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The inverse current in coupled (ICC) quantum transport, where one induced current opposes all
thermodynamic forces of a system, is a highly counter-intuitive transport phenomenon. Using an
exactly solvable model of strongly-coupled quantum dots, we present thermodynamic description
of ICC in energy and spin-induced particle currents, with potential applications towards unconven-
tional and autonomous nanoscale thermoelectric generators. Our analysis reveals the connection
between microscopic and macroscopic formulations of entropy production rates, elucidating the
often-overlooked role of proper thermodynamic forces and conjugate fluxes in characterizing gen-
uine ICC. In our model, the seemingly paradoxical results of ICC in the energy current arise from
chemical work done by current-carrying quantum particles, while in spin-induced particle current, it
stems from the relative competition between electron reservoirs controlling one particular transition.

I. INTRODUCTION

Force and flux are two central thermodynamic quan-
tities interlinked through a cause-and-effect relationship.
Thermodynamic force emerges due to a gradient in the
system and engenders a response in the form of flux
within the system, causing a departure from equilibrium.
Consequently, the resultant flux aligns in the direction of
the applied force to establish a new equilibrium. One
of the most intriguing transport phenomena is absolute
negative mobility (ANM), wherein the system’s response
i.e., the generated current, operates against the driving
force [1–3]. The absence of ANM, at near-equilibrium
for a single flux-force pair, can be understood from the
sign of the entropy production rate (Σ̇ = JF) to re-
main consistent with the second law, where J represents
the thermodynamic flux conjugate to the thermodynamic
force F . Initially, ANM was considered as a consequence
of the quantum effect [4, 5]. However, theoretical works
revealing the lack of any fundamental laws prohibiting
ANM in systems far from equilibrium created significant
interests [1–3, 6–10], which have been verified in experi-
ments [5, 11, 12].

The above situation changes dramatically in the pres-
ence of coupled transports with multiple force-flux pairs,
where the entropy production rate near equilibrium takes
the general form Σ̇ =

∑
i JiFi. This could in princi-

ple lead to the concept of Inverse Current in Coupled
transport (ICC), where a current flows against all forces,
including its own conjugate force. It is crucial to dis-
tinguish ICC from a cross-effect, where a current is pro-
duced in response to a non-conjugate force, despite the
fact that its own conjugate force is set to zero. While
a cross-effect (Seebeck and Peltier) is a regular outcome
in coupled transport, ICC involves a current opposing to
all forces present in the system, including its own con-
jugate force, appearing highly counterintuitive, yet not
forbidden as long as the overall entropy production rate
remains in the positive domain. To examine ICC, one

∗ arnab@iitk.ac.in

must therefore consider at least two nonzero forces and
their corresponding fluxes. For example, the thermal (en-
ergy) force FE, resulting from a temperature gradient
(∆T ) and the particle force FN, arising from chemical
potential gradient (∆µ), could drive both particle (JN)
and energy (JE) currents. As a result, entropy produc-
tion rate is expressed as Σ̇ = JEFE + JNFN. When both
currents may counter-operate their non-conjugate forces,
for ICC to occur, either JE or JN must exhibit a sign op-
posite to both forces. The immediate consequence is that
simultaneous ICC in both fluxes is impossible, as it would
violate the second law of thermodynamics, resulting in a
negative entropy production rate.

Recently, based on a classical Lieb-Liniger model [13],
characterized by 1D-interacting Hamiltonian of a di-
atomic gas, a potential platform for ICC, separately for
energy and particle currents, has been demonstrated by
Wang et al. [14]. The seemingly paradoxical result in the
above classical model originates from the occurrence of
self-organization within the system in response to applied
forces. Since, the general criteria for ICC are yet un-
known either in classical/quantum settings, showcasing
the existence of ICC in quantum systems, still remains
a difficult task. Only a few attempts are made [15, 16]
which however fell short of establishing ICC in terms of
proper thermodynamic forces. Though numerical results
managed to produce the flow of one current against both
gradients (∆T and ∆µ), these observations do not qualify
as ICC, as thermodynamic forces and gradients are alto-
gether distinct quantities. Thus, realizing genuine ICC in
quantum systems with appropriate thermodynamic anal-
ysis still remains a highly challenging endeavor.

In this paper, we provide a resolution to this problem
by constructing a thermodynamic theory of inverse cur-
rent using an exactly solvable model of a three-terminal
Coulomb-coupled quantum dots (QDs), a simple vari-
ant of the extensively studied Sánchez-Büttiker model
[17], explored in number of contexts, such as quantum
transport [18–24], quantum information [25–27] and ther-
moelectricity [28–41], thermal rectification [42–48], and
many others [49–51]. Our findings unravel the crucial role
played by the QD interaction in establishing ICC in en-
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ergy and particle currents. The key element of our anal-
ysis lies in identifying macroscopic and microscopic for-
mulas for thermodynamic forces and fluxes. Most impor-
tantly, we have established conditions for genuine ICC in
both energy and (spin-polarized) particle currents, with-
out violating the second law of thermodynamics.

The structure of the paper is as follows: Section II
outlines our model, which is based on Coulomb-coupled
QDs. We explore the system’s dynamics in Sec. III, an-
alyze steady-state currents in Sec. IV, and examine en-
tropy production, including macroscopic and microscopic
forces and fluxes, in Sec. V. Section VI provides a sum-
mary of our results. Finally, we conclude in Sec. VII.

II. THEORETICAL MODEL

Our model consists of two strongly and capacitively
coupled quantum dots (QDs), labeled by left (QDL) and
right (QDR), respectively [FIG. 1]. These dots solely
interact via a long-range Coulomb force restricting parti-
cle exchange due to Coulomb blockade [42, 45, 48] while
facilitating energy exchange within the dots through
Coulomb interaction (κc). The QDL is simultaneously
tunnel-coupled with two fermionic reservoirs [17, 48, 52,
53], labeled above (a) and below (b), allowing particle
flow between the two reservoirs. The QDR is tunnel-
coupled with only one reservoir (r), permitting both
particle and energy exchange between the dot and the
coupled lead. While for spinless electrons, κc is always
positive, w.l.o.g, we consider spin-polarized [54–56] elec-
trons to account for a more comprehensive study. To
facilitate electron exchange between the leads a and b
through QDL, we assume that reservoirs a and b con-
sist of only spin-down (↓) electrons, while reservoir r is
filled with spin-up (↑) electrons. The setup could lead
to both attractive (negative) and repulsive (positive) in-
teraction between the QDs depending on the relative
strength of the κc and the spin-spin interaction (κs). The
Hamiltonian governing the coupled QD system is given
by [43, 48, 57, 58],

Hs = εLNL↓ + εRNR↑ + κcNL↓NR↑ + κsσz
L↓σz

R↑. (1)

In the above Hamiltonian, εα (α = L, R), represents the
single-particle energy level associated with the α’th QD.
Due to the Coulomb blockade, the electron density in the
dots is low, restricting occupancy to either zero or one.
Under this condition, the eigenstates of QDα are either
|0⟩ or |↓⟩ (|↑⟩), with energy eigenvalues 0 and εL(εR), re-
spectively. The corresponding number operators for QDα

are NL↓ = d†
L↓dL↓ and NR↑ = d†

R↑dR↑, where d†
L↓ (dL↓)

and d†
R↑ (dR↑) denote the electron creation (annihilation)

operators for the respective QDα, obeying to the anti-
commutation relations {dL↓, d†

L↓} = 1 = {dR↑, d†
R↑}. The

last term in Eq. (1) represents the spin-spin interaction
energy where σz

L↓(R↑) = 1∓2NL↓(R↑), satisfying standard
operator algebra σz

L↓| ↓⟩ = −1| ↓⟩ and σz
R↑| ↓⟩ = +1| ↑⟩.

As the two QDs are strongly and capacitively coupled,
the overall system Hamiltonian is diagonal in the eigen-
basis of the individual QD. This can be represented by
the tensor product of the number operator’s eigenbasis
of the coupled QDs. For convenience, the four eigen-
states {|0⟩, |↓⟩} ⊗ {|0⟩, |↑⟩}, are labeled by |A⟩ = |00⟩,
|B⟩ = |↓ 0⟩, |C⟩ = |0 ↑⟩, |D⟩ = |↓↑⟩ and their correspond-
ing eigenenergies (εi, i = A,B,C,D) are εA = 0, εB = εL,
εC = εR and εD = εL + εR + κ respectively [FIG. 1: In-
set]. Consequently, the energy of the most excited state
of the composite system is εL +εR +κ, where, we assume
w.l.o.g, εL < εR. Although, κc and κs are non-negative
quantities, the overall interaction κ = κc − κs, can take
any real values involving positive and negative domains
of interaction. It is important to note that when κ is neg-
ative and |κ| > εL, the energy states |C⟩ and |D⟩ swap
their positions [FIG. 1: Inset]. This will play a crucial
role in exhibiting ICC behavior, as explored in Sec. VI.

FIG. 1. Main: (a) Schematic diagram of the three-terminal
Coulomb-coupled QDs. Inset: The energy level diagram of
the eigenstates of coupled the QDs for κ > 0 (left) and
κ < 0; |κ| > εL (right). From the general model (a), we can
construct two reduced models:- (b) Reduced model-I, by con-
sidering the temperatures of the reservoirs (a) and (b) equal.
(c) Reduced model-II, by setting up the temperatures of the
reservoirs (a) and (r) the same.

