. The evaluation sets are balanced with respect to gender.

Task 1: Desktop Dataset

Development Set
Male Female

10 - 13 4,336 5,420
14 - 17 10,993 8,336
18 - 26 25,752 24,315
27 - 35 9,607 12,281
36 - 44 2,143 5,331
45 - 79 1,182 5,424

Total Labelled: 115,120,
Total unlabeled: 0

Evaluation Set
Male Female

10 - 13 1,085 1,085
14 - 17 1,861 1,861
18 - 26 1,861 1,861
27 - 35 1,861 1,861
36 - 44 536 536
45 - 79 296 296

Total Labelled: 15,000,
Total unlabeled: 0

Task 2: Mobile Dataset

Development Set
Male Female

10 - 13 622 800
14 - 17 1,537 1,516
18 - 26 4,359 8,999
27 - 35 1,343 4,002
36 - 44 382 1,333
45 - 79 200 739

Total Labelled: 25,832,
Total unlabeled: 14,80710

Evaluation Set
Male Female

10 - 13 254 254
14 - 17 618 618
18 - 26 843 843
27 - 35 547 547
36 - 44 156 156
45 - 79 82 82

Total Labelled: 5,000,
Total unlabeled: 0

acquisition sessions per subject (fewer than 15 samples per
subject):

• Desktop Dataset:
– Development set: 115,120 subjects, with an average

sample length of 48.65 (σ = 18.50) characters typed.
– Evaluation set: 15,000 subjects, with an average sample

length of 48.77 (σ = 18.64) characters typed.
• Mobile Dataset:

– Development set: 40,639 subjects, with an average
sample length of 48.59 (σ = 21.84) characters typed.

– Evaluation set: 5,000 subjects, with an average sample
length of 47.98 (σ = 20.93) characters typed.

In each dataset, all subjects have undergone at least 15
acquisition sessions. The experimental framework proposed
adopts an open-set learning protocol, meaning the subjects
in the development and evaluation sets are distinct (see Sec.
V). While a validation set is not explicitly provided, it can
be derived from the development set using various training
approaches.

Thanks to the demographic (age, gender) labels present in
the original database, the subjects in the provided datasets have
been arranged to enable a study of the demographic differen-
tials in the scores for purposes such as privacy quantification
and fairness [17]. Table III shows the demographic distribution
of the datasets provided in the KVC. The subjects have been
divided into six age groups (10 - 13, 14 - 17, 18 - 26, 27 -
35, 36 - 44, 45 - 79). The evaluation sets are balanced with
respect to gender. The gender and age labels are available for
download alongside the development set files.

10Although unlabeled, we opted to include these subjects to maximize the
size of the provided dataset.

V. EXPERIMENTAL PROTOCOL

A. Model Training

The batch structure has been described in Section III-C.
Values of N = 15 samples per subject and K = 40 subjects
per batch are used. The value of K = 40 is chosen as the
largest that allows the optimized implementation to fit in the
GPU memory. The pilot experiments (see Section VI-B) show
that increasing K improves the classification accuracy of the
trained model.

Each epoch consists of 20,000 steps for the desktop scenario
and 7,000 steps for the mobile scenario. Validation loss is
calculated at the end of each epoch. An early stopping strategy
leveraging it, with a minimum delta of 10−4 and a patience
of 12 epochs, is used to determine the optimal duration of
the training, which lasted 18 epochs. Only the best model, as
measured by the validation loss, is saved.

The standard Adam optimizer is used for training the
model. The learning rate is set to 10−4, while the rest of
the parameters are left at default values, with β1 = 0.9,
β2 = 0.999, and ϵ = 10−7. No scheduling is used; the learning
rate is kept fixed throughout the entire training process.

This value of β in equation (16) is set to 0.05 in the
implementation of the loss function.

B. Tools and Frameworks

The model is trained with Keras 2.11.0 and Tensorflow
2.12, running in Python 3.10.10 and using an NVIDIA A100
40GB GPU. The Set2set loss is implemented as a tensorflow
function and optimized for computing speed, given that a naı̈ve
implementation of the deeply nested loop implicit in equation
(16) is prohibitively slow even for small K.

The synthetic timing features meant to reflect how the
typing style of a subject differs from that of the general
population were synthesized with the tool [23], which binary
and source code are publicly available.

C. Evaluation Description

The KVC standard experimental protocol is adopted in the
experiments of the present study. The scores generated by the
biometric systems are submitted to CodaLab to obtain all the
metrics reported in Sec. VI.

The approach described next is valid for both desktop and
mobile cases in a verification scheme. The comparison list
provided in the KVC competition specifies the comparisons
to perform between samples.

The total count of 1 vs. 1 sample-level comparisons is as
follows:

• Task 1 (Desktop): 2,250,000 comparisons, involving
15,000 subjects not present in the development set.

• Task 2 (Mobile): 750,000 comparisons, involving 5,000
subjects not present in the development set.

For each subject in the evaluation sets, we use 5 samples
for enrollment and 10 samples for verification. By considering
all possible genuine pairwise comparisons, we obtain 50
comparison scores. These scores are then averaged over the 5
enrollment samples, resulting in 10 genuine scores per subject.
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TABLE IV: Comparison of the proposed Type2Branch with the state of the art on the evaluation dataset of KVC-ongoing [17].

