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Abstract

In the realm of multi-arm bandit problems, the Gittins index policy is known to be optimal in maximizing the
expected total discounted reward obtained from pulling the Markovian arms. In most realistic scenarios however,
the Markovian state transition probabilities are unknown and therefore the Gittins indices cannot be computed.
One can then resort to reinforcement learning (RL) algorithms that explore the state space to learn these indices
while exploiting to maximize the reward collected. In this work, we propose tabular (QGI) and Deep RL (DGN)
algorithms for learning the Gittins index that are based on the retirement formulation for the multi-arm bandit
problem. When compared with existing RL algorithms that learn the Gittins index, our algorithms have a lower
run time, require less storage space (small Q-table size in QGI and smaller replay buffer in DGN), and illustrate
better empirical convergence to the Gittins index. This makes our algorithm well suited for problems with large
state spaces and is a viable alternative to existing methods. As a key application, we demonstrate the use of our
algorithms in minimizing the mean flowtime in a job scheduling problem when jobs are available in batches and
have an unknown service time distribution.

I. INTRODUCTION

Markov decision processes (MDPs) are controlled stochastic processes where a decision maker is
required to control the evolution of a Markov chain over its states space by suitably choosing actions
that maximize the long-term payoffs. An interesting class of MDPs are the multi-armed bandits (MAB)
where given K Markov chains (each Markov chain corresponds to a bandit arm), the decision maker is
confronted with a K-tuple (state of each arm) and must choose to pull or activate exactly one arm and
collect a corresponding reward. The arm that is pulled undergoes a state change, while the state of the
other arms remain frozen. When viewed as an MDP, the goal is to find the optimal policy for pulling
the arms, that maximises the cumulative expected discounted rewards. In a seminal result, Gittins and
Jones in 1974 proposed a dynamic allocation index (now known as Gittins index) for each state of an arm
and showed that the policy that pulls the arm with the highest index maximizes the cumulative expected
discounted rewards collected [1]. Subsequently, the MAB problem and its variants have been successfully
applied in a variety of application such as A/B testing, ad placements, recommendation systems, dynamic
pricing, resource allocation and job scheduling [2]. Particularly for the job scheduling problem, the Gittins
index policy has been shown to be optimal in minimizing the mean flow time for a fixed number of jobs.
In this setting, jobs have an arbitrary service time distribution, each job corresponds to an arm and the
state of each arm is the amount of service that the job has received. In fact, the Gittins index policy
is known to coincide with several scheduling policies that were historically proved to be optimal under
different problem settings. See [3], [4], [5] for more details. Also note that in a dynamic setting of an
M/G/1 queue with job arrivals, the Gittins index policy has also been shown to be the optimal scheduling
policy that minimizes the mean sojourn time in [6], [7]. More recently, the Gittins index policy has also
been shown to minimize the mean slowdown in an M/G/1 queue [8]. See [1], [9], [10], [11] for various
equivalent proofs on the optimality of the Gittins index policy for the MAB problem.

In a related development, Whittle in 1988 formulated the restless multi-armed bandit problem (RMAB)
where the state of passive arms are allowed to undergo Markovian transitions [12]. While the Gittins
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index policy is no longer optimal in this setting, a similar index policy based on the Lagrangian relaxation
approach was proposed, now popular as the Whittle’s index policy. The Whittle’s index policy has been
observed to have near optimal performance in some problems and in fact it has been shown to be
asymptotically optimal in the number of arms [13], [14]. Needless to say, the Whittle’s index policy
coincides with the Gittins index when only a single arm is pulled and passive arms do no undergo
Markovian transitions.

It is important to observe that the computation of Gittins or Whittle’s index requires the knowledge
of the state transition probabilities for the arms. In most applications of the Gittins index policy, such
transition probabilities are typically not known. One therefore has to use Reinforcement learning (RL)
algorithms to learn the underlying Gittins index for different states of the arms. Duff [15] was the first
to propose a Q-learning based algorithm to learn the Gittins index that uses a novel ’restart-in-state-i’
interpretation for the problem. As an application, it was shown that the algorithm could learn the optimal
scheduling policy minimizing the mean flowtime for preemptive jobs appearing in batches per episode
and whose service time distributions were unknown. More recently, there have been several work that
propose and analyze RL algorithms for the restless multi-arm bandit case and provide tabular and deep
RL algorithms. Avrachenkov and Borkar [16] were the first to propose a Q-learning based algorithm
that converges to the Whittle’s index under the average cost criteria. Robledo et. al. proposed a tabular
Q-learning approach called QWI in [17] and its Deep-RL counterpart QWINN in [18]. The methods
proposed above make use of two timescale separations for the learning the Q-values and the Whittle’s
index and are guaranteed to converge. Nakhleh et al. [19] also develop a deep reinforcement learning
algorithm, NeurWIN, for estimating the Whittle indices but the paper does not provide any convergence
guarantees for the underlying algorithm. Note that when passive arms do not undergo state transitions, the
preceding learning algorithms (’restart-in-state’, QWI, QWINN, NeurWINN) also converge to the true
Gittins index. At this point, it is not clear if there are alternative approaches for learning the Gittins index
and if such approaches could be easier to implement or have better convergence properties.

