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Abstract

We prove a rigorous lower bound on the correlation energy of interacting fermions in the mean-field
regime for a wide class of singular interactions, including the Coulomb potential. Combined with the
upper bound obtained in [12], our result establishes an analogue of the Gell-Mann—Brueckner formula
c1plog (p) + cop for the correlation energy of the electron gas in the high-density limit. Moreover, our
analysis allows us to go beyond mean-field scaling while still covering the same class of potentials.
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1 Introduction

A long-standing challenge in mathematical physics is the rigorous understanding of quantum correlations
between interacting systems, based on microscopic principles. For the electron gas (e.g. jellium), this
question goes back to Wigner 1934 [26] and Heisenberg 1947 [20], who recognized the difficulty of solving
this task using a perturbation method. A cornerstone in the development of the correlation analysis is the
random phase approzimation (RPA) of Bohm and Pines [6, 7, 8, 23]. In this theory, electron correlation is
explained by the decoupling of collective plasmon excitations and quasi-electrons interacting in the plasmon
background through a screened Coulomb interaction.

The justification of the RPA has attracted notable theoretical works, including a seminal paper by Gell-
Mann and Brueckner in 1957 [16], where they formally reproduced the RPA from a resummation of Feynman
diagrams in a high-density electron gas. In particular, they predicted that the correlation energy of jellium,
FEeorr = En — Erg, with density p is given by

Ecorr = Clplog(/)) +c2p + 0(/))’ p —r 00, (11)

with specific constants ¢, cs. Here Epg is the energy of the Fermi state given by the Slater determinant
of plane waves!. In fact, the leading order contribution ciplog (p) was predicted independently by Pines
[23] and Macke [22], the latter using a partial resummation of the divergent series with an effective screened
Coulomb potential. The significance of the Gell-Mann-Brueckner formula (1.1) is that the second-order term
cop contains the exchange contribution, which is important for a complete understanding of the electron

correlation of the system.

Shortly afterwards, Sawada [24] and Sawada—Brueckner—Fukuda—Brout [25] proposed an alternative approach
to the RPA which also produces correctly the leading order contribution c¢;plog (p). In this approach, the
correlation energy is computed by a bosonization method where certain pairs of fermions are treated as
virtual bosons, leading to a quasi-bosonic Hamiltonian which can be diagonalized explicitly by a Bogolubov
transformation. The Hamiltonian approach in [24, 25] is more transparent than the resummation method in
[16, 22], but unfortunately the exchange contribution of the order p is not taken into account in the purely
bosonic picture in |24, 25].

On the mathematical side, from the techniques developed in the 1990s for large Coulomb systems by Fefferman
and Seco [13], Bach [1], and Graf and Solovej [18], one can show that the correlation energy of jellium is
at most of order O(p*3~¢) for some small constant ¢ > 0. This bound justifies that the Hartree-Fock
energy, given by crpp®? + cpp?/3 + 0(p4/ 3), correctly captures the full quantum mechanical energy to leading
order with respect to the density (see [18, Theorem 2|). However, a rigorous justification of the Gell-Mann-
Brueckner formula (1.1) is still unattainable due to various difficulties arising from both the singularity and
the long-range nature of the Coulomb potential.

Recently, there has been progress in justifying a version of the Gell-Mann—Brueckner formula in the mean-
field regime, where NN electrons are confined within a torus of fixed volume and interact via the periodic
Coulomb potential, coupled with the small factor k;l ~ N~1/3 as N — oco. In this setting, the long-range
issue disappears but the Coulomb singularity remains a serious difficulty. In [12], we proved as a rigorous
upper bound the following mean-field analogue for the correlation energy

Vikpt Nep ViVora—k
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! Alternatively, we could replace Frs by the Hartree Fock energy Enr, but optimizing over all Slater determinants only leads
to an exponentially small improvement compared to Erg [17]



where F (z) = log (1 + ) — z and for all k € Z3 = Z*\{0} we denote

1
Mep = 5(Ipl* = |p = k%) for p € Ly = {q € Z°||g| > kr > |g — K[}. (1.3)

As explained in [12], a detailed evaluation of (1.2) for the Coulomb potential V; ~ |k|~2 leads to an expansion
of the form

ﬁkplog(kp) —|—C~2k3F—|—0(k3F), (1.4)

with specific constants ¢1, . This expression is the analog of the Gell-Mann-Brueckner formula (1.1) for a
mean-field system on a torus of fixed volume. In fact, (1.2) exactly reproduces the Gell-Mann-Brueckner for-
mula (1.1) by formally removing the mean-field scaling and taking the thermodynamic limit. More precisely,
if k;lf/k is replaced by 4me? [k|~? and (27)° by the volume €, the first term in (1.2) becomes exactly equal
to the bosonic correlation contribution in [25, Eq. (34)] which is equivalent to [16, Eq. (19)] (accounting also
for spin). Moreover, by applying the same procedure to the second term in (1.2) we also obtain the exchange
contribution in [16, Eq. (9)], which is completely absent from the bosonic model of [25]. Roughly speaking,
the rigorous proof in [12] follows the general bosonization approach in [11] which is inspired by [24, 25|, but
to obtain (1.2) it is necessary to refine the purely bosonic picture of [24, 25| to also capture subtle fermionic
corrections.

The aim of the present work is to prove the matching lower bound for [12] and thus to fully establish (1.2)
as the correlation energy of the electron gas in the mean-field regime. The main challenge in proving the
lower bound compared to the analysis of the upper bound in [12| is that the a priori information available
for the ground state is not sufficient to directly apply the bosonization method introduced in our previous
work [11, 12]. As we will explain below, there is a big difference on the technical side for the proof of a
lower bound between the treatment of smooth potentials satisfying >, s Vi |k| < oo and the treatment of
singular potentials as we aim for in the present work.

Our proof is based on a new approach where the correlation energy is extracted directly from the Hamilto-
nian by completing appropriate squares containing both bosonizable and non-bosonizable terms, instead of
transforming the Hamiltonian by quasi-bosonic Bogolubov transformations as in [11, 12]. This representa-
tion realizes all leading contributions of singular Coulomb-type potentials directly, but still involves several
error terms that need to be controlled. To handle these we will derive several general correlation inequalities
which yield the necessary error estimates. These tools should be helpful in the future not only for a better
understanding of the Gell-Mann-Brueckner formula (1.1), but also for the treatment of singular interactions
in other contexts.

To conclude the introduction, let us compare our work with existing results on less singular potentials. Note
that if V,f\k:] < 00, then the bosonic contribution is proportional to kr while the exchange contribution is
of negligible order o(kp). In this case, establishing a simpler form of (1.2), without the exchange contribution,
has long been a very challenging problem. This problem was first resolved in [2, 3] for a smooth potential
with finitely supported Fourier coefficients Vj, and with sufficiently small ¢!-norm. Further extensions to
the class of smooth potentials satisfying ), s Vi |k| < oo, still with a lower-order exchange contribution,
were obtained independently in [11, 4]. It is also worth mentioning that an earlier bound on the correlation
energy that holds in the limit of small potentials was derived in [19], and that an optimal upper bound for
all potentials satisfying >, s f/,f |k| < oo was discussed in |11, 4].

To see the role of the quantity >, s V2 |k|, we may use the expansion
F(z) =log(l+z) —x=—2%/2+0(z3), z—0, (1.5)

to approximate the bosonic correlation contribution in (1.2) by
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Since |Ly| ~ k% min {|k|, kp} and A, ~ |k| max{|k|,kr} in an average sense, we find that if >, ;s Vk2|k:| <
oo, then the expression in (1.6) is bounded by O(kr). From this point of view, we see that the Coulomb
potential is critical since the condition ), s Vk |k| < oo barely fails for Coulomb potentials by a logarithmic
divergence, which is consistent with the logarithmic term in the Gell-Mann-Brueckner formula (1.1) as well
as its mean-field analogue (1.4).

Finally, let us note that the mean-field scaling k;lv is indeed special, since even for a smooth potential it
does not suffice to expand F'(z) to a finite number of terms to obtain the full bosonic correlation contribution
to leading order in kp. This would not be the case if one considered the stronger scaling k}lfev for a
small parameter ¢ > 0. On the other hand, the difficulty increases considerably when using the weaker
scaling k:;HEV. In the latter case, some estimates of the ground state energy for smooth potentials satisfying
D hezs Vi|k| < 0o can be found in the very recent work [14]. Motivated by [14], we will also prove (1.2) as a
lower bound for the weaker scaling k}HeV, where V' can be as singular as the Coulomb potential. To our
knowledge, this is the first time that a result on the correlation energy has been given beyond the mean-field
regime.

The precise statement of our result and a brief outline of the proof will be given below.

1.1 Main Result
We consider for a given Fermi momentum kr > 0 and fixed g > 11 the [-scaled Hamiltonian
N
Hy = Hygn + ki Hue = = > A+ k" 3" V(g — ) (1.7)
= 1<i<j<N
on D(Hy) = D(Hgn) = NV H? (T?) where T = [0, 27]® with periodic boundary conditions and
= |Br|, Br = B(0,kr)NZ>. (1.8)
We take V' to admit the Fourier decomposition

V()= (2m)° Y We™, 23 =7\ {0}, (1.9)

keZ3

and make the following assumptions on the Fourier coefficients V.

Assumption 1.1. The Fourier coefficients Vi, satisfy Vi, = V_j, > 0 for all k € 73, are radially decreasing
with respect to k € Z2, and there exists a constant Cy > 0 such that

VkSCV’k‘_Q, /{?GZ‘E.

The leading order of the ground state energy of Hy is given by the Fermi state

vrs= N\ up (@) = (2m)72 P, (1.10)

pEBR

with the corresponding energy (see e.g. [11, Egs. (1.10) and (1.20)])

Ers = (es, Hytors) = 3 12 — 5o 32 V (k) (N — |Li]) (1.11)

3
pEBR 2(27T) keZ3
where for every k € Z2, we denoted the lune Lj C Z3 by

Ly=(Br+k)\Br={peZ®||p—k| <kr <|p|}. (1.12)

To describe the correlation energy, we set A\, = %(]p\z — |p—k[*) and define the bosonic and exchange
contributions by

Ak
Ecorr ,bos — E / 27‘1’ 3 E )\2 —ftz t, F(.%') = log(l + .%') -, (113)
pELy,

keZ3



and

ViVorg k. ko
Ecorr,ex = 2 6 Z Z A (114)
) keZ3 pgely, P k.a

Our main result can then be stated as follows:

Theorem 1.2 (Operator and a priori estimates). Let 15 < B <1 and let V obey Assumption 1.1. Then it
holds as krp — oo that
Hy > EFS + Ecorr,bos + Ecorr,ex +&

where £ is an operator obeying for any € > 0 the lower bound
£> —Cyekp® 2 HL L kp)  with  Higy = Hin — (ps, Hintbps)
Furthermore, every state W € D(Hy) obeying (V, HyV) < (Yps, HNYrs) also satisfies
(U, H;, W) < Oy ki 20,
Here Cy, denotes a general constant depending only on Cy and e.
In particular, it immediately implies the ground state energy lower bound

inf U(HN) > EFS + Ecorr,bos + Ecorr,ex - O(k;/6+4(175)+6)- (115)

Here are some remarks on our result.

1. In the mean-field case f = 1, the lower bound (1.15) matches the upper bound of [12], leading to a
complete justification of (1.2).

Corollary 1.3 (Correlation energy in the mean-field regime). Let 8 = 1 and let V obey Assumption 1.1.
Then it holds as kp — oo that, for every e > 0,

infU(HN) - EFS + Ecorr,bos + Ecorr,ex + O(k;/6+e)

Additionally, when = 1, it always holds that Eompos < —Ckp, so there is a k;l/ Ote separation between
the error term and Ecopy bos (the order of Eeorr ex depends on the particular potential). For regular potentials
satisfying ), czs Vi|k| < oo, similar results to that of Corollary 1.3 were previously proved in [2, 3, 11, 4].

2. If there is equality in Assumption 1.1, i.e. if V} o |k| ™2 is the Coulomb potential, then
Ecorr,bos = O(ki'iQﬁ log(kF))a Ecorr,ex = O(kg'iQB) (116)

Therefore, the lower bound (1.15) is a non-trivial statement for all 12 < B < 1. The matching upper bound
is open for § < 1 (the upper bound analysis in [12]| requires mean-field scaling).

1.2 Outline of the Proof

Our method is inspired by the idea of bosonization which goes back to Sawada [24] and Sawada—Brueckner—
Fukuda—Brout [25]. The key observation is that after extracting the energy of the Fermi state, the main
contribution of the Hamiltonian comes from certain "bosonizable" terms, which can be written as quasi-
bosonic quadratic terms in which particular pairs of fermions behave as virtual bosons. As already explained
in [12], for singular potentials this bosonization method has to be implemented carefully in order to capture
a subtle correction which is missed in the purely bosonic picture of [24, 25]. For regular potentials studied in
[2, 3, 11, 4] the situation becomes much simpler since the purely bosonic computation is sufficient.

On the mathematical side, while we will start with the rigorous formulation of the bosonization method from
[11, 12], the proof in the present paper proceeds in a very different way. Most notably, we will not use quasi-
bosonic Bogolubov transformations as in [11, 12| since controlling the errors caused by these transformations



would become extremely complicated due to the lack of strong a priori estimates. As a comparison, for
regular potentials satisfying >, czs Vi|k| < oo studied in [11, 4], the pointwise inequality

2

= (N?Vy — NV(0)) PTEE > W Z kil >0 (1.17)

k£0  |j=1

Z V(x;

1<i<j<N 277)

implies that the correlation energy in the mean-field regime is of order O(kp), leading to the a priori estimate
(U, H. ) < O(kp) for every state satisfying (¥, Hy¥) < (¢ps, Hytrs). Unfortunately, this simple Onsager
argument does not work for singular potentials. For Coulomb systems, an adaptation of the deeper techniques
from [1, 18] to our mean-field situation yields an a priori bound of order O(k;’;e) for the correlation energy,
while the stronger bound O(kz}ﬁe) is typically required to apply the bosonization method from [11, 12].

To overcome this difficulty, we will derive a new representation of the Hamiltonian, wherein we extract
the correlation energy directly by completing appropriate squares containing both bosonizable and non-
bosonizable terms. In the bosonic picture, the realization that the ground state energy of a quadratic
Hamiltonian can be extracted by completing suitable squares was first made by Bogolubov in 1947 [5].
Variations of this technique have been employed in various contexts, such as the proof of Foldy’s formula for
“bosonic jellium” [21], the derivation of the Lee-Huang-Yang formula for dilute Bose gases [15], and recent
work [10] on the diagonalization of Bose gases beyond the Gross-Pitaevskii regime. It might therefore not
seem surprising that attempting to replace quasi-bosonic Bogolubov transformations with the completion
of squares should work, but the fact that the kinetic operator Hy, is not expressible in terms of pairs of
fermions in the same sense as the interaction term prevents a "naive" application of such an argument from
working. This would also not explain why the non-bosonizable terms should be negligible.

The significance of our new formula lies not only in being the first realization of such a factorization argument
for a high-density fermion system (as opposed to the low-density boson systems considered in the above
works), but also in incorporating the most difficult non-bosonizable terms directly, removing the need to
estimate these separately. Equipped with this representation we will then derive new correlation inequalities,
which may be of independent interest, which allow us to estimate the remaining error terms as being small
relative to the kinetic operator H|. . Further details of our proof are outlined as follows.

