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Lipschitz constant estimation for general neural
network architectures using control tools

Patricia Pauli1, Dennis Gramlich2, and Frank Allgöwer1

Abstract—This paper is devoted to the estimation of the
Lipschitz constant of neural networks using semidefinite pro-
gramming. For this purpose, we interpret neural networks as
time-varying dynamical systems, where the k-th layer corre-
sponds to the dynamics at time k. A key novelty with respect
to prior work is that we use this interpretation to exploit
the series interconnection structure of neural networks with a
dynamic programming recursion. Nonlinearities, such as activa-
tion functions and nonlinear pooling layers, are handled with
integral quadratic constraints. If the neural network contains
signal processing layers (convolutional or state space model
layers), we realize them as 1-D/2-D/N-D systems and exploit this
structure as well. We distinguish ourselves from related work
on Lipschitz constant estimation by more extensive structure
exploitation (scalability) and a generalization to a large class
of common neural network architectures. To show the versatility
and computational advantages of our method, we apply it to
different neural network architectures trained on MNIST and
CIFAR-10.

Index Terms—Neural networks, Lipschitz constant, semidefi-
nite program.

I. INTRODUCTION

NEURAL networks (NNs) are successfully applied in
many fields, e.g., in data analysis, pattern recognition,

image and video processing, natural language processing,
and control [1], [2]. Especially in safety critical systems
like autonomous driving, it is imperative that NNs are safe
and reliable [3]. The Lipschitz constant of the input-output
mapping defined by an NN is closely linked to the robustness
of the NN [4], and given that the calculation of the Lipschitz
constant for NNs is an NP-hard problem [5], [6], there is a
high interest to instead find accurate upper bounds on this
Lipschitz constant [7]–[11]. Trivial methods like the product of
the spectral norms of the weights [4] can cheaply be computed
by the power iteration method, but the resulting bounds can be
quite loose, especially for deep NNs. In contrast, semidefinite-
programming (SDP) based approaches [10], [11] provide
tighter bounds at the price of a computational overhead. In
this work, we present SDPs that provide significantly lower
Lipschitz bounds for NNs than the commonly used spectral
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norm bounds, while showing better scalability than other SDP-
based approaches, e.g., LipSDP [10]. We further generalize
SDP-based methods for Lipschitz constant estimation to a
large class of NNs.

SDP-based methods provide the tightest bounds on the ℓ2
Lipschitz constant for NNs in polynomial time [10]. How-
ever, their scalability to deep state-of-the-art NNs is an open
research problem which is actively investigated. [12], [13]
develop more scalable SDP solvers and [14] do so specific to
the problem of SDP-based Lipschitz constant estimation, [15]
exploit the chordal sparsity pattern of the underlying linear
matrix inequality (LMI) constraint for fully connected NNs
and [16], [17] exploit the structure of convolutions. This paper
builds on [10], [16], [17] to develop a general, accurate, and
scalable SDP-based method for Lipschitz constant estimation
for a large family of NN architectures. For improved scalabil-
ity, we exploit (i) the structure of the individual layer types and
(ii) the concatenation structure of the feedfoward networks. We
do the latter by taking on a dynamic programming perspective
and interpreting the layers as the dynamics of a system. This
view is novel in this context, leading to a recursive formulation
of layer-wise constraints, which is computationally favorable.

In contrast to previous works [10], [17], our approach
incorporates many popular layer types including convolutional,
deconvolutional and state space model layers [18], residual
layers [19], fully connected layers, average and maximum
pooling layers, and slope-restricted and GroupSort activation
function layers [20]. We especially exploit the structure and
shift invariance of convolutions as we incoprporate 1-D/2-
D/N-D convolutions into the SDP-based analysis using a state
space representation of the Roesser type [17], [21], [22].

In summary, the main contribution of this work is a SDP-
based method for Lipschitz constant estimation for a general
class of NNs that outperforms existing methods in terms
of scalability and accuracy. To reach our goal, we exploit
N-D systems theory and introduce a dynamic programming
perspective for the underlying problem. The remainder of
the paper is organized as follows. Section II formally states
the problem, introduces all layer definitions and state space
representations for convolutions. Next, Section III involves our
dynamic programming based approach for Lipschitz constant
estimation for NNs and Section IV discusses sources of con-
servatism. Finally, Section V applies our method on multiple
neural network architectures to demonstrate the versatility
and improved accuracy and scalability of our approach over
previous approaches. We provide easy-to-use code for all
considered neural network architectures and layer types.
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Notation: By ∥ · ∥2 we either mean the Euclidean norm
of a vector or the ℓ2 norm of a signal. By ⟨·, ·⟩2 we denote
the ℓ2 inner product. By Rn (Rn

+), we mean the space of n-
dimensional vectors with real (positive) entries. By Sn (Sn+),
we denote (positive definite) symmetric matrices and by Dn

(Dn
+) we mean (positive definite) diagonal matrices of dimen-

sion n, respectively. Within our paper, we study convolutional
neural networks processing image signals. For this purpose,
we understand an image as a sequence (u[i1, . . . , id]) with
free variables i1, . . . , id ∈ N0. In this sequence, u[i1, . . . , id]
is an element of Rc, where c is called the channel dimension
(e.g., c = 3 for RGB images). The signal dimension d will
usually be d = 2 for images or d = 3 for medical images.
The space of such signals/sequences is denoted by ℓc2e(Nd

0) :=
{u : Nd

0 → Rc}. Images should be understood as sequences
in ℓc2e(Nd

0) with a finite square as support. For convenience,
we will sometimes use multi-index notation for signals, i. e.,
we denote u[i1, . . . , id] as u[i] for i ∈ Nd

0. For these multi-
indices, we use the notation i + j for (i1 + j1, . . . , id + jd),
ij = (i1j1, . . . , idjd) and i ≤ j for i1 ≤ j1, . . . , id ≤ jd.
We further denote by [i, j] = {t ∈ Nd

0 | i ≤ t ≤ j} the
interval of all multi-indices between i, j ∈ Nd

0 and by |[i, j]|
the number of elements in this interval. Finally, we define the
interval [i, j[:= [i, j − 1].

II. PROBLEM STATEMENT AND DEEP NEURAL NETWORKS

In this work, we understand deep neural networks as a
concatenation of simple functions, i. e., as a composition

NNθ = ℓl ◦ ℓl−1 ◦ · · · ◦ ℓ2 ◦ ℓ1 (1)

of layers ℓk, k = 1, . . . , l where k is the layer index and
ℓ ∈ {L, C,S, σ,P,F} is either a linear layer L, a convo-
lutional layer C, a state space model layer S, an activation
function layer σ, a pooling layer P , or a flattening layer F .
The parameter θ of the neural network NNθ refers to the
collection of parameters (weights and biases) θk of all the
individual layers. We can also write down the NN recursively
as the map from u1 to yl defined by

yk = ℓk(uk) uk+1 = yk k = 1, . . . , l, (2)

where uk ∈ Dk−1 and yk ∈ Dk denote the input and the
output of each layer and the real vector spaces Dk−1 and Dk

are the input and output domain of the layer ℓk. We assume
here that the layers are always chosen in such a way that the
image space of ℓk and the domain space of ℓk+1 coincide.
Consequently, our Lipschitz constant analysis applies to any
finite concatenation of layers ℓ ∈ {L, C,S, σ,P,F}. In deep
learning, the definition of a layer may sometimes refer to a
composition of multiple elements of {L, C,S, σ,P,F}. For
example, a linear map is grouped with a diagonally repeated
activation function or a convolutional layer, an activation
function, and a pooling layer are grouped together as a layer.
Our approach can handle such concatenated layer definitions,
meaning that we additionally allow ℓ ∈ {σ◦L, σ◦C,P◦σ◦C}
or a concatenation of even more layers, cmp. Section III-G.

Regardless of the layer definition, our examples usually
study convolutional neural networks CNNθ with the structure

Ll ◦ σl−1 ◦ · · · ◦ σp+2 ◦ Lp+1 ◦ Fp ◦ · · ·
· · · ◦ Pp−1 ◦ σp−2 ◦ Cp−3 ◦ · · · ◦ P3 ◦ σ2 ◦ C1,

typically found in image classification. These convolutional
neural networks (CNNs) are composed of fully connected
layers Lk, activation function layers σk, a flattening operation
Fp, convolutional layers Ck, and (optional) pooling layers Pk

in the order shown above.
The goal of this work is to provide an accurate and scalable

method that determines an upper bound on the Lipschitz
constant of a neural network (1) (2).

Problem 1. For a given neural network NNθ with parame-
ters θ, find an upper bound on the Lipschitz constant, i. e., find
a value γ ≥ 0 such that

∥NNθ(u
1)−NNθ(u

2)∥2 ≤ γ∥u1 − u2∥2

for all u1, u2 ∈ D0.

We notice that the definition of an NN (1), (2) resembles
a dynamical system uk+1 = ℓk(uk). The interpretation of an
NN as a dynamical system with time-varying dynamics ℓk and
state uk is very powerful because it enables us to use tools
from control and systems theory to analyze properties of NNs.
However, we stress that this interpretation should be taken
with caution, since the inputs uk and uj for k ̸= j usually
live in different spaces Dk−1 and Dj−1. As we will see in
Section II-A, we allow signal spaces Dk = ℓck2e(N

dk
0 ) of dk-

dimensional signals as well as vector spaces Dk = Rck . Also
the vector (= channel) dimension ck may differ from one layer
to another. In addition, the nature of the mappings ℓk and ℓj
for k ̸= j can be completely different, including linear and
nonlinear mappings. In some less heterogeneous examples,
e.g., fully connected networks Ll◦σl−1◦· · ·◦σ2◦L1, or fully-
convolutional networks and subnetworks Cl◦σl−1◦· · ·◦σ2◦C1,
this interpretation as dynamical systems is, however, more
natural and it is common practice to design a deep backbone
of NNs of the same layer type [23].

It is the defining selling point of our work that we exploit the
structure of each layer, as well as the composition structure
of the NN itself using different perspectives and methods
from control. We have described the NN clearly and yet
in sufficient detail as a concatenation of its layers, which
is now followed by a definition of each individual layer in
Section II-A. Subsequently, in Section II-B, we introduce state
space representations for convolutional layers.