In this work, we propose a tabular algorithm called QGI (Q-learning for Gittins index) and deep RL
algorithm DGN (Deep Gittins network) for learning the Gittins index of states of a multi arm bandit
problem. Both these algorithms are based on the retirement formulation (see [4], [11] for more detials). The
DGN algorithm in particular leverages a Double DQN to learn the indices. See [20] for details on double
DQN. Compared to the existing algorithms, QGI and DGN have several common as well as distinguishing
features. As in case of QWI, our algorithms also have a timescale separation for learning the Q values
and the indices. However, due to the nature of the retirement formulation, we are not required to learn the
state-action Q values for all state action pairs but only for pairs with active (pull) action. We therefore
need to learn a smaller Q-table as compared to QWI or the restart-in-state algorithm. Similarly in the
DGN algorithm, we do not require experience replay tuples corresponding to the passive action (there are
required in QWINN) and we use a neural network with one output (as against 2 outputs in QWINN). All
these features make our algorithm not only distinct from existing ones, but offer lower runtime, better
convergence and in some cases illustrate a lower empirical regret. See further sections for more details.
The fact that we could use the retirement formulation to propose a new learning algorithm illustrates that
there is so much more yet to investigate on this classical problem. Finally, one of our key contribution is
to apply our algorithms for learning the optimal scheduling policy minimizing the mean flowtime for a
fixed set of jobs with unknown service time distributions. Our results indicate that owing to the space
savings offered, our algorithms are well suited for this problem and even illustrate lower empirical regret
compared to other policies.

The remainder of this paper is organized as follows. Section II discusses the preliminaries on Gittins
index. Whittles index and the restart in formulation. In Section III and Section IV, we propose the tabular
QGI algorithm and the deep RL based DGN algorithm respectively. In these sections, we also illustrate
the efficacy of our algorithms as compared to state-of-art algorithms on elementary examples. In Section
V we apply the proposed algorithms to a job scheduling problem with unknown service time distributions.
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II. PRELIMINARIES

A. The Gittins index:
Consider a multi-armed bandit problem with K (possibly heterogeneous) arms. Let S i denote the state

space for the ith arm. With slight abuse of notation, we denote the random state and action for the ith

arm at the nth time step by sn(i) and an(i), respectively where sn(i) ∈ S i for all n. Note that an(i) = 1
if the ith arm is pulled at time n and an(i) = 0 otherwise. Since exactly 1 arm is pulled each time, we
have

∑
i an(i) = 1. Upon pulling the ith arm, we observe a state transition to sn+1(i) with probability

p(sn+1(i)|sn(i), an(i)) and receive a reward ri(sn(i), an(i)). Furthermore, when an(i) = 0, we assume
that ri(sn(i), 0) = 0. The objective is to choose a policy π∗ that maximizes the expected total discounted
reward for a discount factor γ (0 < γ < 1). The optimal policy is essentially a solution to the following
optimization problem:

Vπ∗(s̄) = max
π

E

[
∞∑
t=0

K∑
i=1

γtri(st(i), at(i))

]
(1)

for any starting state s̄ = (s0(1), . . . , s0(K)). In a seminal work, Gittins defined the bandit allocation index
in [1] which is a solution technique for the above MAB problem. In fact, the Gittins index for arm i in
state x, denoted by Gis(x) is given by:

Gi(x) = sup
σ>0

Gi(x, σ) = sup
σ>0

E
{∑σ−1

t=0 γtri(st(i), 1) | s0(i) = x
}

E
{∑σ−1

t=0 γt | s0(i) = x
} (2)

Here, Gi(x, σ) is the expected discounted reward per expected unit of discounted time, when the arm
is operated from initial state x, for a duration σ. The value Gi(x) is the supremum of Gi(x, σ) over
all positive stopping times σ. In fact, it turns out that this supremum is achieved by the stopping time
τ(x) = min{t : Gi(st(i))) < Gi(x)}, which is the time where the value of Gittins index drops from Gi(x)
for the first time while continuously pulling arm i. See [11] for more details.

B. The restart-in-state formulation:
Duff was the first to propose a Q-learning based RL algorithm to learn the Gittins’ indices for the

MAB problem [15]. The algorithm is based on an equivalent formulation for the MAB problem where for
any fixed arm, the agent has a restart action that first teleports it to a fixed state x instantaneously before
moving to the next state. We henceforth call this algorithm as the restart-in-state algorithm. Since the
discussion below mostly concerns a fixed arm, we drop the superscript i to denote the arm for notational
convenience. Instead, we denote corresponding optimal value function from starting in state j by V x(j)
(the super script x now denotes the state that you will always teleport to via the restart action 0) and is
given by V x(j) = max {Qx(j, 1), Qx(j, 0)} where

Qx(j, 1) = r(j, 1) + γ
∑
k

p(k|j, 1)V x(k) and Qx(j, 0) = r(x, 1) + γ
∑
k

p(k|x, 1)V x(k).

Here, Qx(j, 1) denotes the state action value function for continuing in state j while Qx(j, 0) denotes the
value corresponding to the restart action. Note that when the restart action is chosen in state j, there is
an instantaneous transition to state x at which point the action 1 is performed automatically resulting
in the immediate reward of r(x, 1) to be earned. For some more notational convenience we will now
(and occasionally from here on) denote sn(i) by sn and ri(sn(i), 1) by r(sn), respectively. We will also
suppress the action dimension, and the superscript representing arm i in the reward notation when the
context is clear. Given an MAB with K (homogeneous) arms with N states per arm, the agent pulls an
arm i in the nth step via a Boltzman distribution and observes a state transition from sn to sn+1 and
receives a reward r(sn). For learning the Gittins index using a Q learning approach, this single transition
is utilised to do two updates for each k ∈ S. The first update corresponds to taking the action ‘continue’
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in state sn and transitioning to state sn+1 for all restart in k problems. The second update corresponds to
choosing to teleport to sn from any state k and then observing the transition to sn+1. A single reward
r(sn) leads to the following 2N Q-learning updates where for each k ∈ S we perform:

Qk
n+1(sn, 1) = (1− α(n))Qk

n(sn, 1) + α(n)

[
r(sn) + γ max

a∈{0,1}
Qk

n(sn+1, a)

]
(3)

Qsn
n+1(k, 0) = (1− α(n))Qsn

n (k, 0) + α(n)

[
r(sn) + γ max

a∈{0,1}
Qsn

n (sn+1, a)

]
. (4)

Here, α(n) is the learning rate and the Gittins index for a state x is tracked by the Qx
n(x, 1) value. In

writing the preceeding two equations, we are assuming that the arms are homogeneous and therefore
the same Q-values can be updated, irrespective of the arm chosen. For a more general setting where the
arms can be heterogeneous, we need to have a separate Q-table for each arm. Needless to say, the time
complexity for each iteration is O(2N +N) and space complexity is O(2 ·N2 ·K). See [15] for more
details.