Global Distributions

Experiment EER (%) FNMR@0.1%
FMR (%)

FNMR@1%
FMR (%)

FNMR@10%
FMR (%) AUC (%) Accuracy (%)

Desktop
TypeNet [25] 6.76 77.4 39.57 3.45 98.08 93.24

TypeFormer [47] 12.75 94.75 73.53 18.19 94.32 87.25
Type2Branch 3.33 44.17 11.96 0.51 99.48 96.68

Mobile
TypeNet [25] 13.95 92.76 70.05 22.22 93.8 86.05

TypeFormer [47] 9.45 94.77 67.67 8.53 96.22 90.55
Type2Branch 3.61 63.62 17.44 0.60 99.28 96.39

Mean Per-subject Distributions
Experiment EER (%) AUC (%) Accuracy (%) Rank-1 (%)

Desktop
TypeNet [25] 2.71 99.26 95.31 89.81

TypeFormer [47] 7.76 96.51 91.13 65.52
Type2Branch 0.77 99.87 96.43 98.04

Mobile
TypeNet [25] 7.99 96.43 90.89 68.5

TypeFormer [47] 5.25 97.89 93.28 75.92
Type2Branch 1.03 99.76 96.24 96.11

Similarly, 20 impostor scores are generated per subject. The
impostor samples are divided into two groups: 10 similar
impostor scores, where verification samples are randomly
selected from subjects of the same demographic group (same
gender and age), and 10 dissimilar impostor scores, where
verification samples are all randomly selected from subjects
of different gender and age intervals.

Based on the described evaluation design, two approaches
are followed to evaluate the system:

• Global distributions: all scores are divided into two
groups, genuine and impostor scores, regardless of the
subjects they belong to. This approach entails using a
fixed, pre-determined threshold, simplifying the deploy-
ment of the biometric system. Performance assessment
involves setting a single threshold for all comparisons to
reach a decision.

• Mean per-subject distributions: the optimal threshold is
computed at the subject-level, considering the 30 verifica-
tion scores as described above. This approach offers more
flexibility, allowing the system to adapt to subject-specific
distributions. In real-life scenarios, this would involve
processing the subject’s enrollment samples to estab-
lish a threshold. The process includes acquiring various
enrollment samples to derive a genuine subject-specific
score distribution and considering a pool of samples from
different subjects to derive an impostor subject-specific
score distribution. A subject-specific threshold is then
computed based on these distributions. Importantly, this
doesn’t necessitate re-training or fine-tuning the biometric
system using subject-specific data. Metrics computed per-
subject are averaged across all subjects in the evaluation
set to obtain the displayed values. Generally, the system’s
verification performance benefits from employing a dif-
ferent threshold per subject.

VI. EXPERIMENTAL RESULTS

A. Biometric recognition

The verification performance of the proposed Type2Branch
is reported in Table IV. For all metrics, the reported values are
computed on the KVC evaluation set. Currently, Type2Branch
achieves the highest verification performance among all sys-
tems proposed in the ongoing competition [24]. To provide
a comparison with state-of-the-art KD systems, Table IV also
features the results achieved by TypeNet [25] and TypeFormer
[47] over the same experimental setup.

As can be seen, Type2Branch improves previous verifica-
tion records in all cases, by a significant margin. Consider-
ing global distributions, the EER obtained by Type2Branch
(3.33%) is halved in comparison with TypeNet (6.75%) in
the desktop case, and it is reduced to almost one third of
the EER scored by TypeFormer in the mobile case (3.61%
vs 9.45%). Moving along the columns of Table IV, the
gap dramatically widens in the case of different operational
points, e.g., False Non-Match Rate (FNMR) at 1%, 10%
of False Match Rate (FMR). The described trends are also
consistent when analyzing the mean per-subject distributions.
For instance, as displayed in the bottom half of Table IV,
Type2Branch achieves a 0.77% EER vs 2.71% EER (TypeNet)
for desktop, and 1.03% EER vs 5.25% EER (TypeFormer)
for mobile. Moreover, in contrast with all metrics which are
related to the task of verification, the rank-1 metric reported
is related to the task of identification, and it represents the
percentage of times in which from a subject-specific pool of
21 samples (20 impostor samples and 1 genuine sample), the
genuine one achieves the highest score [17]. Consequently,
given this formulation, it can only be applied to subject-
specific distributions. Once again, Type2Branch significantly
outperforms previous approaches, showing that the Set2set
loss proposed is able to map the embedding space in a much
finer way with respect to the triplet loss [55] or the original
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Fig. 4: DET curves including the results of all the biometric verification systems analyzed. The grey dashed lines indicate the
operational points 0.1% FMR, 1% FMR, and 10% FMR, whereas the black dashed line indicate the points where the FMR =
FNMR, corresponding to the EER.

SetMargin loss [20], leading to unprecedented results in the
identification task as well.