Second Quantization, Bosonizable and Non-bosonizable Terms

The starting point of the analysis is the second quantized representation of the Hamiltonian Hp, which can
be decomposed as

Hy = Eps + Hg +C+ Q (1.18)
where Eps = (¢Yrs, HnYrg) is the energy of the Fermi state and the bosonizable, cubic and quartic terms are
given by

k )
Hpg = Hy, + —2— " Vi(2B; By, + BxB_j, + B* . B),

2(2m) nezs
=P
C=—L"Re Z Vie(By + B*},) " Dy, (1.19)
(2m)° ke
k2P .
0=—"L_3N"% (D,’;Dk NG +cpkc;_k)>,
2(27T) kezZ3 pELy

respectively (see e.g. [12, eqs. 1.16 - 1.26] for the computation). Here ¢, and c, denote the creation and
annihilation operators associated with the plane wave states with momenta p € Z?3, which satisfy the canonical
anticommutation relations (CAR)

{CP’C:;} = 6p,qa {Cpa Cq} =0= {C;’C:;} : (120)
Above H{, denotes the localized kinetic operator, which is
Hi;, = Hian — ($rs, Hantes) = > [p[ e — > [pl* ¢, (1.21)
pEBE PEBF



and By, Dy are given by

By = Z CprCps Di = Z CpiCp + Z Cp—kCp- (1.22)
PEL peBEN(BS+k) pEBRN(Br+k)
Extraction of the Correlation Energy by Factorization

The correlation energy arises from the bosonizable terms Hp, so we start by considering these in detail. The
reason for its name is the following: If we define the excitation operators by , and b, » by

bip = c;‘,,kcp, bz,p = c;cp,k, kel pe Ly, (1.23)
then it follows immediately from the CAR that these obey commutation relations of the form
[br.ps big] = O10p.g + €ri(epieq),  [bhp,brgl = 0= [bf b7 ], (1.24)

which are seen to be analogous to canonical commutation relations up to a correction term ey (ep;eq) (the
precise form of which is not important for this outline). Furthermore, there holds the exact commutator

[Hin: V% o] = 2X0 b (1.25)

which given the quasi-bosonic behaviour of the b} , Operators suggests an informal relation of the form

Hipy ~ > 00> 20 pbk bi (1.26)

keZ3 peLy,

and defining operators hy, Py : *(Ly) — £2(Ly) and a vector vy € £2(Ly,) by

Vikp”
(eps hweq) = MkpOpgs P = vk) (okl,  (ep, vr) = L pge Ly, (1.27)
2(2m)
this suggests that
Hp ~ Z 2 Z (ep, (hi + Pr)eq) b ybr,g + 2 Re Z (ep; Preq) bk pb—k,—g (1.28)
kezi \ p.g€ly p,q€Ly,

which has the form of a quadratic Hamiltonian with respect to by >

Exactly Bosonic Bogolubov Factorization

Now, if (1.28) were a genuine identity, and if the operators by, , were genuinely bosonic (i.e. if epy(p,q) =0),

then this would imply that Hg would be diagonalizable by a Bogolubov transformation e*

exist an (explicit) Bogolubov kernel K such that

M Hpe ™™ = tr(Bp—hy = P)+2 )Y (ep Ereq) b ybrg (1.29)
kez? keZ p,g€ Ll

, i.e. there would

=

1 1
where Ej : £2(Ly,) — ¢*(Ly) is given in terms of hy and Py by Ej, = (hp (hi +2P)h;)2.
In fact (see e.g. [11, Propositions 7.1, 7.6])

Beorrpos = Y tr(Ey — hy, — Py) (1.30)
kez3

which explains why we refer to this as the bosonic contribution to the correlation energy.

In the exact bosonic case the transformation e would (for a lower bound) technically be superfluous, since
“undoing” the transformation shows that

Hp = Ecorrbos + 2 Z Z (ep, Exeq) e*Kb};’peKe*’Cbk,qu (1.31)
k€EZ3 p,qELy,



and the transformation e® would additionally satisfy

e by e = Z (Crep, eq) b g + Z (e—g;S—ke—p) b=y _, (1.32)
qELy qELy

=: b (Crep) + b7 4 (S—re—p)
for operators Cy, Sy, : £2(Ly) — ¢?(Ly) given by
1 -1 1 1 1 1 -1 1 1 1
Ch= 2P EE + B, o= L PEE - niEh), (1.53)
ie.

Hp = Beorrpos +2 > Y (e, Ereg) (be(Crep) + 075 (S_ke—p)) " (be(Creg) + b1 (S—ke—g))  (1.34)
keZ3 p,qe Ly,

which is simply an algebraic rewriting of Hg, as can be verified by expanding the expression and applying
the definitions of Ej, C} and Sj. Since Ej, > 0, (1.34) immediately implies that Hg > Ecorr bos-

Quasi-Bosonic Bogolubov Factorization

Returning to the non-exact case, a result to the effect of equation (1.29) was established in [11, Theorem
L.1] (for B =1 and potentials obeying ), s |k| Vi < o0), in which a unitary operator U (a product of two
quasi-bosonic Bogolubov transformations) was constructed such that

UHBU* ~ Ecorrpos + Hign +2 Y > (ep, (B — hi)eg) by brg- (1.35)
kEZ3 p,qely,

Note the difference from equation (1.29): We have the additional terms

Hi = > > 20 pbk ybrog

keZ3 peLy

which reflects the fact that the relation of equation (1.26) only holds in an indirect sense. One could hope to
make this more direct, but in fact this is impossible, as it was also noted in [11, Proposition 10.1] that

Z Z 27k pbi pbkg = N Hign (1.36)

keZ3 pely

SO

Hl/dn - Z Z 2)\k7pbz,pbk,q = _(NE - 1)Hl/<1n

keZ3 peLy,
can not be considered small on its own. It is nonetheless the case that

2" > (ep, (Br — hi)eq) b phig = 0,

k€Z3 p,qELy
so this does suffice to show that Hg 2 Ecorrbos, but it appears to preclude a transformation-free approach
that could yield something similar to equation (1.34).

By modifying the approach this is however possible: If we similarly “undo” the transformation of equation
(1.35) we see that

Hpg ~ Eorpos + O |1PI> = KR U GUP +2 0 Y ey, (B — hi)eq) Uby JUU by U (1.37)
pEZ3 kEZ3 p,qELy
€ B¢
where we introduced the notation ¢, = v P L
61*7 p € B

Now, if U = X for a quasi-bosonic kernel K (defined as a “hybrid” of the kernels defining the two transfor-
mations used in [11]) one finds similarly to the exact case that

Z/I*bhpu ~ bk(Ckep) + b*_k(S,ke_p) (1.38)



while the operators ¢, obey

U*eU ~ &+ dy, + d (1.39)
where dll, and df, are given by
8 - Zkezg’; 1Lk—k(p)é;+kbk((ck —1)eprk) p€ Br
and
&2 = + Zkezg 1r,(p) ?Fkbik(s—kefp) p € By (1.41)
P - Ykeze L k()8 107 (Skep k) p € Br
respectively (note that these are sums of triples of fermionic creation and annihilation operators).
Equation (1.37) consequently suggests an identity of the form?
- 2
Hpg NEcorr,bos"' Z | |p|2 _k%| ‘Cp+d11)+d12)‘ (142)

pEZ3

+ 2 Z Z <ep, (Ek — hk)€q> (bk(Ckep) + bfk(S,ke_p))*(bk(Ckeq) + b’ik(S,ke_q))

keZ3 p,q€Ly

which is a purely algebraic statement. This is of course not exact, but the crucial point is that we can simply
take the right-hand side as an ansatz and expand it to obtain a genuine identity for Hg. This is precisely
what we will do in the Sections 2 and 3 (see Theorems 2.1 and 3.1) to obtain the following:

Theorem 1.4. It holds that

Hg = Z | |p|2 - k%|<|5p + d]12 + d;2;|2 + ‘(d;l; + d;%)*‘Q) -2 Z Z <epaSkEkS/:€q> 5k,k(€p§eq)
peZ3 keZ3 p,q€Lly

+2> ) ep (B — hi)eg) (br(Crep) + 0" 4 (S_re—p)) " (be(Creq) + b* 1 (S—ke—q))
kEZ3 p,qeLy
+ Ecorr,bos + Ecorr,ex + gB

for an operator Eg which under Assumption 1.1 obeys

+& < o(1) (Hiy, + kr), kr — 0.

There are two things to remark about this identity: The first is that all terms on the first two lines of the right-
hand side are manifestly non-negative (since Ej, — hy, SpErS; > 0 and ey, i (ep; eq) = 0p gk, k(ep; €p) < 0), and
so despite their apparent complexity these terms can be ignored for a lower bound. This includes in particular
all terms with 6 creation and annihilation operators - this is a consequence of the fermionic commutation
relations.

The second is that although not anticipated by the motivating relation of equation (1.42), the exchange
contribition Feorex automatically appears during the expansion procedure. This identity thus accounts for
the full correlation energy.

Handling the Cubic and Quartic Terms

The identity for the bosonizable terms essentially suffices to prove a version of Theorem 1.2 for Hg, but the
full Hamiltonian Hy also contains the cubic and quartic terms C and Q. The quartic terms are in a sense
“mostly positive”, but the non-definite cubic terms are difficult to estimate directly.

2A factorization of a similar form was recently used in [10], which inspired this approach.



Incorporation of the Small £ Cubic Terms

We will deal with this issue by partially including them in the factorization identity above. To motivate this,
let us note that C can be written as

Vi koo ( Viko? )
C =4Re F_B*D, = 4Re 2 pr VD 1.43
3 S ine = ke (3 50 st (143
€73 keZ3 “peLy

where the first equality follows from the observations that D} = D_j and [By, Dj] = 0.
If we define wy, € (*(Ly) by (ep, wi) = 2*1(271)_3‘7;6141;6 we can express this as

C =4Re Z <Z (ep, wk) b’,;,p> Dy, (1.44)
keZ3 “pELy

which suggests how we should modify the ansatz we used for Hp: To generate expressions of the form
> per, (€ps (1) 0% , Dy we can modify the quadratic part according to

bi(Crep) + b2 (S-re—p) = br(Crep) + b2 (S—re—p) + (ep, k) Di (1.45)

for some 1, € £%(Ly) (to be fixed at the end), and correspondingly include an additional term d;’) in the
kinetic factorization, where

a3 = + ZKEZE 1Lk (p) <epa 77]<J> é;;fk;Dk pe B% (1 46)
. - Zkezi 11, —k(P) (€pio: M) 5;+ka p € Br
In the Sections 4 and 5 (see Theorems 4.1 and 5.1) we show that the specific choice
3 1
272 1/3
me = 3 B ik k< (1.47)
0 otherwise

yields the following;:
Theorem 1.5. [t holds that

Viky” ky' 2 (v, hytoy)
dprane Y Empeds Y i,
2(2m)° 2(2m)° 1+ 2 (g, by !
kEB(Oky )Nz (&) (2m) keB(0,ky*)NZ3 2o by o)
2 ~ 2 %12 .
= |lpf* - k7| ({cp +d +d+ D+ |(d) + d+ d3)*| ) 23" 3" chnlep; SkErSiep)
pez? keZ3 peLy,

+ Z Z 2 (ep, (B — hi)eq) (bk(ckep) + b5 (S—ke—p) + (€p, M) Dk‘)*
kEZ3 p,qeLy,
: (bk(ckeq) + b2 (S—ke—q) + (eq; M) Dk)
+ Ecorr,bos + Ecorr,ex + gB + €C

for an operator E¢ which under Assumption 1.1 obeys

+& < 0(1)(H1,<in + kF), kp — oo.

This identity only includes the “small k” part of C, i.e. the sum over k € B(0, k:llp/ 3) N Z2 (the exponent is
simply the consequence of eventual optimization). This of course leaves the “large k” terms unaccounted for,
but these can be estimated directly.
Note also the additional sum involving Dj D), terms, reminiscent of the quartic terms. Such expressions are
unavoidable when attempting to include the cubic terms by factorization, but the crucial point here is the
obvious inequality
2 <Uk7 hlzlvk>

1+2 <Uk, hlzlvk>
That this factor is always less than 1 means that we can use the “almost positivity” of the quartic terms to
partially cancel these terms.

<1 (1.48)
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Estimation of the Remaining Terms

The parts of Hy which remain unaccounted for are the “large k” cubic and quartic terms, which we bound
in Section 6. To illustrate how to estimate these, consider for definiteness the cubic terms

2k " .
gC,large = ﬁRe Z V]gBkD]g (149)

keZ3\B(0,kH %)
The key observation is that if one expands B;, one can write the sum as

> WBiDr= ) > Viéses 1Dk (1.50)

keZ3\B(0,k}*) keZ3\B(0,k *) PELE

:Za;;< > 1Lk(p)VkE;ka>

PEBE  “Rez3\B(0,k}/?)

and so, by the identity?

Hyn = Z (‘p‘Q — Q) cpep + Z (S ]p\ CpCp = Z Hp’ — ¢l (1.51)

pEBS, pEBR pez?

which is valid for any ¢ € [sup,cp, Ip|? ,infpepe, [p|?], one can estimate

’<\II’ 5C,large\1/>‘

2
éckﬁ\/ OITZEETICETEND DRIl (D DR O LR
pEB% peB% keZi\B(O,k}l‘—‘/S)
< Chy” (W H W) S | [pl” = ¢ (0, Ap A, W) (1.52)
pEB%
for )
Ap = Z 11, (P) Vi€ D (1.53)

keZ3\B(0,k}/ )

Clearly A7A, < A7 A, + ApAy = {A}, Ap}, and the point is that A, is a sum of triples of fermionic creation
and annihilation operators. As a consequence, the commutator consists only of sums of 4 or less creation
and annihilation operators, which combined with the fact that ¢ can be chosen such that

> 1P =<7t < Cekgte (1.54)

pELy

(which also enters in the estimation of &g and & from the previous steps) eventually leads to the bound

+E¢ targe < Cekin 1€ S VRH, (1.55)

keZ3\B(0,k}/*)

The large k quartic terms can be estimated in a similar fashion, with one exception: There remains the term

ky” -
% Z Vie Z CpCq—kCqCp—k (1.56)

2(2m) REZIBOKY®)  PAEAN(A+E)

where A = 73\ B(0, 2kr), which is to say the part of the interaction which involves momenta exclusively “far
away” from the Fermi ball. This condition can however be exploited to also control this term in the same
form as the other terms.