Finally, the reservoirs are dense with fermionic par-
ticles, i.e., electrons, characterized by temperature and
chemical potential. The Hamiltonian of the λ’th spin-
polarized reservoir with electron spin σ = {↑, ↓}, is de-
fined as Hλσ

B =
∑

k(ϵλσ
k − µλσ)c†

λσkcλσk, where ϵλ
k is the

energy of the non-interacting electrons for the reservoir
λ, k is the continuous wavenumber, µλσ is the chemi-
cal potential, and c†

λσ(cλσ) represents the creation (an-
nihilation) operator. The total Hamiltonian of all three
reservoirs is given by HB = Ha↓

B + Hb↓
B + Hr↑

B . The QDR
(QDL) is weakly coupled to the reservoir(s) r (a and b) to
ensure sequential tunneling [45, 48, 53], such that only
one QD at a time is involved with particle tunneling with
the coupled lead. The tunnel-coupled Hamiltonians are
characterized by the coupling constant tασλ

k and are given
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by

H
L↓a(b)
T = ℏ

∑
k

[tL↓a(b)
k c†

a(b)↓kdL↓ + t
L↓a(b)∗
k d†

L↓ca(b)↓k],

HR↑r
T = ℏ

∑
k

[tR↑r
k c†

r↑kdR↑ + tR↑r∗
k d†

R↑cr↑k]. (2)

where, H
L↓a(b)
T signifies the interaction between QDL and

reservoir a(b) with the exchange of ↓ electrons and HR↑r
T

represents the interaction between QDR and reservoir r
through the exchange of ↑ electrons. Further, the tran-
sitions between |B⟩ ↔ |C⟩ and |A⟩ ↔ |D⟩ are prohibited
due to Coulomb blockade and the sequential tunneling
approximation [45, 48, 53], respectively. So, there are in
total four authorized transitions between the eigenstates
of the composite system, and each of the three reservoirs
a, b, and r controls two transitions, i.e., |A⟩ ↔ |B⟩ and
|C⟩ ↔ |D⟩ are triggered by leads a and/or b, while reser-
voir r governs the transitions between |A⟩ ↔ |C⟩ and
|B⟩ ↔ |D⟩. The transition energy between the eigen-
states |i⟩ → |j⟩ is defined as ωij = εj − εi, where εi is the
eigenenergy of Hs with the eigenstate {|i⟩} and the four
transition energies are respectively ωAB = εL, ωAC = εR,
ωCD = εL + κ, and ωBD = εR + κ. To investigate the
system’s dynamics, we will next evaluate the transition
rates using the Lindblad Master Equation (LME) under
the Born-Markov approximation.

III. EVALUATION OF RATE EQUATIONS
USING LME

The state of the composite system is described by
the reduced density matrix ρs(t) = TrB{ρtot(t)}, where
ρtot(t) is the total density matrix of the system and
bath combined. We utilize strong-coupling formalism
to derive the LME governing the time evolution of
the reduced density matrix ρs(t) of the system, un-
der the Born, Markov, and Secular (BMS) approxima-
tion [48, 57, 59, 60] (Appendix A):

d

dt
ρs(t) =

∑
λ

Lλ[ρs(t)]; λ = a, b, r. (3)

It is worth noting that the strong coupling formalism
pertains to the interaction between the QDs, while we
maintain the assumption of weak coupling between the
system and its surrounding environment. This allows us
to safely implement the BMS approximation and derive
the above LME [Eq. (3)] purely based on the eigenstates
of the full system Hamiltonian Hs. As a result, the dis-
sipation mechanism of each QD is influenced not only
by its coupling to its individual bath but also by the in-
teractions between QDs themselves. This consideration
appears crucial for accurately characterizing heat flow
and obtaining outcomes across a wide range of system
parameters, as examined below. Lλ[ρs(t)] in the above
equation is the Lindblad super-operator, defined as

Lλ[ρs(t)] =
∑

{ωα}>0

{
γλ(ωα)f+

λ (ωα)
[
d†

ασ(ωα)ρsdασ(ωα) − 1
2{ρs, dασ(ωα)d†

ασ(ωα)}
]

+γλ(ωα)f−
λ (ωα)

[
dασ(ωα)ρsd

†
ασ(ωα) − 1

2{ρs, d†
ασ(ωα)dασ(ωα)}

]}
,

(4)

where γλ(ωα) is the bare electron transfer rate between
the reservoir λ and coupled QDα. The explicit forms
in terms of the system-reservoir coupling constants can
be calculated using Fermi’s golden rule, as γλ(ωα) ≡
γλσ(ωα) = 2π

∑
k |tασλ

k |2δ
(
ωα − ϵλσ

k

)
, where ωα repre-

sents the required amount of energy associated with the
transition between QDα and its coupled lead. For sim-
plicity of notations, we use γa|b(ωL) ≡ γa|b and γr(ωR) ≡
γr, where ωL = {ωAB, ωCD} and ωR = {ωAC, ωBD}, if the
particle is entering (excitation) into the system, and sim-
ilarly, for particle de-excitation (leaving) w.r.t. system,
ωL = {ωBA, ωDC} and ωR = {ωCA, ωDB}. Here, the sym-
bol a|b denotes the transition controlled by either a or
b bath. Finally, f±

λ (ωij) represents the Fermi distribu-
tion function (FDF) related to the transition |i⟩ → |j⟩
driven by the λ’th reservoir which cost ωij amount of
energy. The notation ‘±’ which is used throughout the
text [15, 17], where the ‘±’ sign refers to particle excita-

tion (entering into the system) and the ‘−’ sign refers to
particle de-excitation (leaving from the system) w.r.t the
system. Hence, if the transition from |i⟩ to |j⟩ is governed
by the particle excitation w.r.t the system then the re-
verse process would signify the tunneling of the particle
from the system to the environment. Thus, we establish
the following relation between the FDFs associated with
the above transitions [47, 48],

f+
λ (ωij) = 1 − f−

λ (ωji) =
[
1 + exp

(
ωij − µλ

kBTλ

)]−1
, (5)

where Tλ and µλ are respectively the temperature and
chemical potential of the fermionic reservoir λ. For the
sake of convenience, in Eq. (5), we have dropped the σ
from the temperature and chemical potential. Anticipat-
ing what will become clear as we proceed, the above nota-
tion has the advantage that it does not rely on the specific
energy level ordering of the system eigenstates. There-
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fore, all subsequent calculations can be done in a compact
form without referring to any particular arrangement of
the system eigen-energies.

So, the time evolution of the occupation probabilities
which are the diagonal elements of the reduced density
matrix, i.e., ρii = ⟨i|ρs(t)|i⟩, can be evaluated from the
LME [Eq. (3)] as

ρ̇i ≡ dρii

dt
= ⟨i|ρ̇s(t)|i⟩ =

∑
λ=a,b,r

⟨i|Lλ[ρs(t)]|i⟩. (6)

Using the Lindbladians defined in Eq. (4), we can deter-
mine the rate equations as follows

ρ̇A = − Γa+
AB − Γb+

AB − Γr+
AC ≡ −Γab+

AB − Γr+
AC;

ρ̇B =Γa+
AB + Γb+

AB − Γr+
BD ≡ Γab+

AB − Γr+
BD;

ρ̇C = − Γa+
CD − Γb+

CD + Γr+
AC ≡ −Γab+

CD + Γr+
AC;

ρ̇D =Γa+
CD + Γb+

CD + Γr+
BD ≡ Γab+

CD + Γr+
BD,

(7)

where, Γab±
ij ≡ Γa±

ij + Γb±
ij . The net transition rate Γλ±

ij

from level |i⟩ to |j⟩ mediated by the reservoir λ (λ =
a, b, r) for both the ‘±’ processes can be expressed in a
compact form as

Γλ±
ij ≡ Γλ±

i7→j =γλf±
λ (ωij)ρi − γλf∓

λ (ωji)ρj,

=kλ±
ij ρi − kλ∓

ji ρj

(8)

where Γλ+
ij = −Γλ−

ji and

kλ±
ij = γλf±

λ (ωij) ; kλ∓
ji = γλf∓

λ (ωji). (9)

Using Eq. (5), one can verify that the above rate coeffi-
cients for fermionic reservoirs satisfy an interesting rela-

tion

kλ±
ij + kλ∓

ji = γλ. (10)

For simplicity, we further assume all γλ are equal when
calculating the closed-form analytical expression for the
steady-state transition rates in Sec. IV.

IV. STEADY STATE CURRENTS AND
DYNAMICS

In this section, we derive the expressions for steady-
state currents under the grand canonical formalism, since
the composite system weakly interacts with multiple
reservoirs and exchanges both the energy and particles.
The initial density operator of the system ρs(0) at equi-
librium can be expressed as [60]

ρeq
s = e−β(Hs−µN )

Z(β, µ) , (11)

where Z(β, µ) = Tr
[
e−β(Hs−µN )] is the grand canonical

partition function and N = NL↓ + NR↑ being the total
particle number operator of the two QDs. The β and
µ are the effective inverse temperature and chemical po-
tential, β =

∑
λ βλ and µ =

∑
λ µλ respectively. We

assume that environmental interaction slightly perturbs
the system from its initial equilibrium state ρs(0) = ρeq

s
to ρs(t), such that δρs(t) = ρs(t) − ρs(0) ≡ O(ξ), where
ξ is a small expansion parameter. Equating system von-
Neumann entropy (times kB) with thermodynamic en-
tropy near close to equilibrium [61–63]

Ss(t) = −kB Trs[ρs(t) ln ρs(t)], (12)

one can derive the following expression for ∆Ss(t) =
Ss(t) − Ss(0), considering up to first order change in ξ,

∆Ss(t) = − kB Trs[δρs(t) ln ρs(0)] − kB Trs

[
δρs(t) ln

{
1 + δρs(t)

ρs(0)

}]
− kB Trs

[
ρs(0) ln

{
1 + δρs(t)

ρs(0)

}]
= − kB Trs[δρs(t) ln ρeq

s ] + O(ξ2)
≡ kBβ Trs[δρs(t)Hs] − kBβµ Trs[δρs(t)N ].

