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ON WELL/ILL-POSEDNESS FOR THE GENERALIZED SURFACE
QUASI-GEOSTROPHIC EQUATIONS IN HOLDER SPACES

YOUNG-PIL CHOI, JINWOOK JUNG, AND JUNHA KIM

ABSTRACT. We establish the well/ill-posedness theories for the inviscid a-surface quasi-geostrophic (a-SQG)
equations in Holder spaces, where « = 0 and o = 1 correspond to the two-dimensional Euler equation in
the vorticity formulation and SQG equation of geophysical significance, respectively. We first prove the
local-in-time well-posedness of a-SQG equations in C([0, T); C%#(R?)) with 8 € («, 1) for some T > 0. We
then analyze the strong ill-posedness in C%%(R?) constructing smooth solutions to the a-SQG equations
that exhibit C%®-norm growth in a short time. In particular, we develop the nonexistence theory for a-SQG
equations in C%%(R2).
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1. INTRODUCTION

In this paper, we consider the following inviscid a-surface quasi-geostrophic (a-SQG) equations in two
dimensions:

0,0+u-VO=0, zeR% t>0,

u=V"-A)"1t30 (1)

subject to the initial data
0(0,7) = Op(x), =€ R? (1.2)
for 0 < o < 2, where V+ denotes the perpendicular gradient, i.e. V+ = (0,,, —0,,). Here, the velocity field
u can be written as
(z—y)*

U(t,l’) = K, * H(t,x) = Cq /]Rz Wﬁ(t,y) dy

for some ¢, > 0. For simplicity, we set ¢, = 1 throughout the paper. The cases @« = 0 and o = 1 corre-
spond to the two-dimensional Euler equations in the vorticity formulation and SQG equations of geophysical
significance, respectively.
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In the last decade, there have been significant developments in the ill-posedness and well-posedness theories
of the a-SQG equations. To put our study in the proper perspective, we first recall a few of the references
from the considerable amount of literature available on the well/ill-posedness theories within the framework
of the H® Sobolev space. The local-in-time well-posedness in H*®(R?) spaces with s > «a + 1 is established
in [§ for a € (0,2). In [9] and [25], the local well-posedness of the logarithmic inviscid regularization
of SQG equations is obtained in the borderline Sobolev space H*™(R?) with a € [0,1] and « € (1,2),
respectively. More recently, in [T1] 22], strong ill-posedness in the borderline space is studied in the case of
a =1, see also [4]. Even though there have been rigorous constructions of non-trivial global-in-time solutions
12, 51 6] [7, 17, 18, 19, 20], the question of whether finite-time singularities emerge from initial data in H*(R?)
for s > a+ 1 remains open. Beyond the Sobolev spaces, there are results on ill-posedness and well-posedness
theories in C*#(R?) spaces. Local well-posedness in C*# N LY with k > 1, 8 € (0,1), with ¢ > 1 has been
established for SQG [31], with recent improvements removing the L? regularity requirement [I]. On the other
hand, it was established by [22] and [[1] that the SQG equations (o = 1) is strong ill-posedness in C*(R?)
and C*(R?) with k > 2, respectively. After that, the strong ill-posedness in C*# with k& > 1, 8 € (0,1], and
k+ 5 > a for the a-SQG equations ([LI]) with o € (1,2) is analyzed in [12].

Despite these developments, to the best of our knowledge, the ill-posedness and well-posedness theories
for the a-SQG equations (L) have not been well explored in the Hélder spaces C*%(R?), see [23] where
the well-posedness of (II)) in the half-plane is studied in certain weighted anisotropic Holder spaces. In the
current work, we establish the well/ill-posedness for the a-SQG equations (1) with a € (0, 1).

Our first result shows the solution to (L)) is locally well-posed in the Hélder space C%%(R?) with 3 € (a, 1).

Theorem 1.1 (Well-posedness in C*#(R?) with 8 € (a, 1)). Suppose that the initial data 0y satisfies

0o € L' NC*P(R?), B (a,l).
Then there exists T > 0, depending only on ||0o|| L1rco.s w2y and a, and a unique solution 6 € C([0,T); L' N
COA(R?)) to (LI)-([L2), which is stable in the little Hélder space C([0,T); %P (R?)) with compact supports,

in the sense of distributions. Moreover, if 61 and 03 are two such solutions on the time interval [0,T)
corresponding to the initial data 010 and 02, respectively, then we have

sup [[(61 = 02) (D)l gra—1 < [|61,0 = 02,0/l ra—1
0<t<T

for some C > 0.
Remark 1.1. Note that L' N L>(R?) < H* ' (R?). Indeed, we have

R

= / 9K2(1_a)*9d$
R2

S )

< C/R2 0(@) 12| Lo <1l 22 10]] o da + C10]|70

< OOl

1

for some C' > 0, where A = (—A)z.
Remark 1.2. Clearly, the well-posedness theory established in Theorem [ holds for § = 1.

The proof of Theorem [T relies on the Lagrangian approach. For this, we need to show that the charac-
teristics associated with (II) are well-defined. Note that the velocity fields u can be regarded as A~(1=)g
in terms of regularity. This gives VA~(1=2)§ ~ |[V]*0 and thus it seems impossible to obtain the Lipschitz
or log-Lipschitz continuity of the velocity fields, which provides the well-definedness of the characteristics,
by taking into account the only bounded solution 6. This observation highlights that the Holder continuous
solution # with exponent « is in the borderline solution space. By investigating a cancellation structure
for the Lipschitz estimate of A~(1=¢, we demonstrate that the velocity fields u is log-Lipscthiz continuous
when 6 € C%(R?) and Lipschitz continuous when 6 € C%#(R?) with 8 € (a,1). In particular, we find that
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the Holder regularity of solutions is propagated in time when the velocity fields are Lipschitz. Using classical
approximation arguments, we then construct the Hélder continuous solution § € C%#(R?) with 8 € (a,1).
Regarding the uniqueness of solutions, direct estimates of solutions in the Holder space present technical
challenges. Thus, we navigate those difficulties by dealing with the negative Sobolev space, as stated in
Theorem [[LT] and employing a modulation technique, inspired by [10]. Finally, establishing well-posedness
necessitates ensuring solution stability, for which we utilize the little Hélder space, which is the C°°(IR?)
closure of the usual Hélder norm.

From the result of Theorem [Tl we naturally wonder whether the solution is well-posed or ill-posed in
the borderline Holder space C%®(R?). Our second main result demonstrates that the initial value problem
(CI)-([@2) is strongly ill-posed in C%%(R?). In this respect, our well-posedness theory, Theorem [T} is sharp.