3This is a consequence of particle-hole symmetry, i.e. the identity Ng := ZPEB% cpep =
N-particle space due to the fact that N = |Bp]|.

penp CpCp Which is valid on the

11



Concluding Theorem 1.2

With all the estimates in place we thus obtain the first part of Theorem 1.2, i.e. the inequality

Hy > EFS + Ecorr,bos + Ecorr,ex +& (157)

l+2(175)+e(

where £ obeys £ > —Cv,ek;(* H{. + k), but not the second part, i.e. the estimate

(U, Hi; W) < Cok 20t (1.58)
for low-lying states W. This however follows as a simple consequence of the first inequality, since we can write
2(Hy — Epg) = H};, + (Hg +C + Q) (1.59)

where the tilde quantities are the same as those of equation (1.19) up to the replacement Vi — 2V. Then
by the first part (note that Egoyex > 0)

~ 5 oA = ~ s —i42(1-8)+
HB + C + Q > Ecorr,bos + Ecorr,ex - CV,ekF6 1=F) E(Hll(in + k?F) (160)

> Ecorr,bos - 0(1)(H1/<in + kF)7 kp — o0,

SO
(1 - 0(1))Hl/<in < 2(HN - EFS) - Ecorr,bos +Ckp, kp — o0, (161)

from which the second part follows by proving that Ecombos < Cgkf’;m +e

Organization of the paper. In Section 2 we will extract the correlation energy from Hp by an explicit
factorization. The error £g of this step is estimated in Section 3. In Section 4 we extend the exact factorization
to include also the low-momentum part of the cubic terms C. The error £ of this step is estimated in Section
5. All of the remaining terms are estimated in Section 6, leading to the conclusion of Theorem 1.2.

Acknowledgements. This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) via the TRR 352 — Project-ID 470903074. PTN was partially supported by
the European Research Council via the ERC CoG RAMBAS — Project-Nr. 101044249.

2 Extraction of the Correlation Energy by Factorization

In this section we perform the computations leading to the factorized expression for Hg.
For convenience we recall that the operators Ey, Cy, S : £2(Ly,) — £2(Ly) are defined by

1

1 1
Ey = (hi (hy + 2P, )h})

N[
—
[\
—_
~—

and 1 1 1 11 1 1 1 11
Ck:§(hk2E,f+h,§Ek2), Sk:§(hk2E,§—h,§Ek2), (2.2)
while the operators dzl, and df, are defined by
dl _ + zk€Z§ 1Lk (p)~;_kbk((ck - 1)617) pE B;«“ (23)
P — 2 kezs 1k ()6 bk ((Cr — Depix) p € Br
and
+> e 1, (p)E_ b*  (S_re_p) p € B¢
2 kez3 KOk P F
d, = { P (2.4)

— > ez Lia—k(D)E b n(S—ke_p—k) pE Bp’
* p

respectively. Our goal is the following:

Theorem 2.1. [t holds that

Hy = > 1o = k31 ([ + db+ @2 + |(dh + d2)**) =2 30 3 enrlers SeESiey)
pEZ3 keZ3 peLy,

+23° 3" e (B — hideg) (br(Crep) + b4 (S—ke—p)) " (s(Cheg) + b (S—re )
keZ3 p,geLy

+ Ecorr,bos + Ecorr,ex + EB

for an operator Eg defined below.
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Quasi-Bosonic Operators

Before we start in earnest we will recall some properties of the quasi-bosonic operators we must consider.

First, we define for general symmetric operators Ay, By, : £2(L;,) — ¢?(L3,) the expressions
Qi(AR) = Y (ep Aveq) Vpbig,  Q5(Br) =2Re ) (ep, Breq) brpb-r—: (25)
p,q€Ly, P,q€Ly,
in terms of which the interaction part of Hy can be written

ke’
2(2m)?

> Vi(2BiBi+ BBy + BLBi) = > (2Q8(P) + Q5(Ry)) (2:6)
keZ3 keZ3

for Py, = |vg) (vg| with vy € ¢2(Ly,) defined by (e, vg) = \/271(271')73‘7]@]{5;76.
For any ¢ € ¢%(L;) we also define the generalized excitation operators

bi(p) = > (prep) by, Bi(9) = D (en ) Uiy (2.7)

pELy pELg
which lets us write Q¥(A4y) and Q5(By) as
QF(Ar) = > bi(Arep)bip,  Q5(Bi) =2Re Y bi(Brep)b_i, - (2.8)
PELy PELy
The generalized excitation operators obey the quasi-bosonic commutation relations

[bk (), bi(¥)] = [br(0), b (V)] =0 (2.9)
[k (), bf (V)] = Ska (@, ¥) + era(@;9)

where the exchange correction ey (¢;1)) is given by

(@) =— D {preq) (eq¥) & 1éqk — > (@, €qtk) (g1, V) CpiCorti- (2.10)

qeLNLy q€(Li—k)N(L;—1)

Below we will often encounter expressions of the “trace form” Y ;" | ¢(Se;, Te;) for some bilinear mapping g,
for example

QF(Ar) = > bi(Akep)br(ep) = Y a(Arep,ep),  alp, ) = bip(9)br(¥). (2.11)

pELy pELy

For that reason we recall the following lemma which simplifies the calculations with these significantly:

Lemma 2.2. Let V be an n-dimensional Hilbert space and let ¢ : V XV — W be a sesquilinear mapping into
a vector space W. Then for any orthonormal basis (e;);_, of V and operators S,T : V — V it holds that

i Q(SBZ‘, Te?«) = i Q(ST*GZ, 62‘).

i=1 i=1

The lemma is immediate by orthonormal expansion.
We remark that we will only consider £2(Ly) as a real vector space (so sesquilinearity is simply bilinearity).

Finally we point out that the operators Ej,C) and Sy all obey a symmetry condition of the form

(ep, Ereq) = (e—p, E_ge_q), p,q € Ly, (2.12)

since these are directly determined by hj and P, which also satisfy this.

13



2.1 Factorization of the Interaction Terms

We begin with the terms >, 75 (2Q%(Px) + Q5(P)) which come from the interaction. Since we will also
need this for the kinetic terms below, we state a general identity:

Proposition 2.3. For symmetric operators Ay, : £2(Ly) — (?(Ly,), k € 72, obeying

<ep7 Akeq> = <€_p, Afk‘e—q> , Db,q € Lk‘a

it holds that

oD 2(ep Arey) (r(Crep) + b5 5(S—ke—p)) " (br(Creq) + b1, (S_re—q))

keZ3 p,qe Ly,

= Y (2QHCALCE + SkALS)) + QB(CLALS] + S ACY) )
keZ3

+ Z QtT(SkAkSZ) + 2 Z Z €k7k(6p;SkAkS;6p).

keZ3 k€EZ3 pELy,

Proof: By expanding the terms and applying Lemma 2.2 we see that

SN 2(ep Areq) (br(Crep) + b7 4 (S—pe—p)) " (br(Creq) + b7 1 (S—re_q))

k€Z3 p,qEly,
=2 Z Z (ep, Apeq) by, (Crep)bi(Creq) + 2 Z Z (ep, Apeq) b—i(S—pe—p)bZj(S—re—q)
k€eZ3 p,qELly k€eZ3 p,qELy
+4Re > Y (ep, Areg) boi(S_re—p)bi(Crey) (2.13)

keZ3 p,q€ Ly

=2 > {ep, CriCreg) by pbig +2 Y > (en, SkArSieq) brpbi

keZ3 p,qely keZ3 p,q€Lly

+ 4Re Z Z <€p, SkAkC:€q> bk,pb,k,,q
keZ3 p,qeLy,

where we also took advantage of the symmetry of Ay, Cy and Sy under (k,p,q) — (—k,—p, —q). Now
DY (e CrArClieq) by yhr g = QF (CrARCE) (2.14)
keZ3 p,q€ Ly,

by definition, while

DD lep SkArSieq) brpbig = D D {ep SkARSieq) Ui gbrp+ D D {en, Sk ArSiep)

keZ3 p,qely, keZ3 p,qely, keZ3 peLy,

+ Z Z (ep, Sk ARSLEq) € i(€p; €q) (2.15)

keZ? p,q€Ly,

= > QF(SkARSE) + D tr(SkARSH) + D> ennlen; SuArSiep)

keZ3 keZ3 keZ3 peLy

by symmetry of A and the fact that the matrix elements are real-valued. Similarly, renaming variables and
using the symmetries involved once more

Z Z ep,SkAkaequpb k,—q = Z Z CkAkSkep,eqM k, qbk7p (2.16)

keZ3 p,a€ly, keZ3 p,qely,

= Z Z (ep, CrAxSpeq) bi,pb—k,—q

keZ3 p,g€ Ly

which implies

4Re Z Z <€p, SkAkC;eq> bk@b,k,,q = 2Re Z Z <€p, (CkAkSZ + SkAij;)eq> bk,pb,k,,q
kEZi p,q€ Ly k‘EZ§ p,q€ Ly
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=) Q5(ChALS;: + Sk AKCE). (2.17)

keZ3
O
This yields the following identity for the interaction terms:
Proposition 2.4. It holds that
Z <2 Ql (Pk) + Q2 (Pk ) Z 2 Ql hk) + Ecorr bos — 2 Z Ek.k epa SkEkSkep)
keZ? keZ? keZ3
+ ) ) 2(ep, Ereg) (bi(Crep) + b1 (S_re—p)) " (bk(Creg) + b7 1 (S-re—q)).-
keZ? p,gELy
Proof: From the definitions of the equations (2.1) and (2.2) it readily follows that
1
CkEkC]: + SkEkSZ = §(hk + 2P, + hk) =h, + P (2.18)
1
CkEkS]: + SkEkC;; = §(hk + 2P, — hk) =P
and so the previous proposition tells us that
ST ST 2o Ereg) (br(Crep) + b1 (S—ke—p) (br(Crey) + b 1(Ske_y) (2.19)
keZ? p.gELy,
=) (2 QY (hi + Pr) + Q'S(Pk)> + 20 (SkBSE) +2 Y Y exrlep; SuFrSiey)
keZ3 keZ3 keZ2 pELy,
which can be rearranged for the claim since
1/ _1 1 1 _1
QSkEkSZ =h, + P, — 5 <hk QEkhli + hli Ekhk 2> (2.20)
whence
- Z QtY(SkEkSZ) = Z tI‘(Ek — h — Pk) = Ecorr,bos (221)
kez3 kez3
as calculated in [11, Propositions 7.1, 7.6].
O
2.2 Factorization of the Kinetic Terms
Clearly
~ 2 P ~x
S PP =kl e+ dy + d2|” = Hig, + > 211pl* — k| Re(&3d), + &3d2) (2.22)
pEZ3 pEZ3
+ ) | Ip* = kI ((d))*dy, + 2Re((dy)*d2) + (d2)*d2)
peZ?

so we consider the sums on the right-hand side in order. First the simplest:

Proposition 2.5. It holds that

> 21l — kEIRe(Gdy) = D 2Q1((Ch — Dy + hy(Cf — 1))

pEZ3 keZ3
> 20pl* = kR Re(Edp) = > Q5(Skhi + hiSy).
pEZ3 keZ3

15



Proof: For p € BY. we have from the definitions of the equations (2.3) and (2.4) that

Sl —kplEdy = > > |1l = kp| e 1bk((Cr — Dep) (2.23)
pEBL keZ3 peLy,

ST -k ER = S S 1 pP - KR & b (ko)

pEBE keZ3 peLy,

while for p € Bp (after substituting p — p — k in the inner sums)

2 ~% 2 ~ ~
STl —kplEdy ==Y Y |p— kP — kR € 1 &be((Cr — 1)ey) (2.24)
pEBF ke€Z3 peLy,
2 ~% 2 ~ ~% 7 %
ST -kl a2 == 3" S p— kPP — kE & 48 1 (S—ke—p).
pEBR ke€Z3 peLy,

In the dll, case this implies that together

Sl kRl = >0 > (1P = K2+ |p — &P —kF\)N*N* ebr((Ci — 1ey)

pEZ3 keZ3 pely
=) 2n,b5 ,bk((C =) 265 bk((Cr — Dhiey) (2.25)
k‘EZS pELy k‘EZS pELy
=3 > 2bp(h(Ch — Dep)byp
keZ3 peLy
whence
2Re > [ IpP* — kil Gdy = D D 2(05(hk(Cf = Vep)brp + b ybr (hie(CF — Dey))
peZ3 keZ3 peLy,
= > > 2b5(((Ck — Dl + hie(Cf = 1)) )b (2.26)
keZ3 peLly
=YY 2QF(Cr = Dhy + hi(Cf — 1))
keZ3 peLy

and similarly, using the (k,p,q) — (—k, —p, —q) symmetry,

ST = kG2 =37 3 2 b bk (Sere—p) = > > 205 b 1 (S_khogey)

peZ? keZ3 pELy, kez3 peLy,

=) (Bh(hSiep)b*y p + by bk (Skhkey)) (2.27)
keZ3 peLy

= ) bi((Sehr + hiSp)ep)bT s,
keZ3 peLy

yielding
2Re Y |[pI* = kp|&de = Y Q5 (Skhi + hiSp). (2.28)

pEZ3 kez3

O

To state the identities for terms of the form ) czs | Ip|> — k%] (d,)*d, we must define some error terms. The
first is

Eei= Y > |l —kplE_ bi((Ck = 1ep), bi((Cr = 1)ep)] ép (2.29)
k,leZ3 peLiNLy
+ ) > [ pI? = k2| & D ((Ck = Depi), bi((Cr = Vepia)] Eppn

k,€Z3 pe(Li—k)N(L;—1)

16



and we note that the two sums are of a similar form, in that the second can be obtained from the first by
the substitions (L, ¢p—k, €p) = (L — k, Cptk, €ptk), which reflects the fact that the definitions of d}) differ in

this way depending on whether p € B% or p € Br. We can thus write g1 = 5](31)1 + 5](32)1 for

e =3 ST 1P - k& i(Cr — Dep). bil(Cr — )ep)] Epi (2.30)

k,l€Z3 peLNL,

with 5](32% obtained from this by the above substitution. In this notation we similarly define &g ,, = 5](31271—{—5](32271
form=2,...,5 by

esr =" S Il — kEE BE(Ck — 1)ep) [Epn b*1(S_te—p)]

klez3 peLinL,

1 s * ~
E = > P = ke [bor(S ke ) b u(Se )] Gpon (2.31)

k€72 peLiNLy

N =3 ST 11pP = G b i (S—ke—p) [Eps b1 (S—ie—p)]

k lEZS peLNL;

51(31,33 Z Z ||p| kF| Cp—1, b 1 (S= ke,p)]* [cp 1y 07 (S— le,p)]

k,leZ3 peLNl,
The identities then take the following forms:

Proposition 2.6. It holds that

D el = k2 (@) dy = 3 2Q1(Cr = Dhi(Cf = 1)) = Y [Ipl* — Kbl dy(d})” — Ens
peZ? kez? peZ3
2Re Y |[p]* = k| (dy)*d2 = Y Q5((Ch — 1Sy + Sphi(C — 1))
peZ? kez3
—2Re Y ||p|* — k| d;(d})* — 2Re(Ep2)
pEZ3
Z | Ip” — k| ( )’ Z 2Q% (SkhiSE) + 2 Z tr(SkhrSy) + 2 Z ek k(ep; SkhiSiep)
pEZ3 keZ3 keZ3 keZ3
- Z ’ ’p’Q — k%‘ dg(d?))* — 5]373 — 2Re(€B,4) — 5]375.
peEZ?