C. A Whittle index approach to learn Gittins index:
The Whittles index is a heuristic policy introduced in [12] for the restless multi-arm bandit problem

(RMAB). Here, M out of K arms must be pulled and the passive arms (arms that are not pulled) are
allowed to undergo state transitions. For the setting where state transitions probabilities are unknown
(for both active and passive arms), RL based methods (QWI, QWINN) to learn the Whittle indices have
recently been proposed [17], [18]. When the passive arms do not undergo state transitions, the Whittle
index coincides with the Gittins index and therefore these algorithms can in fact be used to learn the
underlying Gittins index. Using the notion of a reference state x (see [17] for details), the corresponding
Q-learning based update equations for learning the Gittins index are as follows:

Qx
n+1 (sn, an) = (1−α(n))Qx

n (sn, an)+α(n)

(
(1− an) (λn(x)) + anr (sn) + γ max

v∈{0,1}
Qx

n (sn+1, v)

)
(5)

λn+1(x) = λn(x) + β(n) (Qx
n(x, 1)−Qx

n(x, 0)) . (6)

Here, λn(x) denotes the Whittles index for state x and r(sn) denotes the reward for pulling an arm in
state sn, in the nth step. As earlier, the dependence on arm i is suppressed in the notation.

III. QGI: Q LEARNING FOR GITTINS INDEX

In this section, we present a Q-learning based algorithm for learning the Gittins index (QGI for short) that
is based on the retirement formulation proposed by Whittle [21]. We first recall the retirement formulation
for ease of exposition.
The retirement formulation: First assume you have a single arm that is in state x. For this arm, you can
either pull the arm and collect reward or choose to retire and receive a terminal reward M . Let us denote
the optimal value function in state x by Vr(x,M). The actions are denoted by 1 (to continue) and 0 (to
retire). The Bellman optimality equation for this problem is:

Vr(x,M) = max{QM(x, 1), QM(x, 0)}

where QM(x, 1) = r(x, 1) + γ
∑

j p(j|x, 1)max{QM(j, 1), QM(j, 0)} and QM(x, 0) = M . As shown in
[21], this results in an optimal stopping problem (how long should you choose action 1 before retiring)
and the Gittins index for state x is given by G(x) = M(x)(1− γ) where

M(x) = inf{M : Vr(x,M) = M}. (7)

Clearly, G(x) can be obtained by finding the smallest value of M where Vr(x,M) = M . It is important
to note here that Vr(x,M) is bounded, convex and non-decreasing in M [11], [21].
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A. The tabular QGI algorithm
Now suppose that state x is fixed as a reference state and the retirement amount is set to M(x) which

is proportional to the Gittins index for state x. In that case, the Bellman equations are

Vr(x,M(x)) = max{QM(x)(x, 1), QM(x)(x, 0)} where

QM(x)(x, 1) = r(x, 1) + γ
∑
j

p(j|x, 1)max{QM(x)(j, 1), QM(x)(j, 0)}

QM(x)(j, 1) = r(j, 1) + γ
∑
k

p(k|j, 1)max{QM(x)(k, 1), QM(x)(k, 0)} and

QM(x)(j, 0) = M(x) for all j .

Now in a setting where the transitions probabilities are unknown, our goal is to learn the Gittins index for
each state in all arms. For simplicity lets assume homogeneous arms and consider one such arm. For this
arm, our aim is to learn the indices M(x) for every x ∈ S. Note that in the Bellman equations above,
x plays the role of a reference state and to come up with appropriate Q learning equations, we need an
additional dimension in the Q-table for the reference state. This is similar in spirit with the requirement for
the reference state in Eq. (5). Also note that since M(x) = QM(x)(j, 0) for all j in the Belleman equations
above, we can have an iterative update equation for M(x) and completely ignore the entries corresponding
to QM(x)(j, 0)from the Q -table.

For a K-armed bandit in state (sn(0), sn(1), ...sn(K)) in the nth step, the agent selects an arm via an
ϵ-greedy policy based on the current estimates of indices, denoted by (M0

n(sn(0)), . . . ,M
K
n (sn(K)). Upon

pulling an arm, say i, the agent observes a transition from state sn(i) to sn+1(i), and a reward ri (sn(i)).
As earlier, since arms are homogeneous, we will denote sn(i) by sn, M i

n(sn(i)) by Mn(sn) and ri (sn(i))
by r(sn). This reward r(sn) can be used to update the Q values for sn for each reference state leading to
N Q-learning updates. This is followed with pushing current estimate of M(·) in direction of Vr(·,M),
motivated by equation (7). This gives rise to the following pair of update steps in the chosen arm upon
observing each transition. For each reference state x ∈ S , when an arm in state sn is pulled, we perform:

Qx
n+1 (sn, 1) = Qx

n (sn, 1) + α(n) (r (sn) + γmax {Qx
n(sn+1, 1),Mn(x)} −Qx

n (sn, 1)) (8)

and
Mn+1(x) = Mn(x) + β(n)

