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Handling the asymmetric spectral line profile
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This paper discusses some features of the spectral line profile theory used in the treatment of measured atomic
transitions. It is shown that going beyond the established linear approximation for the spectral line contour in
the case of its nonresonant extension, the potential for a more accurate extraction of atomic characteristics from
experimental data arises. Using the example of the Lyman-α (Lyα) transition in hydrogen, a simple analysis
of the observed spectral line distorted by a possible interfering transitions is given. In particular, the results
obtained in the present work clearly demonstrate that the processing of the same experimental data at different
settings can provide an accurate determination of the transition frequency, the centre of gravity as well as the
hyperfine splitting of the ground state in hydrogen-like atomic systems. The latter is especially important for
setting up precision spectroscopic experiments on the antihydrogen atom.

I. INTRODUCTION

A detailed theoretical description of the observed spectral
line profile has become an inherent part of the precision de-
termination of the transition frequency in the last decade. The
first rigorous derivation of the line profile in the framework
of quantum electrodynamics (QED) was given in [1]. It was
shown that the line profile is determined by the Lorentz con-
tour in the resonance approximation. Until recently, such ap-
proach was sufficient to accurately extract the transition fre-
quency from experimental data, although theoretical studies
of the phenomena affecting the line profile have been carried
out for quite some time, having emerged as a separate field of
research, see, e.g., [2, 3] and references therein.

In particular, theoretical works dealing with particularities
of the line shape have shown the importance of taking into
account the asymmetry arising when measuring transition fre-
quencies [4, 5]. Theoretical examination of the spectral line
asymmetry unveils a notable distinction in determining the
transition frequency for an atom unaffected by the measure-
ment process compared to one influenced by experimental ob-
servation. Namely, the frequency obtained in an experiment
should be correlated to the Bohr model of the atom (underly-
ing theoretical studies) in order to extract, for example, phys-
ical constants or to test fundamental interactions and symme-
tries.

The most significant influence comes from the effect result-
ing from interfering pathways for neighboring states, which is
known as the quantum interference effect (QIE) [5]. Depend-
ing on the experimental conditions and method of measuring
the transition frequency, the asymmetry of the spectral line
profile should be taken into account for each specific experi-
ment [6]. Giving rise to a frequency shift that can significantly
exceed, for example, radiative corrections, the corresponding
asymmetry is, as usual, calculated theoretically [7–13].

The most significant advance was made recently in the [14].

∗ E-mail:alexey.anikin.spbu@gmail.com

First of all, the experiment [14] demonstrated that the spectral
line profile has become a precisely measurable quantity. As
another important consequence, it is necessary to point out
the processing of the experimental data, which enabled to sig-
nificantly improve the accuracy of the transition frequency ex-
traction. It is the line profile that represents the physical quan-
tity, while the transition frequency, level widths, etc. are de-
termined as its parameters. The accuracy of determining these
characteristics strongly depends on the used fitting contour.

The experimental data treatment performed in [14] was
based on the procedure described in [5] and the use of the Fano
contour (Fano-Voigt) to fit the observed line profile, see also
[15]. Once an indispensable part of the experiment [16, 17],
the fit of the observed line beyond the resonance approxima-
tion is performed by an asymmetric profile derived in the lin-
ear approximation, see [5] for details. In the lowest order this
corresponds exactly to the description of the QIE. With the
same result, the QIE can be obtained as the frequency shift
via an extremum condition for the line shape given by the cor-
responding cross section [7–13].

Adhering to the analysis presented in [5, 14], we discuss
the principles of extracting the transition frequency from the
experiment [18, 19] and the possibility of accurately deter-
mining the hyperfine splitting intervals in the hydrogen atom
for the Lyman-α (Lyα) transition. In the framework of the
linear approximation, it is shown that a thorough treatment
of the experimental data should significantly improve the ac-
curacy of extracting the values of hyperfine intervals in such
experiments. The latter may have a key role in the detailed
comparison with the antihydrogen atom [20–22].

II. THEORY OF SPECTRAL LINE ASYMMETRY

In the Furry picture and S-matrix formalism [23–25] for
the one-electron atom the standard Lorentz line profile can be
obtained by considering the elastic photon scattering by an
atomic electron in the state n. In the resonant approximation,
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the amplitude of the process can be reduced to the form [1, 2]:

U sc
nn =

〈n|αA∗

k1,e1
|r〉〈r|αAk2,e2

|n〉
Er + LSE

r − En − ω − i
2Γr

, (1)

where LSE
r and iΓr/2 represent, respectively, the real and

imaginary parts of the one-loop self-energy correction (the
leading-order Lamb shift and the level width, respectively),
the inserts of which were used to regularize the divergent res-
onance contribution, see for more details [1, 2]. Notations
Ak2,e2

and A∗

k1,e1
are introduced for the wave functions in

the coordinate space representation of absorbed and emitted
photons, with the corresponding wave, k, and polarization, e,
vectors, α represents the Dirac matrix, Er denotes the energy
of the resonant state r and ω ≡ |k| is the frequency of the
emitted/absorbed photon (the latter can be redefined by the
energy conservation law). The Dirac binding energies are En

for an arbitrary state of atom n, which we characterize by a set
of quantum numbers nljF (n is the principal quantum num-
ber, l is the orbital momentum, j represents the total angular
momentum of the bound electron, and F represents the total
atomic momentum taking into account the nuclear spin). Un-
less otherwise stated, relativistic units ~ = c = m = 1 are
used (~ is the reduced Planck constant, c is the speed of light,
and m is the electron mass).

Then the squared modules of the scattering amplitude (1)
leads to the standard expression for the Lorentz profile. In
the following calculations, we will turn to the dominant effect
represented by quantum interference. The QI effect can be
obtained by considering neighboring states r1 and r2. Then,
the scattering amplitude is

U sc
nn =

〈n|αA∗

k1,e1
|r1〉〈r1|αAk2,e2

|n〉
ω0 − ω − i

2Γr1

+ (2)

〈n|αA∗

k1,e1
|r2〉〈r2|αAk2,e2

|n〉
ω0 +∆− ω − i

2Γr2

,

where with high accuracy one can set Γr1 = Γr2 ≡ Γr (as
for the Lyα transition), ω0 ≡ Er − En (all possible radia-
tive corrections can be included in the definition of En) and
∆ = Er2 − Er1 . The expression (3) is written for the case
when both resonant lines are observed. It can be considered as
excitation by two independent laser beams or a single broad-
band laser overlapping the two lines.