(13)

Comparing the above equation and the first law of ther-
modynamics in the presence of chemical work done, we
identify the change in energy and particle number as fol-
lows

∆E = Trs[δρs(t)Hs] ; ∆N = Trs[δρs(t)N ]. (14)

Noting δρs(t) = ρs(t) − ρs(0), and Hs, N are time-
independent, we immediately recognize the net energy

flux (JE) and particle flux (JN) as

JE(t) = Trs[ρ̇s(t)Hs] =
∑

λ=a,b,r

Trs[Lλ[ρs(t)]Hs],

JN(t) = Trs[ρ̇s(t)N ] =
∑

λ=a,b,r

Trs[Lλ[ρs(t)]N ],
(15)

where we use Eq. (3) for ρ̇s(t). Identifying JE(N) as the
sum of the contributions of energy (particle) flux associ-
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Γ↻

Γ𝔸𝔹
𝑎𝑏+

Γ𝔹𝔻
𝑟+

Γ𝔻ℂ
𝑎𝑏−

Γℂ𝔸
𝑟−

ۧ|𝔸 ۧ|𝔹

ۧ|𝔻ۧ|ℂ

Γ↺

Γ𝔹𝔸
𝑎𝑏−

Γ𝔻𝔹
𝑟−

Γℂ𝔻
𝑎𝑏+

Γ𝔸ℂ
𝑟+

ۧ|𝔸 ۧ|𝔹

ۧ|𝔻ۧ|ℂ

FIG. 2. Schematic representation of the clockwise (Left) and anti-clockwise (Right) transition cycles, induced by energy flow
from one bath to another, associated with the particle exchange between QDs and the coupled reservoirs. At steady state, all
transition rates of the clockwise (anti-clockwise) cycles are equal to each other and represented by Γ⟳(Γ⟲) [Cf. Eq. (21)].

ated with all three reservoirs, we can write

JE(t) =
∑

λ=a,b,r

Jλ
E(t) ; JN(t) =

∑
λ=a,b,r

Jλ
N(t), (16)

where Jλ
E(N) is positive if energy (particle) current flows

from the reservoir λ to the system. By comparing Eq.(15)
and Eq.(16), we thus find

Jλ
E(t) = Trs[Lλ[ρ(t)]Hs] ; Jλ

N(t) = Trs[Lλ[ρ(t)]N ]. (17)

Similarly, we can evaluate the expression of heat cur-
rent due to the λ’th reservoir as

Jλ
Q(t) = Jλ

E(t) − µλJλ
N(t). (18)

Now, at the steady state, both energy and particle cur-
rents would be independent of the time, i.e., Eq. (18)
reduces to

Jλ
Q = Jλ

E − µλJλ
N = Trs[Lλ[ρss]Hs] − µλ Trs[Lλ[ρss]N ].

(19)
Using Eq. (4) we obtain the form of Lλ[ρss], which leads
to the formal expressions for the energy, particle, and
heat currents as follows [64]

Jλ
E =

∑
{ωij}

ωijΓλ+
ij =

∑
{ωji}

ωjiΓλ−
ji ;

Jλ
N =

∑
{ωij}

Γλ+
ij =

∑
{ωji}

Γλ−
ji ;

Jλ
Q =

∑
{ωij}

(ωij − µλ)Γλ+
ij =

∑
{ωji}

(ωji − µλ)Γλ−
ji .

(20)

The explicit expressions for all three currents are given
in Appendix B. At the steady state, the populations of
the various eigenstates become time-invariant, i.e., ρ̇A =
ρ̇B = ρ̇C = ρ̇D = 0; therefore, we obtain

Γab+
AB = Γr+

BD = Γab−
DC = Γr−

CA = ΓABCDA ≡ Γ⟳;
Γr+
AC = Γab+

CD = Γr−
DB = Γab−

BA = ΓACDBA ≡ Γ⟲,
(21)

which implies Γ⟳ = −Γ⟲ [FIG. 2]. Using the above rela-
tions in Eq. (20), one can rewrite the steady state energy
and particle currents due to the r’th reservoir as

Jr
E =εRΓ⟲ + (εR + κ)Γ⟳ = κΓ⟳;

Jr
N =Γr+

AC + Γr+
BD = Γ⟲ + Γ⟳ = 0.

(22)

This immediately yields Jr
Q = Jr

E = κΓ⟳. As QDR is only
coupled with lead r, there will be no net particle current
driven by r at the steady state, i.e., Jr

N = 0. However,
QDL is simultaneously coupled with leads a and b, allow-
ing (spin-polarized) particle flow across a and b at the
steady state. There is no external source or sink associ-
ated with the system-reservoir model, so the net energy
and (spin-polarized) particle currents are conserved in
the steady state. To this end, we summarize our first set
of analytical results∑

λ=a,b,r

Jλ
E = 0, and

∑
λ=a,b,r

Jλ
N = 0, (23)

which yields

Jr
E = −Jab

E = κΓ⟳; Ja
N = −Jb

N. (24)

The explicit form of the Γ⟳ is given in Appendix- C]. The
heat current is not a conserved quantity which readily
follows Ja

Q + Jb
Q ≡ Jab

Q ̸= Jab
E = −κΓ⟳. Next, we will

discuss how the above steady-state currents are related to
the entropy production rate at near equilibrium through
force-flux relation.

V. THERMODYNAMIC FORCE, FLUX AND
ENTROPY PRODUCTION

From the definition of the entropy change of the system
[Eq. (13)], one can write down the following relation [63]

∆Ss(t) = Σ(t) + Φ(t), (25)
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where the entropy production term Σ(t) signifies the ir-
reversible contribution of the system entropy change and
Φ(t) term refers to the entropy flux, i.e., equivalent to the
system entropy change due to the reversible contribution
of heat exchanges with the reservoirs. The explicit forms
of the Σ(t) and the Φ(t) can be derived [See Appendix- D]
following Refs. [62, 63] as:

Σ(t) =kB Tr[ρtot(t) ln{ρtot(t)}]

− kB Tr
[

ρtot(t) ln
{

ρs(t)
∏

λ

ρeq
λ

}]
,

Φ(t) =kB

∑
λ

Trλ [{ρλ(t) − ρeq
λ } ln ρeq

λ ] ,

(26)

where, ρeq
λ and ρλ(t) represent the density operators of

the λ’th reservoir under equilibrium and near equilib-
rium conditions, respectively. Moreover, ρeq

λ under grand
canonical ensemble, can be written as

ρeq
λ = e−βλHλ

B

Zλ(βλ) , (27)

where Hλ
B ≡ Hλσ

B =
∑

k(ϵλσ
k − µλσ)c†

λσkcλσk and
Zλ(βλ) = Tr

[
e−βλHλ

B

]
is the the grand canonical par-

tition function for the λ’th reservoir. As a result, Φ(t) is
identified as the heat exchange with the reservoir between
the final and initial time

Φ(t) = −kB

∑
λ

βλ[⟨Hλ
B⟩t − ⟨Hλ

B⟩0] = kB

∑
λ

βλ∆Qλ,

(28)
where ∆Qλ = ⟨Hλ

B⟩0 −⟨Hλ
B⟩t and ⟨Hλ

B⟩t = Trλ[ρλ(t)Hλ
B].

Thus, we can rewrite Eq. (25) as

∆Ss(t) = Σ(t) + kB

∑
λ

βλ∆Qλ, (29)

where we replace the second term by Eq. (28). At the
steady state, Σ̇ becomes minimum [60, 62, 63] and there is
no net entropy change in the system, i.e., d

dt {∆Ss(t)} =
0. Therefore, Eq. (29) yields

Σ̇ = −kB

∑
λ

βλ
d

dt
{∆Qλ} = −kB

∑
λ

βλJλ
Q. (30)

Now, inserting the expression for heat current Jλ
Q = Jλ

E −
µλJλ

N in Eq. (30), we obtain

Σ̇ = −kB

[
βaJa

E +βbJb
E +βrJr

E

]
+kB

[
βaµaJa

N +βbµbJb
N

]
,

(31)

where, we use Eq. (22) for Jr
N = 0. At the steady state,

since, the overall energy and particle currents are con-
served, i.e., JE =

∑
λ Jλ

E = 0 and JN =
∑

λ Jλ
N = 0. So,

Eq. (31) reduces to

Σ̇ = Jr
EFr

E + Jb
EFb

E + Jb
NFb

N, (32)
where the macroscopic thermodynamic forces conjugate
to thermodynamic fluxes J

r|b
E and Jb

N are identified as

Fr|b
E = kB(βa − βr|b); Fb

N = kB(βbµb − βaµa). (33)

As a prerequisite, there are now two classes of re-
duced models that involve coupled transport in energy
and (spin-polarized) particle currents:

(i) Reduced model-I (Fb
E = 0) : Σ̇ = Jr

EFr
E + Jb

NFb
N,

(ii) Reduced model-II (Fr
E = 0) : Σ̇ = Jb

EFb
E + Jb

NFb
N,

where we set βa = βb = β for Reduced model-I [FIG. 1b]
and βa = βr = β′ for Reduced model-II [FIG. 1b]. Note
that the above two models are the only possible cases
that can be derived from the general model with pairs of
thermodynamic forces and fluxes, as required for ICC.