(
max

{
Qx

n+1(x, 1),Mn(x)
}
−Mn(x)

)
. (9)

For ease of exposition, we have assumed here that all arms are homogeneous and therefore in the above
equations, the same Q-table entries are updated for different arms visiting the same state. It is also important
to note that we have not used Qx

n(sn+1, 0) to bootstrap and so we need not update those values. In fact,
we do not even need to store them. For a guaranteed convergence to the true Gittins indices (see Theorem
1), the learning rate sequence α(n) and β(n) are chosen to satisfy

∑
n α(n) = ∞,

∑
n α(n)

2 < ∞,∑
n β(n) = ∞,

∑
n β(n)

2 < ∞. We also require that β(n) = o(α(n)) that allows for two distinct time
scales, namely, a relatively faster time scale for the updates of the state-action function, and a slow one for
the Gittins indices. At this point, it would be a good idea to compare and contrast our learning equations
with that of QWI and restart-in-state algorithm which are recalled here for convenience.

Qx
n+1 (sn, an) = (1− α(n))Qx

n+1(sn, an) + α(n)

(
(1− an) (λn(x)) + anr1 (sn) + γ max

v∈{0,1}
Qx

n (sn+1, v)

)
(10)

λn+1(x) = λn(x) + β(n) (Qx
n(x, 1)−Qx

n(x, 0)) (11)

Qk(sn, 1) = (1− α(n))Qk(sn, 1) + α(n)

[
r(sn) + γ max

a∈{0,1}
Qk(sn+1, a)

]
(12)
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It is quite evident that the update equations (10), (12) are performed for both actions an = 1 and an = 0
and in fact Qx

n (x, 0) is also directly involved in the update of the Gittins indices (see equation (11)). In
contrast, there is no Q-value term corresponding to retirement action in both equations (8) and (9). We only
consider an = 1 for the Q-table, reducing its size by a factor of 2. Let us now carefully observe Eq. (9).
We see that Vr,n(x,Mn(x)) = max (Qx

n(x, 1),Mn(x)) is being invoked to push Mn(x) in its direction. Let
us recall that Vr(x,M) is bounded, non-increasing and convex w.r.t M . Hence, one of two following
cases arise. Either, M is large and hence it dominates, making Vr(x,M)−M = 0, in which case (9) is
not updated. It is only if Qx

n(x, 1) > Mn(x), Mn(x) is updated in Eq. (9). Therefore, in Eq. (9), Mn(x)
needs to initialised by a value which is known to be smaller than the Gittins index in that state. To avoid
imposing this restriction, we simply replace Vr,n(x,M) by Qx

n(x, 1), and this allows us to initialise M to
arbitrary value. We therefore use the following equation in QGI in place of Eq. (9):

Mn+1(x) = Mn(x) + β(n)
(
Qx

n+1(x, 1)−Mn(x)
)
. (13)

Algorithm 1 QGI for N states, K arm bandits

Require: Discount parameter γ ∈ (0, 1), exploration parameter ϵ ∈ [0, 1]
1: Initialise M (NxK) and Q (NxNxK) matrix for all states in each arm
2: Initialize s0 for all arms
3: for n = 1 to nend do
4: Select an arm i to pull through ϵ-greedy policy
5: Get new state sn+1(i) and reward r(sn(i)) from state sn(i)
6: Update learning rate α(n), β(n)
7: Update Qx

n(sn(i), 1) for all x ∈ S via (8)
8: Update Mn(x) for all x ∈ S via (13)
9: end for

We are now in a position to present the QGI algorithm (Algorithm 1) that essentially makes use of
Eq. (8) and (13). Let N := |S| denote the number of states of an arm. For a fixed ϵ and γ, we arbitrarily
initialise the initial states of the K arms. We then initialize a Q matrix of size N ×N ×K and a vector
M of size N × 1. If the arms are homogeneous, then the Q table has a size of N ×N . We then choose
the best arm (arm with the highest estimate of Gittins index) with a probability of 1− ϵ, and choose an
arm randomly with probability ϵ. In the chosen arm i, we observe a state transition from sn to sn+1 with
a reward r (sn). We use this to update our Q-values and M vector as in Eq. (8) and (13). Our algorithm
uses two timescales for updating Q and M where the updates for M are on a slower timescale. Timescale
separation is indicated by the use of different learning rates α(n) and β(n) in Algorithm 1. Owing to
the nature of updates presented in Eq. (8) and (13), while the time complexity in QWI and the restart-in
formulation per iteration is the same, we have the following two-fold advantage leading to lower runtime
and apparent smoother convergence (see numerical results):

• The effective updates in each iteration to the Gittins index values are N , compared to just 1 in
restart-in-state. We have observed that this leads to better convergence of the Gittins index values
(see Section V). In QWI, NK updates are done to Q values and N updates to λ in each iteration
when β ̸= 0. Out of those NK updates, N(K − 1) updates are done to Qx(sn, 0) for all arm and for
all x and only N updates to the values corresponding to an = 1. In contrast, QGI does N updates
only to Qx(sn, 1) for all x as Q-values for an = 0 is neither stored nor updated.

• Since, since Qx
n(sn+1, 0) = Mn(x) for all sn, we do not track and update values of Qx

n(sn, 0) for every
x and sn resulting in significant space saving. In restart-in-state and QWI, the size of Q-table for each
arm is N ×N × 2. Here the first N corresponds to all reference states, the second N corresponds to
all states and 2 for the actions of continue or stop. On the other hand, in QGI the Q-table for each
arm is of the size N ×N .
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The space saving discussed above is significant when the number of states or arms are very large. For
example, for a 10 armed bandit with 100 states, we can observe that the Q-table will have 2, 00, 000
entries for the restart-in-state algorithm, 2,01,000 entries for QWI while only 1,01,000 entries in QGI. We
find this as a very useful feature, particularly for learning the optimal scheduling policy minimizing mean
flowtime for a fixed number of jobs having arbitrary but continuous service time distributions. See Section
V-B for details.

