
Boosting Communication Efficiency of Federated
Learning’s Secure Aggregation

Niousha Nazemi1, Omid Tavallaie1, Shuaijun Chen1, Albert Y. Zomaya1, Ralph Holz1,2

1School of Computer Science, The University of Sydney, Australia
2Faculty of Mathematics and Computer Science, University of Münster, Germany

{niousha.nazemi, omid.tavallaie, albert.zomaya, ralph.holz}@sydney.edu.au, sche5840@uni.sydney.edu.au

Abstract—Federated Learning (FL) is a decentralized machine
learning approach where client devices train models locally and
send them to a server that performs aggregation to generate a
global model. FL is vulnerable to model inversion attacks, where
the server can infer sensitive client data from trained models.
Google’s Secure Aggregation (SecAgg) protocol addresses this
data privacy issue by masking each client’s trained model using
shared secrets and individual elements generated locally on the
client’s device. Although SecAgg effectively preserves privacy, it
imposes considerable communication and computation overhead,
especially as network size increases. Building upon SecAgg, this
poster introduces a Communication-Efficient Secure Aggregation
(CESA) protocol that substantially reduces this overhead by using
only two shared secrets per client to mask the model. We propose
our method for stable networks with low delay variation and
limited client dropouts. CESA is independent of the data distri-
bution and network size (for higher than 6 nodes), preventing
the honest-but-curious server from accessing unmasked models.
Our initial evaluation reveals that CESA significantly reduces the
communication cost compared to SecAgg.

Index Terms—Federated Learning (FL), Secure Aggregation
(SecAgg), Communication Efficiency

I. INTRODUCTION

In recent years, Federated Learning (FL) [1] has emerged
as a decentralized and privacy-preserving training method,
particularly designed for sensitive client data. In FL, models
are trained on local devices, and a central server aggregates the
gradients to build a new global model. Hence, the server does
not have direct access to raw data. However, FL is vulnerable
to security risks such as model inversion attacks where an
honest-but-curious curious server follows the aggregation
rules but tries to infer sensitive client data from trained
models. Google’s Secure Aggregation protocol (SecAgg) [2]
enhances data privacy by enabling clients to mask their trained
models by using a double masking technique that combines
the client’s trained model with masks generated from indi-
vidual random element and shared secrets for every pair of
clients (Fig. 1). While SecAgg mitigates the privacy issue, it
considerably increases communication and computation costs
that grow with the number of clients. Building upon SecAgg,
this poster proposes an efficient secure aggregation protocol
called CESA with communication complexity independent of
the network size (Fig. 2). Compared to SecAgg, CESA 1)
eliminates the need for using a mask generated from a random
element, 2) does not apply any encryption, and 3) creates only

Fig. 1: Comparison between Vanilla FL and FL with SecAgg.

22

66

3 3

0 01 1

44

55

Fig. 2: SecAgg (left) vs. CESA (right): pair selection and
shared secret creation.

two shared masks per client by using public keys of two
pairs. This approach reduces communication and computation
costs while avoiding model inversion attacks in honest-but-
curious scenarios. CESA is designed for networks with low
delay variations and limited client dropouts.

II. KEY AGREEMENT ALGORITHM

This section explains the key agreement algorithm that
is used in secure aggregation. The process begins with two
publicly known parameters: a large prime p and a primitive
root g modulo p. Each client i generates a private key ai
randomly chosen from [1, p−1] and computes a corresponding
public key Ai ≡ gai (mod p). Similarly, client j generates
a private key aj and the public key Aj ≡ gaj (mod p).
Then, clients i and j exchange their public keys and compute
shared secrets. Client i computes the shared secret si,j ≡
Aai

j ≡ (gaj)ai ≡ gaiaj (mod p), and client j computes the
shared secret sj,i ≡ A

aj

i ≡ (gai)aj ≡ gaiaj (mod p). Hence,
si,j = sj,i and these two clients create the same shared secret.

III. BACKGROUND

The section explains the SecAgg protocol. We denote the
number of training rounds, the client index in the sorted partic-
ipating list, and the number of participating clients as n, i, and

ar
X

iv
:2

40
5.

01
14

4v
1

 [
cs

.C
R

]
 2

 M
ay

 2
02

4

|C|, respectively. We assume there is no client dropout in the
following calculation of the number of exchanged messages.
(1) Broadcasting the global model: The server broadcasts
the initial global model to clients. Each client i generates two
private-public key pairs as (SK1

i , PK1
i) and (SK2

i , PK2
i).