Theorem 1.2 (Ill-posedness in C®*(R?)). For any positive constants €, §, and M, there exists 0y € C°(R?)
satisfying ||6pl|co.« < & such that the unique local-in-time smooth solution 6 to (1)) with initial data 6y blows
up at some time t* € (0,0), or the solution 0 exists on the interval [0,0] and satisfies

sup [|0(¢,-)[|coe > M
te[0,6%]

for some 6* € (0,4].
Remark 1.3. The same result with Theorem[1.2 can be proved in the periodic case using a similar approach.

As previously mentioned, while achieving log-Lipschitz continuity of the velocity fields ensures the well-
definedness of associated characteristics, it alone does not suffice to propagate the Holder regularity of
solutions, thereby failing to prevent solutions from exhibiting C%*“ norm inflation. For the proof of Theorem
[[2 motivated from [22], we first construct a family of odd-odd symmetric initial data {GSN)} N>no C C2°(R?)
consisting of disjoint bubbles. These serve as the foundation for observing strong norm inflation in the
corresponding solution. For precise details regarding the setup of the initial data, see Section E.I] below.
This together with the uniqueness of solutions from Theorem [[1] shows that the solution stemming from
HéN) retains odd-odd symmetry as long as it exists. We then provide velocity estimates for odd-odd solutions,
which play a crucial role in capturing the norm inflation of a family of solutions under the hyperbolic flow
scenario. This particular velocity approximation is initially introduced in [27, Lemma 3.1] for the two-
dimensional Euler equation and has since been utilized in various instances to establish the growth of
vorticity [3] 14}, 15} 16l 19, 241 2T, 23| 26, 28| 32} 33, 34]. Finally, we study short-time dynamics of solutions
to complete the proof of Theorem It is worth noting that all estimates in the proof of Theorem
are provided with explicit dependence on N. As a direct consequence, letting N — oo in the initial data

{HéN)} N>no yields the following result.

Corollary 1.1 (Nonexistence of odd-odd solutions in C%*(R?)). For any e > 0, there exists 6y € C2*(R?)
satisfying

||90||C0,a <e€

such that there is no odd-odd symmetric solution to (L)) with initial data 6y belonging to L>([0, ];C%*(R?))
with any 6 > 0.

Remark 1.4. The initial data 0y in Corollary [ is given by the aforementioned {HéN)}NZHO with N = oo.
It can be proved that 0q is in the little Hélder space c®*(R?).

Notations. All generic positive constants are denoted by C. f < g represents that there exists a positive
constant C' > 0 such that f < Cg. A ~ B stands for A < B and B < A. For simplicity, we denote LP(R?),
and C%#(R?) as LP, and C%#, respectively.

Outline of the paper. The rest of this paper is organized as follows. In Section[2] we present a crucial estimate
on the log-Lipschitz continuity of the velocity field u. Sections Bl and @ are devoted to providing the details
of proofs of Theorems [[.1] and [[.2] respectively.
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2. LIPSCHITZ ESTIMATES

In this section, we provide Lipschitz estimates of the velocity field. Specifically, we show that u is log-
Lipschitz continuous when § € C%* and Lipschitz continuous when 6 € C%? for any 3 € (o, 1]. Note that
K, satisfies

Kuo(2)] < —C— and  |VEu(2)] < Yz e B2\ {0). (2.1)

= Jal e = JaPee

Lemma 2.1. Let h € C®%(R?) and K, satisfy @1). Then K, % h is log-Lipschitz continuous. Moreover,
we have

(K h)(&) — (Ko % B)(®)| < Cllhllco |z — 3(1 — log™ |z — &),
where C' > 0 is independent of x and .

Proof. We split the proof into two cases |[x — Z| > 1 and |z — Z| < 1.

(Case A: |z — | > 1). In this case, we estimate

(Ko x h)(z) — (Ko % h)(2) = ( Jo ) M|<|xy|}> (Kalz =) — Kal# = ))h(y) dy

= I1+1I,
where

r< bl | (1Kol = 1)| + 1Kol = 1)) dy
{le—y|<2|e—2[}

Skl e (/ —ads—i—/ —ads>
0 S 0 S

S llpse|e — 21~
S [[pllpefz — 2.
Here we used |z —z| > 1 and {|(z — %) — y| < 2|z — Z|} C {|y| < 3|z — |}
For II, note that 2|x — Z| < |z — y| implies

- ~ T —
Eoul =G x) ba -y > Y

and thus K, is C! in the region {2z — Z| < |z — y|}. This deduces

"= /{2|m5c<zy}/0 VE.((@ —y) +tx— 7)) (x—)h(y)dtdy

1
S 1)l e|z — 2| e W
{2|lz—&|<|z—y|} |z — y|*t
e 1
S 1pllzefz — 2| i ds
2)a—g| SO
<1
SWilllo =3l | o ds
~ ||h|| L= |z — Z|.
(Case B: |z — 7| < 1). For simplicity, we write r := |z — Z|. Then, we estimate the difference as follows:

(Ko xh)(z) = (Ko *h)(Z)

1
~2 Ko(r — — K.(z— h d
2 </{zy>z}+/{zr<zy<z}+/{zy<m>( (z-v) (& —y)) h(y) dy

1 -

+5</ +f + )(Kau—y)—fca(x—y»h(y)dy
{lz—y|>2} {2r<]z—y|<2} {lz—y[<2r}

= I + 11+ III3+IVy +IVy + 1V3.
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For ITI; and IV;, we use the fact |z — Z| < 1 to observe
[z —yl, [T -yl =1 if [z —y[>2or|F—y[>2.
Thus, K, is C! on regions {|x —y| > 2} and {|# — y| > 2}. Hence, we obtain

Il = /{m_wg} /0 VEo((Z —y) 4+ tlx — &) - (x — &)h(y) dtdy
1

{lo—y|>2} [(T —y) +t(z — )
S hl[Le<lz — 2,

5 |£L'—,’f| |2+a|h(y)|dy

and we also have the same estimates for I'V;.
For 1115, K, is also in C! in the region {2r < |z —y| < 2}. Thus, we use the mean-value theorem to yield

e ‘/{2r<zy<2}~/0 VEa((# = y) +tle = 7)) - (v = 2)h(y) dtdy
_/{z <lo- <2}/0 VEo((F —y) +ta— 7)) (z — F)(hly) — h(F + Ha — 7)) didy
1
VEK.((T - tlx—2)) - (x—73)(h(Z+tx — 7)) — h(2))dtd
+A2r<|m_y|<2}/0 (( —y) +1( )~ ( ) (W@ +¢( )) — h(%)) dtdy