Before we move on to the numerical comparisons, we state the following theorem that guarantees
convergence of the Gittins index using the QGI algorithm. Proof is based on the convergence analysis
of stochastic approximation based recursions with two timescales and follows along similar lines to the
convergence of QWI [18]. A proof outline is given in the appendix for completeness.

Theorem 1. Given learning rate sequences α(n) and β(n) such that
∑

n α(n) = ∞,
∑

n α(n)
2 < ∞,∑

n β(n) = ∞,
∑

n β(n)
2 < ∞ and β(n) = o(α(n)), iterative equations (8) and (13) converge to the

optimal state-action values for the Gittins index policy QG(s, a), and to the Gittins indices G(s) =
(1− γ)M(s), where Mn(s) → M(s) and Qn(s, a) → QG(s, a) for all s ∈ S, a ∈ A as n → ∞.

B. Elementary example
We now illustrate the efficacy of the QGI algorithm on a slightly modified version of the restart

problem from [18]. The problem was modified to work for rested bandits (passive arms do not undergo
state transitions). Here, the state space S = {0, 1, 2} and there are 2 homogeneous arms. The transition
probability matrix in the case of active action is:

P (s′|s, 1) =

0.1 0.9 0
0.1 0 0.9
0.1 0 0.9


The reward for pulling an arm in state s is given by r(s) = 0.9s + 1. The Gittins index can be analytically
calculated in this problem, yielding G(0) = 0.9, G(1) = 0.814, G(2) = 0.758 while using a discount factor
γ = 0.9, see [22]. We note that the Gittins index is decreasing as the state increases which is consistent
with the reward structure. We experimented with learning rates of same order, α(n) = 0.3 and β(n) = 0.2.
In this case the ϵ was set to 0.4 for QGI. For QWI, we choose ϵ = 1 as mentioned in [18]. We ran all
three algorithms for this experiment and the respective indices are shown in Fig. 1. Clearly, the QGI
algorithm converges quickly compared to the restart-in-state algorithm to the true index value and is also
less noisy as compared with QWI.

IV. DGN: DEEP GITTINS NETWORK

The DGN (Deep Gittins Network) algorithm is based on learning the Gittins estimates through a
neural network instead of the tabular method of QGI. Note that DGN is also based on the the retirement
formulation and much of the discussion leading up to Equations (8) and (13) is also relevant to this
deep-RL formulation. We use a neural network with parameters θ as a function approximator for the
state action value function Qx(s, 1). The input to the neural network is the current state sn and reference
state x and the output represents Qx

θ(s, 1). As noted in the tabular method QGI, we are not required to
approximate the stat-action value function Qx(s, 0) corresponding to the retire option. As in QGI, since
Qx(s, 0) is equal to the retirement value M(x), we use a separate stochastic approximation equation to
track the Gittins index M(x) in state x.

The fact that our neural network has only one output corresponding to Qx
θ(s, 1), reduces the overall

complexity of the network. This is unlike the QWINN algorithm where the neural networks have two
outputs corresponding to both actions, and approximating both outputs accurately seems computationally
more expensive. Our DGN algorithm utilises a Double-DQN architecture for better convergence guarantee
[20]. Therefore a second (target) neural network with parameters θ′ is used to calculate the target Q-values
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(a) State 0 (b) State 1 (c) State 2

Fig. 1: (a), (b) and (c) compares the convergence of Gittins Indices for QGI, QWI and the restart-in-state
algorithm.

by bootstrapping with our current estimate. These are denoted by Qx
θ′ (sn+1, 1). To further improve stability

and reduce variance in target estimates, we do a soft update to θ′ values instead of copying the θ values
directly to the target network [23]. The soft updating for θ′ is done using the iteration θ′ = τθ′ +(1− τ) θ,
once in every κ number of steps.

As in QGI, the agent starts by pulling an arm i in state sn(i) via an ϵ-greedy policy based on the current
estimate of Gittins indices. This results in a transition to state sn+1(i) and a reward ri(sn(i)) is observed.
The observed state transitons and rewards are appended with the reference state x to form an experience
tuple that is denoted by (x, sn(i), an(i), r

i(sn(i)), sn(i+ 1),Mn(x)). In fact, we create N different tuples
by considering every reference state x ∈ S . Each state transition is therefore used to update the Q-values
for all reference states x, and to generate N tuples as mentioned above. These tuples are stored along
with other tuples in what is called as a replay buffer. Note that since we are in the Gittins setting, there
are no rewards from passive action and therefore we do not create experience tuples corresponding to
action an = 0. This results in a replay buffer with a smaller size as compared with the replay buffer of
QWINN where experience tuples corresponding to action 0 are stored as well. After collecting enough
experience tuples, we randomly create a minibatch of size B to iterate upon. For each experience tuple in
a minibatch, we first pass the pair (sn(i), x) through the primary network to get Qx

θ(sn(i), 1) for all xϵS .
Then the pairs (sn+1(i), x) are fed to the target network to get Qx

θ′ (sn+1(i), 1) values. This allows us to
compute Qx

target (sn(i), 1) values as following:

Qx
target (sn(i), 1) = r (sn(i)) + γmax (Qx

θ′ (sn+1(i), 1) ,Mθ′(x)) (14)