While, Eq. (32) links the entropy production rate
to macroscopic forces and fluxes through temperature,
chemical potential, and amount of heat exchange with
the reservoirs, to grasp the underlying thermodynamic
principles of inverse current, we must identify the mi-
croscopic expressions of these thermodynamic quanti-
ties. The ideal starting point to establish this connec-
tion between macroscopic and microscopic thermody-
namic frameworks is the entropy production rate. Thus,
rewriting the von Neumann entropy defined in Eq. (12)

Ss(t) = −kB

∑
i

ρi(t) ln ρi(t), (34)

in terms of the microscopic populations of the different
system eigenstates, {ρi}, (i = A,B,C,D), we can evalu-
ate [See Appendix E] the time evolution of the entropy
change as [61]

d

dt
∆Ss(t) = kB

[
Γa+
AB ln

(
ρA

ρB

)
+ Γb+

AB ln
(

ρA

ρB

)
+ Γr+

BD ln
(

ρB

ρD

)

+ Γa−
DC ln

(
ρD

ρC

)
+ Γb−

DC ln
(

ρD

ρC

)
+ Γr−

CA ln
(

ρC

ρA

)]
,

(35)

where we use Eq. (7) for ρ̇i(t). By comparing the above
equation with Eq. (25), we can identify the microscopic
version of entropy production rate and entropy flux [58,
61], as follows [Appendix E]
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Σ̇(t) =kB

[
(ka+

ABρA − ka−
BAρB) ln

(
ka+
ABρA

ka−
BAρB

)
+ (kb+

ABρA − kb−
BAρB) ln

(
kb+
ABρA

kb−
BAρB

)
+ (kr+

BDρB − kr−
DBρD) ln

(
kr+
BDρB

kr−
DBρD

)

+(ka−
DCρD − ka+

CDρC) ln
(

ka−
DCρD

ka+
CDρC

)
+ (kb−

DCρD − kb+
CDρC) ln

(
kb−
DCρD

kb+
CDρC

)
+ (kr−

CAρC − kr+
ACρA) ln

(
kr−
CAρC

kr+
ACρA

)]
,

Φ̇(t) = − kB

[
Γa+
AB ln

(
ka+
AB

ka−
BA

)
+ Γb+

AB ln
(

kb+
AB

kb−
BA

)
+ Γr+

BD ln
(

kr+
BD

kr−
DB

)
+ Γa−

DC ln
(

ka−
DC

ka+
CD

)
+ Γb−

DC ln
(

kb−
DC

kb+
CD

)
+ Γr−

CA ln
(

kr−
CA

kr+
AC

)]
.

(36)

In Eq. (36), each term of the Schnakenberg entropy pro-
duction rate Σ̇ [61], has a form of (a − b) ln

(
a
b

)
, which

guarantees the non-negativity of the entropy production
rate. At the steady state, it leads to the following form
of the entropy production rate [Appendix E]

Σ̇(t) = −Φ̇(t) =κΓ⟳

[(
kB

κ

)
ln
(

ka+
ABkr+

BDka−
DCkr−

CA

ka−
BAkr−

DBka+
CDkr+

AC

)]
+
(
εLΓb+

AB − (εL + κ)Γb−
DC

) [(kB

κ

)
ln
(

kb−
BAka+

ABkb+
CDka−

DC

kb−
DCka+

CDkb+
ABka−

BA

)]

+(Γb+
AB − Γb−

DC)
[

kB(1 + θ) ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
+ kBθ ln

(
kb−
DCka+

CD

kb+
CDka−

DC

)]
≡ Jr

EFr
E + Jb

EFb
E + Jb

NFb
N,

(37)

where θ = ( εL
κ ) is the scaled system parameter. The sign

of θ plays a pivotal role in determining the ICC behavior
in both energy and (spin-polarized) particle currents, as
will be examined in the next section. From the above
equation, all three associated fluxes and their conjugated
forces are readily identified as follows:

Jr
E =κΓ⟳ ; Jb

N = (Γb+
AB − Γb−

DC),
Jb

E =εLΓb+
AB + (εL + κ)Γb+

CD = εLJb
N + κΓb+

CD;
(38)

and

Fr
E =

(
kB

κ

)
ln
(

ka+
ABkr+

BDka−
DCkr−

CA

ka−
BAkr−

DBka+
CDkr+

AC

)
= kB(βa − βr),

(39a)

Fb
E =

(
kB

κ

)
ln
(

kb−
BAka+

ABkb+
CDka−

DC

kb−
DCka+

CDkb+
ABka−

BA

)
= kB(βa − βb),

(39b)

Fb
N =kB(θ + 1) ln

(
kb+
ABka−

BA

kb−
BAka+

AB

)
+ kBθ ln

(
kb−
DCka+

CD

kb+
CDka−

DC

)

=kB ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
− εLFb

E = kB(βbµb − βaµa)

(39c)

Equation (38) is identical to the explicit expressions of
the thermodynamic fluxes obtained in Sec. IV. The equiv-
alence between the macroscopic and microscopic versions
of the above forces [Cf. Eq. (39)] can be verified upon us-
ing Eq. (9), followed by inserting the expressions of the

FDFs. In case of Fb
E = 0 (i.e., βa = βb), the expression

of the particle force Fb
N reduces to

Fb
N =kB(θ + 1) ln

(
kb+
ABka−

BA

kb−
BAka+

AB

)
+ kBθ ln

(
kb−
BAka+

AB

kb+
ABka−

BA

)

=kB ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
= kB ln

(
kb+
CDka−

DC

kb−
DCka+

CD

)
= kBβ∆µ.

(40)

Equations (38)-(40) are the first major results of our anal-
ysis. Equipped with the above set of Eqs. (37)-(40), we
are now ready to explore ICC in the following section.

VI. RESULT AND DISCUSSION

As outlined in Sec. V, let us analyze the reduced mod-
els with two forces and conjugated fluxes, as a precur-
sor of ICC. For all numerical plots, we have considered
γa = γb = γr = γ and plotted appropriately scaled di-
mensionless forces and fluxes. The scaled forces are taken
either zero or positive without loss of any generality.

A. Reduced Model-I: ICC in energy current

§ Fb
E = 0 and Σ̇ = Jr

EFr
E+Jb

NFb
N: It is intuitively clear

when two forces (Fr
E, Fb

N) = 0, both currents (Jr
E, Jb

N)
would be zero. However, from the viewpoint of the mi-
croscopic picture, it provides interesting insights:
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If Fb
N = 0, from Eq. (40) we can write(

kb+
ABka−

BA

kb−
BAka+

AB

)
=
(

kb+
CDka−

DC

kb−
DCka+

CD

)
= 1, (41)

applying Eq. (10) in the above equation, it can be shown
that (

kb+
AB

kb−
BA

)
=
(

ka+
AB

ka−
BA

)
=
(

kab+
AB

kab−
BA

)
,(

kb+
CD

kb−
DC

)
=
(

ka+
CD

ka−
DC

)
=
(

kab+
CD

kab−
DC

)
.

(42)

Applying the above relations in Eq. (8), one obtains

Γab+
AB = 2Γa+

AB = 2Γb+
AB; Γab+

CD = 2Γa+
CD = 2Γb+

CD, (43)

which when combined with Eq. (21), yields Γb+
AB = −Γb+

CD.
Following Eq. (38), spin-polarized particle current Jb

N =
0, irrespective of the value of the non-conjugate force
Fr

E [FIG. 3a: red line]. Thus, Eq. (33) reduces to
Σ̇ = Jr

EFr
E ≥ 0. As a result, Jr

E would always align
in the direction of the Fr

E, and it can be verified from the
microscopic picture as well. By considering β > βr we
assume w.l.o.g., Fr

E > 0, such that Eq. (39a) leads to the
following relation(

kB

κ

)
ln
(

ka+
ABkr+

BDka−
DCkr−

CA

ka−
BAkr−

DBka+
CDkr+

AC

)
> 0. (44)

Given, Fb
N = 0, we can utilize Eq. (42) for κ > 0, to

rewrite the above condition as(
kab+
AB ρA

kab−
BA ρB

)(
kr+
BDρB

kr−
DBρD

)(
kab−
DC ρD

kab+
CD ρC

)(
kr−
CAρC

kr+
ACρA

)
> 1. (45)

To satisfy the above condition, at steady state, each term
in the parenthesis must be greater than 1. Applying this
in Eqs. (8) and (21), we obtain, Γ⟳ > 0. Similarly, for
κ < 0, we deduce Γ⟳ < 0. In both cases, the energy
current is defined as Jr

E = κΓ⟳ > 0 [FIG. 3a: blue line].
So, ICC can occur neither in energy nor (spin-polarized)
particle currents.

• When Fr
E = 0: The non-negativity of the entropy

production rate Σ̇ = Jb
NFb

N ≥ 0, implies that Jb
N would

always align in the direction of Fb
N [FIG. 3a: red line].

This can be verified also from the microscopic picture.
Without loss of any generality, we consider Fb

N > 0 in
Eq. (40) which yields(

kb+
ABka−

BA

kb−
BAka+

AB

)
> 1 ;

(
kb+
CDka−

DC

kb−
DCka+

CD

)
> 1, (46)

and immediately suggests(
kb+
AB

kb−
BA

)
>

(
ka+
AB

ka−
BA

)
;
(

kb+
CD

kb−
DC

)
>

(
ka+
CD

ka−
DC

)
. (47)

  

𝐽E
𝑟|𝐽N

𝑏

ℱN
𝑏ℱE

𝑟

𝐽E
𝑟|𝐽N

𝑏

ℱN
𝑏 = 0 ℱE

𝑟 = 0(𝑎) (𝑏)

FIG. 3. Variation of Jr
E (blue line) and Jb

N (red line) against
(a) Fr

E while Fb
N = 0 i.e. (µa = µb) and (b) Fb

N while Fr
E =

0 i.e. (β = βr). For all cases, the (dashed) dotted lines
correspond to κ = (−) + 1.5ℏγ, validating the condition |κ| >
εL. Other system and bath parameters: εL = 1.0ℏγ, εR =
2.5ℏγ, βr = 1/ℏγ and µb = 1.0ℏγ.