A. Layer definitions

Convolutional layer: A convolutional layer Ck is a map-
ping from Dk−1 = ℓ

ck−1

2e (Ndk−1

0 ) to Dk = ℓck2e(N
dk
0 ) which

is defined by a convolution kernel Kk[t] ∈ Rck×ck−1 for
0 ≤ t ≤ rk and a bias bk ∈ Rck . We write

yk[i] = bk +
∑

0≤t≤rk

Kk[t]uk[i− t], (3)
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where uk[i − t] is set to zero if i − t is not in the domain
of uk[·], which accounts for possible zero-padding. A convo-
lutional layer retains the dimension dk−1 = dk = d but it
may change in channel size from ck−1 to ck. The multi-index
rk ∈ Nd

0 defines the size of the kernel Kk[·].
Our compact description of a convolution (3) includes N-D

convolutions (d = N ). For instance, a 1-D convolution (d = 1)

yk[i] = bk +

rk∑
t=0

Kk[t]uk[i− t] (4)

operates on a 1-D signal, e.g., a time signal, a 2-D convolution
(d = 2)

yk[i1, i2] = bk +

rk1∑
t1=0

rk2∑
t2=0

Kk[t1, t2]uk[i1 − t1, i2 − t2] (5)

operates on signals with two propagation dimensions, e.g.,
images, and an N-D convolution considers inputs with even
more input dimensions, e.g., 3-D convolutions may be used
for videos or 3-D medical images.

An extension of the convolutional layer (3) is a strided
convolutional layer Csk

with stride sk ∈ Nd. For convolutions
with stride sk = (sk1, . . . , skd), the output is not given by (3),
but by

yk[i] = bk +
∑

0≤t≤rk

Kk[t]uk[ski− t]. (6)

This means that we always shift the kernel by sk1, . . . , skd
along the respective signal dimension 1, . . . , d.

Activation function layer: An activation function layer σk

can be applied to any of our domain spaces Dk−1 = Rck−1

or Dk−1 = ℓ
ck−1

2e (Ndk−1

0 ), but it requires Dk
∼= Dk−1.

We consider activation functions that are defined by scalar
activation functions σ : R → R that are applied element-
wise if applied to a vector uk ∈ Rck . To this end, for finite
dimensional vector spaces, σ is identified with the function

σ : Rck → Rck , uk 7→ yk =
[
σ(uk1) · · · σ(ukck)

]⊤
.

We further lift the scalar activation function to signal spaces
by defining the activation function layer on ℓck2e(N

dk
0 ) as the

function σ : ℓck2e(N
dk
0 ) → ℓck2e(N

dk
0 ),

(uk[i])i∈Ndk
0

7→ (yk[i])i∈Ndk
0

= (σ(uk[i]))i∈Ndk
0

.

Fully connected layer: In the case of a fully connected
layer Lk the domain and image spaces are Dk−1 = Rck−1

and Dk = Rck , i. e., there are only the channel dimensions
ck−1, ck (= number of neurons of the input and output layer)
and no signal dimensions dk−1, dk, i. e., dk−1 = dk = 0. We
define a fully connected layer as an affine function

Lk : Rck−1 → Rck , uk 7→ yk = bk +Wkuk. (7)

The vector bk ∈ Rck is called the bias and Wk ∈ Rck×ck−1 is
called the weight matrix.

Remark 1. Note that the fully connected layer is a special
case of a convolutional layer for dk−1 = dk = 0. Indeed,
Rck−1 ∼= ℓ

ck−1

2e ({0}) = ℓ
ck−1

2e (N0
0) and Rck ∼= ℓck2e(N0

0).
Furthermore, we can understand Wk as the convolution kernel

which, in the case dk = 0, is given by Kk[0] := Wk. Con-
sequently, all results presented in this work for convolutional
layers automatically hold for fully connected layers.

Pooling layer: Pooling layers are down-sampling oper-
ations from Dk−1 = ℓ

ck−1

2e (Ndk−1

0 ) to Dk = ℓck2e(N
dk
0 ) with

dk−1 = dk = d and ck−1 = ck that take a batch of input signal
entries (uk[ski+ t] | t ∈ [0, rk[) and map them channel-wise
into one single output signal entry y[i]. The two most common
pooling layers are average pooling Pav

k : ℓck2e(Nd
0) → ℓck2e(Nd

0),

yk[i] :=mean(uk[ski− t] | t ∈ [0, rk])

=
1

|[0, rk]|
∑

0≤t≤rk

uk[ski− t]

and maximum pooling Pmax
k : ℓck2e(N

dk
0 ) → ℓck2e(N

dk
0 ),

yk[i] := max(uk[ski− t] | t ∈ [0, rk]),

where the maximum is applied channel-wise. For most pooling
layers the kernel size and the stride coincide (rk = sk), yet
sometimes, e.g., in AlexNet [24], rk > sk is chosen.

Flattening operator: Flattening is a pure reshaping oper-
ation, which merges the signal dimensions into the channel
dimension. Note that the mapping is not injective, i.e., a
square batch (uk[i] | 0 ≤ i < Nk), for example a finite-
dimensional image, is reshaped into the channel dimension
and the remaining entries (mostly zeros) are discarded. The
typical flattening operation is a vectorization given by

Fk : ℓ
ck−1

2e (Ndk−1

0 ) → R|[0,Nk[|·ck−1 , (uk[i])i∈Ndk
0

7→ yk,

where yk is a stacked vector of uk[i], 0 ≤ i < Nk, i. e.,
y⊤k =

[
uk[0, . . . , 0]

⊤ . . . uk[Nk1, . . . , Nkd]
⊤]. We could

also define flattening operators ℓ
ck−1

2e (Ndk−1

0 ) → ℓck2e(N
dk
0 )

with 1 ≤ dk < dk−1 contracting only some of the signal
dimensions and not all at once. For example, we can flatten
2-D signals into 1-D signals (dk = 1) or into vectors with
dk = 0.

State space model layer: We define a state space model
layer as an affine time-invariant system Sk : ℓ

ck−1

2e (N1
0) →

ℓck2e(N1
0) [

x[i+ 1]
y[i]

]
=

[
fk Ak Bk

gk Ck Dk

] 1
x[i]
u[i]

 ,

where x[i] ∈ Rn denotes the state. The state space model
is characterized by some matrices (Ak, Bk, Ck, Dk, fk, gk) of
appropriate dimensions.

B. State space representations for convolutions

In the machine learning literature, convolutional layers are
usually represented as in (3) using a convolution kernel [25].
However, state space realizations have proven to be more
amenable to analysis using tools from robust control than
such kernel (impulse response) representations [17]. In the
control engineering literature, mappings from ℓ

ck−1

2e (Nd
0) to

ℓck2e(Nd
0) are known as N-D systems and, as it is shown in

[26], N-D systems with rational transfer functions admit a state
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space realization as a so-called Roesser model [21], defined
as follows.

Definition 1 (Roesser model). An affine N-D system
ℓ
ck−1

2e (Nd
0) → ℓck2e(Nd

0), (u[i]) 7→ (y[i]) is described by a
Roesser model as

x1[i+ e1]
...

xd[i+ ed]
y[i]

 =


f1 A11 · · · A1d B1

...
...

. . .
...

...
fd Ad1 · · · Add Bd

g C1 · · · Cd D




1
x1[i]

...
xd[i]
u[i]

 , (8)

where ei denotes the unit vector with 1 in the i− th position.
Here, the collection of matrices f1, f2, . . . Cd, D is called state
space representation of the system, x1[i] ∈ Rn1 , . . . xd[i] ∈
Rnd are the states, u[i] ∈ Rck−1 is the input and y[i] ∈ Rck

is the output of the system. We call (8) a linear time-invariant
N-D system (N = d) if f1 = f2 = . . . = fd = 0 and g = 0.
Otherwise, we call the system affine time-invariant.

Throughout this section, we drop the layer index k to
improve readability and we further define

[
f A B
g C D

]
:=


f1 A11 · · · A1d B1

...
...

. . .
...

...
fd Ad1 · · · Add Bd

g C1 · · · Cd D

 .

Realizing 1-D convolutions in state space is straightforward
[16]. For the important layer type of 2-D convolutions (d = 2),
i.e., the 2-D systemx1[i1 + 1, i2]

x2[i1, i2 + 1]
y[i1, i2]

 =

f1 A11 A12 B1

f2 A21 A22 B2

g C1 C2 D




1
x1[i1, i2]
x2[i1, i2]
u[i1, i2]

 ,

(9)

we use the construction presented in [22] as stated in
Lemma 1.

Lemma 1 (Realization of 2-D convolutions [22]). Consider
a convolutional layer C : ℓ

ck−1

2e (N2
0) → ℓ

ck−1

2e (N2
0) with

representation (5) characterized by the convolution kernel K
and the bias b. This layer is realized in state space by the
matrices

[
A12 B1

C2 D

]
=


K[r1, r2] · · · K[r1, 1] K[r1, 0]

...
. . .

...
...

K[1, r2] · · · K[1, 1] K[1, 0]
K[0, r2] · · · K[0, 1] K[0, 0]

 ,

[
A11

C1

]
=

 0 0
I 0
0 I

 ,
[
A22 B2

]
=

[
0 I 0
0 0 I

]
,

A21 = 0, f1 = 0, f2 = 0, g = b,

where K[i1, i2] ∈ Rck×ck−1 , i1 ∈ [0, r1], i2 ∈ [0, r2].
The state signals (x1[i1, i2])i1,i2∈N0

with x1[i1, i2] ∈ Rn1 ,
n1 = ckr1, and (x2[i1, i2])i1,i2∈N0 with x2[i1, i2] ∈ Rn2 ,
n2 = ck−1r2 are given inductively by (5) with x1[i1, i2] = 0,
x2[i1, i2] = 0 for [i1, i2] ∈ ({0} × N0) ∪ (N0 × {0}).

Proof. See [22] for a proof.

To represent strided convolutions in state space, we require
a reshaping operator as a strided convolution is only shift
invariant with respect to a shift by the stride sk along i. This
reshaping operator Rsk

is given by

ℓ
ck−1

2e (Ndk−1

0 ) →ℓ
ck−1|[1,sk]|
2e (Ndk−1

0 ),

(uk[i]) 7→ (vec(uk[ski+ t] | t ∈ [0, sk[)),

where vec(uk[ski+t] | t ∈ [0, sk[) denotes the stacked vector
of the signal entries uk[ski+t], t ∈ [0, sk[. The resulting state
space representation for a strided convolution then takes this
stacked vector vec(uk[ski + t] | t ∈ [0, sk[) as its input.
Details on the construction of the Roesser model for strided
convolutions and multiple examples can be found in [22].

Remark 2. Finding a mapping from K to (A,B,C,D) for
N-D convolutions and dilated convolutions is also possible,
see [22].

Remark 3. Representing a convolution in state space requires
the choice of a propagation direction for both dimensions.
Usually, for image inputs we pick the upper left corner as
the origin with i1 = i2 = 0. However, any other corner and
corresponding propagation directions can also be chosen to
represent the convolution equivalently. For state space model
layers the propagation dimension, i.e., time is predefined, and
cannot be changed.