Proof: The first part of the derivation is similar for all three terms, so we focus on } - 75 | Ip|> — k2| (d})*d}

By equation (2.3) we have for p € B¢, that

Do P = kBl () dy =Y > Lnnn () oI — KB Bi((Ck = 1)ep)& i bi((Cr — 1)ey)

pEB% PEBL kleZ3

= > >l = KR 0R((Cr = Dep)bi((Cr — Dep) (2.32)

keZ3 peLy,

= > > PP = KRB (Cr = 1)ep)E_iépibi((Cr = 1)ey)

k,l€Z3 peLNL,

and for p € By that

SR = kR @) dy = > > pwn—n @] = kR B5((Ck — Depr)epanéy b (Cr = 1)epi)

pEBF pEBF k,l€Z3

1(Cr — 1)ep)bi((Cr, — 1)ep) (2.33)
keZ3 peLy

- > pl* = K21 b5((Cl — Depa) s i@ (Cr — Dep).
k,1eZ3 pe(Li—k)N(L;—1)

17



When summing over all p € Z3 the first terms combine to form

S5 (1l = kg + o — b = K21) 6((C = Dep)bi(Cr — ey)

kEZ3 pELy,

= 2N bi(Ce = Dep)bi((Cr — Dep) = > > 2QF((Cr — 1) (Cjr — 1))

keZ3 peLy keZ3 peLy,

while for the second we have e.g. (using that [b*(-),¢*] = 0)

Z Z ‘ ‘p‘z — Kzl b ((Cr — Dep)ep_1Cp—rbi((Cr — 1)ep)

k,l€Z3 peLiNL

= > > P = kR & i (Cr = Dep)bi((Cr = 1)ep)épi

k l€Z3 peLNL;

= > > P = kG bi(Cr = Dep)bi((Cr — 1)ep)epi

k,l€Z3 peLNL,

+ Y > P = kB E R((Cr = Dep), bi(Cr = 1)ep)] Epi

k,l€Z3 peLNL,

* 1
= 3" J1pl? — K3 dh(dL) + 5.
pEB%

For 3 75| p* — k2| (d})*d2 one likewise finds terms combining to form

ST i ((Cr = DhiSy + Sehi(Cr — 1))ey),

keZ3 peLy,

yielding the corresponding ng terms when taking 2 Re, and additional terms of the form

Z Z Hp’ _kF‘bk(( —1)ep)c, Cp1Cp— k02 (S—ie—p)

k lEZS peLNL;

= 3 ST P KR b(Ch — Dep)b (Sre—p)ep i

k,leZ2 peLiNl,

+ Z Z | [p[® _kF‘ 105 ((Cr — 1)ep) [Epie, b1 (S—1e—p)]

k,l€Z3 peLiNl,

* 1
= 3 |l — k3 d2(dh)" + £

pGB%

where we also used that [bl’;() b/ ()] = 0.
Lastly one has for 3 s | > — E2| (d 2)*d2 terms combining to yield

>N 2 bk (S—kep)b" 4 (S_re—p)

keZ3 peLy,
= Z 2Q%(SphiS;) + 2 Z tr(SkheSy) + 2 Z erk(ep; SkhiSiep),
kezZ3 kezZ3 kezZ3

the right-hand side following as in equation (2.15), and terms of the form

ST P kb i(S—e—p)E1Gpib” ((S—re—p)

k,l€73 peLiNL;

= > > bl = KRG b r(S ke p)b (S e p)Epk

k€72 pe LNy

+2Re > > |pf = BRI bk (S—ke_p) [Ep—i, b7y (S_ie_p)]

k,l€Z3 peLNL

+ 30 ST P = kR [Ept bk (S—ke—p)]” [Gpis D1 (S—te—p)]

k,leZ3 peLNl;
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= 3 |1pl® - KR () +5<1>+2Re(5<{>)+e§g.
pEBE

We can now conclude the following identity for Hy, :

Proposition 2.7. It holds that

Higy = 3 2Q5(e) + > 11 = k3| ([ep + dj + B[ + | (d} + 2)*[*)
keZ3 pEeZ3

_ Z Z ep, hkeq bk(Ckep) + b*,k(C,ke_p))*(bk(Ckeq) + b’ik(C,ke_q))

keZ3 p,q€Ly
+ 5]371 + 2 Re(ng) + 5]373 +2 Re(é’BA) + 5]375.

Proof: By rearranging the terms of equation (2.22) and inserting the identities we have derived we find

Higy = > 2QF(he) + D 1o = kEI(|ep + dj + 2" + |(d} + 2)°[)
keZ3 peZ3

+ EB,l + 2 Re(gB,Q) + 5]373 +2 Re(EBA) + 5}3,5 (2,40)

-> (2 QY (CrhhiCf + Skhi.Sy) + Q5 (Crhi Sy + Skhkc;;))
kezZ3

-2 Z tr(SkhkS,’;) -2 Z 5k,k(ep; SkhkSZep)
kezZ3 kezZ3

and by Proposition 2.3 the terms on the two final lines combine to form

= > 2{ep hueg) (br(Crep) + b 4 (Core—p)) " (be(Creq) + b 4 (C—re—y)). (2.41)

keZ3 p,qely

2.3 Extraction of F., cx

To conclude Theorem 2.1 it essentially only remains to identify Eeorrex. This is contained in £pj: By
anticommuting the commutators we can write £g 5 = —&f 5 + Ep,¢ Where e.g.

B5 = > > P kRl [k b7 1(S—iep)] [Ept, b 1 (S—kep)]” (2.42)

k,leZ2 peLiNl,

ESh=> > P =k {1 b n(S ke )], [Epk (S e )]}

k,leZ3 peLyNl,

and noting that

[Cp k,b (S le_p)] = Z <€_q,S,l€_p> [Ep,k,éiqéquﬂ] (2.43)
q€Ly
= Z —k,—q+1 (€q; Si€p) €2 —q
qel,

for p € Ly, we have

5(125 = Z Z | Ipl* — k| Z Op—t,—q+k (Skep; €g) C—q, Z Op—k,—q'+1 (€q' S1€p) <y (2.44)

k,lEZi peLNL, qeLy, g el

=3 > Gpnguil P — KBl (Skep, eq) (e, Siep)

k,l€Z3 p,qeLxNLy

w
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which is simply a constant. A similar calculation shows that

2
BYEY S Gprmantl PP = B (Skepis ) (eqiis Siepi) - (2.45)
kJleZ2 p,ge(Li—k)N(L;—1)

The point is that g is, to leading order in kr, Eeorrex. To see this we first rewrite the expressions:

Proposition 2.8. It holds that

EB6 = Z Z 2\ (Skep, eq) (€qs Sprq—kep) -

keZ3 p,qELy

Proof: We begin by noting that the Kronecker delta d,_j _,4; implies that

1
ESb =30 3" Gpkqril bl — K| (Skep,eq) (eq: Siey) (2.46)
k,leZ2 p,qeLy,
Z Z | Ipl* — k7| (Skep: €q) (€q; Sp+q—kep)
kE€Z3 p,qEly,

since, as observed in [12, eq. 4.69|, p,q € Lpiq—r < p,q € Li. Likewise p,q € (L_p_g—r +p+q+k) &
q € Ly — k, so (using also the (k,p,q) — (—k, —p, —q) symmetry of the matrix elements)

2
51(3,25 = E : E , A — ‘p’2 — k| (Skeprks €q+k) (€q+1> Step+1)
k€23 p,g€(Lx—k)

- Z Z [[pI* = K| (Skepsrs eqer) (Cq-(r+a+h)> S—(prari)ep—(pra+h)) (2.47)
keZi p,qe(Lir—k)

2
=Y > Il = kRl (Skeprks €qrk) (€pths Sptgrkqrn)
keZ3 p,ge(Ly—Fk)

= Z Z | — k|* — k| (Skep, €q) (€p, Sp+q—keq)

keZ3 p,q€ Ly,

whence

Eno= 3 3 (IIpP = K&+ 1Ip = k> = KE1) (Skeps eq) {eq Spra-nep) (2.48)

keZ3 p,q€ Ly

= Z Z 2Xk,p (Skep, €q) (€q: Sp+q—kEp) -

keZ3 p,q€ Ly

Vik”

We show in appendix section A.2 that Sj obeys (ep, Skeq) ~ 2(%)3 m
P

suggesting that

- vV
k
oo~ | p+q— (2.49)
27T ° kgz% pqze%k p)‘k D + )‘k 4 )‘p+q+k,p + )‘p+q+k,q
VkV})Jrq k
27T —— Z Z T )\k - Ecorr,ex
k€Z3 p,q€Ly, kop 4

where we used that A\pgirp + Aprgrkg = Mep + Ak and the fact that the summand on the right-hand
side is symmetric in p and g. We leave the estimates to the next section, but this justifies defining &f 4 =
&6 — Feorr,ex to write

gB,ES = Ecorr,ex - 51/3,5 + 51/3,6 (250)

and Theorem 2.1 now follows from the Propositions 2.4 and 2.7 with

& = &1+ 2Re(Ep) +E3+ 2Re(Epy) — Ep 5 + Epg- (2.51)
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3 Estimation of &g

In this section we bound the error term &g appearing in Theorem 2.1, obtaining the following estimate:

Theorem 3.1. For any symmetric set S C Z3 and € > 0 it holds as kr — oo that

+Ep < Ok [ Y VEtkp 2ka \/Z V2 min {|k] , kp} (Hig + kr) + Ck2 7 ST 12
keZ3\S

keS keZ3 keZ3

for constants C,C¢ > 0 with C independent of all quantities and C, depending only on €.

Reduction to Schematic Forms
Recall that &g was defined to be
Ep = 5B71 + 2 RG(EBQ) + 5]373 + 2Re(5]374) — 5]/375 + 5]/3,67 (3.1)

the sub-terms &g 1, ..., €p 5 being defined in the equations (2.30), (2.31), (2.42) and & ¢ being

Ebe= D > 2Xkp(Skep, €q) (€q, Sptg—k€p) — Feorrex- (3.2)
keZ3 p,geLy

Consider &g 1, which is the sum of the two terms

g8 =" > 11pl = K& bh((Ch — Dep) bi((Cr — Dep)] G (3.3)
k,l€Z3 peLiNL,
- > > [ 1pI* = k3| &g [BE((Cr = Depr) bi((Cr = Depia)] G

k,l€Z3 pe(Li—k)N(L;—1)

As already noted, these terms are clearly similar. Indeed, they are both of the schematic form

EB 1= Z Z pﬂFl bk‘ (pk,p) bl(‘php)] Cprk (3.4)

k,l€Z3 pe MNM;

where the sets My, the signs p F k and ¢y, € £%(Ly) are given by

(Lrp =k /lIPP = KRG = D)ey ) for &)
(Mk7p + k7 ‘Pk,p) = 2 2 (2) : (35)
(L = kopt ko /| bl — B I(Ci — Depir) for £6)

It thus suffices to obtain estimates for the schematic form of equation (3.4) rather than the specific terms

51(31)1 and 5](32%. The same is true of the other error terms: &g, for instance, consists of the terms

g8 ="5" 3" 1l — B E_BE((Cr — Dep) [ b1(S_iep)] (3.6)
k,lez3 peLiNL,

2 ~% *

&h=3 STl - kB E B (C — Depin) [ b1 (Sie—p)]

k€73 pe(L—k)N(L;—1)

which we can likewise summarize in the schematic form

Eea= Y D Ebilorp) [Epmr b7 (o1, p)] (3.7)

k,leZ3 pe MNM,;

provided we also define 1, € £*(L;) by

1
g = J VPP — RIS, for & 58)
U WP - RIS for £
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The quantities of the equations (3.5) and (3.8) suffice to write all error terms schematically as

Eei= Y > & bi(erp) bilerp)] Eppn

k€73 pe MNM,

513,2 = Z Z Cpy1bk (P p) [Cpqtka (- l—p)]

k€73 pe MNM,

Ba= > Y. Gy [bok(Wkp), 0 (V)] Epk (3.9)

k,1€Z3 peM;NM,;

Epa= Z Z bk (Y, —p) [Cpk: b4 (Y-, —p)]

k€73 pe MNM,

Ebs= > > [epmr b (ot—p)] (G 04 (ke —p)]”

k€73 pe MNM,

and it is these general forms which we will estimate. We will then insert the particular expressions for ¢y,
and v, at the end to obtain Theorem 3.1.

3.1 Estimation of 51371 and gB,g

The schematic forms of (‘:’B,l and gB,Q display the typical structure we will need to consider, so we first consider
these in detail.

We begin with Eg 1, which since [0} (¢x.p), bi(01p)] = —0k. o pll> = €11(91.p; Pr.p) can be further decomposed
as

Ep1 = Z Z Cpgt [0k (Pr.p)s b1 (1)) Ep

k,leZ3 pe MNM,

= Z Z ”‘Pk,pH Cprilprr + Z Z Z (Prp€q) (€q: Prp) CpiCq—rCo—iCprh

keZ3 pe My, k,leZ3 peMNM; qe LMLy

+ >y > (PLps €q+1) (q+ks Php) CpriCatkCa+iCprk (3.10)

k,leZ3 pe MMM qe(Ly—k)N(L;—1)
= —E€B,1,1 +&B12 + EB,13.

To control this we will use the following:

Lemma 3.2. For any A C Z* with |A] < |B(0,2kp) N Z3| and any € > 0 it holds that

Z 2; < Cekpte

2P =
for a constant Ce > 0 depending only on e.

For the proof see appendix section A.1.

We can now prove the following:

Proposition 3.3. For any symmetric set S C Z2 and € > 0 it holds as kp — oo that

+6p11 < E max || pl|> Hign
eM
keZ3

g1, 813 < Ce| by > > maX (eqronp) P+ (D0 D m90X| €q> Php)|” Hgp
keZ?’\SpGMk keS pEMk

for a constant Ce > 0 depending only on e.
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Note that maxpeps, HS%,pHQ = Ckllp_%f/g and o maxger, |{eq, 90k7p>|2 < Ck;%f/,f, see (3.42) below.
Proof: The estimate for 67371,1 is immediate, since

Eia =) > lewpl’ EGpalopn < Z max lorpl® Y Enlorr (3.11)

keZ3 peMjy, keZS pEM),

< Z max Htpka NE < Z max H<Pkp” Hign,
keZS keZS

where we used that Np < Hyy at the end (a consequence of the representation Hyy =" 75 | Ip|* —¢| Cpp)-

The terms (‘:’B,Lg and 5371,3 are similar, so we focus on 5371,2. For this we note that for any ¥ € D(Hl’(m)

(v.8020)[ < 3 ST 3 ewm el e ra) 1o n ¥l [Eperco 1]
k IGZS pEMNM; geLNL;
2

< D D0 1)1 (@) Keg, @)l 1T (3.12)

p,q€Z3 \keZ3

<23 | D @)1e(@) [{eq prp)l 110

p,q€Z3 \ke€Z3\S

2
+2 Z (Z Lar, (P)1L, (g ’<eq7 (Pk7p>’ Héqk\PH>

p,qEZ3 \k€S
where we used the triangle and Cauchy-Schwarz inequalities and that e.g. ||¢p1ilop = 1. The first term on
the right-hand side can be further estimated as
2

ST b 1L, (@) Heg @rp) 1eg—r Tl

p,qEZ3 \keZ3\S

< S 2 e —29Y e | [ tn@lla- k2 -l 2] @3)

p.a€Z3 \keZ3\S [lg = k" =] kEZ3\S

11,(q)
< 3 > maxlleg o)l 3 e (9 Hi )

keZ3\S pEMy, q€Ly
<Cehp Y > maxy eqs Prp) | (U, Higy ¥)
keZ3\Sp€Mk

where we could apply Lemma 3.2 since |Ly| < |Bp| < |B(0,2kp) N Z3|.