By introducing a shortcut notation for matrix elements
〈a|αAk2,e2

|r1(2)〉〈r1(2)|αA∗

k1,e1
|a〉 = A1(2), for the

squared modulus of Eq. (2) we arrive at

φ(x) ∼ |A1|2

x2 + 1
4Γ

2
r

+
|A2|2

(x+∆)2 + 1
4Γ

2
r

(3)

+
2Re [A1A

∗

2]
[

x(x+∆) + 1
4Γ

2
r

]

[

x2 + 1
4Γ

2
r

] [

(x+∆)2 + 1
4Γ

2
r

] ,

where x ≡ ω0 − ω and Re[. . . ] denotes the real part of mag-
nitude in brackets. The dependence on the angles between the
polarization and propagation vectors (or their combinations)

for the absorbed and emitted photons is contained in the am-
plitudes A1, A2. The factor Re [A1A

∗

2] determines the angu-
lar dependence of the line profile along with the squares of the
corresponding amplitudes.

By applying the extremum condition to Eq. (3), where
dφ(ω)/dx = 0, it is possible to derive a fifth-degree equation
with respect to x. For obvious reasons, the solution of this
equation should be performed numerically. However, assum-
ing the smallness of x, the conventional manner corresponds
to the linear approximation, which immediately leads to an ex-
pression for the frequency shift caused by the QIE. The details
of such a description are extensively covered in the literature,
see, e.g., [26] and references therein.

Here we only note that the three real roots of the emerg-
ing equation can be interpreted, obviously, as values of two
maxima and one minimum of the line profile. The latter is of
particular interest for determining the ”gravity centre” of two
lines. According to the results of calculations taking into ac-
count the fine structure of the Lyman-α transition, i.e., for the
interfering 1s1/2 → 2p1/2, 2p3/2 transitions [5], this centre of
gravity can be shifted by a nonresonant correction.

To demonstrate this statement, it is enough to consider the
case when the interference is zero. Then one can find the
magic angle for electric dipole transitions with vanishing am-
plitude Re[A1A

∗

2] in Eq. (3). By performing the calculations
(see Appendix), the roots determined by the extremum condi-
tion of Eq. (3) at the magic angle can be found as follows

x(1) = 0, x(2) = ∆fs,

x(3) =
(

1− 21/3 + 22/3
) ∆fs

3
−

(

2− 21/3
)

22/3
Γ2

6∆fs
, (4)

x(4,5) = 0.278753∆fs + 0.0388517
Γ2

∆fs

± i

(

0.296415
Γ2

∆fs
+ 0.821951∆fs

)

.

Here ∆fs denotes the fine splitting interval E2p3/2
− E2p1/2

,
and Γ is the width of the 2p state in the hydrogen atom. The
expressions above were obtained for the case of the correla-
tion between the two polarization vectors. The angle between
the polarization vector of the absorbed photon and the direc-
tion vector of the emitted one will be treated in later sections.

As can be seen from Eqs. (4), the first and second roots
correspond to the transition frequencies E1s1/2 − E2p1/2

and
E1s1/2 −E2p3/2

, respectively. Both are shifted by a fine struc-
ture interval with respect to each other, and both are not sub-
ject to QIE at a magic angle. The root x(3) represents the
position of the minimum of the line profile Eq. (3) and can
be understood as the centre of gravity of the two lines, whose
position is determined by the coefficient at ∆fs and is subject
to the effect of quantum interference even at a magic angle.

Finally, the remaining roots x(4,5) yield inflection points
(the second derivative of Eq. (3) is zero at these points). We
give their numerical coefficients because of the unwieldiness
of the expressions, although we can state that, as in all other
roots, the coefficients are determined by the amplitudes of A1

and A2. Keeping in mind that x = ω0 − ω, the real part



3

of these roots can be interpreted as a shift, and their imagi-
nary part as the value of the width at inflection points (like
the natural width in Eqs. (1), (2)). At first glance, the roots of
x(4,5) are unphysical, but depending on the angle, they can be-
come real. Calculations for the angle π/2 at lowest order give:
x(1) = Γ2/(2∆fs), x

(2) = ∆fs − Γ2/(2∆fs), x
(3) = ∆fs/2

and x(4,5) = ∆fs/2 ±
√
5∆fs/2. The first three roots, as

before, represent the maxima (shifted by nonresonant correc-
tion) and the unshifted centre of gravity. The centre of gravity
is located exactly in the middle of two lines corresponding to
fine sublevels at angle π/2. In turn, the expressions for x(4,5)

give additional positions of minima located on the left and
right of the two peaks, see Fig. 1.

x -
Δfs

2

0.02

0.04

0.06

0.08

0.10

Γ2 ϕ x -
Δfs

2

FIG. 1. Graph illustrating the spectral profile of two lines, 1s1/2 →
2p1/2 and 1s1/2 → 2p3/2, separated by the fine structure interval
∆fs. Roots corresponding to the extremum condition are marked
with red squares. The graph is plotted at an angle of π/2 between
the polarization vectors of the emitted and absorbed photons, and
an enlarged region of minima to the left and right of both lines is
inserted for demonstration (black arrows connect the same roots).
Spectral profile values are multiplied by the square of the natural
width for clarity and for convenience, the graph is shifted so that the
x-coordinate of the centre of gravity (∆fs/2) is zero.

Thus, measuring the centre of gravity requires different
data processing with respect to determining the transition fre-
quency. In the case of a larger number of lines, which may
overlap significantly, the appropriate analysis becomes much
more complicated (the extremum condition will lead to poly-
nomials of higher powers on x).

III. DETERMINATION OF THE HFS OF THE GROUND

STATE OF HYDROGEN BY MEASURING THE LYα

TRANSITION

We now turn to the linear approximation, within which the
line profile fitting was presented theoretically in [5] and later
used in [14] to treat the experimental results. Considering
the Lyman-α transition, we discuss the possibility of accu-
rately determining the hyperfine structure (HFS) interval of
the ground state in the hydrogen atom. Referring to the exper-
iment [18], the level scheme is shown in Fig. 2.