Applying Eq. (10) in Eq. (47), it can be shown that,
ka−
BA|DC > kb−

BA|DC and ka+
AB|CD < kb+

AB|CD. Using these rela-
tions in Eq. (8) we obtain, Γb+

AB|CD > Γa+
AB|CD. Now, we

can define two variables X and Y as

X = Γb+
AB − Γa+

AB ; Y = Γb+
CD − Γa+

CD, (48)

such that we can write

Γab+
AB = 2Γb+

AB − X ; Γab+
CD = 2Γb+

CD − Y. (49)

Using Eqs. (21) and (38), it’s straightforward to demon-
strate from Eq. (49) that under steady-state conditions,
Jb

N = 1
2 (X+Y) > 0, as both X and Y are positive in this

case. Again, from Eq. (39a) it follows(
ka+
ABkr+

BDka−
DCkr−

CA

ka−
BAkr−

DBka+
CDkr+

AC

)
= 1. (50)

We can rearrange the above conditions as(
kab+
AB kr+

BDkab−
DC kr−

CA

kab−
BA kr−

DBkab+
CD kr+

AC

)
=
(

ka+
BAkab+

AB ka+
CDkab−

DC

ka−
ABkab−

BA ka−
DCkab+

CD

)
, (51)

where the r.h.s can be re-written as

r.h.s =
{

1 + (kb+
AB/ka+

AB)
1 + (kb−

BA/ka−
BA )

}{
1 + (kb−

DC/ka−
DC)

1 + (kb+
CD/ka+

CD)

}
≡ PQ.

(52)

It is trivial to show that

(kb+
AB/ka+

AB) > 1 and (kb−
BA/ka−

BA ) < 1 ⇒ P > 1;
(kb−

DC/ka−
DC) < 1 and (kb+

CD/ka+
CD) > 1 ⇒ Q < 1, (53)

hence, we obtain from Eq. (52) that PQ ≷ 1. Further, it
is possible to verify{

1 + (kb+
AB/ka+

AB)
1 + (kb−

BA/ka−
BA )

}
<

{
1 + (kb−

CD/ka−
CD)

1 + (kb+
DC/ka+

DC)

}
, (54)
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under the conditions Fb
E ⩾ 0 and κ > 0, which gives

PQ < 1. Thus, r.h.s of Eq. (51) reduces to(
kab+
AB kr+

BDkab−
DC kr−

CA

kab−
BA kr−

DBkab+
CD kr+

AC

)
= PQ < 1. (55)

For κ < 0, following similar arguments, one can easily
show that PQ > 1. Hence, following the same treat-
ment done in Eqs. (44) (45), one may conclude from
Eqs. (8) and (21) that Γ⟳ ≶ 0 for κ ≷ 0, respec-
tively. This immediately suggests that the energy cur-
rent, Jr

E = κΓ⟳ < 0, irrespective of the sign of κ [FIG. 3b:
blue line]. Thus, we have an energy current flowing
against Fb

N as pseudo-ICC, a special type of cross-effect.

FIG. 4. Variation of the energy current Jr
E with both ther-

modynamic forces Fr
E and Fb

N for positive and negative κ:
(a) κ = 1.5ℏγ and (b) κ = −1.5ℏγ. For both plots, the re-
gion left to the white dashed line signifies the genuine ICC
in the energy current. Other system and bath parameters:
εL = 1.0ℏγ, εR = 2.5ℏγ, βr = 1/ℏγ, and µb = 1.0ℏγ.

A note on the cross-effect and the term pseudo-ICC
is appropriate here. In both cases, one force is set to
zero, causing the conjugate flux to be unaffected by its
corresponding force, which lacks a specific direction. Un-
der these conditions, the current can flow either along
or against the non-conjugate force, as both are thermo-

dynamically allowed. If the flux aligns with the non-
conjugate force, we call it as the normal cross-effect or
simply “cross-effect”. If the flux opposes the applied
force, we classify it as a special type of cross-effect or
pseudo-ICC. While achieving genuine ICC is a challeng-
ing task, pseudo-ICC could serve as an initial indication.
In the Reduced model-I, since pseudo-ICC behavior is
observed solely in the energy current, true ICC may only
be expected in the energy current.

• When (Fr
E, Fb

N) > 0: Among the four possibilities,
both fluxes could align in the direction of their conjugate
force, validating the positivity of the entropy production
rate Σ̇ = Jr

EFr
E + Jb

NFb
N. However, both fluxes simulta-

neously can’t operate against both forces, which would
otherwise violate the laws of thermodynamics. There-
fore, we can have ICC in either Jr

E or Jb
N. However, ICC

in the Jb
N is not possible in this reduced model-I, as dis-

cussed above. Hence, we will focus on the true ICC effect
in Jr

E only.
It is trivial to understand when Jr

E flows against both
of the forces, the model behaves like an autonomous re-
frigerator that generates energy current against the ther-
mal gradient. The other flux Jb

N must be positive and
compensate the negative contribution of Jr

E to make the
entropy production rate non-negative. Given the micro-
scopic condition of Fb

N > 0, we have already verified that
Jb

N > 0. Again, Fr
E > 0, so in view of Eqs. (39a), the

microscopic condition described by Eq. (50), is modified
as (

ka+
ABkr+

BDka−
DCkr−

CA

ka−
BAkr−

DBka+
CDkr+

AC

)
≷ 1, for κ ≷ 0. (56)

Following the similar argument mentioned in Eqs. (50)-
(52), we can rewrite the above condition as(

kab+
AB kr+

BDkab−
DC kr−

CA

kab−
BA kr−

DBkab+
CD kr+

AC

)
≷ PQ for κ ≷ 0. (57)

We have already shown as long as Fb
E ⩾ 0, one can

write PQ ≶ 1 for κ ≷ 0, respectively. Hence, the final
condition from Eq. (57) reduces to(

kab+
AB kr+

BDkab−
DC kr−

CA

kab−
BA kr−

DBkab+
CD kr+

AC

)
≷ 1, (58)

which is not governed by the sign of κ. Now with a similar
procedure presented before, Eq. (58) can result in Γ⟳ ≷ 0
for any values of κ. Hence, the energy current Jr

E = κΓ⟳,
could be positive or negative, for κ ≷ 0. While Jr

E > 0 is
normally expected as both forces (Fr

E, Fb
N) > 0, but,

Jr
E < 0, signifies genuine ICC, as the energy current

would flow against both the forces, indicating the au-
tonomous refrigeration effect, which can be obtained in
both positive and negative κ. It is evident, to maintain a
positive entropy production rate, ICC in energy current
is achieved only for a small Fr

E and large Fb
N, as depicted

in FIG. 4. Thus, we can implement our Reduced model-
I as an autonomous refrigeration device [32, 37, 65–68]
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i.e., a spin-thermoelectric machine that drives the energy
current from the cold reservoir to the hot reservoir by the
influence of the spin-polarized particle current. The Co-
efficient of performance (COP) of such device is given by
[16, 17]

ζ =
∣∣∣∣ Jr

Q

∆µ · Jb
N

∣∣∣∣, (59)

where the numerator, |Jr
Q| = |Jr

E| represents the cooling
power.

B. Reduced Model-II: ICC in both energy and
(spin-polarized) particle currents

§ Fr
E = 0 and Σ̇ = Jb

EFb
E + Jb

NFb
N: It is apparent that

there would be no flux when both forces are zero. To
explore pseudo-ICC as a primary criterion for ICC, we
proceed by setting one non-zero force at a time. Sub-
sequently, we will set both forces non-zero to ascertain
genuine ICC.

(i) When Fb
N = 0 and Fb

E > 0: Upon setting the
conditions in Eq. (39c) for the particle force, one can
obtain after a little bit of algebra

ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
= θ ln

(
kb−
BAka+

ABkb+
CDka−

DC

kb−
DCka+

CDkb+
ABka−

BA

)
> 0,

or, (1 + θ) ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
= θ ln

(
kb+
CDka−

DC

kb−
DCka+

CD

)
> 0,

or, ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
=
(

θ

1 + θ

)
ln
(

kb+
CDka−

DC

kb−
DCka+

CD

)
> 0,

(60)

where, θ
1+θ = εL

εL+κ . So, there are two possibilities:
• For κ > 0, it directly reduces to Eq. (46), with both

X and Y positive, which finally leads to the condition
Jb

N > 0. Hence, the spin-induced particle current is al-
ways positive [FIG. 5a], indicating the presence of the
normal cross-effect, as the conjugate force Fb

N is zero.
• If κ < 0 and |κ| > εL, the positions of the energy

eigenstates |C⟩ and |D⟩ are interchanged, and the Eq. (60)
reduces to(

kb+
ABka−

BA

kb−
BAka+

AB

)
> 1 ;

(
kb+
CDka−

DC

kb−
DCka+

CD

)
< 1. (61)

Following a similar procedure presented in the context of
Eqs. (46) (49), one can show that Jb

N = 1
2 (X + Y) ≷ 0,

as X is always positive and Y is always negative follow-
ing Eq. (61). Hence, Jb

N could be either positive or neg-
ative, indicating the possibility of both the cross-effect
and pseudo-ICC [FIG. 5a], given that the conjugate force
Fb

N = 0. As a result, Σ̇ = Jb
EFb

E and Jb
E aligns with the

direction of Fb
E.