For the second we instead expand and bound

2
> (Zle ), (g |<eq,sok,p>|uaq_m|>

p,qEZ3 \k€ES

= > > Keworp) eq prp)l eg-n®llEg-1 Y]

k,leS peMNM; qe L NL,;

S % (maxlen ) (maxlienenl) [ X lanP [ e G

k lESpeMkﬁM qELkﬂLl qELkﬂLl

IN

<D > maxlleg el [ > maxi(eg el (T NEY)
k,JleS pEMkﬂMl peMkli
2
2
< Z Z Helax‘ egs Pk.p)| <\Ij7Hll<in\Il>'
kES pEqu
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For gB,Q we compute that when p € M, N M; with My = L,

[Cp:Fkn (7/) l—p)] = Z <6q,7/)—l,—p> [ 'p— k,cch—i-l Z —k,q+1 6qa¢ 1, p> :; (3'15)

qeLl_; qeLl_,
=1 ,(p—k — 1) {ep—b—t: Y—1,—p) Cp_jp—y

and likewise when p € My N M; with My, = (L — k)

[cp$ka (7/} L p)] - Z <eqawfl,fp> [CerkacZCqul] = Z 5p+k,q <eq71/}fl,fp> Cq+l (316)

qeL_; qeL
= 1L4(p + k) <ep+ka ¢—l,—p> 5;4_]94_1 = 1L_l+l(p +k+ l) <ep+k, T;Z)—l,—p> 6;+k+l'

We can summarize this as

(i b5 (Vi —p) | = Fla (0 F b F 1) (epprrrrs V—t,—p) Corpr (3.17)

where I" = [ when My = L and I’ = 0 when M}, = Lj — k (the presence or absence of this will not make a
difference to the estimation below, so this definition is convenient).

Using also that [¢*,b*(-)] = 0 we can then write £p o as

Eeo=F Y. Y. W, (0FETY (epprrrs Vi p) Grbh(Php) i (3.18)
k€73 pe M;NM,

*

-+ Z Z Z 1Ml 1M l p¢ k =+ l) <1/}7l77p’ep:':k:|:l/> CpriCprhl bZ(ﬂPk,p)-
keZ3 peMy \1eZ3

To control this we note the following bounds from [11, Propositions 4.4, A.1, A.2|:
Proposition 3.4. For any k € Z2 and o € (*(Ly,) it holds that
* —1 / * —1 / 2
bi(0)bi() < (@, by ) Hign,  bi(0)bi(0) < (0, by o) Hign + lleo]”

Proposition 3.5. For any k € Z2 it holds as kr — oo that

> Aep < Che, L] < Ckmin {|K| , kr},
pELy

for a constant C' > 0 independent of all quantities.
With this we can prove the following:

Proposition 3.6. For any symmetric set S C Z2 and € > 0 it holds as kr — oo that

igB,Z < C. k1+€ Z Z max\ eqﬂpk,p ’ +Z Z max] eqvwk7p>’2

lceZ?’\SpeM;c kes \/ penr, !
ke Y min{|k| kp} > maXI eq> )| (Hign + kr)
kezZ3 peMk

for a constant C. > 0 depending only on €.

Note that max,e s, [[¢5 > < Ck;mf/,f and > .y MaXger, [{eg, Vrp)|* < Ck}fwv,f, namely vy, ,,’s satisfy
the same bounds as ¢y, ,’s, see (3.42) below.

Proof: By the computation above we can for any ¥ € D(H}, ) estimate

<‘I’75~B72‘I’>S Yoo D @ 0 F EF D (Pt epprr) Eilprnrr? || 10 (0rp) VI (3.19)
keZ3 peMy, ||l€Z3\S
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+ZZ Z L ()l (pF EF1) |<1,Z) L—p» EpFhFL )

leS keZ3 peMy,

1epiCorrrt 1| [1br (Pr.p) Pl

and by Cauchy-Schwarz the terms on the right-hand side can be bounded by the terms

2
Z Z Z L, ()1, (p F kT 1) (Y1, —ps eprrrrr) Cprilprami ¥ Z Z HbZ(SDk,p)‘I’HZ,

keZ3 peEMy, |[1€Z3\S keZ3 peMy,
ST ST w0, 0 F kF ) [t eprrrr) [ el ® 1 [0 D b (rp)¥]* (3.20)
leS \| kez3 peM;, keZ3 pe My,

Beginning with the common factor ;.73 > e, 6% (k) ®||* we can apply the Propositions 3.4 and 3.5 to
see that

* — 2 2
197 (0x.0) @ 1I* < (P klwk7p><‘1”Hﬁm‘I’>+H@k,pll ]|

=> 5 A [(eq: 0 > (0, Hign ) + D [eq o) 1911 (3:21)
qeLy, "4 q€Ly

< Chpmax [{eq, 1) 2 (U, By, W) + Ck min {|k], ki y max| (eq, p.p) [ 1]
qeLy qeLy
< Chemin {[k] ki) mas |(eg, 91p) * (¥, (g + ) 0)
k
for any k € Z2 and p € M}, whence

Yo > Ibilerp) ¥l < Chp Y min{lkl ke} Y max |(eg, Pr.p) P, (Higy + kr) ¥). (3.22)

keZ3 peEMy, keZ3 peM

For the remaining factors of equation (3.20) we begin with

2

Z Z Z Lag,(P)Laa_, (p F Kk F 1) (Yt —ps epprr) CppiCprhstV

keZ3 peMy, ||1€Z3\S

Z Z Z Lag, (p) 1M_l(p$k2ilz ‘<ep¢k¢l’7¢fl,fp>|2

keZs peM, \I€Z3\S llpFkFI |
> b e FkFDIpFEFI = lepmbpren ¥ (3.23)
1eZ3\S
Ly (pFkFI)
<Y Y malle g )P Y L TETD g
leZ3\S peM; 95 kez3 Hp:F + ‘ _C’
= Cﬁk}j& Z Z maX| 6Q’¢l71~’7 | <\I] Hkm >
IEZ?’\SPGML

where we used that the presence of the indicator function 157 ,(p F k F 1) restricts the k summation to a set
of cardinality at most |M_;| = |L;| < |Bp| < {E(O,kap) NZ3|, so Lemma 3.2 applies.
For the last factor of equation (3.20) we simply note that

Z Z Z 1Ml 1M l (PFkFI) |<¢ L p7eP:F/€:Fl'> ’

leS \| kezs peMy,

- 2
[ epiCprrrt V||

<> 1Y max [(€q, ¥—1,—p) P> 1, 0 FEFD epmra ) (3.24)
1es \/ perr, kez3

<Z Z max\ e_q:V—1—p ] VU, NpV) < Z Z max\ eq,zplpﬂ <\IJ Hl’qn\I/>
1es pGMl les pGMz

The proposition now follows by combining the estimates.

25



3.2 Estimation of 5~ng, 5374 and 51’375

We now bound the remaining forms of equation (3.9). First is 5'1373, which is an analog of 5~B71: We can write
it as (substituting (k,l,p) — (—k,—1,—p) first)

5}3 3= Z Z —p:l:l bk ¢k7p) bl (Tzz)l,p)] C—ptk

k,l€Z3 pe MNM,;

= Z Z ”wk,p”Qapik@pik Z Z Z (Yrps €q) (€qs Yip) € pa1Cq—1Cq—kC—pth

keZ3 peMy, k,l€Z3 pEMNM,; gEL,NL,

- Z Z Z (Vr,ps €qk) (€q+1, Vip) € pa1CqriCatkCopih (3.25)

k€3 pE MMM qe(Ly,—k)N(L;—1)

= gB,?;,l — ij,:s,z — gB,3,3-
The following can now be concluded exactly as we did Proposition 3.3:

Proposition 3.7. For any symmetric set S C Z2 and € > 0 it holds as kp — oo that

+&p31 < Z max 1k, l1* Hii
kez? M

+E30, £33 < Cc| by D> > maX! ORCHIEE DN DS maX! e Vep)* | | Hian

kEZ?’\SpEMk keS pEMk

for a constant Ce > 0 depending only on e.

Proof: (‘:’B,371 is of the exact same form as gB,l,l? the only difference being the substitution (¢ ,,p F k) —
(Y p, —p £ k), so the first estimate follows exactly as in Proposition 3.3.

&p32 and &g 33 are similar, so we consider £g 32. This immediately factorizes as

2

€= Y | > 1, ()11, (@) (Pryp:eq) Epiniqn (3.26)
p,q€Z3 |keZ3
so for any ¥ € D(H{,,)
2
(0. Eaa2)[ < D7 | 3 L)1) (s 0}l 101 (3.27)

p,q€Z3 \keZ3

which subject to the substitution ¢y, — 1y, is the same as that of equation (3.12), whence the second
estimate follows.

O

Using equation (3.17) we can write g 4 as

EBu=7F Z Z L TFET) (epprri, Vt—p) ComtD—k (V—k,—p) Cprpp
k,leZ3 pe MNM,;

*

=+ > D P (0 F R F D) (Yt eprirr) Eopifprr | bok(kp) (3.28)

kezZ3 peMy, \1eZ3

T D b, 0FRFD (epprrrs Vi) Gyt [0k k—p)s Gpr]
k,l€Z3 pe M,NM,;

=:EBu1 +EBup

and these terms can be bounded in the following manner:
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Proposition 3.8. For any symmetric set S C Z2 and € > 0 it holds as kp — oo that

+Epa1 < Cc| [RE> D max|( RIS DN DY max (eq: Yip)|”

keZ3 eM;c keS eM;c
kF Z Z max eQ’¢k7p>| Hkln
keZSpeM
+Ep 4o < Z max lepl? [>0 > maX\ (eqs Vi) | Hign
k‘EZ3 kJEZ?’pGMk

for a constant Ce > 0 depending only on e.

Proof: €~B,471 is of the same form as gB,g up to the substitution b* (¢ ) — b_k(¥_k —p), so the first estimate
follows as in Proposition 3.6 after noting that we now simply have

10—k ()W < (i R hp g ) (W, Hp ) (3.29)
< Chpmax |(e_q, ¥, p) * (¥, Hig, ¥)
qeLy,

by Proposition 3.4, rather than the more complicated bound of equation (3.21) which was needed for 5372.
For (‘:’B,472 we compute that when p € M, = L

[b—k(¢—k7—p)’5;¢k¢l] = Z (V—k,—p» €q) [C;+kcq’0;;—k—l] = Z Og,p—k—1 <¢—k,—p’€q>02+k (3.30)

qeL_y qeL g

- 1L_k (p —k— l) <¢*k,fpa ep7k7l> Epfl

while when p € My, = (L — k)

[bfk(wfk,fp)aé;;xky] = Z (V—k,—p»€q) [Cz+kcmcp+k+l] == Z Sqpt1 (Y—k,—pr€q) Cq (3.31)

qeL qeL

=10, (P+1) W—k,—pspt1) Cpt1 = =11k (P + 5 + 1) (Y—k,—ps €pt1) Cpra
which we can summarize as
k(=) Cprpt] = £l (P F kF 1) (Yt —ps eprirst) Eppt- (3.32)

5'137472 thus takes the form

Eeaz=— Y. Y W FETFDI,0F kT (epprgr, Vtp) (Vbps eprrrgt) Eppprr (3.33)
k€73 pe MNM,

so by Cauchy-Schwarz we may for any ¥ € D(HJ, ) estimate that

(<x1/ 53,472\I/>‘ < IS Y b FEFOLLFEFD |(epprrrs vot—p)| [Em P (3.34)
k,l€Z3 pe M;NM,;

Z Z v FEFOI , (pFEFI) ‘<1/Lk,fp7 eijk’jFl>‘2 Hépﬂ‘I’HZ-
k,leZ3 pe MNM,;

The first quantity can be controlled by writing it as

S w0 (0 F EF D, (0 F EF ) [(eprzr vt )| | IGm @]

173 peM; \keZ3

<D D Il 1wl < 3 maxlivrpll® D eIl (3.35)

€73 peM,; leZ3 peM,;
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< ZmaXIW L-pll® (O, NEW) < ZmaXIIZZ)zpll (¥, Hig, V) -

lEZS IGZS

For the second we instead estimate

SN S ML pFEF D, 0 F EF D (o eprrt) | e ¥

keZ3 peMy leZ3

Z:}:nmqumwk P M) (e FEF DI, (0 F B F D) |65 P (3.36)
keZ3 pEMk €73

<D D maxleng Yop )l (W NEY) < B D max(eq, )| (¥, Hig, V)

keZ3 pGMk keZ3 pEMk

and the claim follows.

Finally we have &f ;:

Proposition 3.9. [t holds as kp — oo that

iSBS < Z Z max\ eqﬂpk,pﬂ Hkln

keZ3 pEMk

Proof: From equation (3.17) we have

51,3,5 = Z Z vy (pFEkFDIn_ (pFEFI) <€pﬂFkﬂFl/a T/Jflﬁp> <¢fkﬁp= ep$k/$l> E;ﬂcﬂéijkJFl
k,1eZ3 peM;NM;

and since the summand is symmetric in k and [ we can for any ¥ € D(H/,,) estimate using Cauchy-Schwarz

=4 2~
(w.&:9) < > Y sk F O 0 FEF Dk ) NG (337)
k,l€Z3 peMNM,;

<> > maX\ e ) | D b ) (P F R F D)1ar (0 F k F ) lléprm V]

keZ3 EM;C 1ez3
Z Z max\ e—qs WV, p>‘ (U, Np¥) < Z Z max] eqawk‘,pﬂ <\IlaHl/<in\I}>'
keZ3 pGMk keZ3 pEMk

3.3 Proof of Theorem 3.1

We are now ready to insert the particular ¢y ,’s and 1)y ,’s of our problem to conclude Theorem 3.1. To

estimate the relevant quantities we will need the following matrix element estimates on the one-body operators
C and Si:

Proposition 3.10. For any k € Z2 and p,q € Ly, it holds that

Vik o
ep, (Cr — Deg)|, (e, Speq)| < C—"E—
e (= e e Sve)| < O 05—
Viky” 1 vk
(ep, Skeq) — 3 <
2(2m)° Akp + kg Aep T Ak

for a constant C > 0 independent of all quantities.

The proof of these estimates is similar to that of the one-body estimates of [11, Section 7| so we leave this to
appendix section A.2.

With these estimates we can also bound 5{376:
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Proposition 3.11. [t holds as krp — oo that

+8h < Ok ™D N
kez3

for a constant C' > 0 independent of all quantities.