’ ~/{2r<|my|<2} /0 VKo (& —y) +t(x— 1)) - (x— I)h(Z) dtdy

| — Z| |z — &|tte

< Clhlenn / h(y) dy + Clhco.s / = I ) dy
{2r<|z—y|<2} |£L' - y|2 {2r<|z—y|<2} |£L' - y|2+o¢

T / (Kao(x — ) — Ko(@ — y)) h(@) dy
{2r<|z—y|<2}

21 |
< Clhlcoalr — T —d — | d
< Clh)co.a |z x|(/2rs s+ |z — 7 /2r51+°‘ s)

+ (Falw —1) = Kai — 9)) (@) dy
{2r<|z—y|<2}

< —Clheo |z — #|log |z — #| + Clh]eo. |z — 7|

+ h(#) / (Ka(z —y) — Kol@ — ) dy,
{2r<|z—y|<2}

where we used

~ - - N
(@ —y)+tlz—2)| =@ —y) -1 -t)z-3) 2 [le —y[ = [(1 =z - 3] 2 ——
The same arguments apply to IV,, and we arrive at
IVa < ~Cllleoe o &l logla — 3] + Clhleon o — 3] + h(@) [ (alz — y) — Kol - y)) dy.
{2r<|z—y|<2}

Here, we notice that

/ Ka(w—y)dy=/ Ka(:i—y)dy=/ Ka(y) dy,
{2r<|z—y|<2} {2r<|z—y|<2} {2r<|y|<2}

/ Ka@c—y)dy:/ Ka@—y)dy:/ Ko((z — ) - y) dy.
{2r<|z—y|<2} {2r<|z—y|<2} {2r<|y|<2}

This shows that the terms with h(Z) on the right-hand sides of the last inequalities in IT15 and IVa cancel
out each other. Thus we have

[Ty + IVy < —C[hleow |z — F|log |z — &| + Clhleow | — F| < Clh]coa|z — #|(1 - log™ |z — &|).

and
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For III3, we use {|z —y| < 2r} C {|Z —y| < 3r} to get

1113 = Kq(x —vy)(h(y) — h(z))d h(x Kyo(x —vy)d
o= [ a0k ey @) [ Ky

- / Ko(# — y)(hy) — h(Z)) dy — h(z) / Ko — y) dy
{lz—y|<2r}

{lz—yl<2r}

2r 3r
< C[h]co.a (/ ds—|—/ ds> —|—h(:17)/ Ko(z —vy) dy—h(i)/ Ko(Z—y)dy
0 0 {lz—yl<2r} {lz—yl<2r}

< Clheon |z — 7| + h(z) / Ka(y) dy — h(7) / Koz — %) — ) dy.

{lyl<2r} {lyl<2r}
Similarly, we find

IVa < Clblesclo = |+ h(z) [

Koz — %) —y) dy — h(2) / Kal(y) dy.
{lyl<2r}

{lyl<2r}
Thus, once we use {|(x — %) —y| < 2r} C {|y| < 3r} to deduce

1 1
111, + TV < [leoe o — | + |h(z) — h(D) T+ () —h@) [y
{lyl<2ry [yl e {Iyl<sry Y11

2r 1 3r 1
< [Bleow|z — 7| + [Hleoe|o — [ (/ —ads—i—/ —ads)
o S o S

< [hleoelz — .

Therefore, we combine all the above estimates to yield the desired result. g

Following almost the same argument as in the proof of Lemma 2.1] we also have the following result.

Corollary 2.1. Let h € C%P(R?) with o < 3 < 1 and K,, satisfy @I). Then K,xh is Lipschitz continuous.
Moreover, we have

(Ko h)(x) = (Ko h)(2)] < Cl[hlleos |z — 2,

where C' > 0 is independent of x and .

3. WELL-POSEDNESS IN C*#(R?) wiTh 3 € (a, 1)

In this section, we study the local well-posedness of solutions to the system in C%#(R?) with 8 € (a, 1)
giving the details of proof of Theorem [[.T] The proof consists of three parts: existence, uniqueness, and
stability.

3.1. Existence. In order to show the existence of Holder continuous solutions to the system (LI), we
regularize the velocity field u as

1L
wi(t, ) = (K5 0)(t,x) with K&(z) = ———
(|x|24+¢e)=
and consider the following regularized equation:
O V=0 (31)

subject to the regularized initial data:
98 = 90 * ¢5;
where ¢, is the standard mollifier. For the regularized equation (B)) with e > 0, we obtain the global-in-time

existence and uniqueness of regular solutions by employing the classical well-posedness theory, see [13] 29]
for instance.
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3.1.1. Uniform-in-¢ bound estimates. We first show the uniform-in-¢ bound estimate of solutions 6° in the
Holder norm C%#(R?). For this, we consider the backward characteristics ®(s;t,-) : R? — R? defined as a
solution to the following:

%‘ba(s;t, x) = u(s, P°(s;t,x)), O°(t;t,x) =x
for s € (0,t). Due to the regularization, the above characteristic is well-defined. Then, we readily observe
0°(t, ) = 05(9° (0;, ),
and thus
16Ol e = 1165l o= < [[6o]| o
We also find from Corollary 1] that for any =,y € R?

t
|@%(s;t, ) — (s, y)| < |z —y +/ (K +0°) (7, @°(75, ) — (KG +0°)(7, (73, y)) | dr

t
< o= ol + Clfleos [ [0%(ritiz) = @(rit, ).
Thus, we deduce
|®°(0;t, ) — D°(0; ¢, )| < |& — ylexp (C|6°| o< (0,1:c05)t)
for some C > 0 independent of € and t. Together with this, we estimate
|6°(t, 2) — 0°(t, y)| = |05(2°(0: ¢, =) — 05(2°(0;2,9))]

<165 llco.s |®°(0; 8, ) — B°(0; £, y)”

< |16ollco. exp (CBII6% || Lo 0.1:c0)t) [ — y]”
and subsequently,

16°(t)[lco.s < [|60llco.s exp (CBIIO° || oo (0,e:c050t) -
We then use the standard continuity argument to conclude that there exists 7' > 0 such that

sup [|0°(¢)||co.s < 4[|6o][co.s-
0<t<T

Moreover, it follows from Corollary 2] that «¢ is uniformly bounded in L>°(0,T; W1°).