III. LIPSCHITZ CONSTANT ESTIMATION

To address Problem 1 of estimating the Lipschitz constant
of an NN, we make use of our interpretation (2) of NNs as
dynamical systems uk+1 = ℓk(uk). Namely, we can pose the
problem of estimating the Lipschitz constant of the neural
network NNθ as the dynamic optimization problem

min
γ∈R

γ (10)

s.t. ∥y1l − y2l ∥2 ≤ γ∥u1
1 − u2

1∥2, ∀u1
1, u

2
1 ∈ D0,

y1k = ℓk(u
1
k), y2k = ℓk(u

2
k), k = 1, . . . , l,

u1
k+1 = y1k, u2

k+1 = y2k, k = 1, . . . , l − 1.

The advantage of the recursive formulation (10) is that it can
be solved using a dynamic programming approach. Namely, by
making use of the principle of optimality, we can recursively
define the incremental value functions

Vl(y
1
l , y

2
l ) = ∥y1l − y2l ∥22, y1l , y

2
l ∈ Dl

Vk−1(u
1
k, u

2
k) = Vk(ℓk(u

1
k), ℓk(u

2
k)), u1

k, u
2
k ∈ Dk−1,

(11)

for k = 1, . . . , l, starting from the l-th layer, and obtain that
(10) is equivalent to finding the smallest γ ∈ R+ such that
V0(u

1
1, u

2
1) ≤ γ2∥u1

1 − u2
1∥22 for all u1

1, u
2
1 ∈ D0. We can

therefore pose (10) as the optimization problem

min
γ,V1,...,Vl

γ2 (12a)

s.t. Vl(y
1
l , y

2
l ) ≥ ∥y1l − y2l ∥22 (12b)

Vk−1(u
1
k, u

2
k) ≥ Vk(ℓk(u

1
k), ℓk(u

2
k)), k = l, . . . , 2

(12c)

γ2∥u1
1 − u2

1∥22 ≥ V1(ℓ1(u
1
1), ℓ1(u

2
1)) (12d)
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over the incremental value functions, where (12b) to (12d)
must hold for all u1

1, u
2
1 ∈ D0 and u1

k, u
2
k, k = 1, . . . , l are

obtained by (2). This problem is equivalent to finding the mini-
mal γ ∈ R+ such that ∥NNθ(u

1
1)−NNθ(u

2
1)∥2 ≤ γ∥u1

1−u2
1∥2

holds for all u1
1, u

2
1 ∈ D0. It involves l constraints of the

form (12c) and (12d). Note that this layer-wise splitting is
computationally favorable over using one large and sparse
constraint for the whole NN.

Still, at the present state, (12) is an intractable problem
due to the optimization over the infinite-dimensional objects
(functions) Vk and the infinitely many constraints (12c) which
must hold for all u1

k, u
2
k ∈ Dk−1. For this reason, we refer

to a very common relaxation from the control literature,
namely, quadratic incremental value functions. To this end,
we constrain the functions Vk to be of the form

Vk(y
1
k, y

2
k) = VXk

(y1k, y
2
k) := ⟨y1k − y2k, Xk(y

1
k − y2k)⟩2

for linear self-adjoint operators Xk on Dk. In the case Dk =
Rck we may simply assume that the operators Xk are in matrix
representation and obtain

VXk
(y1k, y

2
k) = (y1k − y2k)

⊤Xk(y
1
k − y2k).

In the case Dk = ℓck2e(N
dk
0 ), we can represent Xk in terms of

a sequence of matrices (X̃k[i, j])i,j∈Ndk
0

, X̃k[i, j] ∈ Rck×ck

by

VXk
(y1k, y

2
k) =

∑
i,j∈Nd

0

(y1k[i]− y2k[i])
⊤X̃k[i, j](y

1
k[j]− y2k[j]).

W.l.o.g. X̃k can be assumed to be symmetric, i. e., X̃k[i, j] =
X̃k[i, j]

⊤ = X̃k[j, i]. This relaxation is a first step towards
rendering the optimization tractable. Particularly, in the follow-
ing, we derive sufficient LMI conditions for (12c) for every
layer ℓk ∈ {L, C,S, σ,P,F}. That means, we formulate LMIs
which imply

VXk−1
(u1

k, u
2
k) ≥ VXk

(ℓk(u
1
k), ℓk(u

2
k)), (13)

under the assumption Vk = VXk
. The latter is a quadratic

relaxation of (12c) at the k-th layer. For some layers, we
require further restrictions on Xk to state tractable LMIs, as
we will discuss for all individual layer types in the following.

A. The convolutional layer

If ℓk = Ck is a convolutional layer, then Dk−1 = ℓ
ck−1

2e (Nd
0)

and Dk = ℓck2e(Nd
0). Convolutional layers described by (3)

are shift-invariant mappings and a similar property will be
required from the operators Xk. Particularly, we require that
Xk−1 and Xk are of the form

X̃k−1[i, j] =

{
X̃k−1 i = j

0 i ̸= j,
X̃k[i, j] =

{
X̃k i = j

0 i ̸= j,

(14)

i. e., these operators are parametrized by matrices X̃k ∈ Sck
and X̃k−1 ∈ Sck−1 in a block-diagonally repeated fashion.
This restriction might seem confining at first sight, but it
renders the problem computationally tractable and leverages
the structure of convolutional layers, i.e., the shift invariance,

(a) (b) (c)
Fig. 1. (a) No padding, (b) same padding, (c) full padding for a 3×3 kernel
[27].

such that (12c) can be relaxed as an LMI as follows. We denote
the convolution-specific restriction in (14) by Xk ∈ Hy

C and
Xk−1 ∈ Hu

C .

Lemma 2. Consider the k-th layer to be a convolutional layer
ℓk = Ck. For some operators Xk ∈ Hy

C and Xk−1 ∈ Hu
C , the

convolutional layer (3) represented by a Roesser model (8)
satisfies (13) if there exist symmetric matrices P k

m ∈ Snm
+ ,

P k = blkdiag(P k
1 , . . . , P

k
d ) such that[

P k 0

0 X̃k−1

]
−
[
Ak Bk

Ck Dk

]⊤ [
P k 0

0 X̃k

] [
Ak Bk

Ck Dk

]
⪰ 0.

(15)

Proof. A proof of Lemma 2 is given in [17, Theorem 4] for
2-D systems and in Appendix A-A for N-D systems.

We denote the inequality (15) by Gk(Xk−1, Xk, νk) ⪰ 0,
where νk = P k contains the slack variables in (15). We further
note that Lemma 2 is lossless in the cases d = 0, 1, i. e., (13)
holds for the k-th layer if and only if (15) is satisfied. For
d ≥ 2, this is no longer the case and the conservatism of (15)
might depend on the choice of the realization [17] and the
blockdiagonal structure of P k.

Note the special structure of (15). If we understand
X̃k/X̃k−1 as another block of P k, then this matrix inequality
is a Lyapunov inequality for a (d + 1)-D system, where the
(Ak,Bk,Ck,Dk) block plays the role of the A-matrix. This
system is time-varying along the k-axis, which should be
viewed as the time-axis, and time-invariant along all other
axes, which should be viewed as space-axes.

What is more, Lemma 2 can be applied to strided convo-
lutions, but it is not straightforward to do so. In the case of
a strided convolution we pick an intermediate metric defined
through an operator Yk−1 such that

⟨u1
k − u2

k, Xk−1(u
1
k − u2

k)⟩2
= ⟨Rsk

(u1
k − u2

k), Yk−1Rsk
(u1

k − u2
k)⟩2

holds, where we restrict Yk−1 in such a way that

Ỹk−1[i, j] =

{
Ỹk−1 i = j

0 i ̸= j,

always holds for some matrix Ỹk−1 ∈ Sck−1|[0,sk[|. With that,
we can guarantee that inequality (13) is satisfied for the layer
ℓk = Ck,sk

if (15) holds with X̃k−1 replaced by Ỹk−1.
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Another design choice for convolutional layers is the kind of
zero-padding that is used. There are different kinds of padding
as shown in Fig. III-A [27]. We distinguish between full
padding which increases the output dimension, same padding
which preserves it and no/valid padding which decreases it.
The proof of Lemma 2 in Appendix A-A relies on full padding,
which over-approximates the other cases as we argue in the
following. The type of padding decides which finite excerpt
[N1,N2] of the infinite signal on Nd

0 is passed on to the next
layer.

Let [N1,N2] define the excerpt that is used with same or
no zero-padding. In case of full padding, the chosen excerpt
involves all non-zero entries of y1k[·] and y2k[·] such that its
value function is VXk

(y1k, y
2
k). Due to the quadratic nature of

VXk
, its evaluation on a finite excerpt of the same signal yields

the first ineqaulity in
N2∑

i=N1

yk[i]
⊤X̃kyk[i] ≤ VXk

(y1k, y
2
k) ≤ VXk−1

(u1
k, u

2
k),

and the second inequality, i.e., (13), is implied by (15). This
shows that (15) implies (12c) for unpadded and same-padded
signals.

B. The state space model layer

The state space model layer ℓk = Sk is a generalization
of the 1-D convolutional layer, that has recently gained pop-
ularity in the machine learning community [18]. The proof
of Lemma 2 is independent of the structure of Ak, Bk, Ck,
and Dk, which mark the difference between 1-D convolutional
and state space model layers. Accordingly, we use (15) as a
constraint Gk(Xk−1, Xk, νk) ⪰ 0.

C. The fully connected layer

If ℓk = Lk is a fully connected layer, then Dk−1 = Rck−1 ∼=
ℓ
ck−1

2e (N0
0) and Dk = Rck ∼= ℓck2e(N0

0). In this case, we can
understand Xk−1 and Xk as matrices with VXk−1

(u1
k, u

2
k) =

(u1
k − u2

k)
⊤Xk−1(u

1
k − u2

k) and VXk
(y1k, y

2
k) = (y1k −

y2k)
⊤Xk(y

1
k − y2k), as mentioned before. We do not impose

any further restrictions on Xk, Xk−1, i. e., Hy
L = Rck×ck and

Hu
L = Rck−1×ck−1 . The following lemma describes (12c) as

an LMI in a lossless manner.

Lemma 3. Consider the k-th layer to be a fully connected
layer ℓk = Lk. With operators Xk ∈ Hy

L and Xk−1 ∈ Hu
L, a

fully connected layer (7) satisfies (12c) if and only if

Xk−1 −W⊤
k XkWk ⪰ 0. (16)

Proof. The proof follows trivially by right/left multiplication
with u1

k − u2
k and its transpose, respectively, for any u1

k, u
2
k ∈

Rck−1 .