The experiment [18] showed that the observation of Lyman-

F = 1

F = 1

F = 1

F = 0

F = 2

F = 0

1 s
1 / 2

1 / 2
2 p

2 p3 / 2

FIG. 2. Scheme of transitions in the experiment [18]. The hyperfine
splittings of levels 1s1/2, 2p3/2, as well as the 2p1/2 state splitting,
are denoted by the corresponding values of the total atomic momen-
tum F . The transitions are shown by lines with an arrow (single line
for absorption and double line for emission). Since there is no direct
transition to the 2p1/2 state, but interference exists, the correspond-
ing pathways are shown by dashed and dotted lines.

α emission lines can be used to accurately measure the hy-
perfine structure (HFS) of the ground state. A value differ-
ing by ≈ 20 MHz from the generally accepted result (see,
for example, [27, 28]) was found in order to further apply a
similar scheme to measurements in antimatter [18]. Possess-
ing particular importance, a detailed comparison of the hy-
perfine ground state of hydrogen and antihydrogen atoms was
recently performed in [29], where the HFS interval for the lat-
ter was determined as 1420.4± 0.5 MHz. It should be noted
that hydrogen HFS interval experiments are orders of mag-
nitude more accurate than antihydrogen experiments, see for
example [27, 28]. Although experiments with the antihydro-
gen atom are more challenging (see also [22]), we turn to the
experimental setup of the [18], suggesting their future adap-
tation to antimatter. The main purpose of the following dis-
cussion is to demonstrate that the HFS interval determination
of the ground state through Lyα emission can be determined
more accurately using the same experiment as [18].

To realize this, one should consider the emission lines (de-
picted by the double solid line in Fig. 2) without distinguish-
ing the hyperfine sublevels of the initial state, but for different
hyperfine sublevels of the final state, i.e., with total atomic
momenta Ff = 1 and Ff = 0. In consistency with the exper-
iment [18], one should also sum over the total momentum, F ,
of the 2p3/2 resonance state atom, since excitation is possible
to any hyperfine sublevel. Then, the scattering amplitude can
be presented in form:

U1s1/2→2p3/2→1sF=0

1/2
+ U1s1/2→2p3/2→1sF=1

1/2
=

A1

E2p3/2
− ω − E1sF=1

1/2
− iΓ2

+
A2

E2p1/2
− ω − E1sF=1

1/2

+ (5)

A3

E2p3/2
− ω − E1sF=0

1/2
− iΓ2

+
A4

E2p1/2
− ω − E1sF=0

1/2

.

Here the divergent resonance contributions have been regular-
ized according to the procedure presented in [1]. The terms
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with amplitudes A2 and A4 were introduced as interfering
paths to the 2p1/2 fine splitting state. The notations for ampli-
tudes in Eq. 5 are

A1 =
∑

Fi

(2Fi + 1)
∑

F

〈1sFi

1/2|αA∗

k1,e1
|2pF3/2〉 × (6)

〈2pF3/2|αAk2,e2
|1sFf=1

1/2 〉,

A2 =
∑

Fi

(2Fi + 1)
∑

F

〈1sFi

1/2|αA∗

k1,e1
|2pF1/2〉 ×

〈2pF1/2|αAk2,e2
|1sFf=1

1/2 〉,

A3 =
∑

Fi

(2Fi + 1)
∑

F

〈1sFi

1/2|αA∗

k1,e1
|2pF3/2〉 ×

〈2pF3/2|αAk2,e2
|1sFf=0

1/2 〉,

A4 =
∑

Fi

(2Fi + 1)
∑

F

〈1sFi

1/2|αA∗

k1,e1
|2pF1/2〉 ×

〈2pF1/2|αAk2,e2
|1sFf=0

1/2 〉.

The (2Fi + 1) coefficient is introduced so that the excita-
tion process proceeds in accordance with the experiment [18],
from the 1s1/2 state with an unfixed hyperfine sublevel.

By performing the calculations, see [6] for details, we find
in the nonrelativistic limit

|A1|2 = − 1

54
(7− 3 cos 2ϑ) ,

|A2|2 = − 2

27
, (7)

A1A2 =
1

54
(1 + 3 cos 2ϑ)

for the decay to the 1s
Ff=1

1/2 state, and for the 1s
Ff=0

1/2 state:

|A3|2 = − 1

162
(7− 3 cos 2ϑ) ,

|A4|2 = − 2

81
, (8)

A3A4 =
1

162
(1 + 3 cos 2ϑ) .

Here we assume that there is no interference between channels
with different total atomic momentum of the final state, i.e.
between transitions with Ff = 1 and Ff = 0.

Presence of interference in Eqs. (7) and (8) results in asym-
metric line profiles for two scattering channels 1s1/2 →
2p3/2 → 1s

Ff=1

1/2 and 1s1/2 → 2p3/2 → 1s
Ff=0

1/2 . The corre-

sponding transition frequencies can be determined accurately
in two ways. The first is given by subtracting the nonreso-
nant correction from the transition frequency, determined as
the maximum of the line profile. This correction in the lin-
ear approximation on x is easily calculated and is expressed
through Γ2/(4∆fs) ≈ −227.4 kHz, where ∆fs is the fine
structure interval between states 2p3/2 and 2p1/2. At the same
time, as before, it follows from Eqs. (7) and (8) that the an-
gle at which the low-order asymmetry vanishes is the magic
angle, ϑm = arccos (1/

√
3) = arccos (−1/3)/2. This is the

result of distinguishable transitions into hyperfine sublevels of
the ground state.

Another scenario refers to the use of an asymmetric profiles
to fit the observed spectral line shapes. Following the theory
stated in [5], within a linear approximation the fitting contour
can be given by a sum of two profiles:

C1

(x−∆1(x))2 +
1
4Γ

2
+

C2

(x+∆
(1s)
HFS −∆2(x))2 +

1
4Γ

2
. (9)

In Eq. (9) the first function is written for the scattering channel

to the 1s
Ff=1

1/2 state and the second function corresponds to

1s
Ff=0

1/2 . The introduced coefficients are

C1 = |A1|2 , a1 = 2
|A2|2
∆3

fs

, b1 = −2
A1A2

∆fs
(10)

C2 = |A3|2 , a2 = 2
|A4|2
∆3

fs

, b2 = −2
A3A4

∆fs
.