Proof: As in equation (2.49), the fact that A, + Ay g = A1p + A1g when there is a Kronecker delta 6pyq -+
means that we can write

Es6= D, O Opraktihp + M) (Skeps €q) (€qr Siep) = Ecorrex (3.38)
kJeZ3 p,gELiNLy

=Y Y Mo + Meg) Viky” 1 Viky” 1
correx — p+q,k+1\k,p k,q 2(27’(’)3 )\k,p+)‘k,q 2(271')3 )\l,p+)‘l,q

k,l€Z3 p,qeLNLy;

SO 5]’3 ¢ can be written as the sum of two terms

ka‘iﬁ 1
€= Z Z Op+a 1 (Arp + Arg) <<Sk€p’€q> Y £ PV ) (eq, Siep) (3.39)
k€73 p,gELiNLy (2m)” Akp k.q

Viky” 1 Vikn? 1
+ 1) Ao+ A £ €qy S1€p) — £ .
2. 2 dpraknOhp ko) (2(277)3 Nep + Ak,q> << ) e Ny Mg

k,le€Z3 p,ge LNl
By the estimates of Proposition 3.10 these terms can be estimated in a similar form for

921.1—2 > R
VkaF B8 Vlk:Fﬁ
()\k:,p + )‘k,q)Z )‘l,p + )‘l,q

€pe| < C Z Z Oprqh+t(Aip + Aig) (3.40)

k€72 p,ge LNl

A~ ~ (; +

= paerpnt; Mk Akg)

Using that 0p4qx4+1(Akp + Akg) = Oprght1(Ap + Aig) again, Hélder’s inequality now implies

2

N ) _ N
/ 1-38 3 p+q,k+1 1-33 3(1-p5) 3
ol <on S0 Y SO <ol 0 S (Y ) <o Y0 g
k€73 Pp,qELy, P q keZ3 pELy keZ3

where we also used the bound of Proposition 3.5.

We now conclude the main result of this section:

Theorem (3.1). For any symmetric set S C Z2 and € > 0 it holds as kr — oo that

+Ep < Cok! / > VZtkp zzvk \/Z V2 min {|k|, kr} (His + kr) + CK sz
keZ3\S

keS keZ3 keZ3

for constants C,C, > 0 with C independent of all quantities and C, depending only on €.

Proof: Recalling the definition of equation (3.5), we can use Proposition 3.10 to estimate that

2 2
pl” —k
mas o7 = max 3 11 — K (e, (Ch ~ Do) < O V2 ma Z—(" il

e “aeLy peby T, Mep + Meg)?
< Chp™"ViE D0 ANy < Chp 7V (3.42)
qeLy
2
> max|(eq. gl = D max||pf” — K| [(eq. (Ci — Ve < k0 Y- m M
pEM;, q€Lly peLy ot qeL,C (Aep + )\k’q)
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< Ckp V2" AL < Cly 202
pELy
when p € My, = Ly, where we used that |[p|> — k%] < ||p|* — k2| + | |p — k| — k3| = 2\, This is also
true when p € My, = (Ly, — k) (the only difference being the substitition | [p|> — k2| — ||p — k|* — k%| in the

formulas above) and, since the estimate for (Cj, — 1) is also valid for Sy, the same estimates hold when )y, ,,
is substituted for ¢y, .

Consequently all the estimates for gB,l, e ,51’375 of the Propositions 3.3, 3.6, 3.7, 3.8 and 3.9 can be dominated

by
Cot > V2+kp 3 S Vi | DD ViEmin{|k|, kp} (Hy, + kr) (3.43)
keZ3\S kesS kez?

and including also our estimate of & 4 yields the claim.

4 Inclusion of the “Small £’ Cubic Terms

In this section we perform the computations leading to the incorporation of the “small k” cubic terms into
the factorization of Hg.

For convenience we recall that the (full) cubic terms can be written

C=4Re Y bj(wy)Dy (4.1)
kez3
where
Vik " Vik
wg = F3 ep = 7ngk- (4.2)
2(2m) vele 2(2m)
We furthermore define .
2752
e = Ek hk wp k€S ' (4.3)
0 otherwise

for a fixed symmetric subset S C Z3 (to be optimized over at the end) and
5= ) 2kes 1o (p) {ep, 1) €5y, Di pE By (4.4)
b — > kes Loy—k(P) (eptks k) Gy Dk p € Br
We will prove the following:

Theorem 4.1. For any symmetric set S C Z3 it holds that

Uk, h Uk>

1 + 2 Uk, hk 1vk>

Hp + 4Re Z bi (wi) Dy + s DDy

kesS kesS
Z Hp’ _kF‘(|Cp+d1+d2+d3‘ +| d1+d2+d3 > 22 ngk ep,SkEkSkep)
p€Z? keZ3 pELy,
+ Z Z ezn - hk‘)eq> (bk(ckep) + b*—k(sfke—p) + <ep7 k) Dk)*(bk(ckeq) + b*—k(ka‘e—q) + <eq7 k) Dk)

keZ? p,geLy
+ Ecorr,bos + Ecorr,ex + gB + 5C

for an operator E¢ defined below.
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4.1 Expansion of the Potential Terms
As in Section 2 we first consider the potential part of the factorization. For that we first have the following;:
Proposition 4.2. For any symmetric operators Ay, : £2(Ly,) — (?(Ly,), k € 72, obeying
(ep, Aeq) = (e—p, A_ge—q), p.q € Ly,
it holds that

Z Z (ep, Areq) bk‘(ckep) + 0% (S—ke—p) + (ep, k) Dk)*(bk(ckeq) + 02 (S—ke—q) + (eq, k) Dk)

keZ3 p,acLy
=D > 2ep Areq) (br(Chep) + 054 (S—ke—p)) " (0r(Cheg) + b4 (S—ke—y))
keZ3 p,q€ Ly
+4Re Y bi((Cr+ Sk)Awme) D+ Y > 2 {nk, Agni) DDy,
kesS keS p,qe Ly,

Proof: This is immediate by expansion upon noting that

D7D 2(ep Areg) (eq i) bi(Crep)De =2 > bi(CrApmi) Dy, (4.5)
keZ2 p,geLy, keS p,geLy

> 2(ep Areg) (ks ep) (g, k) DiDe = Y 2 (ng, Arn) Dy Dy

keZ3 p,g€ Ly kesS

and (using also that the quantities (eq, nx) are real and obey (e_q,n_x) = (eq, 7))

SN 2ep Areg) (equmi) bon(S—ke—p)Dp =2 b_(S_gh_gn_i) D", (4.6)
k€73 p,g€Lly kesS
=2 Dibi(Skhum)
Kes

as it holds in general that [by(-), Dj] = 0.

This allows us to conclude a generalization of Proposition 2.4:
Proposition 4.3. It holds that

2 <Uk, hlzl?}k>

D;D
1—|—2<vk,hlzlvk> Kk

> (2Q5(P) + Q5(P)) + 4Re Y bi (i) Dy T

keZ3 kesS kesS

- Z QQIf(hk) + Ecorr,bos — Z Ek,k(ep; SkEkS};ep)
keZ3 kez3

+ > > 2(ep, Brey) (be(Chep) + b7 (S—ke—p) + (eps k) Di) " (b(Creq) + b7 (S—ke—g) + {eq, M) Di)-

keZ3 p,qely,

Proof: The only terms above which are not accounted for by Proposition 2.4 after applying the previous
proposition are the final two terms on the left-hand side. These arise since 7 obeys (for k € S)

_1 1 _3 1
(Cx + Sk)Exni = hy, * Ef ER B, * hiwy, = wy, (4.7)
whence
ARe Y " bi((Ck + Sk)Exne) D = 4Re Y _ b (wy) Dy, (4.8)
keS keS

while by the definition of wy and 7

Vik " _
i i <Ulm (hi +2P) 1Ulc> (4.9)

1 1
(M, i) = <wk,h;§E§2h;§wk> =

2)
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and by the Sherman-Morrison formula

2
B 1+2 <vk, hlzlvk>

(he +2P) ' = hy ! hytPehy ! (4.10)

SO

N B 9 o .
kaFB -1 2<vk’hk lvk> ka‘Fﬁ <’Uk,hk ’Uk>
» Ein) = h - = 411
<"7k? kinki> 2(277)3 <<vk; k vkﬁ> 1 4 ) <Uk7 hk_:lvk> 2(277)3 1 4 2) <Uk:7 hk_:lvk> ( )
i.e.

ka;B 2 <vk, h,;lvk>

2 <77k7 Eknk> D;;Dk = 3 ] D;;Dk (412)
kezs %2(277) 1 +2<vk,hk vk>
O
4.2 Expansion of The Kinetic Terms
Obviously
>Nl = k(e + dy + &2 + d3f
pEZ3
- 2 -
= |pP = kEl | + dy + d2]" +2Re Y |[p® — k| &d3 (4.13)
pEZ3 pEZ3
+ > bl = kRl (d)*dy +2Re Y |[pl® — K| (dy)"dy + 2Re Y [[p|* — k7| (d7)"d)
peZ? pEZ? peZ3

and the term > 75 | | p? —kZ| {Ep +dy + d§{2 is what we considered in Section 2, so we examine the remaining
expressions. First the simplest:

Proposition 4.4. It holds that

2Re Y |[p]* — k| Gdi = 4Re Y _ b (hari) Dy
pEZ3 kesS

Proof: It follows directly from equation (4.4) that

2 ~x 2 A~k ~ok
Dol KRG dy =+ > 1p* — kBl {ep i) &8 kD (4.14)
pEB% kGSpELk
2 ~ 2 e
S P kplds = =30 3 1lp =k = K| (e mi) &4y D
pEBR keS pely,
SO
2 ~k 2 2 ~k ~k
S pP = kEepds = " (1P = K21+ |p = kI = K} {epsme) 565Dy (4.15)
peZ3 keS pELy
=D > 2 e ) by Dk =2 ) bp(hu) Dy
keS peLy, keZ3

which implies the claim.
O

For the remaining terms of equation (4.13) we must again define a number of error terms. In the notation of
Section 2 the first of these are &, = €é17)n + g?

cm Where

1 2 ~ * ~
EN =S 3 11pP — K2l (mrsep) (epem) &y [Dfy Dil Gy
k,leSpeLiNL,

1 ~ * [~
e =35 1~ k2| (nksep) lepsm) &1 Dfs ey, D] (4.16)
k,leSpeLiNL,

32



EN =53 1P~ k3 (msep) (epem) [Ep—ts Dil” [ D]

" RIESpeLinL
and the substitutions in going from &; (1) to & (2 ) now also includes (nx,ep) — (K, €ptk)-
We can then state
Proposition 4.5. It holds that

> 1 = kR (d3) dd =2 (e, hami) DEDi + Y | 1p? = ki d3(d3)* — Ecq — 2Re(Ee2) — Ecs.
pEZ3 kesS pEZ3

Proof: By the definition of equation (4.4) we have that for p € BY,

S =kl (@) dd =" > Annn, @) PP = kil (ks ep) (epym) Dk Dy
pEBS, k,leS peBY,

=D > lpP = k& [ep,me)|* DiDy, (4.17)

k€S peLy

2 ~ ~
= > > el = kRl (ks ep) epsm) Dy 1@ D
k,leS peLinl,

and similarly, when p € B,

Sl = kR (@) ds =" > |lp—kI* — kx| [(ep,mi)|” DiDy (4.18)
pEBR keS pely
- > [ pI? = k2| (ks epik) epits i) Dk iiCpi Dl

k,lesS pE(kak)ﬂ(Llfl)
The leading terms combine to form

>3 (1pP = k3 +11p = P = K21) ey, mi)l” Di D (4.19)
keSpGLk

=D | D= 2% llep )l | DiDy =2 (s hmie) D3 D

keS \peLy keS
while the remaining terms obey e.g.

2 .~
SN0 111 kR (ks ep) e ) Dy 80—k Dy

k,leSpeLlinL,

= > > P = K] (arsep) (epsm) &1 DiDiEy—

k,leS peLNL,

+2Re S0 ST (1p — KEl (o) (e ) & iDf i, DI (420)
k,leSpeLyNL;

2 ~ * [~
+ > Do bl = KE] (s ep) (epym) [Ep—1 Dal” [Epr, DIl
k,leSpeLNL,

= 3 1ol — Kl d3(d) + 1) + 2Re(£3) + ).
PEBE

For the last terms of equation (4.13) we define the final error terms by

EN =303 Il = kR (epmd Gt BE((Ch = 1)ep)Gpr, Di]

kezZ3 leS peLiNL,

C 5 B Z Z Z ’ ’p’ B kF‘ <€p,77[> Cp— l[ (kae—p)épflle] (421)

k‘EZ3 leS peliNly

N =S5 3 1P = K] (epom) [b-r(S—re—p). @ )] &iDy

kezZ3 leS peLiNL,

and compute the following:
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Proposition 4.6. It holds that

2Re Y [|p* = K[ (d)"dy = 4Re Y bi((Cr — Vhym) Dy + 2Re Y | [p|* — k| dy(dy)* — 2Re(Ec,a)

pEZ3 kesS pEZ3
2Re Y |[pf® = k7| (d2)*dS = 4Re > bi(Sehame) Di + 2Re > | |p|* — k| d3(d})* — 2Re(Ec s + Ecyo).
pEZ3 kesS pEZ3

Proof: As in the previous proposition it is easily verified that

Do el = kRl () dy =" > 1o = k| {ep,m) b ((Cr — Ley) D

peBS, keS pELy,

=22 > el = KBl {epym) bi((Ch — V))& @i Dy (4.22)

kezZ3 leS peLyNl,

o P = kR () dy =" > o — k[ = kE| (ep ) Ui ((Ch — 1ey) Dy

pPEBFR keS peLy,

-y > > | 1pI* = K| (eprtm) UE(Ch — Vep k) g18pra Dl

keZ3 1€S pe(Ly—k)N(Ly—1)

and the first terms form

ST (1ol = KB+ 11— B = KF]) (ep ) B((Ck — 1)ey) | D (4.23)

keS peLk

=23 D (eps b i((Cr = 1)ep) | Dy =2 b (Ci — 1) ham) Dy

keS \peLy kesS

whereas the second terms obey

DD D el = KE] {epm) i((Cr = 1)ep)Ey ik Dy

kezZ3 leS peLyNi

= > > > P =kl (epom) G Dibi((Cr = 1)ep)Ep, (4.24)

kez3 €S peLrNL;

+ > D el = KR (epm) & BE((Ck — ))&, D]

kez3 €S peLrNL,

* 1
=3 |l — kAL + €L

pEB;

where we also used that [b(-),&*] = 0.

For the (df,)*dg sum one similarly finds terms combining to yield

S5 (1P = B2+ 1p = kP = K1) (e, i) bi(S—ke—p) Dy (4.25)
kGSpELk

=2 b p(S_khogn-k)D"y =2 Dibi(Schani)
keS keS

as in equation (4.6), and additional terms of the form

DX > bl = Kl (epsm) bor(S—re—p)E 17—k Dy

kez3 leS peLiNly,

= Z Z Z | |pI* = KZ| (epym) & Dib_i(S_re—p)Eps

kez3 leS peLinly

D> D el = KR (epm) &y o-r(S—re—p)p—k, Di] (4.26)

keZ3 leS peLinL,
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+ 33 > PP KR (epom) [bok(S—ke—p), E_t] Gk Dy

kez3 leS peLiNL,

* 1 1
= 3 1P - kI d3(d2) + L) + 50
pEBfw

We can now conclude the generalization of Proposition 2.7:
Proposition 4.7. It holds that
- 2 2
Hig = 3 2Q5(h) + Y [1pP* = k31 ([6 + dj + a2 + dif” + |(d} + a2+ d2)*|)
keZ3 pEZ3

_ Z Z ep, hkeq bk(Ckep) + b*_k(S_ke,p) + <6p, 77k> Dk)*(bk(Ckeq) + b*_k(S_ke,q) + <6q, 77k> Dk)
keZ3 p,geLy

+ Ecorr,ex + EB + EC

for
Ec=E1+2Re(Ec2) +E3+2Re(Ecu+Ecs + Ece)-

Proof: From equation (4.13), the propositions above and the computation of Section 2 we have

~ 2
> 1l = kil &+ d)y + d + d)|
pEZ3

%12
= Hl/dn - Z 2Qllg(hk) - Ecorr,ex - EB + Z | |p|2 - k‘%| |(d;) + dIQ)) {
keZ3 peZ

+2Re > | |pf* — kRl di(d) + d2) + > ||p* — kE| d3(dD)” (4.27)
peZ? peZ?
— 5@ 1— 2 Re(Sc 2) — & 3~ 2R€(5C,4 + 5@75 + 50,6)

+ 3" 2(ep hueg) (be(Crep) + b 4 (Coie—p)) " (br(Cheg) + b 1 (C_re—q))

keZ3 p,qely

+4Re > bi((Cr + Se)hunk) Dy + 2 (nks hamk) Dji Dy
kes kes

By Proposition 4.2 the terms on the two final lines combine to form

Z Z (ep, hieq) bk(Ckep) + b (S—ke—p) + (ep; k) Dk)*(bk(ckeq) + b2 (S—ke—g) + (eq, k) Dk)
kEZS p,qELy

whereupon the claim follows by rearranging the equation.