We denote the inequality (16) by Gk(Xk−1, Xk, νk) ⪰ 0,
where νk = [ ] (the empty matrix). We mention that (16) is a
special case of the Lyapunov equation (15) for d = 0, cmp.
Remark 1. In this case, Ak,Bk,Ck,P k are empty matrices
and Dk corresponds to Wk. This observation corresponds to
Remark 1.

D. The activation function layer

If ℓk = σk is an activation function layer, then Dk =
Dk−1 = Rck and Dk = Dk−1 = ℓck2e(N

dk
0 ) are both possible

(recall ck−1 = ck and dk−1 = dk in this case). In case dk > 0,
we choose the operators Xk and Xk−1 to be block-diagonal
and time-invariant, i. e., they satisfy (14). The restriction of
time-invariance is not needed for this layer type, i. e., block-
diagonal multipliers with varying blocks X̃k[i] can also be
used. However, we use the restriction (14) for simplicity and
computational tractability reasons.

The most common activation functions such as ReLU, tanh,
and sigmoid are slope-restricted, i.e., they satisfy the quadratic
constraint (17) of the following lemma.

Lemma 4 (Slope-restriction [28], [29]). Consider an activa-
tion function σ : Rc → Rc that is slope-restricted on [0, 1].
For any Λ ∈ Dc

+, σ satisfies[
x− y

σ(x)− σ(y)

]⊤ [
0 Λ
Λ −2Λ

] [
x− y

σ(x)− σ(y)

]
≥ 0, ∀ x, y ∈ Rc.

(17)

Note that the published version of [28], i.e., [10], falsely
used full matrix multipliers instead of diagonal Λk which
was later corrected by [29]. For slope-restricted activation
functions, (12c) can be relaxed by an LMI as follows.

Lemma 5. Consider the k-th layer to be an activation function
layer ℓk = σk that is slope-restricted on [0, 1]. For some
operators Xk ∈ Hy

C and Xk−1 ∈ Hu
C , this activation function

layer satisfies (13) if there exist Λk ∈ Dck
+ such that[

X̃k−1 −Λk

−Λk 2Λk − X̃k

]
⪰ 0. (18)

Proof. For two arbitrary inputs (u1
k[i]), (u

2
k[i]) ∈

ℓ
ck−1

2e (Ndk−1

0 ) with corresponding outputs
(y1k[i]), (y

2
k[i]), we left and right multiply (18) with[

(y1k[i]− y2k[i])
⊤ (u1

k[i]− u2
k[i])

⊤] and its transpose,
respectively, which yields

(u1
k[i]− u2

k[i])
⊤X̃k−1(u

1
k[i]− u2

k[i])

− (y1k[i]− y2k[i])
⊤X̃k(y

1
k[i]− y2k[i])

≥
[
•
]⊤ [

0 Λk

Λk −2Λk

] [
u1
k[i]− u2

k[i]
y1k[i]− y2k[i]

]
,

where [•]⊤ is inferred by symmetry. Subsequently, we sum
over i ∈ Nd

0 and obtain

VXk−1
(u1

k, u
2
k)− VXk

(y1k, y
2
k)

≥
∑
i∈Nd

0

[
•
]⊤ [

0 Λk

Λk −2Λk

] [
u1
k[i]− u2

k[i]
y1k[i]− y2k[i]

]
≥ 0,

wherein the last inequality follows from Lemma 4.

Note that Lemma 5 also includes activation functions ap-
plied subsequent to fully connected layers, where technically
we need to infer Xk ∈ Hy

L and Xk−1 ∈ Hu
L instead of Hy

C
and Xk−1 ∈ Hu

C . In fact, Xk ∈ Hy
L and Xk−1 ∈ Hu

L are
special cases of Xk ∈ Hy

C and Xk−1 ∈ Hu
C for d = 0, cmp.
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Remark 1. Consequently, we denote the constraint (18) by
Gk(Xk−1, Xk, νk) ⪰ 0 where νk = Λk.

Beside slope-restricted activations, another class of activa-
tion functions that has recently gained popularity are gradient
norm preserving activations such as GroupSort and MaxMin
[20]. These activations are not applied element-wise but to a
vector input u[i] ∈ Rc consisting of all preactivations at i.
GroupSort separates the c preactivations into N groups each
of size ng , i.e., c = Nng , and then sorts these groups in
ascending order. With the restriction

X̃k[i, j] =

{
X̃k ∈ T c

ng
i = j

0 i ̸= j

and an equivalent definition for X̃k−1[i, j], where

T c
ng

= {T ∈ Sc | T = diag(λ)⊗ Ing
+ diag(γ)⊗ 1ng

1⊤
ng
,

λ ∈ Rc/ng

+ , γ ∈ Rc/ng},

we can handle GroupSort activation functions using the fol-
lowing lemma [30]. We denote these structural constraints by
Xk ∈ Hy

σGS and Xk−1 ∈ Hu
σGS .

Lemma 6. Consider the k-th layer to be a GroupSort acti-
vation function ℓk = σGS

k . For some operators Xk ∈ Hy
σGS

and Xk−1 ∈ Hu
σGS , the GroupSort activation function satisfies

the metric bound (13) if the matrices X̃k and X̃k−1 satisfy
0 ⪯ X̃k ⪯ X̃k−1.

Proof. The proof is deferred to Appendix A-B.

E. The pooling layer

If ℓk = Pk is a pooling layer, then Dk−1 = ℓ
ck−1

2e (Nd
0)

and Dk = ℓck2e(Nd
0) for d = dk = dk−1 and ck = ck−1. The

handling of pooling layers is very similar to the handling of
activation function layers. As discussed in [16], for both layer
types there exist quadratic constraints, based on which we find
LMI constraints for the respective layers.

Since pooling layers, i.e., subsampling layers, only make
sense on the signal spaces ℓck2e(Nd

0), we consider these signal
spaces as domain and image spaces and restriction (14) on
the operators Xk and Xk−1. Accordingly, we consider again
static shift invariant value functions

VXk−1
(u1

k, u
2
k) =

∑
i∈Nd

0

(u1
k[i]− u2

k[i])
⊤X̃k−1(u

1
k[i]− u2

k[i]),

VXk
(y1k, y

2
k) =

∑
i∈Nd

0

(y1k[i]− y2k[i])
⊤X̃k(y

1
k[i]− y2k[i]).

Note that theoretically, we could study this problem in the
non-static, non-shift-invariant case. However, pooling layers
will be concatenated with convolutional layers, which is why
the operators Xk and Xk−1 must be shift-invariant and static
in the end. The following lemma shows how we handle the
metric bound (13) with average pooling layers.

Lemma 7. For the average pooling layer, the metric bound
(13) is satisfied if the matrices X̃k and X̃k−1 satisfy the simple
matrix inequality 0 ⪯ µ2

kX̃k ⪯ X̃k−1, µk being the Lipschitz
constant of the average pooling layer.

Normally, we will set X̃k−1 = µ2
kX̃k. For maximum

pooling layers, we require an additional restriction, namely
X̃k = diag(λk), λk ∈ Rck , X̃k−1 = diag(λk−1), λk−1 ∈
Rck−1 , yielding the next lemma.

Lemma 8. For the maximum pooling layer, the metric bound
(12c) is satisfied if the matrices X̃k and X̃k−1, that are
parametrized as X̃k = diag(λk), X̃k−1 = diag(λk−1), satisfy
0 ≤ µ2

kλ
i
k ≤ λi

k−1 for i = 1, . . . , ck with Lipschitz constant
µk of the maximum pooling layer.

Again, we will normally require µ2
kλ

i
k = λi

k−1. It is
common to choose the kernel size rk and the stride sk to be
the same. In that case the Lipschitz constant of a maximum
pooling layer is 1. We denote the restriction of the operators
for maximum pooling layers, including the diagonality con-
straints, by Xk ∈ Hy

Pmax and Xk−1 ∈ Hu
Pmax . Furthermore,

we denote by Gk(Xk−1, Xk, νk) ⪰ 0 the respective constraint
for these layers with νk = [ ].

F. Flattening operations

In our setup, flattening operations have the role of reshaping
tensor outputs from ℓ

ck−1

2e (Ndk−1

0 ) as vectors. In particular, they
rearrange the output of a convolutional layer with dk−1 > 0 as
a vector before it can serve as an input for a fully connected
layer. We have mentioned that, theoretically, a flattening op-
eration could also map/project an element from ℓ

ck−1

2e (Ndk−1

0 )
to ℓck2e(N

dk
0 ), where dk−1 > dk. However, we consider only

the most relevant case of dk = 0 in this section.
In this case, Fk maps a patch (uk[i] | Nk1 ≤

i ≤ Nk2) to the stacked vector of uk[i], i. e., yk =[
uk[Nk1]

⊤ · · · uk[Nk2]
⊤]⊤. Thus, we obtain the follow-

ing lemma.

Lemma 9. Consider a flattening operation Fk+1 :
ℓck2e(N

dk
0 ) → Rck+1 , with support [Nk1,Nk2] and ck+1 =

ck|[Nk1,Nk2]|. The incremental value function VXk
can be

denoted as∑
i,j∈Ndk

0

(u1[i]− u2[i])⊤X̃k[i, j](u
1[j]− u2[j]).

Then the dynamic programming inequality (13) is satisfied if
and only ifX̃k[Nk1,Nk1] · · · X̃k[Nk1,Nk2]

...
. . .

...
X̃k[Nk2,Nk1] · · · X̃k[Nk2,Nk2]

 ⪰ Xk+1. (19)

The matrix inequality (19) is an instance of
Gk(Xk, Xk+1, νk) ⪰ 0 with ν = [ ] and Hy

F and Hu
F

technically impose no additional restrictions on Xk and
Xk+1 of the flattening operation. However, usually, the
value function VXk

will be both static and time-invariant
due to output restrictions on Xk of the previous layer, e.g.,
Xk ∈ Hy

C , i. e., X̃k[i, j] = X̃k for i = j and zero otherwise.
In addition, we can require equality in (19), in which case
Xk+1 = I|[Nk1,Nk2]| ⊗ X̃k is a block diagonal matrix with
|[Nk1,N2k]| copies of X̃k on its diagonal.
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G. Subnetworks

Up to now, we considered all building blocks of (1) as
individual entities and require individual constraints (13) for
all these layers. However, for the implementation of (12) and
computational reasons, it is convenient to combine multiple
layers as a subnetwork. We then include a constraint of
type (13) for the subnetwork. A typical concatenation is the
combination of linear layers with the succeeding nonlinear
activation functions, i. e., σ◦C for convolutional layers or σ◦L
for fully connected layers.