The frequency shifts are defined as

∆1(x) =
a1
2C1

[

x2 +
1

4
Γ2

]2

+
b1
2C1

[

x2 +
1

4
Γ2

]

, (11)

∆2(x) =
a2
2C2

[

(

x+∆
(1s)
HFS

)2

+
1

4
Γ2

]2

+
b2
2C2

[

(

x+∆
(1s)
HFS

)2

+
1

4
Γ2

]

.

Thus, the contour given by the expression (9) becomes de-
fined as a function of the angle ϑ and the atomic character-

istics ∆fs, ∆
(1s)
HFS, Γ. The corresponding profile is shown in

Fig. 3 as a function of frequency and angle. The difference
between the model shape (9) and the one based on (5) is in-
visible to the naked eye.

Solving equation ∆1(x = 0) = 0 (here x = ω0 − ω ≡
E2p3/2

− E
1s

Ff=1

1/2

− ω) and ∆2

(

x = −∆
(1s)
HFS

)

= 0, one can

find the angle at which the unshifted frequencies can be deter-
mined. The result is

ϑ0 = ±1

2
arccos

[−2Γ2 −∆2
fs

3∆2
fs

]

, (12)

which gives the ”magic angle” in approximation of small
width Γ. The addition to the magic angle at lowest order is
±Γ2/

(

2
√
2∆2

fs

)

≈ 2.9× 10−5 in radians.
So far we have considered the case of determining the hy-

perfine splitting interval by finding the two frequencies cor-
responding to the 1s1/2 → 2p3/2 → 1sF=1

1/2 and 1s1/2 →
2p3/2 → 1sF=0

1/2 spectral lines. Accordingly, there are two

possibilities: i) to determine the frequencies and angle from
experimental data using the asymmetric profile (9), ii) to uti-
lize the symmetric line profile obtained by fitting parameter
equal to the angle ϑ = ϑ0 calculated theoretically. Such a
symmetric contour will not neatly fit the observed line shape,
but the maxima will be unshifted, which in turn can be used
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FIG. 3. The spectral profile arising for two scattering channels
1s1/2 → 2p3/2 → 1sF=1

1/2 and 1s1/2 → 2p3/2 → 1sF=0
1/2 as

a function of frequency and angle in arbitrary units for visuali-
sation. The axis with notations in gamma refers to the variable
x ≡ E2pF=1

3/2
− E1sF=1

1/2
− ω, the axis in π scale refers to the de-

pendence of line profile on ϑ angle, and the line contour values are
plotted along the height. Two resonant lines occur at x = 0 and

x = ∆
(1s)
HFS.

to define ∆
(1s)
HFS as the frequency difference at their maxima

(symmetrization procedure [14]).
However, according to the previous section, the hyperfine

splitting of the ground state can be found in another way. The
centre of gravity can be used for this purpose. Solving the
set of equations ∆1(x) = 0, ∆2(x) = 0, one can find ten
pairs {x, ϑ}, two of which are real. Dropping out the solutions

corresponding to x = ±iΓ/2 and x = −∆
(1s)
HFS ± iΓ/2, we

found

x = −∆
(1s)
HFS

2
(13)

at the angle

ϑgc = ±1

2
arccos







−∆2
fs − 2

(

∆
(1s)
HFS

)2

− 2Γ2

3∆2
fs






. (14)

The angle ϑgc ≈ 0.961319 and differs on the magic angle,

ϑ0: δϑ = ϑgc − ϑ0 ≈
(

∆
(1s)
HFS

)2

/
(

2
√
2∆2

fs

)

≈ 6 × 10−3.

However, at angle ϑgc the centre of gravity is unshifted and
is located exactly (in lowest order) in the middle of the two
peaks, thus providing an accurate determination of the hyper-
fine splitting of the ground state.

IV. 2p3/2 HFS IN LYα TRANSITION MEASUREMENTS

So far we have described the Lyα transition without em-

phasizing the hyperfine structure of the 2p3/2 state, ∆
(2p3/2)

HFS .
Meanwhile, the value of the appropriate energy interval is
about 23.6516 MHz, see [30], which admits the influence of

the 2p3/2 state hyperfine structure on the determination of the
HFS of the ground state carried out in [18]. Note that the

value of the ∆
(2p3/2)

HFS splitting is about four times smaller than
the natural level width Γ ≈ 99.7624 MHz, which leads to the
failure to observe it in experiments of the type. Hence, inves-
tigating the impact of such a blurring on the determination of

the ∆
(1s)
HFS, as well as the possibility of extracting the ∆

(2p3/2)

HFS
interval, is the main goal of this section.

To account for the 2p3/2 level hyperfine splitting of atomic
hydrogen, we use the experimental setup of [18], see Fig.
2, where two emission lines corresponding to Ff = 0 and
Ff = 1 of the 1s1/2 ground state were observed. Then, evi-
dently, the line corresponding to the final momentum Ff = 0

is not responsible for the ∆
(2p3/2)

HFS , and moreover does not in-
terfere with the channel scattering to Ff = 0. So, we start by
considering the scattering channel 1s1/2 → 2pF=1

3/2 /2p
F=2
3/2 →

1s
Ff=1

1/2 , which can be further generalized to the case de-

scribed in the previous section III (by adding the remaining
line profile in Eq. (9)).

According to the expression (2), we have

U sc

1s1/2→1s
Ff =1

1/2

∼ A1

x− i
2Γ

+
A2

x+∆
(2p3/2)

HFS − i
2Γ

(15)

+
A3

x−∆
(11)
fs

+
A4

x−∆
(10)
fs

+
A5

x−∆
(21)
fs

+
A6

x−∆
(20)
fs

.

Here the first two terms represent transitions to 2pF=1
3/2 and

2pF=2
3/2 , respectively, while the last four terms correspond to

the interferening paths with 2pF=1
1/2 and 2pF=0

1/2 separated by

the fine splitting interval. The corresponding splitting energies

are ∆
(11)
fs = E2pF=1

3/2
− E2pF=1

1/2
, ∆

(10)
fs = E2pF=1

3/2
− E2pF=0

1/2
,

∆
(21)
fs = E2pF=2

3/2
− E2pF=1

1/2
, ∆

(20)
fs = E2pF=2

3/2
− E2pF=0

1/2
, and

x ≡ E2pF=1

3/2
− E

1s
Ff =1

1/2

− ω.