Once we have calculated the Qx
target (·) and Qx

θ(·) values for the minibatch, we calculate the mean-squared
loss as follows:

Mean Squared Loss =
1

B

B∑
i=1

N∑
x=1

(Qx
target(s(i), 1)−Qx

θ(s(i), 1))
2

Then we update the θ values in the neural network via an appropriate optimizer (we use the Adam optimiser
for our numerical results). In our implementation, we collect experience tuples and add them to the replay
buffer in every step but do the parameter update steps along with the soft update once in every κ = 10
steps. This is coupled with the stochastic approximation update for M as follows:

Mn+1(x) = Mn(x) + β(n) (Qx
θ(x, 1)−Mn(x)) . (15)
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We repeat the process for each sampled minibatch until convergence of the Gittins estimates. The neural
network in our experiment consists of three hidden layers with (64,128,64) neurons. For the activation
function, ReLU is used. This algorithm is formulated as shown in Algorithm 2.

Algorithm 2 DGN Algorithm

1: Input: Discount parameter γ ∈ (0, 1), exploration parameter ϵ ∈ [0, 1], Learning rate, minibatch size
B, Soft update parameter τ ∈ [0, 1] and κ = 10.

2: Output: Gittins index vector for all states
3: Initialize s0(·) for all arms
4: for n = 1 to nend do
5: Pull an arm i through ϵ-greedy policy
6: Do a transition from state sn(i) to sn+1(i) and observe reward r(sn(i))
7: Save each arm’s experience replay tuple into separated replay buffers
8: if size of replay buffer > threshold & (n modulo κ == 0) then
9: β(n)

10: Sample a minibatch of size B
11: for x ∈ S do
12: Predict Qx

θ(sn(i), 1) values for each sample
Compute target Qx

target (sn(i), 1) for each sample as in Eq. (14)
13:14: end for

15: Compute MSE loss between Qθ and Qtarget

16: Update the θ parameters through backpropagation
17: Update target parameters as θ′ = τθ′ + (1− τ) θ
18: end if
19: Update M (Retirement reward) via (15)
20: end for

A. Elementary example
Now let us consider the problem discussed in 3.2 and draw a emperical comparison between DGN

and QWINN. For the experiment, we fixed the following hyperparameters: γ = 0.9, B = 32, τ = 1e− 3,
κ = 10 and β(n) = 0.7× 1{n modulo 20≡0}. Initial value of ϵ was kept as 1 and its decay was scheduled
as ϵn+1 = max(ϵn × 0.9995, 0.1). The numerical results are as shown in Fig. 2. A clear benefit of using
DGN over QWINN seems ot be that the indices converge more smoothly to the desired values.

V. APPLICATION IN SCHEDULING

Consider a system with a single server and a given set of K jobs available at time 0. The service times
of these jobs are sampled from an arbitrary distribution denoted by F (·). Jobs are preemptive, i.e., their
service can be interrupted and resumed at a later time. For any job scheduling policy π, let Ti denote
the completion time of job i and Lπ :=

∑K
i=1 Ti denote the flowtime. A scheduling policy that minimizes

the mean flowtime is the the Gittins index based scheduling policy [4], [3]. To model this problem as
an MAB, note that, each job corresponds to an arm and the current state of an arm is the amount of
service that the job has received till now (known as the age of the job). There is no reward from pulling
an arm (serving a job) untill it has received complete service. We receive a unit reward once the required
service is received. See [4], [3] for more details on the equivalence between the the flowtime minimization
problem and the MAB formulation as stated above.

We are particularly interested in the setting of this problem where the job size distribution F (·) is not
known and a batch of K jobs are made available episodically. We want to investigate if the proposed
algorithms QGI and DGN are able to learn the optimal Gittins index based job scheduling policy when the
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(a) State 0 (b) State 1 (c) State 2

Fig. 2: (a), (b) and (c) show the convergence comparison of Gittins Indices for Deep-RL methods in restart
problem.

service time distributions F (·) are unknown. The problem has also been considered in [15] for learning
the optimal scheduling policy with a select set of discrete job size distributions. Section V-A considers this
problem where job have service time distributions with either constant or monotonic hazard rates. We also
consider other discrete distributions (Poisson, Geometric and Binomial) and illustrate the empirical episodic
regret from using our algorithm. Then in section V-B, we consider continuous job size distributions where
each pull of an arm corresponds to giving a fixed quanta of service (denoted by ∆). This allows us to
discretize the problem for efficient implementation. More specifically, we consider uniform and log-normal
service time distribution for our experiments. For a vanishingly small choice of ∆, the state space (possible
ages a job can have) becomes arbitrarily large which is when the space saving advantage of our algorithms
becomes more apparent.

Note that in all the experiments below, we found QWI/QWINN to have a very poor performance in the
scheduling problem. At this point, it is not clear to us why this is the case. This may be because we have
not been able to figure out the right set of hyperparameters for QWI/QWINN, although we have made an
extensive search for the same. Another possible reason could be the fact that passive arms are subsidised
and also result in Q-value updates which may deflect the indices a lot causing poor convergence. We
therefore compare our results with only that of Duff [15]. Applying QWI/QWINN for the scheduling
problem is part of future work.

A. Discrete service time distribution
We first consider the case when the job size distribution are discrete and have a possibly state dependent

parameter as described below. This example is taken from [15]. Each of the K jobs represent an arm
which start each episode in state 1 which denotes that no service has yet been given. When an arm i
(read job i) in state sn(i) (with age sn(i)) is picked/served at the nth step, the agent observes a transition
either to sn+1(i) = sn(i) + 1 of service) with probability 1− ρsn(i)(i) or to sn+1(i) = 0 with probability
ρsn(i)(i) if the job is completed. Upon completing a job the agent receives a reward of 1, zero otherwise.
We assume that jobs that have completed service leave the system and are not available.