Lemma 10. Consider the k-th layer to be the concatenation
of a convolutional layer and an activation function layer,
that is slope-restricted on [0, 1], ℓk = (σ ◦ C)k. For some
Xk ∈ Hy

C and Xk−1 ∈ Hu
C , the concatenation (σ ◦ C)k

satisfies (13) if there exist symmetric matrices Pm ∈ Snm
+ ,

P = blkdiag(P1, . . . , Pd) and a diagonal matrix Λk ∈ Dck
+

such thatP k −A⊤
k P kAk −A⊤

k P kBk −C⊤
k Λk

−B⊤
k P kAk X̃k−1 −B⊤

k P kBk −D⊤
k Λk

−ΛkCk −ΛkDk 2Λk − X̃k

 ⪰ 0.

(20)

Proof. The proof follows along the lines of the proof of
Lemma 15, additionally using typical arguments from robust
control [31]. It can be found in Appendix A-C.

The condition (20) is treated as an instance of
G(Xk, Xk−1, νk) with νk = (P k,Λk). For an additional
pooling layer, i. e. P◦σ◦C, we can extend Lemma 10 easily by
replacing X̃k with µ2

kX̃k and considering the output restriction
Xk ∈ Hy

Pmax
in case a maximum pooling layer is added.

Lemma 11. Consider the k-th layer to be the concatenation
of a fully connected layer and an activation function layer, that
is slope-restricted on [0, 1], ℓk = (σ◦L)k. For some Xk ∈ Hy

L
and Xk−1 ∈ Hu

L, the concatenation (σ ◦ L)k satisfies (13) if
there exists a diagonal matrix Λk ∈ Dnyk

+ such that[
Xk−1 −W⊤

k Λk

−ΛkWk 2Λk −Xk

]
⪰ 0. (21)

Proof. We can view condition (21) as a special case of (20),
cmp. Remark 1, and therefore, we refer to the proof of
Lemma 10 in Appendix A-C.

Note that we can also combine more layers, yielding larger
and sparser LMIs but renouncing the decision variables Xk at
the transition between the layers. Extensions of Lemmas 10
and Lemma 11 of this kind can be found in Appendix B-A.
If we combine all layers of a fully connected neural network,
we obtain the LMI originally proposed in [10].

Remark 4. Throughout this subsection, we consider slope-
restricted activations. However, all LMIs can also be formu-
lated for GroupSort activations based on Lemma 6 [30].

H. Residual layers and skip connections

In deep learning, neural network structures that include skip
connections, called residual NNs or ResNets, have proven to
avoid vanishing and exploding gradients [19]. We define such

residual layers as a combination of linear layers (convolutional
or fully connected) and nonlinear activation functions

yk = σ(uk +M(uk)), (22)

where M(uk) is a feedforward NN (1) of arbitrary length and
uk ∈ Dk−1 and yk ∈ Dk. We in addition require Dk = Dk−1

as well as M : Dk−1 → Dk−1. For example, a ResNet layer
that skips a fully connected network with one hidden layer
reads

yk = σ(uk +W2σ(W1uk + bk)). (23)

with W1 ∈ Rnvk
×ck−1 , W2 ∈ Rck×nvk , nvk being the

dimension of vk := σ(W1uk + bk).
In the following lemma, we describe how the simple skip

connection (23) leads to an LMI relaxation for (13). More gen-
eral skip connections can be treated with the same arguments;
see Appendix B-B.

Lemma 12. Consider the k-th layer to be a residual layer
(23) with activation functions that are slope-restricted in [0, 1].
For some Xk ∈ Hy

L and Xk−1 ∈ Hu
L, the ResNet layer (23)

satisfies (13) if there exist Λ1 ∈ Dnvk
+ , Λ2 ∈ Dnyk

+ such that Xk−1 −W⊤
1 Λ1 −Λ2

−Λ1W1 2Λ1 −W⊤
2 Λ2

−Λ2 −Λ2W2 2Λ2 −Xk

 ⪰ 0. (24)

Proof. A proof can be found in Appendix A-D

I. Semidefinite relaxation for Lipschitz constant estimation

In the previous sections, we discussed relaxations for the
dynamic programming inequality (12c) for incremental value
functions defined by self-adjoint operators Xk, i.e., for every
single type of layer or subnetwork ℓ ∈ {L, C, σ,P,R,F} ∪
{σ ◦ L, σ ◦ C,P ◦ σ ◦ C} ∪ {residual layer}, we formulated
a semi-definite constraint relaxing (12c). As a result, we can
pose the optimization problem

min
X0,...,Xl,ν1,...,νl,γ2

γ2 (25)

subject to X0 = γ2I,

Gk(Xk, Xk−1, νk) ⪰ 0, k = 1, . . . , l,

Xk ∈ Hy
ℓk

∩Hu
ℓk+1

, k = 1, . . . , l − 1,

Xl = I.

as a tractable relaxation of (12). The resulting optimization
problem (25) is an SDP in the variables involved with at most
one SDP constraint per layer (flattening and pooling layers do
not produce SDP constraints). Here, the index k = 1, . . . , l
counts through all layers/subnetworks that we consider.

Notice that each operator Xk has to satisfy the restrictions
of two layers by Xk ∈ Hy

ℓk
∩ Hu

ℓk+1
. An example is the

concatenation of a convolution and a strided convolution that
invokes Ỹk = I|[1,s]| ⊗ X̃k or the flattening layer invoking
Xk = I|[N1k,N2k]| ⊗ X̃k onto Xk.
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IV. ANALYSIS OF THE CONSERVATISM

With the exact dynamic programming recursion (11) it is
(theoretically) possible to compute the exact Lipschitz constant
of an NN using (12). For reasons of computational tractability,
however, we propose the relaxation (25). For the derivation of
this SDP, several relaxation steps were made resulting in the
following sources of conservatism.

1) Quadratic incremental value functions VXk
(y1k, y

2
k) =

⟨y1k − y2k, Xk(y
1
k − y2k)⟩2.

2) Layer specific restrictions Xk−1 ∈ Hu
ℓk

and Xk ∈ Hy
ℓk

.
3) Cut-off errors caused by handling convolutional layers

as mappings on infinite-dimensional sequence spaces,
whereas in reality only finitely supported image signals
are processed.

Note that 3) can be viewed as a special case of 2), since con-
sidering general operators Xk instead of space-shift invariant
operators would resolve this issue.

Our approach leverages the concatenation and individual
layer structures of the NN, resulting in computational advan-
tages and superior scalability compared to [10], [17]. Having
discussed the sources of conservatism in our methodology, we
will now justify why our proposed method for estimating the
Lipschitz constant is not more restrictive than [10], [17]. To
this end, we analyze a fully connected NN of the form

FNNθ = Ll ◦ σl−1 ◦ · · · ◦ σ2 ◦ L1,

also considered in LipSDP [10]. As suggested in [16], we can
use the semi-definite constraint

Ql − I Sl

S⊤
l Rl +Ql−1 Sl−1

S⊤
l−1 Rl−1 +Ql−2

. . .
. . .

. . . S1

S⊤
1 R1 + γ2I

 ⪯ 0,

(26)

where[
−2Λk ΛkWk

W⊤
k Λk 0

]
⪯

[
Qk Sk

S⊤
k Rk

]
, k = 1, . . . , l (27)

is used instead of (21) as layer-wise LMI constraints for fully
connected layers for Lipschitz constant estimation. To recover
LipSDP [10] simply replace the conic inequality in (27) with
an equality.

The following theorem implies that it poses no restric-
tion to parameterize the dissipativity blocks as

[
Qk Sk

S⊤
k Rk

]
=[

Xk 0
0 −Xk−1

]
, where Xl = I and X0 = γ2I , as done in this

work.

Theorem 1. Assume that the matrix inequality (26) is satisfied.
Then there exists a sequence of matrices X0, . . . , Xl such that
X0 = γ2I , Xl = I and[

Qk Sk

S⊤
k Rk

]
⪯

[
Xk 0
0 −Xk−1

]
, k = 1, . . . l. (28)

Proof. See Appendix A-E.

It follows from Theorem 1 that the LMIs (26), (27) are
equivalent to (21), k = 1, . . . , l, X0 = γ2I , Λl = I , Xk = I .

Consequently, the parameterization of Qk, Sk, Rk via Xk does
not introduce conservatism into the problem, i.e, the optimal
value of γ found solving

min
γ2,Λ,Q,S,R

γ2 s. t. (26), (27), (29)

where Λ = (Λ1, . . . ,Λl), Q = (Q1, . . . , Ql), S =
(S1, . . . , Sl) and R = (R1, . . . , Rl), and the optimal value
of γ from

min
γ2,Λ,X

γ2 s. t. (21), k = 1, . . . , l, X0 = γ2I,Xl = I,Λl = I

(30)
where Λ = (Λ1, . . . ,Λl), X = (X1, . . . , Xl−1), are equiv-
alent. We note that (30) is an instance of (25) for a fully
connected neural network.

Another consequence of the result in Theorem 1 is that our
approach of choosing the sequence of matrices (Xk) such that
they satisify (28) as our incremental value functions in (25)
is not more conservative than LipSDP. The relation of (25)
to [17], that includes convolutional layers, can be shown in a
similar fashion.

Remark 5. For the special case of a fully connected NN our
proposed layer-wise LMI constraints (21) correspond to the
decomposition of the LMI in LipSDP by chordal sparsity [15],
also yielding a set of LMI constraints that are equivalent to
LipSDP [10].

Remark 6. The result of Theorem 1 can be interpreted as the
statement that for a series interconnection of QSR-dissipative
mappings, it suffices to consider supply rates s(u1

k − u2
k, y

1
k −

y2k) of the form〈[
u1
k − u2

k

y1k − y2k

]
,

[
Xk 0
0 −Xk−1

] [
u1
k − u2

k

y1k − y2k

]〉
2

.

To summarize, the SDP (25) exploits the structure of NNs
in two ways. Firstly, it exploits the concatenation structure of
neural networks to generate l small SDP constraints instead
of one large and sparse constraint, and, secondly, it utilizes
the fact that convolutional layers and state space model layers
are dynamical systems. This gives (25) one advantage over
[17], where only the dynamical system nature of convolutional
layers is exploited and two advantages over LipSDP [10] in
terms of scalability.

Remark 7. Convolutional layers can be recast as fully con-
nected layers and the experiments in [17] show that this
recasting can reduce conservatism in comparison to (25) as
it relaxes the layer specific restrictions in comparison to
Xk−1 ∈ Hu

C and Xk ∈ Hy
C . However, as it also becomes

apparent in [17], this relaxation has a high computational
cost.