In summary, when Fb
E is the only force acting on the

system, Jb
E is always positive [FIG. 5a]. If κ > 0, Jb

N is

positive, indicating the cross-effect. Conversely, if κ < 0,
Jb

N can be either positive or negative, suggesting the
possibility of true ICC in the spin-induced particle cur-
rent. While Eq. (46) indicates that both |A⟩ → |B⟩ and
|C⟩ → |D⟩ transitions are primarily controlled by the
same reservoir (bath b), Eq. (61) signifies a competition
between the two coupled reservoirs (baths b and a) in
controlling the respective transitions. This competition
between the two reservoirs results in Jb

N being negative.
(ii) When Fb

E = 0 and Fb
N > 0: In this case, Jb

N is
always positive [FIG. 5b], in confirmation with the non-
negativity of the entropy production rate Σ̇ = Jb

NFb
N.

However, the energy current Jb
E is strongly dependent

on the sign of κ and can be expressed as Jb
E > κΓb+

CD

[Cf. Eq.(38)]. As demonstrated in Eqs.(50)-(55), when
Fr

E = 0, the value of PQ ≶ 1 under the conditions Fb
E = 0

and κ ≷ 0. This implies(
kab+
AB kr+

BDkab−
DC kr−

CA

kab−
BA kr−

DBkab+
CD kr+

AC

)
≶ 1. (62)

Utilizing the steady state condition [Cf. Eq. (21)], we can
derive from Eq. (62)(

kab−
DC ρD

kab+
CD ρC

)
≶ 1. (63)

The above equation suggests that Γab+
CD ≷ 0. Substituting

this into Eq. (49), we obtain Γb+
CD ≷ Y

2 for κ ≷ 0. This
implies that Γb+

CD is always positive when κ > 0, but it can
be positive or negative for κ < 0. Therefore, the energy
current Jb

E is always positive for κ > 0, as Jb
E > κΓb+

CD.
However, for κ < 0, the quantity κΓb+

CD can be either
positive or negative, resulting in Jb

E being either positive
or negative [FIG. 5b]. To summarize, when Fb

N is the only

 

 

𝐽E
𝑏|𝐽N

𝑏
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𝑏|𝐽N

𝑏

ℱN
𝑏ℱE

𝑏

ℱN
𝑏 = 0 ℱE

𝑏 = 0 (𝑏)(𝑎)

FIG. 5. Variation of the currents Jb
E (bluegreen line) and

Jb
N (red line) against the thermodynamic forces (a) Fb

E while
Fb

N = 0 i.e. (µaβ′ = µbβb) and (b) Fb
N while Fb

E = 0 i.e.
(β′ = βb). For all cases, the (dashed) dotted lines correspond
to κ = (−) + 1.5ℏγ, validating the condition |κ| > εL. Other
system and bath parameters: εL = 1.0ℏγ, εR = 2.5ℏγ, βb =
1/ℏγ, µb = 1.0ℏγ.

non-zero force acting on the system, the spin-induced
particle current Jb

N is always positive. The energy current
Jb

E is positive only if κ > 0, while it can be either positive
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or negative for κ < 0. Jb
E > 0 represents the cross-effect,

whereas Jb
E < 0 signifies the pseudo-ICC in the energy

current, as the current flows against the non-conjugate
particle force Fb

N. Hence, there is a possibility of true
ICC occurring in the energy current as well within this
reduced model.

(iii) When both (Fb
E, Fb

N) > 0: From our discussion
of the previous two cases, we have found that pseudo-ICC
arises in energy and particle currents only when κ < 0.
Thus, we will focus solely on the κ < 0 regime.

• ICC in particle current: Since Fb
N > 0, it readily

follows from Eq. (39c)

ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
>

(
εL

kB

)
Fb

E > 0. (64)

Inserting the expression of Fb
E from Eq. (39b), in the

above equation, we obtain

ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
>

(
εL

εL + κ

)
ln
(

kb+
CDka−

DC

kb−
DCka+

CD

)
, (65)

which then implies(
kb+
ABka−

BA

kb−
BAka+

AB

)
> 1;

(
kb+
CDka−

DC

kb−
DCka+

CD

)
≷ 1. (66)

So, we can continue our discussion by classifying the
above relations into two categories: (i) In the first case,
both of the arguments of the above relations are greater
than 1, and (ii) in the second case, the latter argument
is considered to be less than 1. For case (i), following the
same treatment done in Eq. (46), it can be shown as a
trivial case that Jb

N = 1
2 (X+Y) > 0, as both X and Y are

positive, i.e., the spin-induced particle current would be
positive as long as the conjugate force Fb

N is positive. For
case (ii), as the latter argument is less than 1, Y would
be negative. Again, following the same method done in
case of Eq. (61), we can obtain, Jb

N = 1
2 (X + Y) ≷ 0, as

X is positive and Y is negative. So, we can have genuine
ICC in the particle current, defined by Jb

N < 0 [FIG. 6a],
which indicates the flow of the spin-induced particle cur-
rent against both the non-zero positive forces Fb

N and
Fb

E. Thus, our Reduced model-II can be implemented as
the spin-thermoelectric heat engine [31, 33, 69, 70], which
drives the spin-polarized particle flux against the particle
force, influenced by the non-conjugate energy force Fb

E.
Finally, one can define the output power as |∆µ · Jb

N|, so
that the efficiency of the device is given by [16, 17]

η =
∣∣∣∣∆µ · Jb

N
Jr

Q

∣∣∣∣. (67)

• ICC in energy current: Under the first case when
both the arguments of Eq. (66) are greater than 1, the
spin-induced particle current Jb

N > 0. As a consequence,
we obtain from Eq. (38), Jb

E > κΓb+
CD. Again, Fr

E is any-
way zero, and under the conditions Fb

E > 0 and κ < 0,

FIG. 6. Variation of (a) the spin-polarised particle current Jb
N

and (b) the energy current Jr
E with both the thermodynamic

forces for negative κ i.e. κ = −1.5ℏγ. Genuine ICC for Jb
N

occurs in the area below the white dashed line in (a) while it
occurs for Jr

E above the white dashed line in (b). Other system
and bath parameters: εL = 1.0ℏγ, εR = 2.5ℏγ, βb = 1/ℏγ,
µb = 1.0ℏγ.

we have already shown in Eq. (50)- (55) that PQ > 1,
which results in(

kab+
AB kr+

BDkab−
DC kr−

CA

kab−
BA kr−

DBkab+
CD kr+

AC

)
> 1. (68)

From the above relation, we have previously established
in Eq. (62) that Γab+

CD < 0 for the κ < 0, which finally
leads to Γb+

CD < Y
2 , where Y is positive. Thus, Γb+

CD

can be both positive or negative. As a result, energy
flux Jb

E defined as Jb
E > κΓb+

CD, can be positive or neg-
ative, i.e., Jb

E ≷ 0. The genuine ICC will occur when
Jb

E < 0 [FIG. (6)b], indicating the flow of energy cur-
rent against both non-zero positive forces Fb

N and Fb
E.

Consequently, the Reduced model-II functions as a ther-
moelectric refrigerator [32, 37, 65–68], propelling energy
flux against the temperature gradient, influenced by the
non-conjugate particle force Fb

N. The COP for such a
device is given by Eq. (59).

So, we conclude that when both forces of the Reduced
model-II, Fb

E and Fb
N are positive, genuine ICC can be
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achieved in both energy and spin-induced particle cur-
rents. Thus, our model can be implemented both as a
spin-thermoelectric heat engine and a refrigerator. It is
evident that true ICC in the spin-induced particle cur-
rent Jb

N is obtained when both arguments of Eq. (66)
are positive and κ < 0, whereas true ICC in the en-
ergy current Jb

E is achieved, when the latter argument of
Eq. (66) is negative, under the restriction −κ > εL > 0.
These results complement the fact that two ICC regions
do not overlap with each other [FIG. 6] in compliance
with the second law of thermodynamics and positivity
of the entropy production rate. It is worth mentioning
that genuine ICC can be explored in both energy and
particle currents within the general model as well, under
various system-bath parameters. However, conducting
analytical studies based on microscopic descriptions will
be challenging for the general model.

VII. CONCLUSIONS

Identification of exact thermodynamic forces and con-
jugate fluxes in the presence of multiple reservoirs is cru-
cial for any thermodynamic description of novel phenom-
ena. Here we present a comprehensive quantum ther-
modynamic theory of the inverse current phenomenon
in coupled transport, where one induced current op-
poses all the thermodynamic forces present in the system.
Based on a simple variant of Sánchez-Büttiker model
of a three-terminal Coulomb-coupled quantum dots, we
have examined the counter-intuitive inverse current be-
havior observed in energy and spin-induced particle cur-
rents near equilibrium situations. Our analysis focuses on

the macroscopic and microscopic correspondence of the
entropy production rate, employing the grand-canonical
formalism of the Lindblad master equation and the
Schnakenberg entropy formulation. The linearity of the
quantum master equation allows exact analytical expres-
sions for thermodynamic forces and fluxes, incorporating
both macroscopic reservoir parameters and microscopic
system characteristics. It enables us to uniquely iden-
tify all thermodynamic force-flux pairs for both general
and reduced models, facilitating a systematic analysis of
genuine ICC behavior in both energy and spin-polarized
particle currents. Finally, we illustrate that our model
can function as an autonomous spin-thermoelectric en-
gine or refrigerator by exploiting ICC in spin-induced
particle currents and energy currents, respectively. While
we demonstrate an autonomous quantum-dot refrigera-
tor is easier to achieve, where chemical work done by
current-carrying quantum particles assists in transferring
thermal energy from a cold to a hot bath, autonomous
engine realization necessitates attractive interaction be-
tween coupled dots. We anticipate that our findings will
be valuable in developing ICC-assisted unconventional
spin-thermometric quantum dot devices in the near fu-
ture.
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quantum-dot heat engine,” Europhysics Letters 99,
27001 (2012).