Theorem 4.1 now follows by combining Proposition 4.3 and Proposition 4.7.

5 Estimation of &

In this section we bound the new error term &- of Theorem 4.1, which consists of six sub-terms
Ee = 5@71 + 2 Re(gc,g) -+ 5c,3 + 2Re(5c,4 + 5@75 -+ 5C,6) (5.1)

which are given by the equations (4.16) and (4.21).
We will prove the following:

Theorem 5.1. For any symmetric set S C Z3 and € > 0 it holds as kr — oo that

+E < Cokt (k; B ka> \/Z V2 min {|k|, kr} + k;% fok (Higy + kr)

keS kez3 kesS

for a constant C. > 0 depending only on €.
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Before we begin the estimation, we write the terms of & more conveniently by introducing the quantity

) \/lez—k2!<e,nk> p e BS
hp = 8 " (5.2)
\/ ‘ ‘P’ k2| (epsksmi) P E Br

which recalling also the definitions of Section 3 lets us represent the different expressions defining & by the
schematic forms

N L )
Eer= > D ikpliplhz [Dhs Dil G
k,leS peMiNM;

a ~ ~ * [~
feo=Y_ Y TpipliDi [Eprr D
k,leS peMiNM,;

Eea= Y. D> kpiip Gt Dil" (G, D (5.3)
k€S peMynM;

Eea= > O > iuplor [b(ekp) ik D]

keZ3 leS peMNM,;

Ees= 2> D il [b-k(r—p)Er, Di]

keZ3 leS pe MNM,;

Eco = Z Z Z M [0—k(V—k,—p), Cpt] oDy

]CEZS leS pe MNM;

We also recall that Dy, = Dy j, + Do ;, where

Dy = Z CpiCp =+ Z CpCptk (5.4)

pEB&LN(BL+k) pEB&LN(BL—k)
X ~k ~
D2,k = E cpfkcp - - E Cpcp,k
pEBFN(BF+k) pEBFN(BF+k)

which we can abbreviate as

~k ~ o Bca+ jzl
I O R e
peByN(BLTk) £ J

5.1 Estimation of gc,u 5572 and 5573

We begin with the error terms arising from the (df’,)*df, part of the factorization. For gc,l we need to calculate
the commutator [Dj, Dj]. Since [Dy g, D3] = 0 we need only consider the commutator [D7 ., Dj,]. This we
compute to be

[D} ks Dja] = Z Z |5 1 Cps G Camti ] (5.6)

pEBYN(BLFk) g€ BLN(BLF)

- Z Z Cpeete {8 €3} Cqa — Z Z €y Ttk ot } &

pEBYN(BLFk) g€ BLN(BLFL) pEBYN(BLFk) g€ BLN(BLF)
= > CoekCatt — > CaCamh-
q€BSN(ByFk)N(BSFL) q€BSN(Bo+k)N(BS£L)

We can now estimate é:al as follows:

Proposition 5.2. For any symmetric set S C Z3 it holds as kr — oo that

2
tEea <2\ > D 2, | Hin

keS peMk
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Proof: For any ¥ € D(H], ) we can estimate
(véav)|< > 2 > gl [Csnepr¥ | |eptrn ¥l (5.7)
k,leS pe MNM,; qu%ﬁ(B%qZk)ﬂ(B%:Fl)

+ Z Z Z 17kl (| CqriCort W | | CqznCprr V|

k€S pEMENMi qe Bo.N(Bg 4k )N (By+l)

and we focus on the first sum. Using that |[cpzi/lop < 1 we can bound this by
2

SO Y @ lEevl? | < (Y Y 7, (v (5.8)

keS pGMk qe(B%:Fk) kES pGMk

whence the claim follows since Ng < Hl,(in'

O
For (‘:’572 and (‘:’573 we need the commutator [¢,+, D;]. When M), = Ly, (so pF k=p—k € Bp) this is
[Cpres D] = — Z [510—1% 5:;5q—l] == Z Op—k,qCq—1 (5.9)
quFﬂ(BF+l) qEBFﬂ(BF-i-l)
=—lp.(p—k—1)c—r
and likewise when My = Ly —k (sopFk=p+k € BY,)
[6pﬂFk’Dl] = Z [5p+k,525q+l] = Z Op+k,gCq+l (5.10)
q€BEN(B&—1) q€BEN(Bg—1)
= 13% (p +k+ Z)EerkJrl.
We can summarize these in the common expression
. ~ Bp My = Ly
Cprkys D] = Flpo kFl)c , Bp= , 5.11
Gk, Di] = Flpe (p F k F D)épzrs, B {B% My — Ly — k (5.11)
and write
Eep= 3 D ikpitplopDi G, DI (5.12)
k,leS peMiNM,;
=Y D ikpipDith [Eprr DI + s = Ec2a — Ecs
k,leS pe MiNM;
where gc,zg is then
Eepp =D X ThplpDiGe Gk Di (5.13)

k,leS peMNM,;

=F> Y ikpDi <Z L, (P)1pe (P F k l)ﬁz,pé;ﬂép;k;l) :

kesS peMj, les
To handle the presence of the D; factor we need the following:

Proposition 5.3. For any k € Z2 and € > 0 it holds that
D7 Dy, D5 Doy < Cek}ﬁeH{dn

for a constant Ce > 0 depending only on e.
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Proof: The bound for Dy follows immediately from Lemma 3.2 as

1 -
IDoi®ll < Y ||EE-rt| < > T S kP =l G-
pEBrN(Brtk) peBrn(Bp+k) | P pEBrN(Br+k)
< \JCkE (B, ). (5.14)

For Dy, we define the sets
Ay ={p € Bil|lp| < 2kr}, Az ={pe Bp|lp| > 2kr}, (5.15)

and use the triangle inequality to see that

D1 9| < oo+ >+ Y @585 + [ Dok ¥ | (5.16)

pEAIN(A1—k) peAiN(A2—k) pcAN(A1—k)

where

Dy = Z CpCptk- (5.17)
pEA2N(A2—k)

The first three sums can be estimated in the same manner as we did D§7kD27k, so we need only consider Dy
further. For this we note that

X U
Do Dok = Z CprkCrCoCorth (5.18)
P,q€A2N(A2—k)

_ ok k ~ § P 72
- E CqCp+kCpCqtk + Cp+kCp+k < (NE’)

p,q€EA2N(A2—k) pEA2N(A2—k)
where N =3~ 4, G1ép, since
~ ~ ~ 2 ~ o~ 2
Z (¥, 6381 kCpCak¥) < Z 1Cp+1Cq Y| Z [EpCqsr Y|l (5.19)
p,qEA2N(A2—k) P,qEA2N(A2—k) P,qEA2N(A2—k)
< = w2
< D7 16 lP = (TN (Vg — 1))
PgeA2

Now, N}, can be estimated in two different ways. First we clearly have that
Np; < Ng < |Br| < Ck}, (5.20)
but the condition p € Ay also lets us estimate

= Z |p| K2 ~;~p = k:2 Z( )5*51’ < ok7 7 Hiin (5.21)

EAQ pEAg

and combining the two we conclude that

D Do < (Np)? < CkpH{,,. (5.22)

We can now estimate (‘:’572,2 and gc,gi

Proposition 5.4. For any symmetric set S C Z2 and € > 0 it holds as kp — oo that

igc 2,2 < C Z Z nkp k1+5 Z Z Hkln

keS \| peMy, keZ3 pe My,
!/
ERENID I
keS pe My,

for a constant C. > 0 depending only on €.
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Proof: From equation (5.13) and Cauchy-Schwarz we see that we can for any ¥ € D(Hj, ) estimate

‘<‘I’,‘§C,2,2‘I’>‘ < Z Z 77kp |Dk‘m| Z Z Z Ly (p 1B° pﬂFkﬂFl)mpHprCp:Fk:Fz‘I’lp (5.23)

kEZ3 peMy, leS \| kez3 peMjy,

It is immediate from Proposition 5.3 that the first factor can be bounded as

Yo > kp DRI < Okt Y Y iR, (VL Hig, ¥) (5.24)

keZ3 peEMjy, keZ3 peMjy,

so we turn to the latter. For this we simply bound

D20 D L)l (0 F kF O Fprrra V2 (5.25)

leS \ kez3 peMjy,

<SS o FEF Gl <> ST 7, /(TN

les \l peM, keZ3 leS \ peM,

and use that N < H{, .
For & we note that by equation (5.11) this is

Eea= >, Y, lee(®@FkF DikpplyrrmiCorhr (5.26)
k,leS pe MNM,;

whence

(0.8csm)| <3 Y 107k FOR, lopen?
k,leS peMNM;

< Z Z ﬁz‘,pz AVESER) [k (5.27)
keS pe My, leS
<Z anp \IINE\I] <Z anp \I]’Hl/dn\II>'
k€S peMj, keS pe M,
U

5.2 Estimation of 5074, 5(375 and 5(376
Now we come to the “mixed” terms of &, which include also b(-) expressions. The first of these, 5074, is

Eea= D> > ity Oi(erp)épzr, Dil

k‘EZ% leS pe MNM;

- Z Z Z ﬁl,PE:ﬂFl 0% (Pr,p)s Di] Epze (5.28)

kez3 leS pe MpNM,

33 > b (rp) [k Di) =t Ecan + e
kezZ3 leS peMiNM;

and we can write the second, £¢ 5, in the similar form

gC,5 = Z Z Z ﬁl,p&;ﬂ [0k (V—k,—p), D] Eprk (5.29)

keZ3 leS peMNM,;

N > bk (V—p—p) [Eprs DIl =t Ee51 + Ecs.

kez3 leS peMNM,

To bound the commutators of the form [by(-), D;] we prove the following:
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Proposition 5.5. For any k,l € Z2, p € My and € > 0 it holds as kr — oo that
[Biprp)s D" Gyl < Celie™ max [ (eqs opp)* Hic
bk (—r,—p), DI Gyt < Cekefs max [(e—gs Yt —p)|* Hign + 2[4, —pl* EpiBprt
for a constant C. > 0 depending only on €.

Proof: Computing that

bro D)= > [EGGwgan] - D GGk G

peBEN(Bg—1) PEBRN(Br+l)
=— Y ef{aeataat D GG i) (5.30)
peBEN(Bg—1) peBFﬂ(BFH)

= —1pg(q =D&y k + 1B (g — k+1)Cg¢0 1y

we see that the commutator [b} (¢x ), D] can be written as

bi(erp), D) = {eq rp) [bi g DI]

q€Ly
== Z 1pe(q — 1) {eq, Pr,p) Cq1Cqi + Z 1 (g —k+1)(eq, Prp) CqCqiti (5.31)
qELy qeLy,
= Z 1ps(q — 1) {eq, Pk,p) Cq—rCq + Z 18 (g +1) (€q+k: Ph,p) CqrhCoti-
q€Ly q€(Lr—Fk)

Consequently, for any ¥ € D(H,, ),

17 (prp)s D" G ¥l < D i (@ = 1) egs 0rp)| 11801zt ¥ |

qELy
+ Y (g4 D eqrn @rp)l 118 1ps V|
q€(Ly—k)
1 2 ~ 2
< max|(eq, prp)l || D g > g =k =l llé—r Y| (5.32)
qeLqu_ ‘ _C’ qE€Ly,

+ grelf}j: (eq> Pr,p)] Z

q€(Ly

< | R e on) (0 Hio, ).

———— | > g+ k=l
||Q+k| _<| qe(Lj,—k)

For [b_i(¢—_k —p), Di]" ¢y we note that from the calculation of equation (5.31)

b1k, —p), DiI" = = [0 1 (Yt —p), D] = = [02 4 (¥—k,—p), D]

= Z 13% (q - l) <6*qa ¢—k,—p> gk—q—}—kéiq—i-l (533)
qeLy

+ Z 1BF (q + l) <equk7 wfk:,fp> E**qfké*qul
q€(Ly—k)

as Df = D_;. Now, note that either of these sums in fact of the b*(-) form, since the ¢ summation ranges
and indicator functions force one momenta to lie inside Br and the other outside. We can take advantage of
this to estimate |[b_g (g —p), Di]” Eijl\Q by commutation, as (considering the first term for definiteness)

2 2

~% ~% ~ ~ ~ ~
D 1B5(a = {e—qy Vokp) E gprqnilort| = | > 185(0 = 1) (Votimps €—q) Coqileqrilpzi
q€Ly q€Ly
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+ Z 1Bc —1) 1Bc (q - l) (e—q k,—p) <¢—k,—p’e—q’> 5;¢l [5—q+lé—q+ka5*—q’+k5*—q’+l] Cp
9" Ly

< Ck};re zréax|<e ¢ V—k,—p | Hyg + Z e (g —1) [(e- qa¢—k,—p>|25;:p15p¢l (5.34)
qELy

1+e 2 2 ek~
< CEkFJr ;%%};’<6_q7¢7k77p>‘ Hip, + [— CpFiCpFl
where the first bound follows as in equation (5.32) whereas the second follows from the b*(-) form since

[57¢H57q+k75i¢+k5i¢+ﬂ Z:Efq+l{57q+k7 q+k}c g+l q+k{0 g+ C ¢+¢}Efq+k (535)
= 0g.q (1 o é*—q-i-kc—q-H’C B —q+lc—q+l)'

The same argument applies to the second term of equation (5.33) and the proposition follows.

The first error terms can then be estimated:

Proposition 5.6. For any symmetric set S C Z2 and € > 0 it holds as kr — oo that

+a1, e 51 < Oy 7T Z Z M p ZVkQHI/(in
kesS \| peMy kesS

for a constant C. > 0 depending only on €.