At first, it can be found that the resonant terms give rise
to the overlapping profiles (indistinguishable due to the level
width). The interference represented by the product A1A2

cannot be attributed to either one of them. However, using the

approximation of ∆
(2p3/2)

HFS smallness, we can write

φ(0)(x) ≈ |A1|2 +A1A2

x2 + 1
4Γ

2
+

|A2|2
(

x+∆
(2p3/2)

HFS

)2

+ 1
4Γ

2

, (16)

where the contribution ∼ −∆
(2p3/2)

HFS

(

x+∆
(2p3/2)

HFS

)

is dis-

carded. Performing calculations as before, we obtain

|A1|2 = − 1

648
(17 + 3 cos 2ϑ),

|A2|2 =
1

648
(21 cos 2ϑ− 73), (17)

A1A2 =
1

216
(1 + 3 cos 2ϑ).

The result (17) shows that albeit |A1|2 and |A2|2 cannot be

zero, the first term vanishes when |A1|2 + 2A1A2 = 0, i.e.
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|A1|2 + 2A1A2 = (15 cos(2ϑ) − 11)/648 = 0 and hence
ϑ = ±(1/2) arccos(11/15) ≈ 21.4◦.

The shift of the maximum as a function of angle is shown
in Fig. 4. In spite of obvious shift of the line profile maximum

ϑ=21.4
∘

ϑ=ϑm

ϑ=
π

2

-3Δ
HFS

(2p3/2) -Δ
HFS

(2p3/2)
Δ

HFS

(2p3/2)

FIG. 4. The spectral line profile given by Eq. (16). To illustrate
the shift of the profile maximum, the graph is plotted in logarithmic
scale for the values of angle ϑ = (1/2) arccos(11/15), magic angle
ϑ = arccos(1/

√
3), and ϑ = π/2.

from Fig. 4, this representation does not take into account the
asymmetry caused by interference transitions due to the fine
structure of levels. The latter can be considered with the re-
maining terms in Eq. (15) independently.

According to the theory of [5], generalized in the previous
section to the two observed lines, one should evaluate the am-
plitudes and determine the asymmetry parameters. Then the
spectral profile of the emission line corresponding to the final

state 1s
Ff=1

1/2 is given by

φ(x) ≈ |A1|2 +A1A2

(x− ∆̃1(x))2 +
1
4Γ

2
(18)

+
|A2|2

(

x+∆
(2p3/2)

HFS − ∆̃2(x)
)2

+ 1
4Γ

2

.

Here ∆̃1(x) and ∆̃2(x) are expressed as before, see Eq. (11),

with the substitution ∆
(1s)
HFS → ∆

(2p3/2)

HFS and coefficients

C̃1 = |A1|2 + A1A2, ã1 =
2 |A3|2

(

∆
(11)
fs

)3 +
2 |A4|2

(

∆
(10)
fs

)3 ,

b̃1 = −2A1A3

∆
(11)
fs

− 2A1A4

∆
(10)
fs

, (19)

C̃2 = |A2|2 , ã2 =
2 |A5|2

(

∆
(21)
fs

)3 +
2 |A6|2

(

∆
(20)
fs

)3 ,

b̃2 = −2A2A5

∆
(21)
fs

− 2A2A6

∆
(20)
fs

,

and together with the expressions (17) we found

|A3|2 = − 4

81
, A1A3 =

1 + 3 cos 2ϑ

324
,

|A4|2 = − 2

81
, A1A4 = 0, (20)

|A5|2 = − 4

81
, A2A5 =

1 + 3 cos 2ϑ

108
,

|A6|2 = − 2

81
, A2A6 =

1 + 3 cos 2ϑ

162
.

Taking into account the result (17), we find that the emis-

sion line profile to the 1s
Ff=1

1/2 state can be approximated by

the second summand in Eq. (18), where |A2|2 is defined
at angle (1/2) arccos(11/15). As a next step to accurately
consider the hyperfine splitting of the 2p3/2 state, an angle
close to the magic angle should obviously be chosen. Numer-
ical calculation gives ∆̃2(x = 0) = 0 at ϑ = ±0.955338
(ϑm = 0.955317).

The schematic behavior of the profile constructed as the
second summands in Eqs. (9) and (18) is illustrated in Fig. 5.
In particular, from Fig. 5 it is clear that with the chosen asym-

ϑ=0

ϑ=ϑm

ϑ=
π

2

-Δ
HFS

(1 s1/2) -10Γ -4Γ 4Γ

FIG. 5. The line profile constructed as the second summands in Eqs.
(9), (18). The graphs are plotted in logarithmic scale at different
angles ϑ = 0, ϑ = ϑm and ϑ = π/2 to clearly demonstrate the
difference in decay emission line to the 1sF=0

1/2 state, while the second
emission line remains the same.

metry parameters, the emission line to the 1sF=1
1/2 state re-

mains unchanged. In turn, the line profile corresponding to
the state 1sF=0

1/2 changes significantly. Moreover, a shift in the

local minimum (centre of gravity) is also obvious. Finally, in
Fig. 6 we show in detail the emission line to the 1sF=1

1/2 state.

The corresponding line profile is shifted by the value ∆
(2p3/2)

HFS .

V. CONCLUSIONS

In this work, we analyzed the solutions of the equation aris-
ing from the extremum condition determined for the spectral
line profile. Here, for simplicity, the extremum condition has
been used to determine the transition frequency of the ob-
served spectral line (the full-width-half-maximum condition,
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ϑ=0

ϑ=ϑm

ϑ=
π

2

-2Γ 2Γ

FIG. 6. The emission line to the 1sF=1
1/2 state at different angles ϑ =

0, ϑ = ϑm and ϑ = π/2. At arbitrary angles, the profiles coincide

due to the smallness of the parameters ã2 and b̃2. Dashed line is

plotted at x = −∆
(2p3/2)

HFS .

i.e., x = Γ/2, can just as well be used). In the case of an
’isolated’ line, there is a single solution corresponding to the
line profile parameter representing the transition frequency.
However, the presence of a neighboring lines leads to signifi-
cant complications. The asymmetry of the line profile arising
from nonresonant contributions to the scattering cross section
should be taken into account.