Fig. 4 graphically depicts such trends in the form of Detec-
tion Error Trade-off (DET) curves. In particular, from left to
right, Fig. 4(a) and Fig. 4(b) respectively show the desktop and
mobile cases. The grey dashed lines indicate the operational
points 0.1% FMR, 1% FMR and 10% FMR whereas the black
dashed line indicate the points where the FMR = FNMR,
corresponding to the EER point. Noteworthily, in the field
of behavioral biometrics a threshold corresponding to FMR
= 1% represents a rather safe system from the perspective of
limiting the intrusions, and this generally leads to a significant
degradation of the FNMR, as proved in the case of both
TypeFormer and TypeNet. Nevertheless, Type2Branch is able
to limit the performance drop to 11.86% and 17.44% FNMR.
Such results are very promising considering that Type2Branch
is not developed nor optimized for FNMR/FMR metric.

B. Pilot Experiments

The design of the final Type2Branch model, whose results
have been described in the previous section, was obtained after
several pilot experiments, using all users and samples of the
development dataset. These experiments proved the efficacy of
various architectural and training choices in smaller, baseline
models. We think these intermediate results are interesting
enough to be reproduced here.

Early in the development cycle, we observed a noticeable
improvement on the model’s performance when the number
of sets simultaneously considered by the Set2set loss function
was increased. As Figure 5 shows in blue, even a small
baseline model trained with 1,000 users experiences noticeable
reductions in the global EER as the value of K is increased
from 2 to 10. Although the performance declines for K > 10
in this case, we conjectured that a larger model trained with
a larger dataset would benefit from increasing K further. This
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Fig. 5: Effect on the EER with a global threshold when
increasing K (number of sets) in the loss function. We
compare a baseline model trained with 1K users with the final
model. Given enough training data, a large K improves the
performance by providing a more comprehensive purview of
the embedding space.

is in fact proved in Figure 5, in red, for the case of the final
model, trained with the entirety development dataset. Given
additional GPU memory, allowing for even larger values of K,
it is plausible that the performance can be improved further.

Figure 6 shows the mean per-user EER for a baseline
model, trained with 2K users and employing an architecture
analogous to the final model but with fewer parameters. In
this experiment, the performance of individual branches has
been explored for a varying number of enrollment samples
G = 1, 2, 5, 7, 10. Note that the parameter count for the single-
branch models was calibrated to match that of the dual-branch
model. This pilot experiment shows that the dual-branch model
outperforms single-branch configurations by ≈ 25%.
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Fig. 7: Average user EER of a baseline model trained with 1K
users, compared with improvements on learning curriculum
and synthetic features.

Finally, Figure 7 shows the changes in mean per-user
EER when adding synthetic features and modifications to the
training curriculum of a baseline dual-branch model trained
with 1K users. While these enhancements produce more
modest performance gains when compared to those in previous
experiments, they collectively achieve a relative reduction in
EER of ≈ 10-15% with minimal overhead.

C. Limitations

The proposed model has been trained on a balanced subset
of the Aalto datasets, which consist of typing samples from
transcribed text. Unfortunately, there are no publicly available
datasets comprising free-text samples that are sufficiently large
for training and evaluating a model of this size and complexity.

Furthermore, the evaluation of the proposed model was
conducted using an attack model that assumes zero-effort
impostors, meaning that the impostor samples do not exhibit a
deliberate attempt to emulate the typing style of the legitimate
users. While it is standard practice to assess behavioral bio-
metric systems under this assumption, conducting evaluations
under more advanced attack models could potentially reveal
decreased performance.

VII. CONCLUSIONS AND FUTURE WORK

In the present study, we have proposed and evaluated the
performance of Type2Branch, a dual-branch (recurrent and
convolutional) distance metric learning model for the task of
verifying user identities based on their keystroke dynamics.
Following the recent trend initiated by TypeNet and continued
by TypeFormer, our approach leverages large datasets to train
a deep learning model that can scale to hundreds of thousands
of users with little performance loss.

To the best of our knowledge, the proposed Type2Branch
outperforms the state of the art with a mean per-user EER
of 0.77% in the desktop scenario and 1.03% in the mobile
scenario when using ten enrollment samples. Under a harder
evaluation criteria, when only a single enrollment sample per
user is available and a uniform global threshold is used, the
proposed model still manages to achieve an EER of 3.33% in
the desktop scenario and 3.61% in the mobile scenario. These
results have been validated with a sound experimental protocol
and using publicly available training and evaluation datasets
during the KVC-onGoing competition [24].

The pilot experiments showed that a dual-branch archi-
tecture outperforms single-branch architectures for a given
number of parameters; also, that several gradual improvements
like the proposed synthetic features and the improved training
curriculum provide cumulative gains. Nevertheless, the most
noticeable improvement was provided by the Set2set loss that,
by extending SetMargin loss to larger numbers of sets, allows
the model to optimize the embedding space globally and
results in noticeable performance gains.

Future work will be oriented towards exploring architectures
with more than two branches, improving the branches of the
proposed model, and evaluating the generalizability and utility
of the Set2set loss function for other biometric verification
and general classification tasks. We plan on making the
implementation of the Set2set loss function available soon.
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