[31] S. Donsa, S. Andergassen, and K. Held, “Double quan-
tum dot as a minimal thermoelectric generator,” Phys.
Rev. B 89, 125103 (2014).

[32] Yanchao Zhang, Guoxing Lin, and Jincan Chen, “Three-
terminal quantum-dot refrigerators,” Phys. Rev. E 91,
052118 (2015).

[33] Holger Thierschmann, Rafael Sánchez, Björn Sothmann,
Fabian Arnold, Christian Heyn, Wolfgang Hansen, Hart-
mut Buhmann, and Laurens W. Molenkamp, “Three-
terminal energy harvester with coupled quantum dots,”
Nature Nanotechnology 10, 854–858 (2015).

[34] Miguel A. Sierra, M. Saiz-Bret́ın, F. Domı́nguez-Adame,
and David Sánchez, “Interactions and thermoelectric ef-
fects in a parallel-coupled double quantum dot,” Phys.
Rev. B 93, 235452 (2016).

[35] Robert S. Whitney, Rafael Sánchez, Federica Haupt,
and Janine Splettstoesser, “Thermoelectricity without
absorbing energy from the heat sources,” Physica E: Low-
dimensional Systems and Nanostructures 75, 257–265
(2016).

[36] Paolo Andrea Erdman, Francesco Mazza, Riccardo Bo-
sisio, Giuliano Benenti, Rosario Fazio, and Fabio Tad-
dei, “Thermoelectric properties of an interacting quan-
tum dot based heat engine,” Phys. Rev. B 95, 245432
(2017).

[37] Paolo Andrea Erdman, Bibek Bhandari, Rosario Fazio,
Jukka P. Pekola, and Fabio Taddei, “Absorption refriger-
ators based on coulomb-coupled single-electron systems,”
Phys. Rev. B 98, 045433 (2018).

[38] Robert S. Whitney, Rafael Sánchez, and Janine
Splettstoesser, “Quantum thermodynamics of nanoscale
thermoelectrics and electronic devices,” in Thermody-
namics in the Quantum Regime: Fundamental Aspects
and New Directions, edited by Felix Binder, Luis A.
Correa, Christian Gogolin, Janet Anders, and Gerardo
Adesso (Springer International Publishing, Cham, 2018)
pp. 175–206.

[39] Yair Mazal, Yigal Meir, and Yonatan Dubi, “Nonmono-
tonic thermoelectric currents and energy harvesting in in-
teracting double quantum dots,” Phys. Rev. B 99, 075433
(2019).

[40] Gonzalo Manzano, Rafael Sánchez, Ralph Silva,
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Appendix A: Derivation of the LME

We present the interaction picture master equation to study the system’s dynamical evolution that exchanges
particles and energy with the reservoirs. Let us start with the tunneling Hamiltonian

HT = HL↓a
T + HL↓b

T + HR↑r
T (A1)

where, H
L↓a(b)
T = ℏ

∑
k[tL↓a(b)

k c†
a(b)↓kdL↓ + t

L↓a(b)∗
k d†

L↓ca(b)↓k] and HR↑r
T = ℏ

∑
k[tR↑r

k c†
r↑kdR↑ + tR↑r∗

k d†
R↑cr↑k]. To derive

the master equation, we start with the von Neumann equation for the total density matrix ρtot in the interaction
picture

d

dt
ρtot = − i

ℏ
[HT(t), ρtot(t)]. (A2)

Integrating the above equation, and taking a trace over the bath degrees of freedom, one obtains

∂

∂t
ρs(t) = 1

(iℏ)2

∫ t

0
dt′Tra,b,r[HT(t), [HT(t − t′), ρtot(t′)]], (A3)

where, Tra,b,r refers to the trace over each bath degrees of freedom and Tra,b,r{ρtot(t)} = ρs(t) denotes the reduced
density operator for the system. We also assume that Tra,b,r[HT(t), ρtot(0)] = 0. Under the Born-Markov approxima-
tion, the above equation can be rewritten as [48, 59, 71]

ρ̇s(t) = 1
(iℏ)2

∑
λ=a,b,r

∫ ∞

0
dt′ Tra,b,r[Hλ

T(t), [Hλ
T(t − t′), ρs(t) ⊗ ρa ⊗ ρb ⊗ ρr]], (A4)

where we use the following properties of the bath operators Trλ{cλ(t)ρλ} = 0 = Trλ{c†
λ(t)ρλ} and

Tra,b,r{[Hλ
T(t), [Hν

T(t − t′), ρs(t) ⊗ ρa ⊗ ρb ⊗ ρr]]} = 0; λ ̸= ν; λ, ν = a, b, r. Now, in the above equation, we use
the interaction picture system and bath operators

dασ(t) = eiHst/ℏdασe−iHst/ℏ =
∑

ωij>0
e−iωijt/ℏdασ; ασ = L ↓, R ↑

cλσ(t) = eiHBt/ℏcλσe−iHBt/ℏ =
∑

k

e−i(ϵλσ
k −µλ)t/ℏcλσ; λσ = a ↓, b ↓, r ↑ (A5)

and their hermitian adjoints, where ωij is defined as the transition energy for the transition between the system eigen-
states |i⟩ and |j⟩. Eliminating the high-frequency oscillating terms by the standard procedure of secular approximation,
one can finally derive the master equation in the following form

ρ̇s(t) = La[ρs(t)] + Lb[ρs(t)] + Lr[ρs(t)], (A6)

where the Lindblad operators Lλ[ρs(t)] are given by

Lλ[ρs(t)] =
∑

{ωα}>0

Gλ(ωα)
[
d†

ασ(ωα)ρsdασ(ωα) − 1
2{ρs, dασ(ωα)d†

ασ(ωα)}
]

+ Gλ(−ωα)
[
dασ(ωα)ρsd

†
ασ(ωα) − 1

2{ρs, d†
ασ(ωα)dασ(ωα)}

]
.

(A7)

In the above equation, we define the temperature-dependent bath spectral functions as

Gλ(ωα) = γλ(ωα)f+
λ (ωα); Gλ(−ωα) = γλ(ωα)f−

λ (ωα). (A8)

The function f±
λ (ωij) represents the Fermi distribution functions (FDF) which are obtained by tracing over the

bath density operator, for example, f+
λσ

(
ωij

)
= Trλσ

(
c†

λσcλσρλσ

)
, and f−

λσ

(
ωij

)
= Trλσ

(
cλσc†

λσρλσ

)
, where the bath
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operators c†
λσ and cλσ obey anti-commutation relation and the reservoir governs the transition between eigenstate |i⟩

to |j⟩, that costs ωij amount of energy. The explicit expressions of the FDFs for various transitions are listed below:

f+
a|b(ωAB) =

[
1 + exp

(
εL − µa|b

kBTa|b

)]−1
≡f1+

a|b , f+
a|b(ωCD) =

[
1 + exp

(
εL + κ − µa|b

kBTa|b

)]−1
≡ f2+

a|b ,

f−
a|b(ωBA) =

[
1 + exp

(−εL + µa|b

kBTa|b

)]−1
≡f1−

a|b , f−
a|b(ωCD) =

[
1 + exp

(−εL − κ + µa|b

kBTa|b

)]−1
≡ f2−

a|b ,

f+
r (ωAC) =

[
1 + exp

(
εR − µr

kBTr

)]−1
≡f1+

r , f+
r (ωBD) =

[
1 + exp

(
εR + κ − µr

kBTr

)]−1
≡ f2+

r ,

f−
r (ωCA) =

[
1 + exp

(
−εR + µr

kBTr

)]−1
≡f1−

r , f−
r (ωDB) =

[
1 + exp

(
−εR − κ + µr

kBTr

)]−1
≡ f2−

r .

(A9)

Appendix B: Explicit expressions of various currents

From Eq. (20), one can evaluate the explicit expressions of both energy and particle currents for each reservoir in
the following way

Ja
E =ωABΓa+

AB + ωCDΓa+
CD = εLΓa+

AB + (εL + κ)Γa+
CD ; Jb

E = ωABΓb+
AB + ωCDΓb+

CD = εLΓb+
AB + (εL + κ)Γb+

CD;
Jr

E =ωACΓr+
AC + ωBDΓr+

BD = εRΓr+
AC + (εR + κ)Γr+

BD; Ja
N = Γa+

AB + Γa+
CD ; Jb

N = Γb+
AB + Γb+

CD; Jr
N = Γr+

AC + Γr+
BD.

(B1)

Inserting the above relations, the expression of the heat current associated with each reservoir can be evaluated as

Ja
Q =(εL − µa)Γa+

AB + (εL + κ − µa)Γa+
CD ; Jb

Q = (εL − µb)Γb+
AB + (εL + κ − µb)Γb+

CD; Jr
Q = (εR − µr)Γr+

AC + (εR + κ − µr)Γr+
BD.