Then, it sends its public keys to the server. (3) Broadcasting
public keys: The server broadcasts public keys to all clients.
(4) Client-side preparation: Each client i ∈ C generates a
random element bi, then divides bi and SK1

i into |C| parts
and assigns each part for every client j ∈ C (bi,j , SK1

i,j).
Then, Client i encrypts a message (i||j||bi,j ||SK1

i,j) for each
pair j (by using a key generated from SK2

i and PK2
j) to

create a cipher text ei,j . Finally, the client sends all generated
ei,j to the server. (5) Distribution of cipher texts: The server
collects these cipher texts and puts participated clients in C1

set. Here, we assume that |C1| = |C|, hence the server sends
(|C|−1) encrypted values to every client. (6) Masked model
generation: Each client i creates (|C|−1) shared secrets with
every other client j by using SK1

i and PK1
j . Then, client i

expands these created shared secrets and its random element
bi by pseudo-random generator function PRG to create an
individual mask Mi and a shared mask Mi,j(∀j ∈ C1).
By using these masks, client i computes the masked model
Wmask

i from its trained model Wi, which is sent to the
server. (7) Participants awareness: The server creates a set
C2 from clients that sent their masked models. Then, the server
sends the set C2 to all the clients j ∈ C2. Then, each client
i understands about participants and decrypts the received
encrypted values ej,i by using a key generated from SK2

i ,
and PK2

j . Thus, the client achieves bj,i(∀j ∈ C2) and sends
them to the server. (8) Global model aggregation: The server
gathers (|C|−1) portions of random elements of participants in
C2 and reconstructs bj(∀j ∈ C2), then expands it by PRG to
generate individual mask Mj(∀j ∈ C2). Finally, it aggregates
the global model by

∑
i∈{C2} W

mask
i −

∑
i∈{C2} Mi. Based

on [2], the communication cost of each client is O(|C|), and
for the server is O(|C|2).

IV. THE PROPOSED METHOD

This section introduces the overall FL embedded in CESA
and theoretically analyzes the communication cost of each
method. The process of messages passing in CESA can be
categorized into three main phases. Phase I (Initialization):
The server broadcasts the initial model to all clients. Simul-
taneously, all clients receive common public parameters from
a trusted third party. Then, each client generates a unique
public-private key pair from the public parameters and sends
the public key to the server. Upon collecting all public keys,
the server broadcasts a set of all public keys. Phase II (Shared
mask generation at training round 1): Upon receiving the
public keys, each client calculates the index of two other
clients in the participating list to create shared secrets using
their public keys. Client i calculates the index of its pairs as
FPi = [(i+offset) mod |C|] and SPi = [(i−offset+|C|)
mod |C|]. Here, offset is a random integer within the range
of [2,

⌊
|C|−1

2

⌋
] (where |C| ≥ 7). After finding the pairs, the

0 25 50 75 100
Training rounds

0k

500k

1000k

1500k

2000k
|C| = 10
|C| = 30
|C| = 50
|C| = 70
|C| = 90
|C| = 100

(a) From clients to the server.

0 25 50 75 100
Training rounds

0k

200k

400k

600k

800k

1000k
|C| = 10
|C| = 30
|C| = 50
|C| = 70
|C| = 90
|C| = 100

(b) From the server to clients.
Fig. 3: Transmitted messages between clients and the server.

client generates shared secrets, which are used in a pseudo-
random number generator that creates two shared masks (de-
noted as Mi,FPi and Mi,SPi). Phase III (from training round
2): Each client i performs model training and then computes
the masked model as Wmask

i = Wi+Mi,FPi
+Mi,SPi

, where
W is the trained model. The computed Wmask

i is sent to
the server. Then, the server generates the new global model
by aggregating all masked models. The masks cancel out
each other due to the pairwise generation of shared secrets,
and since Mi,FPi

= −MFPi,i the sum of masked models
equals the sum of unmasked trained models. At the end of
the aggregation process, the server broadcasts the new global
model to all clients. Considering all communications after n
FL rounds, the total number of messages sent from all clients
are (n+ 1)× |C|, and from the server are n+ 1 messages.

V. EVALUATION

This section evaluates the communication efficiency of
CESA compared to SecAgg by calculating the number of
messages transmitted between clients and the server over 100
rounds for varying numbers of clients (Fig. 3). In this figure,
except for broadcast messages, each message carries only 1
value. As shown in Fig. 3, CESA maintains a constant number
of messages sent from the server to clients, independent
of client count. In contrast, SecAgg’s server-side message
count increases in more extensive networks, leading to higher
communication demands.

VI. CONCLUSION

In this poster, we presented an FL’s communication-efficient
secure aggregation protocol in honest-but-curious scenarios for
stable networks with limited client dropouts. Unlike SecAgg,
which requires dividing and encrypting keys, generating shared
masks for every other client, and computing individual masks,
CESA computes shared masks only two pairs per client with-
out performing any encryption. Our initial evaluation revealed
that CESA significantly reduces the communication cost of
SecAgg and provides a defense mechanism against the model
inversion attack.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proceedings of the 20th ICAIS, vol. 54, PMLR, 2017.

[2] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in ACM SIGSAC Conference on
Computer and Communications Security, 2017.

	Introduction
	Key Agreement Algorithm
	Background
	The Proposed Method
	Evaluation
	Conclusion
	References