3.1.2. Passing to the limit ¢ — 0. Since C%P << CO, there is a limit function § € L>(0,T; L' N C%#) such
that

0° — 60 in L>=(0,T;LP(R?)) and u — u= K,x0 in L>(0,T;L*(R?))
for any p € (1,00]. We now show that the limit functions 6 and w satisfy the equation () in the sense of
distributions. For any ¢ € C2°([0,T] x R?), we estimate

t t
/ Ve (0°u® — Ou) deds = / V- (0°u® — Ou) deds
0 JR2 0 JRr2

/t/2V<p-(((KE—KQ)*0)0+K2*(0 —0)0 +u°(0° —0))dxds
=: IOE —I—RIIE + III°.
For I¢, we obtain
IF < (K5 — Ka)Lligj<allnie2) 1€l Lo 0,1y xr2) [ (V)0 L1 (0, 1) x R2)
+ [I(KS = Ka)Ljg>1 ]l 161 (V)0 1 ((0,7) xR2)

and the dominated convergence theorem gives I° — 0 as € — 0.
We next estimate

e ®2) 1 poo 0,750 7w (R2))

17 < (||Ka1|m|gl|m«||9€ Ol + WKLl o 165 6]

e |9V80||L°°(0,T;L1)
15 _ 15 _
<|o P R P a)>

3
L>(0,T;LT-= )> |
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—0

as ¢ — 0, where p € (%, o0) and p’ is the Holder conjugate of p.
We finally show that

ITT° < uf||zoe o,y xr2) 107 = Oll L= [Vl Lr < C|6° = 0]l Le = 0 as e — 0.
This completes the proof of the existence of Holder continuous solutions 8 € C([0,7");C%#(R?)) to ().

3.2. Uniqueness. In this subsection, we discuss the uniqueness of solutions to (LI) on L' N C%# with

B e (a,1].

For this, we need the following technical lemmas.

Lemma 3.1. [30] Let d € N. For s > 0, suppose A® is a differential operator such that its symbol :4\5(5) 18
a homogeneous function of degree s and As(&) € C=(S4™1). Then for any p € (1,00), we have

[A°(fg) = FA*g = gA* flle S (I fl| Lo [[A°gl Lo~

Lemma 3.2. [10] Let d € N. For T > 0, suppose that the pairs (p, @) and (p,u) satisfy the followings:
(i) (p,u) and (p,u) satisfy the continuity equations in the sense of distribution:

wp+V-(pu)=0 and Ohp+ V- (pu) =0,
(i1) (p,u) and (p,u) satisfy the energy inequality:

sup </ p|ﬁ|2d:17+/ [)K*ﬁd:r) <00, sup </ p|u|2d3:—|—/ pK*pdaj) < 00,
0<t<T \JRd R4 0<t<T \JRd R4

(iii) p,p € C(0,T; LY (RY)), Vu € L>=((0,T) x RY).
Then for any v € [—1,0), we have

1d
_= — A % (p—p)dx <
5 7 Rd(p p) *(p—p) :v_/Rd

for t €[0,T) and some C' > 0 which depends only on v, d and ||[Vu| e ((0,7)xRr)-

plu=0) VAP (p=p)ds+C [ (p=pA (o~ p)da
Rd

Now, we assume that we have two solutions 67 and 6y to (LIl correpsonding to initial data 6y o and 602 ¢,
respectviely. Once we write u; = V-A~2T%0; for i = 1,2, we use Lemmas [B.1] and to obtain

1d o
——|6h — 6|3, < C/ 01(u1 — ug) - VAT*F2(0; — 02) dx + C||61 — 627,
R2

2dt
== / [A*”“V . (6‘1(’(1,1 - u2)) - A71+QV91 . (u1 - UQ)
R2
- 91A_1+0‘V . (ul - u2) A_l+a(6‘1 - 6‘2) dx
+ A‘HaVHl < (ur — u2) A_1+°‘(6‘1 — 6‘2) dx + CH6‘1 — 92”%[‘**1
Rz
< ClIA01 || e [lur — uzl2[|01 — Ol o + CIATFOVO || oo lur — g £2]102 — b2l o
+ Cll0r — 02| Fus
< C|1601 — 0o u s
where we used |lu1 — us|p2 = [|[VEAT2T(0) — 605)| 12 < [|61 — 02 yo—r and
01(z) — 61 (y)
AYO, = / dy
P e e —yPre

0, (x) — 0
oy, T
(o—yl<1y  Jla—yi>1y) ==Yl
1

1
<Clorens [ e Ay + o [ S
¢ {o—y|<1} |2 —y[>To=B {lo—y|>1} [T —y[*t®

< Cllnleo.s-



ON WELL/ILL-POSEDNESS OF a-SQG EQUATIONS IN HOLDER SPACES 9

We can also apply the same estimates to [[A"1T*V6; | L~ and hence, we use Grénwall’s lemma to yield

161 — 02 Fa—r < ClI1.0 — 02,0/ Fas

and from which we attain the desired uniqueness.

3.3. Stability in the little Holder space. In this part, we provide the stability of solutions to (II]) in
little Holder spaces. First, we define the little Holder spaces as

im sup 12 ’“f(:v)—D’“f(y)IZO}

R_’O\w y|<R |'r_y|’y

“Y(R?) = {f € C*(R?)

which is the closure of C*°(R?) in the usual Holder norm from C*7(R2?). Now, for given 6y € ¢*#, T'> 0 and
the corresponding unique solution 6 € C(0,T;c"?), we show that for any e > 0, there exists § > O such that
whenever 0y € ¢>F satisfies ||y — 6o||co.s < 8, the unique solution @ corresponding to 6y satisfies

sup [0 = 0)(t)]lco.s < e.
t€[0,T)

For this, consider a standard mollifier ¢, (z) =: 5@(Z£) and let 8" := ¢, x 0 define 0¥ similarly. Then one
has

16 = 6)(t)llco.s < 118 = 6)(B)lcows +11(6” = ") (#)llco.s + (18 = 6)(t)llco.s
Here, we first need to show that sup,cio 1y [[(0 — 67)(t)||co.s and sup,cpo 1y 1(6¥ = 6)(t)||co.s goes to 0 as v
tends to 0. For this, one easily sees that

10 = 6")()ll= < sup /l - S W)IO(x —y) — O(x)| dy < [|6(t)]|cosr”.

zER?