1) Constant Hazard Rate: : We first consider the case when jobs have a Geometric distribution with
parameter ρ(i) for the ith job. Clearly, jobs are heterogeneous in nature and their transition probabilities
are state independent and satisfy ρs(i)(i) = ρ(i). In our experiments, we chose 10 jobs with corresponding
ρ(i)’s sampled uniformly from the unit interval [0, 1] before starting the experiment. We set γ = 0.99,
ϵ = 0.1, α(n) = 0.4 and β(n) = 0.2× 1{n modulo 10≡0} respectively. Here the optimal scheduling policy
is known to choose jobs in the order of decreasing hazard rates. We compare the convergence behavior
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of our algorithm with that of [15] for a particular state 1 and a particular arm (job 6) in Fig. 3a. We
observe that DGN converges more smoothly than tabular methods while QGI indices initially increase
more quickly before settling to the optimal value.

2) Monotonic Hazard Rates: Now, we consider the case of monotonically increasing and decreasing
hazard rates. As in Duff [15], we consider jobs where the hazard rate changes monotonically as the job
receives service. Furthermore, these hazard rate parameters are updated in an exponential fashion using a
parameter λ. In our experiment we assume there are 9 jobs, i.e., K = 9 and the maximum state is 49, i.e,
N = 50. Before starting the trials, we sample the initial hazard rates (ρ(1)(i) for all i) uniformly from
[0, 1]. Let τi denote the random service time for the ith job. We assume that the disribution for τi satisfies
the following :
a) For increasing hazard rate:

Pr {τi = s} = ρs(i)
s−1∏
k=1

(
1− ρ(1)(i)

)
λk−1 where

ρs(i) =
{
1−

[(
1− ρ(1)(i)

)
λ(s(i)−1)

]}
b) For decreasing hazard rate:

Pr {τi = s} = ρs(i)

(s−1)∏
k=1

(
1− ρ(1)(i)

)
λ1/(k−1) where

ρs(i) =
{
1−

[(
1− ρ(1)(i)

)
λ1/(s(i)−1)

]}
We set λ = 0.8, γ = 0.9 and ϵ = 0.1. Again, we ran our proposed algorithms for the case where all jobs
have either an increasing or decreasing hazard rate. Note that the scheduling policies learnt by our algorithm
coincide with the known optimal policies of FIFO and Round-Robin for increasing and decreasing hazard
rates respectively. For a performance comparison among the tabular and Deep-RL methods, we consider
the convergence of state 4 of job 2. Results are presented in Fig. 3b and 3c.

(a) (b) (c)

Fig. 3: Performance comparison of the QGI, DGN and Restart-in-state for: (a) Constant hazard rates, (b)
Increasing hazard rates and (c) Decreasing hazard rates.
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3) Other distributions: In this section we consider some more discrete job size distributions, specifically
the Binomial(n, p), Poisson(Λ) and Geometric(q) distributions. We consider a batch of 4 jobs in every
episode. When an arm i (read job i) in state sn(i) (with age sn(i)) is picked/served at the nth step,
the server observes a transition to sn+1(i) = sn(i) + 1 as long as τi ̸= sn(i) + 1. If τi = sn(i) + 1,
then the job has received complete service and is removed from the system after earning a unit reward.
In our experiment with the three distributions we choose the parameters n = 10, p = 0.5, λ = 5 and
q = 0.5. We take α(n) = 0.3, β(n) = 0.2, γ = 0.99 and epsilon is set to 1 initially an decays as
ϵn+1 = max(ϵn × 0.9999, 0.1). In Fig.4a, 4b and 4c we compare the performance of QGI with restart-in-
state (for states 1, 2, and 3) for Binomial, Poisson and Geometric distribution respectively. While the
speed of convergence depends on the type of distribution considered and the corresponding states, QGI
seems to outperform restart-in-state for all states and all distributions considered.

In Fig. 5a, we plot the percentage of time QGI and restart-in-state chose the optimal action as a function
of the iteration number for the three distributions. Here again QGI displays a better accuracy, especially for
the Poisson and Binomial distribution. We also plot the cumulative episodic regret for the two algorithms
(for all the three distributions). Here the episodic regret was calculated as the difference in the flowtime
between QGI and the optimal Gittins index policy in an episode. Again, we see that the cumulative regret
for QGI is lower than restart-in-state-i, clearly demonstrating the advantages of our method.

(a) (b) (c)

Fig. 4: Convergence of Gittins Indices for (a) Binomial, (b) Poisson and (c) Geometric service time
distributions.

B. Continuous service time distribution
We now consider some continuous service time distribution for job sizes. For our experiment we consider

a batch of 4 jobs per episode. Service is provided in a fixed quanta of size ∆ that allows us to discretize
the problem and use the existing machinery. Once a ∆ is fixed, we have a discrete time MAB where the
age of jobs are discrete multiples of ∆. As in section V-A3, when an arm i in state sn(i) is picked/served
at the nth step, the server observes a transition to sn+1(i) = sn(i) + 1 as long as τi ̸= sn(i) + 1.