The most considerable contribution to the line asymmetry
comes from the interference effect occurring for the two path-
ways between neighboring resonance states. As a rule for
the description of QIE, the linear approximation for the line
profile is employed (Fano contour). The QI effect has been
widely discussed in the literature and has several important
properties. One of them is that the angular dependence is
determined by the set of quantum numbers for the described
transitions.

Another important aspect of the QIE is that the dominant
nonresonant contribution can be reduced to zero by choos-
ing the angle between the absorbed and emitted photons.
For the hydrogen atom, a theoretical description of the one-
photon scattering process was given in [4, 5] and later adapted
in [14] to accurately determine the 2s − 4p transition fre-
quency. In particular, it turns out that the magic angle ϑm =
arccos(1/

√
3) should be used for electric dipole transitions.

At the same time, the model profile of the line (Fano contour,
see [5]) taking into account the asymmetry parameter demon-
strates an improved extrapolation of the experimental data to
beyond the resonance approximation, as in [14].

Using the Lyα transition as an example, we find that the
choice of the magic angle is very relevant for determining the
unshifted transition frequency and fine splitting interval (and
hence the second transition frequency). However, the centre
of gravity of these lines cannot be defined at this angle through

an integer relation, such as a centroid for example. Determi-
nation of the gravity centre is subjected to nonresonant effects
in another way, the angle dependence is determined not by
the ratio of resonant and nonresonant amplitudes but by their
permissible combinations. The physical interpretation of all
roots for the equation arising from the extremum condition
clearly demonstrates this. The two lines corresponding to fine
sublevels of the Lyman-α transition (discarding the hyperfine
structure of levels) are equally distant from the centre of grav-
ity at an angle of π/2, although each is distorted due to non-
resonant effects.

Despite the standalone interest in the gravity centre of lines
in atomic spectroscopy, its measurement can also be used to
accurately determine the hyperfine splitting. According to the
analysis of section III, we at first considered the possibility of
processing experimental data to determine the transition fre-
quencies to selected hyperfine sublevels of the ground state in
the hydrogen atom, discarding the hyperfine structure of the
2p3/2 state. Then in section IV the HFS of the resonant state
was included into analysis. The main conclusion of this con-
sideration is that the hyperfine splitting interval can be found
exactly as the difference of the transition frequencies repre-
senting the maxima of these symmetrized lines.

For this purpose, the symmetrization procedure should be
performed using Eqs. (9), (18) in accordance with the theory
[5]. It can be expected that the HFS interval of the ground
state can be determined more accurately than it was found in
[18] from exactly the same experiment. In principle, deter-
mining the HFS of the 2p3/2 state is also possible (although it
is four times smaller than the natural level width) by noticing
the shift of the maximum at different angles and calculating
the frequency shift in accordance with the extremum condi-

tion. Focusing on ∆
(1s)
HFS, according to the conclusions drawn

in sections II, III and IV, we find that first the emission line
corresponding to the transition to 1sF=1

1/2 state should be pro-

cessed to obtain a symmetrized profile shifted by the value of

∆
(2p3/2)

HFS . The angle determining the corresponding asymme-
try parameters is about 21.4◦. Then other asymmetry param-
eters (determined at the magic angle) should be used to avoid
QIE due to the fine structure of the levels.

The importance of the above analysis can be emphasized by
recent experiments [22] aimed at a detailed comparison of the
spectra of hydrogen and antihydrogen. It can be expected that
the results obtained in this work can serve for the experimental
improvement of such measurements.

ACKNOWLEDGEMENTS

The work of T. Z. and A. A. was supported by the foun-
dation for the advancement of theoretical physics and math-
ematics ”BASIS” (grants No. 23-1-3-31-1 and 22-1-5-9-1,
respectively).

[1] F. Low, Natural line shape, Phys. Rev. 88, 53 (1952). [2] O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A.
Solovyev, Qed theory of the spectral line profile and its appli-

https://doi.org/10.1103/PhysRev.88.53


8

cations to atoms and ions, Phys. Rep. 455, 135 (2008).
[3] T. A. Zalialiutdinov, D. A. Solovyev, L. N. Labzowsky, and

G. Plunien, Qed theory of multiphoton transitions in atoms and
ions, Phys. Rep. 737, 1 (2018).

[4] L. N. Labzowsky, D. A. Solovyev, G. Plunien, and G. Soff,
Asymmetry of the natural line profile for the hydrogen atom,
Phys. Rev. Lett. 87, 143003 (2001).

[5] U. D. Jentschura and P. J. Mohr, Nonresonant effects in one-
and two-photon transitions, Can. J. of Phys. 80, 633 (2002).

[6] D. Solovyev, A. Anikin, T. Zalialiutdinov, and
L. Labzowsky, Importance of nonresonant cor-
rections for the description of atomic spectra,
Journal of Physics B: Atomic, Molecular and Optical Physics 53, 125002 (2020).

[7] M. Horbatsch and E. A. Hessels, Shifts from a distant neighbor-
ing resonance, Phys. Rev. A 82, 052519 (2010).

[8] M. Horbatsch and E. A. Hessels, Shifts from a dis-
tant neighboring resonance for a four-level atom,
Phys. Rev. A 84, 032508 (2011).

[9] R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien,
S. M. Brewer, J. N. Tan, and J. D. Gillaspy, Quantum interfer-
ence and light polarization effects in unresolvable atomic lines:
Application to a precise measurement of the 6,7li D2 lines,
Phys. Rev. A 87, 032504 (2013).

[10] D. C. Yost, A. Matveev, E. Peters, A. Beyer, T. W. Hänsch, and
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Appendix A: Evaluation of transition matrix elements

To describe the one-photon scattering process, we use the S-matrix formalism [S24, S31]. According to the Feynman diagram
depicted in Fig. A1, the S-matrix element is

FIG. A1. Feynman diagram representing the one-photon scattering process by an atomic electron. Wavy lines with arrows denote absorption
(down arrow) and emission (up arrow) with corresponding frequencies ω2 and ω1, respectively. The double solid line represents the bound
electron state (Furry picture). The designations f , n and i denote the final, intermediate, and initial states.