Moreover, one observes that

(6 = 0")(x) — (60 = 0")(y)|

|z —yl?
L0 -0")(@) - (0 -6")(W)l L6 =6")(@) ~ (0 = M)Wl
= |z — y|P flz—yl<vv} lz —y|? {lz—yl=v¥}
0(z) — 0 Oz —2) — Oy —
< op POZEL, gy [ gD 28I ot s
o—yl<vz 1T =Yl jo—yl<vi J 21w [z =y
0(z) — 0
<2 sup M—!—?V%HH(UHCD,;%
lz—y|<vv |£L‘—y|

— 0

as v tends to 0. Thus, we can choose v; = v1(¢) such that

€ ~ ~ €
sup 10— ) Dllcos < & and  sup (B — B)(D)ens < <.
te[0,7) 3 te[0,7) 3

and we note that

1 £lleo.s S NP Fllzs S ||f|| HfHHa b
ie. H2N H* ' < C%. Thus we get
0 2 v NV v v
16 =) (B)llcos < 3+ C(0 —6™)(t )H et )HHa .
where C' > 0 is independent of v, and we note that

16e * fll fra—s < 1f 1l fras- (3.2)
Indeed, choose any ¥ € H'~® with [[¢)[| 51— < 1. Then we get

TRCE < Wflgos > Wl

/RQfsbs*i/)dx
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and since the change of variables (2/,y') := (x — w,y — w) gives

¢ *P(x) — de * Y (Y)?
62 61y = // e dedy

¢e(w |¢ z —w) — Py — w)|?
//R?xR? /w|<€ |2+2(1 «) dlﬂdxdy

¢a |"/’ ) — (y )| L
//11%2xR2 /|w|<5 |gg/ _ y/|2+2(1_a) wdx' dy
= 19113

we arrive at (32). Hence, one has

16" =) (Ol frar < 110 = O)(E)l| s,

and from the uniqueness result, we get

10 = 0) (1) a1 < Cl00 — o]l o,

where C' > 0 only depends on [|0]|¢(o,7;c0.5), ||9~HC(07T;C0,B),T, a and . Thus, we obtain
15

~ 25 ~ d —«
16 = 6)()llco.s < =+ Cillfo — Ooll p2)"

where C7 > 0 depends on v, [|0]¢o,1;c0.5), ||9~||C(07T;C0,B), T, o and 3. We remark that C may grow to
infinity as € tends to 0. Thus, once we choose 0 as

d —
d42-a

e \ 1F
0=:|—
(=)

sup (0 —0)(t)[|co.s <,
te[0,T)

one has

and this implies our desired stability result.

4. STRONG ILL-POSEDNESS IN C%%(R?)

In this section, we provide the details of the proof for Theorem

4.1. Setup of initial data. We fix ng > 1 and some smooth radial bump function ¢ : R? — R satisfying
1p.4) = 9= 1p0.4)
Then for any N > ng, we define

N) _ Z n*ﬁgo ) (4.1)

n=ng
for some 0 < 3 < 1/4, where
9672)0(:17) =474 (v — 472 w0 — 47 2))

for = (z1,72) € R% The specific value of 3 slightly greater than 0 will be determined later. Next, we

extend each of Hé"lz)c (and similarly GSN)) to R? as an odd function with respect to both axes. For any given

€ > 0, one can have by taking ng > 1 large enough
N
165 oo < € (4.2)

for all N > ng.
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4.2. Velocity approximation for odd-odd solutions. In this subsection, we shall state the velocity
estimates for odd-odd solutions from which we have the norm inflation of the family of solutions with the
prescribed initial data. For convenience, we shall normalize the SQG Biot—Savart law in a way that

u(t,gc):/]R M@(f,y)dy.

2 |z —y[*te

Lemma 4.1. Let § € C%% be an odd function with respect to both azes, i.e., 0(z) = —0(z) = 0(—x) = —0(Z)

where & := (x1, —x2) and & := (—x1,22). Then, for any x satisfying x1, x2 >0 and |z| < %, we have
u1 () Y192 i + )
—4(2+a) / 0(y) dy| < C||0]|co.a (1 + log (4.3)
1 Q) YA x3
and
uz(z) Y1y2 i + 23
+4(2+a)/ 0(y) dy| < C0]|co.o (1 + log ) (4.4)
T2 Q) lyI*Te 3
where Q(x) := [2x1,00) X [2x2,00).

Remark 4.1. A similar result can be obtained for the periodic case. The error bounds for [E3) and (@A)
are an improvement of that of [22, Lemma A.1]. Note that H'*%(R?) — C%%(R?) for any o € (0, 1).

Remark 4.2. We may replace Q(x) by R(z) := [2x1,00) X [0,00) in {@3) since

2xo e}
Y1Yy2 Y1Yy2
/ o) dy| < 0ese [ [ LB yraye
R 0 211 |y|

@\Q) [yt
212
Y2
<Cle Co,a/ 5 dy2
oleo [

:v% + :v%
?
Proof of Lemma[{.1] Our main idea of the proof is motivated by [22] Lemma A.1] and [33, Lemma 2.1]. Let
z and 6 satisfy all assumptions for Lemma Il Then, we have the Biot—Savart law that
e N ) N G oF ) e C e )l )
u(zx) = — - + — - O(y) —0(x)) dy
0= f, o (Ees ~ gt e ~ fem gt 00~ 60
+9(x)/ (z-y)* (-9 @ty  (z-p" ay.
000y [T —yPre oz —gPte [zt ylte |z —gPte

< Cl0]lco.e log

Let uy(x) =1 + Iy + 1) 4+ 115, where

T2 — Y2 T — Y2
I::_/ < B - >9y—9ar dy,
1 0,002 \|Z —yl>Te [z —g|2te (6(y) — 6(x))

T2 + Y2 T2 + Yo
I = —/ < _ " > 0 y B 9 ) dy7
2 0.00)2 \[Z + YT [z —g[>te (0(y) — 0(x))
L2 — Y2 T — Y2
I, = —6 B p .
1 (.I) ‘/[10700)2 |$ — y|2+0¢ |£L' IR g|2+a Y, an

T2 + Y2 T2 + Y2
1L = —9(3:)/ — — dy.
0,002 [T +Y[PTe |z —gPte

We first estimate I;. To show that

2 2
< Cz110]|co.a <1 + log xl;xz) , (4.5)
1

Y1y2
L —22+ a)xy / 0(y) dy
Q@) lylAT

we split the domain into three parts R? = Q(z) U ([0, 2x1] x [0,00)) U ([221,00) x [0,2w5]) and estimate the
integral on each region.
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(i) y € Q(z) case. We claim that

|_ [ w)( ) 6 o)y 22 [ A6y

S CIl 0 COa.
PV T P I o o1 el

(4.6)
Note that

L2 — Y2 To — Y2
) — 2B (6() — 0(x)) dy
/Q(x) (|17—y|2+a |x_y|2+a>( (y) —0(z))

T2 — Y2 T2 — Y2 T2 — Y2 T2 — Y2
=— — - 0(y) dy + / < — ~ > 0(x) dy.
/Qm (Iw —ypPte o - y|2+“) Q) \|z —y[*te |z —g[*te