We first consider the experiment where job sizes are Uniform over the support [0, 10] and a service
quantum of size ∆ = 0.1. This makes the number of possible states in the system equal to 100. There
are 4 jobs in each episode to schedule and the discount factor γ = 0.9 is considered. The performance
results are shown in Fig. 6a for state 34 (age 3.4). It can be seen that both the tabular methods have more
variability as compared to DGN which converges more smoothly. We next assume that the job sizes are
sampled from a log-normal distribution with parameter µ = log(30), σ = 0.6 and ∆ = 0.5. We truncate
the max job size to 75 (as P (X > 75) = 0.06336). Here, again four homogeneous jobs are taken per
episode and the discount factor is γ = 0.9. Note that the number of states, |S| = 150. Due to this, the
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(a) (b)

Fig. 5: (a) shows the % of steps for which an optimal action is performed while (b) shows the cumulative
episodic regret collected over trials.

number of Q-values being tracked in QGI are 100,100 while in other algorithms 2,00,000 cells are being
filled. The performance results for a particular state 49 (age 24.5) are shown in Fig. 6b.

VI. CONCLUSION

In this work, we have introduced QGI and DGN which are tabular and deep RL based methods for
learning the Gittins indices using the retirement formulation. To illustrate the applicability of our method,
we consider the problem of learning the optimal scheduling policy that minimizes the mean flowtime for
batch of jobs with arbitrary but unknown service time distributions. Through our experiments, we have
shown that our methods have better convergence performance, require less memory and also offer lower
empirical cumulative regret. There are several open directions that beg further investigation. First, we
would like to identify the reason for a poor performance of QWI/QWINN on the scheduling problem. We
would also like to investigate the applicability of our method to learning the optimal scheduling policy in
an M/G/1 queue minimizing the mean sojourn time. While the algorithms that we propose and those that
are in the literature are essentially value function based, we would also like to see if a policy gradient
based approach can be used to learn the Gittins index.
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APPENDIX

Appendix 1. Proof outline for Theorem 1: The proof follow along similar lines to that in [18]. Also
see [24] for similar results. Consider the following equations which will be compared to equations (8) and
(13) later:

xn+1 = xn + a(n)
[
h (xn, yn) + L

(1)
n+1

]
(16)
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yn+1 = yn + b(n)
[
g (xn, yn) + L

(2)
n+1

]
(17)

In these equations, the functions h and g are continuous Lipschitz functions, the Ln are martingale
difference sequences representing noise terms, and a(n) and b(n) are step-size terms satisfying

∑
n α(n) =

∞,
∑

n α(n)
2 < ∞,

∑
n β(n) = ∞,

∑
n β(n)

2 < ∞ and b(n)
a(n)

→ 0 as n → ∞. These conditions are
necessary for stable convergence of (16) and (17). Note that, for notational convenience, we use Mx(n) to
denote the value of Gittins estimate of state x in nth iteration. Here, (16) represents the Q-learning update
as in (8) and (17) represents equation the stochastic approximation step to update the indices as in (13).
First, let us define FM

s (Ψ(j, b)) and Ln+1(s) such that:

FM
s (Ψ(j, b)) = R(s) + γ

∑
j

p(j | i, u)max {Ψ(j, 1),Mj}

Ln+1(s) = R(s) + max {Qx
n (sn+1, 1) ,Mn(x)} − FMx(n)

s (Qn) .

Using these, we can rewrite the equation (8) as:

Qx
n+1(s, u) = Qx

n(s, u) + α(n)
[
FMx(n)
s (Qn)−Qx

n(s, u) + Ln+1(s)
]

(18)

Comparing equations (16) and (18) we can make the correspondence a(n) = α(n), h (xn, yn) = FMx
s (n) (Qn)−

Qn, where xn = Qn, yn = M(n) and Ln+1(s) is the martingale difference sequence L
(1)
n+1. Equations (13)

and (17) correspond to b(n) = β(n), g (xn, yn) = Qx
n(x, 1)−Mx(n) and a martingale difference sequence

L
(2)
n+1 = 0.
Now let τ(n) =

∑n
m=0 α(m),m ≥ 0. Define Q̄(t), λ̄(t) as the interpolation of the trajectories of Qx

n

and Mx(n) on each interval [τ(n), τ(n+ 1)], n ≥ 0 as:

Q̄(t) = Q(n) +

(
t− τ(n)

τ(n+ 1)− τ(n)

)
(Q(n+ 1)−Q(n))

M̄x(t) = Mx(n) +

(
t− τ(n)

τ(n+ 1)− τ(n)

)
(Mx(n+ 1)−Mx(n))

t ∈ [τ(n), τ(n+ 1)]

which track the asymptotic behavior of the coupled o.d.e.s

Q̇(t) = h(Q(t),Mx(t)), Ṁx = 0

Here the latter is a consequence of considering the following form of equation (13) and putting β(n)
α(n)

→ 0:

Mx(n+ 1) = Mx(n) + α(n)

(
β(n)

α(n)

)
(Qx

n(x, 1)−Mx(n))

Now, Mx(·) is a constant of value M ′
x for Q(t) due to Mx(·) being updated on a slower time scale.

Because of this, the first o.d.e. becomes Q̇ = h (Q(t),M ′
x), which is well posed and bounded, and has

an asymptotically stable equilibrium at Q∗
M [Theorem 3.4, [25]]. This implies that Qx

n −Q∗
Mx(n)

→ 0 as
n → ∞. On the other hand, for Mx(t), let us consider a second trajectory on the second time scale, such
that:

M̃x(t) = Mx(n) +
(

t−τ ′(n)
τ ′(n+1)−τ ′(n)

)
(g(n+ 1)− g(n))

t ∈ [τ ′(n), τ ′(n+ 1)] , τ ′(n) =
∑n

m=0 β(m), n ≥ 0

which tracks the o.d.e.:
Ṁx(t) = Q∗

Mx(t)(x, 1)−Mx(t)

As in the previous case this bounded o.d.e converges to an asymptotically stable equilibrium where M
satisfies Q∗

M(x, 1) = Mx. This is the point of indifference between retiring and continuing, and hence, M
characterises the Gittins index.
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