Sfi = (−ie)2
∫

d4x1d
4x2ψf (x1)γ

µA∗

µ(x1)S(x1, x2)γ
νAν(x2)ψi(x2). (A1)

The graph in Fig. A1 should additionally include a part with permuted photons. However, this part is not essential for our
purposes, and we omit its consideration (the corresponding discussion can be found, for example, in [S4, S32]).

For an arbitrary atomic state a

ψa(x) = ψa(r)e
−iEat, (A2)

where ψa(r) is the solution of the Dirac equation for the atomic electron, Ea is the Dirac energy, ψa = ψ+
a γ0 is the Dirac

conjugated wave function, γµ ≡ (γ0,γ) are the Dirac matrices and x ≡ (t, r) (vectors are in bold) is the four-dimensional
space-time coordinate. The photon field or the photon wave functionAµ(x) is defined by

Aµ(x) =

√

2π

ω
eµe

i(kr−ωt) = e−iωtAµ(r), (A3)

where eµ are the components of the photon polarization four-vector (e is 3-dimensional polarization vector for real photons),
k ≡ (ω,k) is the photon momentum four-vector, k is the wave vector, ω = |k| is the photon frequency. Eq. (A3) corresponds to
the absorbed photon and A∗

µ(x) corresponds to the emitted photon. Finally, the electron propagator for the bound electron can
be presented in the form of the eigenmode decomposition with respect to one-electron eigenstates:

S(x1, x2) =
i

2π

∞
∫

−∞

dΩ e−iΩ(t1−t2)
∑

n

ψn(r1)ψn(r2)

Ω− En(1 − i0)
. (A4)

Integration over time variables yields

Sfi = −2πie2
∫

dr1dr2ψ
∗

f (r1)αA∗

k1,e1

∞
∫

−∞

dΩ
∑

n

ψn(r1)ψn(r2)

Ω− En(1− i0)
αAk1,e1

ψi(r2)δ(Ef + ω1 − Ω)δ(Ω− ω2 − Ei), (A5)

where α is the Dirac matrix and Ak,e represents the vector part of the photon wave function characterized by the wave vector k
and transversal polarization e. Then, after the integration over Ω, we have

Sfi = −2πie2δ(Ef + ω1 − ω2 − Ei)
∑

n

〈f |αA∗

k1,e1
|n〉〈n|αAk1,e1

|i〉
Ei + ω2 − En(1− i0)

. (A6)
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For the equal initial and final states (elastic scattering), f = i = a and ω1 = ω2 ≡ ω, using the relation Sfi = −2πiUfi, the
expression (A6) gives the amplitude of the scattering process:

U sc
aa = e2

∑

n

〈a|αA∗

k1,e1
|n〉〈n|αAk1,e1

|a〉
Ea + ω − En(1− i0)

, (A7)

which in the resonance approximation (the resonant state is fixed in the sum over n), n = r, reduces to

U sc
aa = e2

〈a|αA∗

k1,e1
|r〉〈r|αAk1 ,e1

|a〉
Ea + ω − Er(1− i0)

. (A8)

To obtain the spectral line profile, it is necessary to regularize the expression (A8), since it diverges at ω = Er −Ea. This can
be done using the procedure described in [S1], see also [S2] for details, according to which an infinite number of one-loop self-
energy corrections should be inserted sequentially into the graph in Fig. A1. The regularization procedure is shown in Fig A2.

FIG. A2. Feynman diagram representing the one-loop self-energy insertions into the photon scattering amplitude. All designations are the
same as in Fig. A1. The parts given by the photon loop (closed wavy lines) are the corresponding lower order self-energy correction. The dots
denote an infinite number of such inserts. The summation of the diagrams with a different number of loops is assumed.

The sum of the diagrams in Fig. A2 is a geometric progression, which leads to the appearance of the real and imaginary parts
of the lower-order self-energy correction in the energy denominator of Eq. (A8), see [S2]:

U sc
aa = e2

〈a|αA∗

k1,e1
|r〉〈r|αAk1 ,e1

|a〉
Ea + ω − Er − LSE

r + iΓr

2

, (A9)

where we have used that the imaginary part of the self-energy correction is minus half of the Γr level width, and the real part is
the lower-order Lamb shift of the r resonance state. In turn, choosing the nearest states in the sum over n, one can write

U sc
aa = e2

〈a|αA∗

k1,e1
|r1〉〈r1|αAk1,e1

|a〉
Ea + ω − Er1 − LSE

r1 + i
Γr1

2

+ e2
〈a|αA∗

k1,e1
|r2〉〈r2|αAk1,e1

|a〉
Ea + ω − Er2 − LSE

r2 + i
Γr2

2

, (A10)

where we used the regularization procedure depicted in Fig. A2. Introducing the notation ω0 = Er1 − Ea, we find that the
second energy denominator is shifted by ∆ = Er2 − Er1 with respect to the first one.

The cross section of the elastic one-photon scattering process is obtained by the formula:

dσsc
a = 2π

∑

e1e1

|Usc
aa|2 δ(ω1 − ω2)

dk

(2π)3
, (A11)

which should be summed over the projection of the angular momentum of the final state and averaged over the projection of
the initial state. The summation over the projections of the intermediate states in Eqs. (A9) and (A10) is also assumed. The
δ-function is written for clarity in Eq. (A11) and was taken into account in the expressions (A7)-(A10).

Further evaluation concerns the matrix elements in the numerators of Eq. (A10). For the hydrogen atom within the framework

of the dipole approximation eikr ≈ 1 and αAk,e =
√

2π/ω eα. Then, in the nonrelativistic limit α is replaced by p (electron
momentum operator). The electron momentum operator can be replaced by the coordinate, r, according to the commutation
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relation p = i[Ĥ, r], which for the matrix element (p)ab reduces to i(Ea−Eb)(r)ab = ∆Eab(r)ab. According to this, we arrive
at

U sc
aa = e22πω2

0

[

〈a|e2r|r1〉〈r1|e∗1r|a〉
ω0 − ω − i

Γr1

2

+ e2
〈a|e∗1r|r2〉〈r2|e2r|a〉
ω0 − ω +∆− i

Γr2

2

]

. (A12)

Here the wave functions are given by the solution of the Schrödinger-Pauli equation. The common pre-factor arising before the
squared amplitude is not essential for our purposes and, in further, we focus on the matrix elements in brackets of Eq. (A12).