It is not difficult to show that
Sl<le-yl <l and  Shl<le-dl<ibl  yeQ@) (17)
We define g(t) = |y — (& — (1 —t)(Z — 2))|*"® for 0 < ¢t < 1. Then, we use the mean value theorem to obtain
& =y = |z — y** = g(1) - g(0)
=2Q+ o)zt +2) + A =7y —2)lr(y —2) + (1 = 7)(y — o)
for some 7 € (0,1). Thus, it follows from the above and the fact |z — y| = |z — g| that

Ta—ya  w2—y2 (w2 —y)(9(1) —9(0)) (4.8)
[z —yPte z—gPte o —yPrele —gPte '

Hence, we combine this with (£7) that

T2 — Y2 T2 — Y2
— - 0(x) dy
L, (e~ s o)

< |9(x)|/Q 22 = y2llg(1) = 9O

(x) II— y[Prejz — gl
< Clo(z |/ | |2+a (4.9)
§C£C1| =
le
< Cz10]|co.a,

where we used the odd-odd symmetry. Similarly, one can show that

) /Qu) (Ix —xy2|2+a I _x§|z+a) 0(y) dy| < / z2l9(1) — 9(0)|

~|2+a9(y) dy
< O/ xmwdy
Q

0@ [T =yl —g
@ |yl lyl*

S O.Il”@”co,a.

Now, it remains to show that

Y2 Y2 Y1Y2
— = 9ydy—22+o¢x/ 0(y) dy
foo (=t~ s ) Sty 224 m [ o

Q)

S O.Il”@”co,a.

For this, note that
Y2 _ Y2
|z —y[*Te o —g[*te

(i —(A=2n)z)lrly -+ A -1y =) )

|x_y|2+a|x_g|2+a |y|4+a

Y1Yy2
|y|+H

- 22+ a)ry

=22+ )11 (

ly = ((L=27)ay, z)[* 1 )
[z —yPre|E —yPte Jyltre

Ty —2)+ (1 = 7)(y — o)
lv —y|2te|e —g[2te 7

=2(24 @)z1y1Y2 (

—2(24 a)(1 = 21)23y,
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Here, the second term is bounded by

1
2
Cx1—|y|3+a.

Thus, we arrive at

Ty —2)+ (A —7)(y — )|
2(2+ a)(1 — 27)zTys = 0(y) dy| < Cz1]|0]co.-
/Q(m) ' |z —y|2te|z — g2te
On the other hand, we apply the mean value theorem again to
(77): i_ ((1_27-):[;171:2) -2 T:Elel i_ni ) _77§1,
[yl ly| ll 1 Iyl "yl
and yield
ly — (1 —27)ay,z0)[* 1
|z — y|2te|z — y[2te y[+Fe
_ [yt v _ (L= 20)o,0) a—!i_ia\i_z
|z — y|Pre|@ — y[2refy|tte |yl [yl ll lyll Tyl Tyl

z |* T | 2x - ||? 2% - |z|? x |* z
+i__ i__ — 1__y_|__ 1— y_|__ i__ i__
lyl lyll Tyl yl lyl>  [yl? lyl> w2/ Hlyl ol Tyl [yl
|y|4+2a 1
< — [h(1) — R(0)| + Clz|——
|I_y|2+a|x_y|2+a|y|4+a |y|5+a
1
< C|$|W,

where we used
() =1yl 72 (aly = (1 = 27)z1, @) — 2nraren|* > (dnr?at — 211 (yr — (1 = 27)an))|y — 0@
+ly = (1= 27)21,22) — 27mren|*aly — ni|* > (lE* —y - ©))
£l
[yl
for y € Q(z). So we attain

<C

y— (1= 2wl 1
22+aw1y1y2( b - 0(y) dy
/Qm 2+a) T yPrele —ypre e ) W

Thus, we combine the above estimates to obtain (40]).

< C1|6)]co.e.

(ii) y € [0,224] x [0,00) case. First, we deduce from (L8] that

T2 — Y2 T2 — Y2
- - — (0(y) — (x)) dy
/[O,Qxl]x[o,oo) (|x —y|2te |z — y|2+a)

- (2 — y2)(g(1) — g(0)) o
a [0,211]x[07w) |z — y|2to|z — g|2te (0(y) — 0(x)) dy.

Since |g(1) — g(0)| < Ca1(z1 + y1)|Z — y|* and 21 + y1 < 327 in this region, we have

_/ (2 — y2)(g(1) — 9(0))
[0,221] % [0,00)

|z —y[*tefz —g[>te

(0(y) — 0(x)) dy

00 r1
T T2 — Y2
< Cz4]|0 oya/ (/ ! )d
1” ||C 0 x% + (22 — y2)? o (T1 —y1)? + (T2 — y2)? Y1 | ay2
T

o0
< Cuxq||0 O,a/ - d
< Cz1)0]|cone.

a |

13
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(iii) y € [221,0) X [0, 222] case. We again deduce from (L8] that

T2 — Y2 T2 — Y2
- - - (0(y) — 0(x)) dy
/[zml,oo>x[o,zz2] <|:v —yPre o - y|2+“>

- _ /[2 s (x2 —y2)(g(1) — ¢(0)) O(y) — 0(z)) dy.

| |z —yPrele —gPte

In this region, we have |g(1) — g(0)| < Cz1(z14+v1)|Z —y|* and y1 — 21 < y1 + 21 < 3(y1 — 21) for y1 > 22;.

This implies
(z2 — y2)(9(1) — g(0))
— - O(y) —0(x)) dy
‘ = CURLE)

T2 o0 yl_xl
< Cz1||0]|co.« — d d
< Cnilblene [ (a2 =) (/ )

P @y
< Cxy||0)|coe / - d

:v% + ,T%
2
Ty

< Cxq||0]|co.« log

Hence, we collect all the estimates up to now to attain ([3H]).
Next, we estimate IT;. Due to the asymmetry of integrands around y» = 25 on the interval [0, 225], we

have
T2 — Y2 T2 — Y2

15 = —9(33)/ — - y.
[0,00)x [223,00) [T — y[*Te |z —g[*Te
Thanks to ([@3)), it suffices to show that

T2 — Y2 T2 — Y2
—9(1:)/ - = dy
[0,221] % [222,00) |T — Y[*T |z —g[*Te
Ty — 1) —g(0
_ —9(:17)/ ( 2 yzl(g( ) ~g2(+2¢) dy
[0,221] x [222,00) |z —yl |z — gl

< Cz1]|0] con.

On [0,221] X [2x2,00), we have |x — y|* > (y2 — x2)® > x§. Then we estimate this term as we did for I; on
the region [0, 221] x [0, 00):

z2 — y2)(g(1) — g(0
[ oo,
[0,2z1]x[2z2,00) |z —yl lz — g

00 r1 —
T 2 Y2 1 d
< Cux||0 o,a/ (/ — + - )
1l8lle - x% + (22 — y2)? o (T1 —y1)? + (T2 — y2)? Y1 | ay2

oo

< Cxq||0||co.a / - dys
9y L1 + (22 — y2)?