V. SIMULATION RESULTS

In this section, we illustrate the computational advantages of
our method and show its versatility by using it for Lipschitz
constant estimation for multiple popular neural network ar-
chitectures. We provide our code at https://github.com/ppauli/
GLipSDP. This code is written in a modular fashion such that
it can be applied easily to any neural network architecture

https://github.com/ppauli/GLipSDP
https://github.com/ppauli/GLipSDP
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Fig. 2. Lipschitz bounds γ using LipSDP, GLipSDP/CLipSDP, and the matrix
product bound (MP) on fully convolutional neural networks with depths d =
{2, 4, 8, 16} and channel sizes c = {8, 16, 32}.
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Fig. 3. Computation times for fully convolutional networks with depths d =
{2, 4, 8, 16} and channel sizes c = {8, 16, 32} for GLipSDP ( ) and
CLipSDP ( ). indicates the computation time using LipSDP. For larger
networks, LipSDP runs into memory issues.

involving layers considered in this paper. All computations
are carried out on a standard i7 note book using Yalmip [32]
with the solver Mosek [33] in Matlab.

In the following subsections, we denote our method by
GLipSDP (general LipSDP) based on SDP (25) and compare
it to LipSDP [34] and CLipSDP (convolutional LipSDP) [17].
In addition, we compute a trivial matrix norm product bound
(MP), the product of the spectral norms of the weights [4].
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Fig. 4. Computation times for GLipSDP using 16, 8, 4, 2, 1 subnetworks for
a 16-layer fully-convolutional network with 8 and 16 channels. The resulting
Lipschitz bound is the same for all computations.

A. Scalability improvements on fully convolutional networks

First, we show the computational advantage of our structure
exploiting approach in fully convolutional neural networks.
To do so, we train CNNs with backbones of depths d =
{2, 4, 8, 16} and channel sizes c = {8, 16, 32} on the MNIST
dataset [35], We then analyze the fully convolutional back-
bones of these neural networks, i.e., a subnetwork σ◦C · · ·σ◦C
which only consists of convolutional layers. The input size to
the backbone is 14 × 14 and is kept constant throughout all
backbone layers.

Fig. 2 shows the Lipschitz bounds obtained using LipSDP,
GLipSDP (ours), CLipSDP, and MP. We first note that
GLipSDP and CLipSDP produce the same bounds, both re-
lying on a 2-D systems representation for the convolutional
layers. As expected from the discussion on conservatism in
Section IV, the bounds obtained using LipSDP are tighter
than the ones obtained using GLipSDP/CLipSDP. However,
LipSDP relies on a sparse and large Toeplitz matrix description
of convolutional layers, cmp. Remark 7, and the underlying
SDP runs into memory issues for all networks except the
smallest one (c = 8, d = 2). Further, we point out that both
GLipSDP/CLipSDP and LipSDP are tighter than the trivial
matrix product bound MP.

In Fig. 3 we compare the computation times of GLipSDP,
CLipSDP, and LipSDP. For d = 2, c = 8, we can compare
all three methods, noting that LipSDP takes more than 5000
times longer than GLipSDP, while CLipSDP is only slightly
slower than GLipSDP. For all other networks, we compare
GLipSDP and CLipSDP, noting that the deeper the network the
larger the computational advantage of using GLipSDP. What
distinguishes our method GLipSDP from CLipSDP is that we
consider layer-wise LMIs rather than one large and sparse LMI
constraint.

Next, we only consider the 16-layer fully-convolutional
networks with channel sizes 8 and 16 (d = 16, c = {8, 16})
and we apply GLipSDP but vary the number of layers com-
bined in subnetworks, cmp. Section III-G. More specifically,
we compute an upper Lipschitz bound using layer-wise LMI
constraints, i.e., 16 LMI constraints, and then combine 2, 4, 8,
16 layers to form subnetworks, then applying GLipSDP with 8,
4, 2, and 1 LMI constraints instead of 16. GLipSDP yields the
same Lipschitz bounds for all subnetwork configurations, yet it
requires different computation times that are shown in Fig. 4.
In this experiment, we clearly see that it is computationally
advantageous to use multiple smaller LMI constraints, i.e.,
exploit the layer-by-layer structure of the network.

B. Convolutional neural networks for image classification

Next, we compute upper bounds on the Lipschitz constant
for typical CNN architectures, including LeNet-5 [36], the
NNs used in [37], and 18-layer residual neural networks,
on the MNIST [35] and CIFAR-10 datasets. Details on the
architectures are deferred to Appendix C. In Table I, we
compare our method (GLipSDP) to the trivial matrix product
bound (MP) and two variations of GLipSDP and GLipSDP:

• S-LipSDP: As LipSDP runs into memory issues for the
chosen architectures, we apply LipSDP on possibly large
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TABLE I
LIPSCHITZ BOUNDS (COMPUTATION TIMES) FOR DIFFERENT MODELS WITH STATED ACCURACIES.

Dataset Model Acc. GLipSDP S-GLipSDP S-LipSDP MP

MNIST

LeNet-5 99.0% 201.5 (126) 237.8 (117) 292.4 (17) 423.7
2C2F 96.0% 7.042 (909) 10.46 (329) 9.629 (7344) 16.06
4C3F 99.2% – 5.564E+5 (2659) 1.319E+7 (638) 1.624E+7
FC-R18 97.4% 7.265E+3 (59) 5.904E+4 (4) 1.278E+5 (1) 4.435E+5
C-R18 98.7% 3.616E+8 (98) 6.056E+8 (36) 9.78E+7 (77471) 7.818E+8

CIFAR-10 LeNet-5 61.2% 3182.6 (152) 3500.6 (97) 3134.8 (22) 4875.7
6C2F 68.4% – 1.213E+7 (8729) – 1.688E+7

subnetworks that are analyzed separately. The product
of the Lipschitz estimates for the subnetworks yields an
upper bound for the network.

• S-GLipSDP: We also compute S-GLipSDP (Split
GLipSDP), splitting the neural network into subnetworks
that are convenient to handle and apply GLipSDP to the
subnetworks. Again, the product of the bounds of the
subnetworks gives an upper bound for the entire NN.

All splits into subnetworks for S-GLipSDP and S-LipSDP are
listed in Table III and IV, respectively, in Appendix C.

In Table I, we summarize the resulting Lipschitz bounds
and computation times of the different neural networks. We
observe that for LeNet-5 trained on MNIST, 2C2F, and FC-
R18 GLipSDP produces the best bounds and shows reasonably
short computation times. For 4C3F and 6C2F, we point out
that GLipSDP runs into memory issues. However, here, S-
GLipSDP generates the lowest Lipschitz bounds. C-R18 is
an example demonstrating that the introduced conservatism in
the handling of convolutional layers as 2-D systems can lead
to larger bounds than using S-LipSDP. However, comparing
the computation times, we recognize that GLipSDP is almost
800 times faster while also generating a much better bound
than the matrix product bound. In LeNet-5 for CIFAR-10,
S-LipSDP is slightly better than GLipSDP. We suspect that
handling maximum pooling layers via quadratic constraints
is not ideal and, as discussed before, using a 2-D systems
representation for convolutions introduces conservatism.

VI. CONCLUSION

We presented a versatile and scalable approach for Lipschitz
constant estimation for a large class of neural network archi-
tectures. Our approach views the neural network as a time-
varying dynamical system, where we interpret the layer indices
as time indices. This view allows us to exploit the layer-
wise composition structure of neural networks. In addition,
we leverage the structure of the individual layers, especially
of convolutional layers that we represent as N-D systems of
the Roesser type. We wrote our code in a modular fashion
such that it can easily be used for all neural networks that
include the layer types considered in this paper. Future work
includes the synthesis of Lipschitz bounded neural networks
based on the LMIs presented in this paper.
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APPENDIX A
ADDITIONAL PROOFS

A. Proof of Lemma 2

We assume that the convolutional layer ℓk = Ck is re-
alized as a Roesser system (8). This means that for any
(u[i]) ∈ ℓ

ck−1

2e (Ndk−1

0 ), there exists a uniquely defined (x[i]) ∈
ℓn2e(N

dk−1

0 ) with x[i] =
[
x1[i]

⊤ · · · xdk−1
[i]⊤

]⊤
and

xj [i] = 0 ∀i ∈ Ndk−1

0 , ij = 0, (31)

such that (uk[i], x[i], yk[i]) with yk = ℓk(uk) satisfies (8),
where ij denotes the j-th index in i.

Hence, let two arbitrary inputs (u1
k[i]), (u

2
k[i]) ∈

ℓ
ck−1

2e (Ndk−1

0 ) be given and let (y1k[i]), (y
2
k[i]), (x

1[i]), (x2[i])
denote the corresponding state and output response of the layer
ℓk. We deliberately exclude a layer index for x[i], and use
the subscript in xj [i] to count through j = 1, . . . , d. Multi-
plying the matrix inequality (15) from the left by the vector[
(x1[i]− x2[i])⊤ (u1

k[i]− u2
k[i])

⊤] and from the right by its
transpose yields the inequality

d∑
j=1

(x1
j [i]− x2

j [i])
⊤Pj(x

1
j [i]− x2

j [i])

+ (u1
k[i]− u2

k[i])
⊤X̃k−1(u

1
k[i]− u2

k[i])

≤
d∑

j=1

(x1
j [i+ ej ]− x2

j [i+ ej ])
⊤Pj(x

1
j [i+ ej ]− x2

j [i+ ej ])

+ (y1k[i]− y2k[i])
⊤X̃k(y

1
k[i]− y2k[i]).

Note that the bias terms do not need to be considered, since
they cancel out when computing the differences x1

j [i+ ej ]−
x2
j [i+ ej ]. Summing this inequality over all i ∈ Ndk−1

0 yields

∑
i∈Nd

0

d∑
j=1

(x1
j [i]− x2

j [i])
⊤Pj(x

1
j [i]− x2

j [i])

+
∑
i∈Nd

0

(u1
k[i]− u2

k[i])
⊤X̃k−1(u

1
k[i]− u2

k[i])

≤
d∑

j=1

∑
i∈Nd

0 ,ij≥1

(x1
j [i]− x2

j [i])
⊤Pj(x

1
j [i]− x2

j [i])

+
∑
i∈Nd

0

(y1k[i]− y2k[i])
⊤X̃k(y

1
k[i]− y2k[i]).
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These sums all converge since all signals are in ℓ2e(N
dk−1

0 ), as
the convolutional layer is a finite impulse response filter and,
therefore, it is stable. Canceling terms on both sides yields∑

i∈Nd
0

(u1
k[i]− u2

k[i])
⊤X̃k−1(u

1
k[i]− u2

k[i])

≤
d∑

j=1

∑
i∈Nd

0 ,ij=0

(x1
j [i]− x2

j [i])
⊤Pj(x

1
j [i]− x2

j [i])

+
∑
i∈Nd

0

(y1k[i]− y2k[i])
⊤X̃k(y

1
k[i]− y2k[i]).