(B2)

Appendix C: Expression of the steady state transition rate

To determine the steady-state transition rate, we rewrite Eq. (7)-(9) as

M

ρA

ρB

ρC

ρD

 =

0
0
0
1

 , (C1)

subject to the condition ρA + ρB + ρC + ρD = 1, and

M =


−f1+

r − f1+
a − f1+

b f1−
a + f1−

b f1+
r 0

f1+
a + f1+

b −f1−
a − f1−

b − f2+
r 0 f2−

r

f1+
r 0 −f2+

a − f2+
b − f1−

r f2−
a + f2−

b
1 1 1 1

 , (C2)

where, for the sake of simplicity of our analysis, we assume that γa ≃ γb ≃ γr ≡ γ. Solving Eq. (C1) with the above
matrix M, one can obtain the steady state population {ρi} in terms of which we can evaluate the explicit expression

Γ⟳ = −Γ⟲ = γ

[
f1+

ab [f2+
ab (f2+

r − f1+
r ) + 2f2+

r (f1+
r − 1)] − 2f1+

r f2+
ab (f2+

r − 1)
3f1+

ab (f1+
r − f2+

r ) − 6 + 3f2+
ab (f2+

r − f1+
r )

]
, (C3)

where, we define f
1+(2+)
ab = f

1+(2+)
a + f

1+(2+)
b .

Appendix D: Non-negativity of entropy production rate

One can evaluate the expression of the entropy production (Σ) from the entropy change of the system (∆Ss =
Ss(t) − Ss(0)), which is defined as

∆Ss(t) = −kB Trs[ρs(t) ln ρs(t)] + kB Trs[ρs(0) ln ρs(0)] = −kB Tr[ρtot(t) ln ρs(t)] + kB Tr[ρtot(0) ln ρs(0)]. (D1)
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We assume that the initial equilibrium state, ρtot(0) does not display any entanglement or correlation between the
system and the environment. Therefore

ρtot(0) = ρs(0)
∏

λ

ρeq
λ . (D2)

Inserting Eq. (D2) into Eq. (D1), we can continue as follows

∆Ss(t) = − kB Tr[ρtot(t) ln ρs(t)] + kB Tr[ρtot(0) ln ρtot(0)] − kB

∑
λ

Tr[ρtot(0) ln ρeq
λ ]

= − kB Tr
[

ρtot(t) ln
{

ρs(t)
∏

λ

ρeq
λ

}]
+ kB Tr[ρtot(0) ln ρtot(0)] + kB

∑
λ

Trλ[{ρλ(t) − ρeq
λ } ln ρeq

λ ].
(D3)

Again, ρtot(t) and ρtot(0) are related through unitary evolution ρtot(t) = Uρtot(0)U†, which implies
Tr[ρtot(t) ln ρtot(t)] = Tr[ρtot(0) ln ρtot(0)]. Applying this relation in the above equation, the final expression of
the entropy change of the system can be calculated as

∆Ss(t) = −kB Tr
[

ρtot(t) ln
{

ρs(t)
∏

λ

ρeq
λ

}]
+ kB Tr[ρtot(t) ln ρtot(t)] + kB

∑
λ

Trλ[{ρλ(t) − ρeq
λ } ln ρeq

λ ]. (D4)

The last term of the above equation can be identified as the entropy flow (Φ), representing the reversible contribution
to the system entropy change due to heat exchange with the reservoirs. A comparison of the above equation with
Eq. (25), defines the entropy production, representing the irreversible contribution to the entropy change of the system
and the entropy flow as

Σ(t) = kB Tr[ρtot(t) ln{ρtot(t)}] − kB Tr
[

ρtot(t) ln
{

ρs(t)
∏

λ

ρeq
λ

}]
; Φ(t) = kB

∑
λ

Trλ [{ρλ(t) − ρeq
λ } ln ρeq

λ ] .

(D5)
The above expression of the entropy production can be expressed in terms of the relative entropy

Σ(t) ≡ D

[
ρtot(t)||

{
ρs(t)

∏
λ

ρeq
λ

}]
, (D6)

where D[ρ||ρ′] is the quantum relative entropy between two density matrices ρ and ρ′, defined via

D[ρ||ρ′] := Tr[ρ ln ρ] − Tr[ρ ln ρ′]. (D7)

The non-negativity of relative entropy is affirmed, attaining a value of zero solely in the case of complete matrix
identity. While the non-negativity of entropy production doesn’t imply the same for its rate, in the limit of large
reservoirs, Σ(t) is expected to converge to a convex, monotonically increasing function of time [62]. In the same
limit, if the system dynamics are described by a Markovian quantum Lindblad master equation, implying entropy
production as a convex functional of the system density matrix [59, 62], the entropy production rate Σ̇(t) would
eventually be positive, only reaching zero for the equilibrium state.

Appendix E: Derivation of the microscopic definition of the entropy production rate

Considering the von Neumann entropy defined as Ss(t) = −kB

∑
i ρi(t) ln ρi(t), where, ρi signifies populations of the

system eigenstates (i = A,B,C,D), the change in the system entropy is given by

∆Ss(t) =Ss(t) − Ss(0) = −kB

∑
i

ρi(t) ln ρi(t) + kB

∑
i

ρi(0) ln ρi(0). (E1)

So, the time evolution of the entropy change can be evaluated as

d

dt
∆Ss(t) = − kB

∑
i

ρ̇i(t) ln ρi(t) + kB

∑
i

ρ̇i(0) ln ρi(0) = −kB

∑
i

ρ̇i(t) ln ρi(t) ≡ −kB

∑
i

ρ̇i ln ρi. (E2)
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Now, using Eq. (7) for ρ̇i, we recover Eq. (35) of the main text:

d

dt
∆Ss(t) = kB

[
Γa+
AB ln

(
ρA

ρB

)
+ Γb+

AB ln
(

ρA

ρB

)
+ Γr+

BD ln
(

ρB

ρD

)
+ Γa−

DC ln
(

ρD

ρC

)
+ Γb−

DC ln
(

ρD

ρC

)
+ Γr−

CA ln
(

ρC

ρA

)]
. (E3)

By comparing the above equation with Eq. (25), we obtain Eq. (36) for the general expressions of Σ̇(t) and Φ̇(t):

Σ̇(t) =kB

[
Γa+
AB ln

(
ka+
ABρA

ka−
BAρB

)
+ Γb+

AB ln
(

kb+
ABρA

kb−
BAρB

)
+ Γr+

BD ln
(

kr+
BDρB

kr−
DBρD

)
+ Γa−

DC ln
(

ka−
DCρD

ka+
CDρC

)
+ Γb−

DC ln
(

kb−
DCρD

kb+
CDρC

)
+ Γr−

CA ln
(

kr−
CAρC

kr+
ACρA

)]

=kB

[
(ka+

ABρA − ka−
BAρB) ln

(
ka+
ABρA

ka−
BAρB

)
+ (kb+

ABρA − kb−
BAρB) ln

(
kb+
ABρA

kb−
BAρB

)
+ (kr+

BDρB − kr−
DBρD) ln

(
kr+
BDρB

kr−
DBρD

)

+(ka−
DCρD − ka+

CDρC) ln
(

ka−
DCρD

ka+
CDρC

)
+ (kb−

DCρD − kb+
CDρC) ln

(
kb−
DCρD

kb+
CDρC

)
+ (kr−

CAρC − kr+
ACρA) ln

(
kr−
CAρC

kr+
ACρA

)]
,

Φ̇(t) = − kB

[
Γa+
AB ln

(
ka+
AB

ka−
BA

)
+ Γb+

AB ln
(

kb+
AB

kb−
BA

)
+ Γr+

BD ln
(

kr+
BD

kr−
DB

)
+ Γa−

DC ln
(

ka−
DC

ka+
CD

)
+ Γb−

DC ln
(

kb−
DC

kb+
CD

)
+ Γr−

CA ln
(

kr−
CA

kr+
AC

)]
.

(E4)

There is no net entropy change in the system at the steady state, which reduces Eq. (37) for the form of the entropy
production rate:

Σ̇(t) = −Φ̇(t) = kB

[
Γa+
AB ln

(
ka+
AB

ka−
BA

)
+ Γb+

AB ln
(

kb+
AB

kb−
BA

)
+ Γr+

BD ln
(

kr+
BD

kr−
DB

)
+ Γa−

DC ln
(

ka−
DC

ka+
CD

)
+ Γb−

DC ln
(

kb−
DC

kb+
CD

)
+ Γr−

CA ln
(

kr−
CA

kr+
AC

)]

=kB

[
Γab+
AB ln

(
ka+
AB

ka−
BA

)
+ Γr+

BD ln
(

kr+
BD

kr−
DB

)
+ Γab−

DC ln
(

ka−
DC

ka+
CD

)
+ Γr−

CA ln
(

kr−
CA

kr+
AC

)]
+ kB

[
Γb+
AB ln

(
kb+
ABka−

BA

kb−
BAka+

AB

)
+ Γb−

DC ln
(

kb−
DCka+

CD

kb+
CDka−

DC

)]

=kBΓ⟳ ln
(

ka+
ABkr+

BDka−
DCkr−

CA

ka−
BAkr−

DBka+
CDkr+

AC

)
+ kB(Γb+

AB − Γb−
DC) ln

(
kb+
ABka−

BA

kb−
BAka+

AB

)
+ kBΓb−

DC ln
(

kb−
DCka+

CDkb+
ABka−

BA

kb−
BAka+

ABkb+
CDka−

DC

)

=κΓ⟳

[(
kB

κ

)
ln
(

ka+
ABkr+

BDka−
DCkr−

CA

ka−
BAkr−

DBka+
CDkr+

AC

)]
+ {εLΓb+

AB − (εL + κ)Γb−
DC}

[(
kB

κ

)
ln
(

kb−
BAka+

ABkb+
CDka−

DC

kb−
DCka+

CDkb+
ABka−

BA

)]

+(Γb+
AB − Γb−

DC)
[

kB(1 + θ) ln
(

kb+
ABka−

BA

kb−
BAka+

AB

)
+ kBθ ln

(
kb−
DCka+

CD

kb+
CDka−

DC

)]
.

(E5)
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