Considering the states shifted relative to each other by the fine structure, the resonance states r1 and r2 are described as the
atomic energy levels with different angular momentum of the bound electron, j. Then, the states can be characterized by the set
of quantum numbers njlsmj , where n is the principal quantum number, l is the orbital momentum, s represents the spin of the
bound electron and j, mj represents the total angular momentum, j = l+ s and its projection, respectively. Using the definition
of the scalar product (er) =

∑

q(−1)qeqr−q, the matrix elements in Eq. (A12) can be evaluated via the Wigner-Eckart theorem:

〈n′j′m′

j |T̂kκ|njmj〉 = (−1)2kC
j′m′

j

jmj kκ

〈n′j′‖T̂k‖nj〉√
2j′ + 1

, (A13)

where the coefficientCjm
j1m1 j2m2

gives the Clebsch-Gordan coefficient for the decomposition of |jm〉 in terms of |j1m1〉, |j2m2〉
[S33]. The reduced matrix element of the spin-independent operator for the set of quantum numbers njlsmj is defined by

〈n′l′s′j′‖T̂k‖nlsj〉 = δss′(−1)j+l′+s+kΠjj′

{

l s j
j′ k l′

}

〈n′l′‖T̂k‖nl〉. (A14)

Then, for the coordinate operator

〈n′l′‖r‖nl〉 = (−1)l
′

Πll′

(

l′ 1 l
0 0 0

)

∞
∫

0

dr r3Rn′l′(r)Rnl(r), (A15)

where Rnl(r) is the radial part of the hydrogen wave function.
The summation over projections can be performed as follows. For the squared amplitude (A12) we should consider

|A|2 =
∑

q1q2
q′
1
q′
2

(−1)q1+q2+q′
1
+q′

2e∗1q1
e2q2e1q′

1

e∗2q′
2

∑

mjf
mji

mjrm
′

jr

〈nalasjamjf |r−q1 |nrlrsjrmjr 〉〈nrlrsjrmjr |r−q2 |nalasjamji〉

×〈nalasjamji |r−q′
2
|nrlrsj

′

rm
′

jr 〉〈nrlrsj
′

rm
′

jr |r−q′
1
|nalasjamji〉, (A16)

where it is taken into account that for the process of elastic scattering, the initial and final states can differ in the projection of the
angular momentum and for a one-electron atom sa = sr ≡ s = 1/2 with fixed orbital momenta of the initial, final, and resonant
states. Denoting all coefficients which are independent of projections as {red}, we find that the angular correlations between the
polarization vectors are determined by

|A|2 =
∑

q1q2
q′
1
q′
2

(−1)q1+q2+q′
1
+q′

2e∗1q1
e2q2e1q′

1

e∗2q′
2

∑

mjf
mji

mjrm
′

jr

{red}Π−1
jajrjaj′r

C
jamjf

jrmr 1−q1
C

jrmjr

jamji
1−q2

C
jamji

j′rm
′

r 1−q′
2

C
j′rm

′

jr

jamjf
1−q′

1

. (A17)

By rearranging the indices of the Clebsch-Gordan coefficients according to the symmetry property [S33], we have employed
the following relation:

∑

δ

Ceǫ
bβ dδC

dδ
aα fϕ =

∑

cγ

(−1)2eΠcdC
cγ
aα bβC

eǫ
fϕ cγ

{

a b c
e f d

}

. (A18)

Then, summing over mjr and m′

jr , one can obtain

|A|2 ∼
∑

q1q2
q′
1
q′
2

(−1)q1+q2+q′
1
+q′

2e∗1q1
e2q2e1q′

1

e∗2q′
2

∑

mjf
mji

∑

cγ dδ

Ccγ
1−q2 1−q1

C
jamjf

jamji
cγC

dδ
1−q′

1
1−q′

1

C
jamji

jamjf
dδ. (A19)

Summing over mjf and m′

ji
, we can get

C
jamjf

jamji
cγC

jamji

jamjf
dδ = (−1)−γ 2ja + 1

2c+ 1
δc dδγ −δ. (A20)
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Then, taking into account the symmetry property of the Clebsch-Gordan coefficients and q1 + q2 + q′1 + q′2 = −γ − δ, by the
definition of the tensor product

|A|2 ∼
∑

cγ

(−1)c−γ{e2 ⊗ e∗1}c−γ{e∗2 ⊗ e1}cγ. (A21)

The latter is the scalar product of two tensors.
Performing the numerical calculations for Eq. (A21), one can find

∣

∣

∣Ajr=j′r=
1

2

∣

∣

∣

2

≡ |A1|2 =
2R

81
(3{e2 ⊗ e∗1}0{e∗2 ⊗ e1}0 + 2{e2 ⊗ e∗1}1{e∗2 ⊗ e1}1) =

2R

81

(

cos2 ϑ+ sin2 ϑ
)

=
2R

81
,

Ajr=
1

2

Aj′r=
3

2

≡ A1A2 =
4R

81
(3{e2 ⊗ e∗1}0{e∗2 ⊗ e1}0 − {e2 ⊗ e∗1}1{e∗2 ⊗ e1}1) =

2R

81

(

2 cos2 ϑ− sin2 ϑ
)

, (A22)

∣

∣

∣Ajr=j′r=
3

2

∣

∣

∣

2

≡ |A2|2 =
4R

81
(6{e2 ⊗ e∗1}0{e∗2 ⊗ e1}0 + {e2 ⊗ e∗1}1{e∗2 ⊗ e1}1) =

2R

81

(

4 cos2 ϑ+ sin2 ϑ
)

.

Here R denotes all the remaining radial integrals, and we have used relations for the tensor components of ranks 0, 1 with scalar
and vector products of polarization vectors [S33]. The second equation can be solved with respect to ϑ: 2 cos2 ϑ − sin2 ϑ =
3 cos2 ϑ− 1 = 0 leading to the magic angle ϑm = arccos(1/

√
3) at which the interference of two pathways ja = 1/2 → jr =

1/2 and ja = 1/2 → j′r = 3/2 is equal to zero.