Here, the sum over the boundary terms∑d
j=1

∑
i∈Nd

0 ,ij=0(x
1
j [i] − x2

j [i])
⊤Pj(x

1
j [i] − x2

j [i]) is
zero, cmp. (31), such that this inequality is exactly what we
had to show.

B. Proof of Lemma 6

To prove Lemma 6, we require the following lemma, which
is a simplification of [30, Lemma 1] that directly follows for
P = S = 0 in [30, Lemma 1].

Lemma 13. Consider a GroupSort activation σGS : Rc → Rc

with group size ng . For any T ∈ T c
ng

, σGS satisfies[
x− y

σ(x)− σ(y)

]⊤ [
T 0
0 −T

] [
x− y

σ(x)− σ(y)

]
≥ 0, ∀ x, y ∈ Rc.

If X̃k−1 ∈ T c
ng

and X̃k ∈ T c
ng

satisfy 0 ⪯ X̃k ⪯ X̃k−1,
there exists a multiplier T ∈ T c

ng
that satisfies 0 ⪯ X̃k ⪯ T ⪯

X̃k−1, for which we equivalently write[
X̃k−1 − T 0

0 −X̃k + T

]
⪰ 0. (32)

Let (u1
k[i]), (u

2
k[i]) ∈ ℓ

ck−1

2e (Ndk−1

0 ) be two arbitrary
inputs with corresponding outputs (y1k[i]), (y

2
k[i]) pf

the GroupSort activation layer. We multiply (32) with[
(u1

k − u2
k)

⊤ (y1k − y2k)
⊤] from the left and its transpose

from the right and further sum over i ∈ Nd
0, to obtain

VXk−1
(u1

k, u
2
k)− VXk

(y1k, y
2
k)

≥
∑
i∈Nd

0

[
u1
k[i]− u2

k[i]
y1k[i]− y2k[i]

]⊤ [
T 0
0 −T

] [
u1
k[i]− u2

k[i]
y1k[i]− y2k[i]

]
≥ 0,

where the last inequality follows from Lemma 13.

C. Proof of Lemma 10

Let two arbitrary inputs (u1
k[i]), (u

2
k[i]) ∈ ℓ

ck−1

2e (Ndk−1

0 )
be given and let (y1k[i]), (y

2
k[i]), (x1[i]), (x2[i]) denote the

corresponding state and output response of the layer ℓk, where
xm[i] =

[
xm
1 [i]⊤ · · · xm

dk−1
[i]⊤

]⊤
, m = 1, 2. We left/right

multiply (15) with[
(x1[i]− x2[i])⊤ (u1

k[i]− u2
k[i])

⊤ (y1k[i]− y2k[i])
⊤]

and its transpose, respectively, and obtain
d∑

j=1

(x1
j [i]− x2

j [i])
⊤Pj(x

1
j [i]− x2

j [i])

+ (u1
k[i]− u2

k[i])
⊤X̃k−1(u

1
k[i]− u2

k[i])

+ 2(y1k[i]− y2k[i])
⊤Λk(y

1
k[i]− y2k[i])− 2(y1k[i]− y2k[i])

⊤

Λk(Ck(x
1
k[i]− x2

k[i]) +Dk(u
1
k[i]− u2

k[i]))

≤
d∑

j=1

(x1
j [i+ ej ]− x2

j [i+ ej ])
⊤Pj(x

1
j [i+ ej ]− x2

j [i+ ej ])

+ (y1k[i]− y2k[i])
⊤X̃k(y

1
k[i]− y2k[i]).

Subsequent summation over all i ∈ Ndk−1

0 then yields∑
i∈Nd

0

(u1
k[i]− u2

k[i])
⊤X̃k−1(u

1
k[i]− u2

k[i])

+ 2(y1k[i]− y2k[i])
⊤Λk(y

1
k[i]− y2k[i])− 2(y1k[i]− y2k[i])

⊤

Λk(Ck(x
1
k[i]− x2

k[i]) +Dk(u
1
k[i]− u2

k[i]))

≤
∑
i∈Nd

0

(y1k[i]− y2k[i])
⊤X̃k(y

1
k[i]− y2k[i]),

again using the arguments laid out in the proof of Lemma 2,
By Lemma 5, we conclude that 2(y1k − y2k)

⊤Λk(y
1
k − y2k)−

2(y1k − y2k)
⊤Λk(Ck(x

1
k − x2

k) + Dk(u
1
k − u2

k)) ≥ 0 for all
i ∈ Nd

0 such that we obtain (13).

D. Proof of Lemma 12
For some u1

k, u
2
k ∈ Rnuk and the corresponding interme-

diate outputs v1k, v
2
k ∈ Rnvk , and outputs y1k, y

2
k ∈ Rnyk

of the ResNet layer (23), we left/right multiply (24) with[
(u1

k − u2
k)

⊤ (v1k − v2k)
⊤ (y1k − y2k)

⊤] and its transpose,
respectively. We obtain

VXk−1
(u1

k, u
2
k)− VXk

(y1k, y
2
k) ≥

− 2(v1k − v2k)
⊤Λ1(v

1
k − v2k) + 2(v1k − v2k)

⊤Λ1W1(u
1
k − u2

k)

− 2(y1k − y2k)
⊤Λ2(y

1
k − y2k)+

2(y1k − y2k)
⊤Λ2((W2v

1
k + u1

k)− (W2v
2
k + u2

k)).

Given that the activation functions are slope-restricted on
[0, 1], we use Lemma 5 to conclude that −2(v1k−v2k)

⊤Λ1(v
1
k−

v2k) + 2(v1k − v2k)
⊤Λ1W1(u

1
k − u2

k) ≥ 0 and −2(y1k −
y2k)

⊤Λ2(y
1
k − y2k) + 2(y1k − y2k)

⊤Λ2((W2v
1
k + u1

k)− (W2v
2
k +

u2
k)) ≥ 0, respectively. It follows that VXk−1

(u1
k, u

2
k) −

VXk
(y1k, y

2
k) ≥ 0.

E. Proof of Theorem 1
We prove Theorem 1 by induction.

Induction hypothesis: If for some (Q1, . . . , Ql),
(R1, . . . , Rl), (S1, . . . , Sl), Zl and γ > 0

Ql − Zl Sl

S⊤
l Rl +Ql−1 Sl−1

S⊤
l−1 Rl−1 +Ql−2

. . .
. . .

. . . S1

S⊤
1 R1 + γ2I

 ⪯ 0

(33)
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is satisfied, then there exists a sequence of matrices
(X0, . . . , Xl) such that X0 = γ2I , Xl = Zl and (28) holds.
Start of induction: l = 1. Assume[

Q1 − Z1 S1

S⊤
1 R1 + γ2I

]
⪯ 0

holds for some Q1, R1, S1, γ > 0, and Z1 ⪰ 0. Then
obviously (28) is satisfied with X0 = γ2I , X1 = Z1:[

Q1 S1

S⊤
1 R1

]
⪯

[
Z1 0
0 −γ2I

]
.

Induction step: l → l + 1. Assume that our induc-
tion hypothesis holds for l. Let for some (Q1, . . . , Ql+1),
(R1, . . . , Rl+1), (S1, . . . , Sl+1), Zl+1, γ > 0 the inequality
Ql+1 − Zl+1 Sl+1

S⊤
l+1 Rl+1 +Ql Sl

S⊤
l Rl +Ql−1

. . .
. . .

. . . S1

S⊤
1 R1 + γ2I

⪯0

(34)

hold, which implies Ql+1 − Zl+1 ⪯ 0. There exists an
orthogonal matrix V of the eigenvectors of Ql+1 − Zl+1

that diagonalizes Ql+1 − Zl+1 by a similarity transforma-
tion, i. e., V ⊤(Ql+1 − Zl+1)V is a diagonal matrix. We
construct V =

[
V1 V2

]
in such a way that V ⊤(Ql+1 −

Zl+1)V = diag(0, . . . , 0, v1, . . . , vn) = blkdiag(0, D),
V ⊤
1 (Ql+1 − Zl+1)V1 = 0, V ⊤

2 (Ql+1 − Zl+1)V2 = D, where
v1, . . . , vn < 0 and n is the rank of Ql+1−Zl+1. Next, we left
and right multiply (34) with the full-rank matrix diag(V ⊤, I)
and its transpose diag(V, I), respectively, which yields

[
0 0
0 D

] [
0

V ⊤
2 Sl+1

]
[
0 S⊤

l+1V2

]
Rl+1 +Ql

. . .
. . .

. . . S1

S⊤
1 R1 + γ2I

 ⪯ 0 (35)

and further, we drop the cl+1 − n zero rows and columns of
(35), resulting in

D V ⊤
2 Sl+1

S⊤
l+1V2 Rl+1 +Ql Sl

S⊤
l Rl +Ql−1

. . .
. . .

. . . S1

S⊤
1 R1 + γ2I

⪯0.

(36)

We now apply the Schur complement to (36) with respect to D,
which yields that (36) is negative semi-definite if and only if
(33) and D ≺ 0 hold, where Zl = S⊤

l+1V2D
−1V ⊤

2 Sl+1−Rl+1.
Given that the diagonal matrix D has only entries v1, . . . , vn <
0, D ≺ 0 is satisfied and D is invertible. By the induction
hypothesis, there exists a sequence of matrices X0, . . . , Xl

such that X0 = γ2I , Xl = Zl, (28). The equality Xl = Zl

implies that there exists at least one Xl that satisfies Xl ⪯ Zl

and
[

Ql Sl

S⊤
l Rl

]
⪯

[
Xl 0
0 −Xl−1

]
. Here, Xl ⪯ Zl reads Xl ⪯

S⊤
l+1V2D

−1V ⊤
2 Sl+1 − Rl+1. By the Schur complement, we

then get [
D V ⊤

2 Sl+1

S⊤
l+1V2 Rl+1 +Xl

]
⪯ 0,

to which we again add the dropped cl+1 − n zero rows and
columns, yielding[

V ⊤(Ql − Zl)V V ⊤Sl+1

S⊤
l+1V Rl+1 +Xl

]
⪯ 0. (37)

Subsequently, we left and right multiply (37) with diag(V, I)
and its transpose diag(V ⊤, I), respectively, yielding[

Ql+1 − Zl+1 Sl+1

S⊤
l+1 Rl+1 +Xl

]
⪯ 0,

and we further set Xl+1 = Zl+1, which concludes the
induction step.