!

< Gy [f]]coe
which implies
(11| < Ca1|0]| oo
For I, we redefine the function g by g(t) = |y — (Z — (1 — t)(z + z))|***. Then one has
|z —y** — o+ y[P" = g(1) — 9(0)
=22+ o)z (r(yr +21) + A =7y —2)Ir(y —2) + (1 = 7)(y + 2)[*

for some 7 € (0,1) and with this we proceed similarly to the estimates for I; to get

2 + 22
§O$1”9Hco,a (1—|—10g 1:1;2 2)
1

Y1Yy2
I — 2(2+a)331/ 0(y) dy
Q) lyIAT

due to |z —y| = |z — 7|
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For 115, we use |g(1) — g(0)| < Cxy(x1 + y1)|z + y|*, |z +y| > |z|, and |z — §| > 22 + y2, on the region
[0,00) x [0, 2z5] to have

3 (22 + y2)(R(1) — (0))
9 €z 24« 72+ d
[0,00)%[0,225] 1T T YTz — g

2xo e’}
T1 (x2 + y2)
<C—|0 ,a/ </ d >d
|| [lee 0 o (#1—y1)* + (22 + y2)? )

Il 212
<16 ¢on / 1 dys
|~”U 0

< C1|6)]co.e.

Since the other parts of the integral can be treated similarly to the estimates for Iy, we have
|II2| S C,Tl H9||Co,a.

Therefore, we combine all the above estimates to obtain [3]).
Let uo = I111 + 1115 + IVy + IV, where

11, = /Rz < St L > (0(y) — 0(x)) dy,

o =yt o —gfPte

1L = /Rz< S S ek >(9(y)—9(:r))dy,

oy Jo— g

1 — Y1 1 — Y1
IV, =6 _ d d
=0 [ (|x Y z7|2+°“) g

T+ T+
IVy = 0(x _ dy.
’ “/Rz(|x+y|2+a Ix—ﬂl”a) y

Then, we can show that

III +2(2 + )z / IL2_ g4 dy
Q

2 + 2
ree— S CIQ 9 CO, <1 —+ log 1 2) y
(@) Y[+ 181 a3

Y1Yy2
IIIQ+2(2+O&)$2/ —H(y)dy
o) YA

2 —I—x2
< Casl0)|co.o <1+log 1:02 2),
2

and
[IVi] 4+ [[V2] < Cz2|0][co.

which yields ([£4). Since the proof is parallel to that of u; by changing the role of the first and the second
components, we omit the details of that. This completes the proof. O

4.3. Proof of Theorem[T.2l Let ¢ > 0 and consider smooth initial data HéN) € C2°(R?) given by {@I) with
N > ng. Recalling Section ] we fix ng > 0 such that [@.2) holds for all N > ng. To derive a contradiction,
suppose that there exists M > 0 and T > 0 such that each corresponding smooth solution §( )(t) exists on
the interval [0, 7] and

tes[%%] [0(t)l|co < M. (4.10)
Though it is well known that the smooth solution V) (t) actually exists at least on the interval [0, T(M)], it
is unclear the lifespan of §(N) is enough to generate C%“norm inflation (note that TW) — 0 as N — 00).
This is why the lifespan of #V) () is included in our assumptions. For simplicity, we assume that M > 1
and MT < 1. Since HéN) satisfies the odd-odd symmetry, the uniqueness result in Section guarantees
that (V) (¢) should be odd-odd symmetric on [0, T7.

We recall from Lemma 2.1] that

1
utt,) = u(t)]  Mle = o] (10 + 1o ).
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Then, the forward chateristic flow ®(¢;0,-) : R? — R? defined as a solution to
q
dt

is well-defined, and there exists a constant C' > 0 such that for any ¢ € [0, 7],

|z — y| PN < (50, 2) — D(t;0,y)| < @ — y|PC MY
holds for all z, y € R? with |z — y| < 1 and
| —yle” M < [@(1:0,2) — @(£0,y)| < |z —yleM!
holds for all z, y € R? with | — y| > 1. This implies supp6(t,-) € B(0,R) on [0,7T] for some R > 0.

Moreover, due to the odd-odd symmetry and the continuity of 6(¢,-), the solution vanishes at the axes and
it is conserved along the characteristics:

0(t,®(t;0,2)) = bp(x), r € R? and t € [0, 7).
We also observe that the solution # satisfies the assumptions in Lemma [l Thus we deduce from (£3)) that

O(t;0,2) = u(t, ®(¢;0,2)), @(0;0,2) =

d Y1Y2 Qo (t;0, )

—log ®,(¢; 0,z —42+a/ 0(y) dy §C’M10g(e+7 4.11

q BP0 ) AR E ) [ oy oY) &1(0:0,7) (1
and

d Y1y2 1(;0,2)

— log ®5(t;0,2) + 4(2 4+ a)/ 0(y) dy| < CM log (e + —= (4.12)

dt Q(@(t:0,2)) 1YI*T* ®o(t;0, )

for any x € R? with 1,25 > 0. Here C' > 0 is independent of M.

Lemma 4.2. For any given v > 1 and K > 1, there exists T =T (M,~,K) > 0 such that
Dy(t;0, ) < 7%7
@41 (t;0,2) 1

for all x € R? with x1 > 0, x5 > 0, and + <2 <K

Proof. From (LI1) and (£I2), we have
d Dy (t; Py (t; D (¢
L 1o 209 G (1 (o4 2E0D) L (o 10x»
t;0,x)

te0,7] (4.13)

dt <I>1(t;0,x) <I>1(t;0,:v) (1)2 t;0 ,T

Note that (ZI3) holds for ¢ = 0. Assume that there exists [t1,%2] C [0, 7] such that
Then, it follows that

(10m Z %—2 on [tl,tg].