The statement of the theorem is a special case of our
induction hypothesis for Zl = I .

APPENDIX B
FURTHER LMI CONSTRAINTS

A. Subnetworks

Usually we consider the combination of a linear layer with
a nonlinear activation as shown in Section II-B and formulate
LMI constraints for this combination. However, combining
multiple layers is also possible. While producing larger LMI
constraints, we renounce the use of the decision variables at
the transition of layers, i.e., Xk, which reduces the number of
decision variables. The following LMIs state the corresponding
constraints.

Lemma 14. Consider the k-th layer to be a fully connected
subnetwork (σl◦Ll−1◦· · ·◦σ2◦L1)k with activation functions
that are slope-restricted in [0, 1]. For some Xk ∈ Hy

L and
Xk−1 ∈ Hu

L, this subnetwork satisfies (13) if there exist Λj ∈
D

nyj

+ , j = 1, . . . , l, such that GL(Xk−1, Xk, νk) :=

Xk−1 −W⊤
1 Λ1 0 · · · 0

−Λ1W1 2Λ1 −W⊤
2 Λ1

. . .
...

0 −Λ2W2
. . .

. . . 0
...

. . .
. . . 2Λl−1 −W⊤

l Λl

0 · · · 0 −ΛlWl 2Λl −Xk


⪰ 0.

(38)

Lemma 15. Consider the k-th layer to be a fully convolutional
subnetwork (σl ◦Cl−1 ◦· · ·◦σ2 ◦C1)k with activation functions
that are slope-restricted in [0, 1]. For some Xk ∈ Hy

C and
Xk−1 ∈ Hu

C , this subnetwork satisfies (13) if there exist
Λj ∈ Dcj

+ , P j = blkdiag(P j
1 , . . . , P

j
d ), P j

i ∈ Sni
+ , i =

1, . . . , d, j = 1, . . . , l such that (39).

B. ResNets

In Section III-H, we briefly introduced ResNet layers with
two fully connected linear layers in the residual path and
presented LMI conditions that imply (13) for such layers.
We now consider ResNet layers (22) that skip multiple fully
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GC(Xk−1, Xk, ν) :=

Xk−1 − B⊤
1 P 1B1 −B⊤

1 P 1A1 −D⊤
1 Λ1

−A⊤
1 P 1B1 P 1 − A⊤

1 P 1A1 −C⊤
1 Λ1

−Λ1D1 −Λ1C1 2Λ1 − B⊤
2 P 2B2 −B⊤

2 P 2A2 −D⊤
2 Λ2

−A⊤
2 P 2B2 P 2 − A⊤

2 P 2A2 −C⊤
2 Λ2

−Λ2D2 −Λ2C2 2Λ2 − B⊤
3 P 3B3

. . .

. . .
. . . −B⊤

l P lAl −D⊤
l Λl

−A⊤
l P lBl P l − A⊤

l P lAl −C⊤
l Λl

−ΛlDl −ΛlCl 2Λl − Xk



⪰ 0

(39)

connected layers, i.e., where M = Ll◦· · ·◦σ◦L1, or multiple
convolutional layers, i.e., where M = Cl ◦ · · · ◦ σ ◦ C1. For
such ResNet layers, we can state the following lemmas.

Lemma 16. Consider the k-th layer to be a ResNet layer (22)
with M = Ll ◦ · · · ◦ σ ◦ L1 and activation functions that are
slope-restricted in [0, 1]. The ResNet layer (22) satisfies (13)
if there exist Λj ∈ Dnyk

+ , j = 1, . . . , l such that

GL(Xk−1, Xk, νk) +


0 . . . 0 −Λl

...
. . .

. . . 0

0
. . .

...
−Λl 0 · · · 0

 ⪰ 0,

where GL(Xk−1, Xk, νk) is defined by (38).

Lemma 16 gives and LMI condition for a ResNet layer with
fully-connected layers in M, whereas Lemma 17 is concerned
with convolutional layers in M.

Lemma 17. Consider the k-th layer to be a ResNet layer (22)
with M = Cl ◦ · · · ◦ σ ◦ C1 and activation functions that are
slope-restricted in [0, 1]. The ResNet layer (22) satisfies (13)
if there exist Λj ∈ Dcj

+ , P j = blkdiag(P j
1 , . . . , P

j
d ), P j

i ∈
Sni
+ , i = 1, . . . , d, j = 1, . . . , l such that

GC(Xk−1, Xk, νk) +


0 . . . 0 −Λl

...
. . .

. . . 0

0
. . .

...
−Λl 0 · · · 0

 ⪰ 0,

where GC(Xk−1, Xk, νk) is defined by (39).

APPENDIX C
NEURAL NETWORK ARCHITECTURES

We analyze the well-known LeNet-5 [36] and other typical
CNN architectures [37] as well as 18-layer residual neural
networks inspired by [19]. To describe the NN architectures,
similar to [37], we denote a 2-D convolutional layer by
c(C,K, S), where C is the number of output channels, K the
symmetric kernel size and S the symmetric stride. A dense
fully connected layer is denoted by d(N), where N is the

TABLE II
NEURAL NETWORK ARCHITECTURES.

Model Specification

LeNet-5: c(6, 5, 1).p(av, 2, 2).c(16, 5, 1).p(av, 2, 2).d(120).d(84).d(10)
2C2F: c(16, 4, 2).c(32, 4, 2).d(100).d(10)
4C3F: c(32, 3, 1).c(32, 4, 2).c(64, 3, 1).c(64, 4, 2).d(512)2.d(10)
FC-R18: d(64).res(64, 2)8.d(10)
C-R18: c(16, 7, 2).p(max, 3, 2).res(16, 3, 1, 2)8.p(av, 2, 2).d(10)

LeNet-5: c(6, 5, 1).p(max, 2, 2).c(16, 5, 1).p(max, 2, 2).d(120).d(84).d(10)
6C2F: c(32, 3, 1)2.c(32, 4, 2).c(64, 3, 1)2.c(64, 4, 2).d(512).d(10)

TABLE III
SPLITS INTO SUBNETWORKS FOR S-GLIPSDP

Model Specification

LeNet-5: c(6, 5, 1).p(av, 2, 2).c(16, 5, 1).p(av, 2, 2) | d(120).d(84).d(10)
2C2F: c(16, 4, 2).c(32, 4, 2) | d(100).d(10)
4C3F: c(32, 3, 1).c(32, 4, 2).c(64, 3, 1).c(64, 4, 2) | d(512) | d(512) | d(10)
FC-R18: d(64) | res(64, 2) | · · · | res(64, 2) | d(10)
C-R18: c(16, 7, 2).p(max, 3, 2) | res(16, 3, 1, 2) | · · · | res(16, 3, 1, 2).p(av, 2, 2) | d(10)

LeNet-5: c(6, 5, 1).p(max, 2, 2).c(16, 5, 1).p(max, 2, 2) | d(120).d(84).d(10)
6C2F: c(32, 3, 1)2.c(32, 4, 2) | c(64, 3, 1)2 | c(64, 4, 2) | d(512) | d(10)

number of output neurons. In addition, by p(type,K, S) we
mean pooling layers of type either average or maximum, with
kernel size K and stride S. We denote residual layers with
convolutional layers in the residual path by res(C,K, S, L)
where all convolutions are of the same shape and L denotes the
number of layers in the residual path. In addition, we denote a
residual layer containing fully connected layers in the residual
path by res(N,L), N being the number of neurons and L the
number of skipped layers, considering σ◦L as one layer. Using
the described nomenclature, we list all utilized architectures
in Table II.

For the methods S-LipSDP and S-GlipSDP, we require
suitable subnetworks, as specified in Table III and Table IV.
S-LipSDP requires a split at every pooling layer as it does
not allow to include pooling layers by quadratic constraints,
and for 6C3F and 4C3F splits are chosen as large as possible
before running into memory issues. For S-LipSDP on C-
R18 and FC-R18, we apply LipSDP to the residual paths.
The sum of the Lipschitz constants of the parallel paths, i.e.,
1+γ(residual path), provides an upper bound on the Lipschitz
constant for the residual layer.
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TABLE IV
SPLITS INTO SUBNETWORKS FOR S-LIPSDP

Model Specification

LeNet-5: c(6, 5, 1).p(av, 2, 2) | c(16, 5, 1).p(av, 2, 2) | d(120).d(84).d(10)
2C2F: c(16, 4, 2).c(32, 4, 2) | d(100).d(10)
4C3F: c(32, 3, 1) | c(32, 4, 2) | c(64, 3, 1) | c(64, 4, 2) | d(512) | d(512).d(10)
FC-R18: d(64) | 1 + d(64).d(64) | · · · | 1 + d(64).d(64) | d(10)
C-R18: c(16, 7, 2).p(max, 3, 2) | 1 + c(16, 3, 1).c(16, 3, 1) | · · · |

1 + c(16, 3, 1).c(16, 3, 1) | p(av, 2, 2) | d(10)

LeNet-5: c(6, 5, 1).p(max, 2, 2) | c(16, 5, 1).p(max, 2, 2) | d(120).d(84).d(10)
6C2F: –
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and B. Hu, “Novel quadratic constraints for extending lipsdp beyond
slope-restricted activations,” in International Conference on Learning
Representations, 2024.

[31] C. Scherer and S. Weiland, “Linear matrix inequalities in control,”
Lecture Notes, Dutch Institute for Systems and Control, Delft, The
Netherlands, vol. 3, no. 2, 2000.

[32] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in
MATLAB,” in Proc. of the CACSD Conference, Taipei, Taiwan, 2004.

[33] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 9.2.5, 2020. [Online]. Available: http://docs.mosek.com/9.2/
toolbox/index.html

[34] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado, “Analysis of
optimization algorithms via integral quadratic constraints: Nonstrongly
convex problems,” SIAM Journal on Optimization, vol. 28, no. 3, pp.
2654–2689, 2018.

[35] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[37] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural net-
works,” in International Conference on Machine Learning, 2021.

http://www.deeplearningbook.org
http://docs.mosek.com/9.2/toolbox/index.html
http://docs.mosek.com/9.2/toolbox/index.html


16

Patricia Pauli received the Master’s degree in Me-
chanical Engineering and Computational Engineer-
ing from the Technical University of Darmstadt, Ger-
many, in 2019. She has since been a Ph.D. student
with the Institute for Systems Theory and Automatic
Control under supervision of Prof. Frank Allgöwer
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