Dy (t;0, ) Dy (t;0, )
log —"—"~- < CM+CM ] 3 (202
dt °8 1(t705 ) * o8 1(t507$)
Thus, by Gronwall’s lemma, we have
P2(t0,2) _ cmr v T2
log —— 1~ < 1 cMT t € [t1,ta].
ngbl(t;o,x) = 8 2$1 + ’ 6[17 2]
By taking 7" > 0 sufficiently small and using the classical continuation argument, we obtain the desired
estimate. O]
Now, let €2, := supp 95 l)c for n > ng, and take v > 1. Since x = (z1, z2) € ), satisfies
477172 —4n. 1 4777,72 4-n . 1
l_ —n—2 —n 31 <_< n2+ —n 312:3’
3 4 +47" 55 4- 47 5
we get ([LI3) for any x € Q,, with n > ng. By comblmng this with Remark 2] we have
d Y1yo
log @4 (t;0,2) — 4(2 + «) o 0y) dy| < CM, x € Q. (4.14)
dt R(®(t;0,2)) ly[*+
Similarly, we can obtain
d Y1y2 P4 (t;0, )
— log ®5(t;0,2) + 4(2 4+ a)/ ———=—0(y)dy| < CMlog | e + ——— |, x €, (4.15)
dt R(®(t:0,0)) [Y[*T o(;0, )
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From (LI4), by employing the analogous argument to [22, Claim I] or [2I, Lemma 4.1], we deduce
. < 1 .
2 sSup (I)l(tvou‘r) = wler%ZfN (I)l(tvou‘r)u te [OuT] (416)

zEUn> Ny
for any N > ny.
In the lemma below, we present the comparability between Eulerian and Lagrangian variables.

Lemma 4.3. Lety > 1. Then for each ng <n < N, there exists T, € (0,T] with T,, 2

n 2 nl for sufficiently
large n such that

T

<, t € (0,7 (4.17)
T2

<7

-
-

for any x € Q,,.

Proof. We proceed by induction argument and start with n = ng. For every x € Q,,, we first deduce from
(#I6) that 0(t,y) =0 for any t € [0,T] and y € R(®(¢;0,x)). We combine this with ([@I4)) and (ZI5) to get
d Dy (t;0, ) Dy (t;0, )
—log—""<= < CMI —— .
at 8 By(t;0,7) = 8\ " 5,050, 2)
Then applying Gronwall’s lemma yields

(I)l(t7oax)
2ERT) t [0, 7).
By(t:0,2) = O €0.1]

Thus, we apply this to (@I4)) and (@I5) and obtain

d d
alogq)l(t;(),x) + Elogfbg(t;O,x) <CM.

By taking T}, = T and using TM < 1, we obtain {I7) with n = ng.
Suppose that [@I7) holds for n = ng, ..., N —1 with the corresponding time T,,. Let n = N. From (LI4)
and [@TIH), we have

d . ®(t0,2) Y1y2 ®4(1;0,2)
—10g7<0 O(y)dy +CMlog | e + ————
dt " ®y(t;0,z) R(®(t:0,2)) Y|4 (@) o (50

21(4:0,4)a(5:0,3) 01 (t:0,2)
- M1 D1(t0,2)
ON;V/Z |(I) t; 0 y)|4+o¢ O(y)dy+C og | e+ .02

y1y2 g @1(t;0,33)
< M1 21n5%4)
OZ/ a0y +C °g< B2(t;0,2)

_ <I>1(t-0 JJ)
:CZm ﬂ—i—CMlog(e—i-%),
m< N (I)Q(taovx)

where we used ([@I0) and the induction hypothesis at the last inequality. We now take

C
Ty = min{T, 7_} .
Zm<Nm A
By a similar argument, we also obtain
(I)l (t7 9 JI)

1 <C, t e [0, Tn],

% Bafti0.2) O
and this concludes our desired estimate. O

Now, we are ready to prove Theorem We take any x € Q,, with n > ny and combination of (ZI4])

and ([LI3) gives

Dy (t;0,x) Y1y Dy (t;0,x)
logi 8(2+a)/ 0(t,y)dy+ CMlog | e + ———"—=
dt " Dy(t:0, ) R(®(t:0,2)) Y117 o (t;0,7)
Y1y2 Dy (t;0,2)
<C/ H(t,y)dy—l—CMlog(e—i-i )
R(®(0,2)) Y117 o(t;0,2)
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If%<e we find

@4 (0, ) / Y1y2
1og7 <C —=0(t,y)dy + CM,
dt " y(t0,7) R(®(t:0,2)) Y47
and if LOCE; > e, we get
d. ©(t0,x) / Y12 P4 (t;0,2)
—log——= < C 0(t,y)dy + CM log ——=.
dt = @2(t;0,2) R(®(t:0,2)) [y[* T (t,9) Dy (t;0, )

Applying Grénwall’s lemma to the above implies

D4 (t;0, ) Y1y2 cMt
log —————= 1g——|—C/ / ———0(t,y)dydt + CMt | e
2(t;0 ) R(@(t:0,2)) [Y[*T t:9)

Hence, we deduce from ([@I3]) that

d Y1y2 Dy (t;0,x)
—log @5(¢;0,7) < —4(2 + «) / 0(t,y) dy + CM log (e +
dt R(®(t:0,2)) [Y[*T Oy (t;0, )

t

Y1Yy2 Y1y2

—4(2+a)/ 0(t,y) dy+C/ / 0(t,y) dydt + CM.
R(®(:0,2)) [Y[*T R(®(0,2)) Y117

This yields

Py (T s ) Tva Y1y2
log — ¥ 77 \F 2+a/ /q)(toz |y|4+a9(t,y)dydt

Tvm Y1Y2
+OT/ / 4+a9(t,y) dydt + CMT
R(®(¢;0,x)) |y

Ty

9 / / Y2 g(t,y) dydt + CMT.
R(®(1:0,2)) [Vl

Due to the nonnegativity of 6 on R(®(t;0,x)), we see that

T\/ﬁ Tk
Y1y2 Y1y2
—2 / / 0(t,y)dydt < -2 ) / / 0(t, y) dydt
0 R(®(t:0,2)) YT

Jnehen o(1:0,0,) Y1

< — Z CkiﬁTk
Vn<k<n
< _C(l - ﬂ) 10g’fL,

where we used the lower bound of T} at the last inequality. Thus, we obtain
) (T\/ﬁ ) L )

€2

< COn—c(1-8)

Here, we observe that

Q(T\/ﬁaq)(T\/ﬁvx)) _G(T\/ﬁvq)l(T\/ﬁaI)aO) - 90($) —90(33170) €2 “
10Tz, )l coe = = .
Do (T s )™ 3 o (T, @)

We fix = (47"72,47"=2). Since

90(%) — 90(,@1,0) N TL_B

o b
)

we can get

0o(x) — Op(x1,0) T2 “ > Bpea(1-B) > ca—(1+ca)s.
xs (T, 2z) ) ™~ ~

Finally, we take suﬂiciently small 3 such that ca — (1 + ca)B =: n > 0 and consider N with N > n2

N >M*"and T 5 ~ w5 < T. This yields [|0(T 5, )|[co.. > M? that contradicts {@I0). This completes

the proof for Theorem
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