Proof: By the first bound above we can for any ¥ € D(H/, ) estimate

(0. Eear®)| <323 3 i IBilors) DI Gpsa®l 1Ger ¥

k‘EZ% leS pe M NM;

< VORF (U HL )Y S S dpmax e o) 1G] (5.36)

leS keZ3 peMNM,;

< \/Csk};e v Hf(m Z Z Z 771p !cpw\PH Z Z max] eqa‘Pk,pHQ

les \| kez3 peMnNM,; kez3 peM,C
~2 1+e€ /
< Z Z Mip | [Cekp Z Z maX| €q, Php)| \/<\I’ H{, ¥) (U, Np¥)
les \| peM, keZ3 peMk

which upon using that Np < Hy;, and recalling > ), maxeer, ](eq,apk7p>]2 < Ck};wf/,f gives the first
bound. For the second we likewise have

(W e w)| < \/Chi (U B, W) S5 3 i ma (e v Epa?

keZ3 leS peMNM;

+V2IS ST g ekl 1 |G| (5.37)

keZ3 leS pe MENM,;

and the first can be estimated as we did the previous one, whereas the second obeys

D D D T (O 1 7 N

kez3 leS peMpNM,;

<D0 20 Do Il [0 D Ikl e (5.38)

leS \| kez3 peM, kez3 peM;
<> 3, [ D ma e (9. NEY)
leS \l peM, keZS

and we recall that max,eps, ||¥p > < Ck:;mf/,f.
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Recalling equation (5.11), we see that ¢ 49 can be written as

Eeaz= DY > fplribilprp) En DI

keZ3 leS peMNM,;

=T Z Z Z 13% (p + k + l)ﬁlypr(sDk,p)é;:Flép:Fk:Fl

kez3 leS pe MNM,

since [¢*,b*(+)] = 0. Now, [¢*,b(-)] # 0, but we can nonetheless write & 52 in the similar form

Ces2=F Y Y. > g (0F kT Ditplhmb_r(—r—p)Epriri

keZ3 1€Z3\S pe MpNM;

=+ Z Z Z 1BO p:F k + l)nlp (T,Z) k, p) p:Fle:Fk:Fl

keZ3 1eZ3\S pe MNM;
as equation (3.17) implies that

[t bk (Vb —p)] = F1m_, (P F b F 1) (ks Ep3h5L) CoFhpl

and the two indicator functions for p F k£ F [ have disjoint support.

We now bound these terms:

Proposition 5.7. For any symmetric set S C Z3 it holds as kr — oo that

+€42 < Chy " Z Z i p \/Z Vi Higy

keS \| peMy, kezZ3

téeso < Chp PN I3 @2 | DD V2 min {|k], kp} (Hi, + kr)

kesS \| peMy keZ?
for a constant C > 0 independent of all quantities.

Proof: For any ¥ € D(HJ, ) we can estimate

[CACTE I D DD DI PR ) [/ N1 A
keZ3 1S pe MNM,

<Y DT bkl D0 D s (0 F kTR, [epmrr]

leS \| kez3 peMy keZ3 pe MNM,;
2 -
D0 Nbrlerp)®IPD D i, (U, Np)
keZ3 pe My, leS \l peM;

and similarly

(W.esa®)| < [ 3 Ileprp)®l* Y2 |3 7, (W New).

keZ3 peEMy, 1es \| peM;

Now, as in the Propositions 3.6 and 3.8 it holds that

SN o) P < OO SNT VR,

ke73 pe My, keZ3
SN )P < CETD ST V2 min (k] k) (Hig, + kr)
keZ3 peMy, kez3

from which the claim follows.
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By equation (5.41), the final error term is

o=+ Z Z Z L (0 F b F 1) (Vp—ps eprrrrt) TipCprhriCoriDi (5.45)
keZ3 leS peMNM,
== Z Z Z WP FEF ) (Vb —p» eprrrgt) MpDiCprhsiCorn

keZ3 leS peMNM,;

where we could commute D; to the left due to the indicator function of the commutator

(G5 Di] = Flpg, (0 F b F 1) Cpgrp (5.46)
and, as is readily computed,
~ 1BC ]C 5 k Mk; = Lk;
et Di) = 4 PR )G (5.47)
1BF(p—i—/€)C +k M, =L —k

which vanishes for p € M. gcﬁ can be controlled as follows:

Proposition 5.8. For any symmetric set S C Z3 it holds as kr — oo that

igc(; < C. kl Prte Z Z nk,p \/Z ‘A/kQHl/(in

keS \| peMy keZ3

for a constant Ce > 0 depending only on e.
Proof: For any ¥ € D(HJ, ) we have
(0.6ee®)| <30 > i 0 FRF DGk epmrrz)] Vgl IDFON [Gpepityer ¥

]CEZS leS pe MNM;

< ORF U HL )Y S S max ey Vo)l il i (5.48)
qeL

leS keZ3 pe MNM,;

S R ) SN OO SIS S M TS

les \ kez3 peMkmMz keZ3 pe MNM,;
1+4e€ ~2 /
Cekpte > > maxy RIS % (U, H], W) (V, NpV).
kez3 peM;C les \l peM;

Recalling >~ ¢\, maxger, |(eq, Vep)|? < Ck};?ﬁf/]? and using N < H|,, we have the claim.

O
We can now conclude the main result of this section:
Theorem (5.1). For any symmetric set S C Z2 and € > 0 it holds as kg — oo that
- _1 .
+E < Cot (k E ka> > VZmin{|k| kp} +kp® Y Vi | (Hig + kr)
kesS keZ3 kesS

for a constant C. > 0 depending only on €.
Proof: By definition of 7, the sum ZpEMk ﬁzp is (as hy < E})

D ke =D P = Kbl Hep ) <2 D Ay llep i) (5.49)

pEM pELy pELy
= 2 (s, haenie) < 2 (s B
for both My, = Ly, and My, = Ly, — k (the only difference being | |p|* — k2| — | |p — k|* — k3| in the first line).
We calculated the inner product in equation (4.11), with the result
Viky,” (o, bty
2(27)° 1 + 2 (g, by, 'vg,)

from which it is seen that all the bounds of the Propositions 5.2, 5.4, 5.6, 5.7 and 5.8 can be controlled in
the claimed manner.

(g, Eyre) = < CkpP Vi (vg, hi tog) < Chp 2P V2 (5.50)

O
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6 Estimation of the Remaining Terms

The results of the previous sections can be summarized in the inequality

Hy > EFS + Ecorr,bos + Ecorr,ex + 5}3 + EC + 271(277)73145;6 (ES + gZi\S) (61)

where Eg and 73\ ¢ are given by

. 2 (v, byt
Eg = Z Vi <1 (g, by, tog) )D;;Dk — Z (Colp + Cy_kCp—i) (6.2)

- -1
kes 142 <Uk’ hy vk> peLy
Ems= > Vi|4Re(BiDy)+ DiDyp — Y _ (€56 + & 4lpr)
keZ3\S pEL)

with &g and & obeying the estimates of the Theorems 3.1 and 5.1.

In this section we conclude the proof of Theorem 1.2 by estimating these final error terms. To state the main
results of this section we define

Cou=2> | X In+RVi|ce -2 | > 10— ki |Ee, (6.3)

pPEBRr \keZ3\S PEBY, \keZ3\S

9 ~k o~k o~ o~
Eop = E Vi E CpCq—1:CaCp—k

keZ3\S  p,qeAN(A+k)
where A = {p € BY, | |p| > 2kr}. The estimates are as follows:

Theorem 6.1. Let Vj, be radially decreasing with respect to k € Z3. Then for any symmetric set S C Z2 and
€ > 0 it holds that

Es

Y

-2 Z VkHI/(in
keS

—Cekii™® [ Y ViHi
keZ3\S

Egu > 2 (Z Vi + sup Vp> Hygy
kes pEBE

v

Eza\s — €04 — &g

for a constant C. > 0 depending only on €. Furthermore, for any S’ C 72 containing S and B(0,3kr) N7Z3

Eos > —CLl k2> Vi+ kb >0 Vilkl 2+ | DT VRIkTUY ) | Hiy,
kesS’ keZ3\S’ keZ3\S’

for a constant C! > 0 depending only on e.

Estimation of &g

The bound for £g is almost immediate from the observation that

~ 2<vk,h;1vk> o
PP N DiDy— ) (& + &4 6.4
S ];g k < 1+2<”’f’h;§1vk> Kk p;k(p P p—kCp k) (6.4)
Z = Z Vi Z (E58p + Gy Cpt)
keS pELy

which leads to the following:
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Proposition 6.2. For any symmetric set S C Z3 it holds that

Es > =2 Z Vi Hy-
kes

Proof: From the above inequality we rearrange the sums to see that

ZV’“Z ccp+c _3Cp— k Z (ZlLk Vk>c Cp + Z (ZlLk k(p Vk>c Cp (6.5)

keS  pEeLy peEBS \keS pEBEr \keS
S A DI S )y
kesS pPEBE pEBR kesS

and the claim now follows from the fact that N < Hj, .

O
6.1 Preliminary Analysis of Large £ Terms
We split the large k& terms into a cubic part and a quartic part as €73\ = 4 Re (EC,ZE\S) + £o where
Eeza\s = Z ViBiDy, Eo= Z Vi | DDy — Z (5ép + Cy wlp—t) | (6.6)
kEZ3\S keZ3\S pELp
and we recall that By, = ZpELk Cp—kCp and Dy = Dy, + Dy, for
Dig=+ > & Dap=— > Eipp (6.7)

pEBEN(BL—k) pEBpN(BF+k)
We split the cubic terms &¢ 73\ g further into a Dy part and a Dy part as

Eemns= >, Vi D & yDig— > Vi > & Do (6.8)

keZ3\S  p€Ly kez3\S  pe(Li—k)

1) (2)
=& Z3\S —& Z3\S

and for the quartic terms we note that

DiyDig=+ Y. &Dubprt D & (6.9)
pEB&LN(BL+k) pEB&LN(BL+k)

DypDog=— Y &Dolpert Y G
peBFﬁ(BF—k) pEBFﬁ(BF—k‘)

and (since e.g. D}, = Dy _j, and [Dyj, Dy;] = 0)
Z Vi (D Do + D3 D1 i) = —2 Z Vi Z D1 kCptk (6.10)
keZ3\S keZ3\S  peBpN(Bp—k)
whence £g can be decomposed as
€o=¢Eg1~Eg2~ 2803+ E0u (6.11)

where
o1 = Z Vi Z ¢y D1 1Cp ke
keZI\S  peB&LN(B&+k)

Eop= > Vi > &Dyplpu (6.12)

kezZ3\S  peBpN(Bp—k)
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form X Y b
keZ3\S  peBpN(Br—k)

and we noted that

> W DA e S D N G5/ R ey (6.13)
N(Bg+k

keZ3\S pEBS, ) pEBpN(Br—k) pELy

= > V| > (salp—k) —1p.(p—k)&EeG+ Y (a0 +k) = 1pe (p+ k),
keZ3\S pEBY, pEBFR

=2 3 Vil = > e (- RGEG+ Y e (p+k)EE | = Eou
kEZ3\S pEBY, pEBR
since ZpEB% &y =Ne = ,cp, Chip-

Now we decompose g further: Defining (as in Proposition 5.3)
Ay ={pe By ||p| <2kp}, As={pe B%||p|l>2kr}, (6.14)

and

Do = Z CpCpts (6.15)
pEA2N(A2—k)

we split the sum of £g 1 into 4 parts depending on whether p and p — k are in Ay or Aj:

> EDikér= >,  GDixbprt Y. EDigby (6.16)
pEBEN(B+k) pEAIN(A1+k) pEAN(A2+k)
*
+ Y DGkt | D Dl
pEA2N(A1+k) pE(A1—k)NAs

The second sum of this equation can be written in terms of Dy, as

. _ . _
Z Cp D1 kCp—t = Z CqDo,—kCqvk
peA2N(A2+k) q€BEN(Bs—k)
_ _ . _
= Y &Doibeskt >, EDo_ilqrk (6.17)
qEAIN(A1—k) q€A2N(Az—k)
*
+ Z ¢qDo,—kCqvk + Z Do, 1Cq—k
qeAaN(A1—k) qE(A1+k)NA2

so all in all (substituting also k — —k in some sums to group terms together)
Eo1=Eb1 +2Re(EQ,) +E5 +2Re(E ) + Eas (6.18)

where for a = 1,2
= > Ve > @Djibpr, j=0.1, (6.19)
kEZ3\S  peA.N(A1+k)

and we recognized that

oV Y. EDokbgr= Y Vi Y. & 4Gk =Eas. (6.20)

keZ3\S  qeA2n(A2—k) keZ3\S  p,geAan(Az+k)
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Schematic Forms

By the decompositions above we see that to obtain the second estimate of Theorem 6.1, i.e. that on &3¢ —
o4 — Eg5, it suffices to estimate the sums

as— X UG5 D Fas- XY GGuDu. 620
keZ3\S  pely kez3\S  pe(Lp—k)
and
£,= D Vi D, &Dirbpr
keZ3\S  peA.n(Ai+k)
€or= D Vi >, GDaulpuk (6.22)
kezZ3\S  peBpN(Brp—k)
o3 = Z Vi Z Cp D1 kCpik
keZ3\S  peBpN(Bp—k)
fora=1,2.

We can summarize these in two schematic forms: gcl,zi\ S and gg,zé\ g are both of the form

Eezns = >, Vi Y s, ()&= D (6.23)
keZ3\S  peZ3
where
N Lk,é*_k,DLk) fOI‘g C,73 S
(Sk» Gpeps Djik) = ! =\ (6.24)
k,cp+k,D27k) for €2 115

while Eéﬂ-, Eg2 and Eg 3 are all of the form
Eo= > Vi > 1s.(p)éDjrtpsn (6.25)
keZ3\S pEZ3

where

(Ag N (A1 + k), Cp—k> DJ"k) for gé,j
(Sks o> Djk) = § (BF N (Bp — k), Cpyi, Do) for Ega - (6.26)
(BF N (Br — k), épyk, D) for Eg3

It consequently suffices to estimate these schematic forms. Noting that SC,Zi\ g can be written as

Eezns = Yol D 1s,(0Vi&erDjk (6.27)

pEZ3 keZ3\S

we can for any ¥ € D(H/,,) estimate

2

(e Leans®)] < 37 10—l | 3 g | D 1. 0)Vid o Dis
k

pEZ3 pEZ3 €Z3\S

< \/<\II’H1,<in\IJ> > 11l = ¢ w, TS W) (6.28)

pEZ?

2

where Tlf = ‘Zke@\s 1s, (p)VkE;$ij,k , and similarly

‘<¢I,£Q\y>( < \/(qf VH ) ST [ [pl? - ({2, TR (6.29)

pEZ3

. 2
for TpQ = ‘ZkeZiﬁ'\S s, (P)Vij7k5p¢k‘
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6.2 Estimation of Tpc and TpQ

By expansion and (anti-)commutation we can write Tpc as

TS = Z 1s, (p)1s,(P)ViViD] ypgrCpgi D

k,1€Z3\S
== Y s MlsPViViD;imbpekDin+ Y 15, (p)VED}Djk (6.30)
kleZ3\S keZ3\S

2

= — Z 1Sk( )VkD] ka:Fk; + Z 1Sk Vk 7 k;Dj k

keZ3\S keZ3\S
— Z L, (p)1s,(p)ViVichs, (D5 k> D] o
k,1€23\S

where we also used that [¢p+4, D;;| = 0 in this particular case, since for 5 CZ8\S the momenta pFk = p—k € Bp

but D;; = Dy only involves momenta in Bf, and vice versa for £2

C.Z3\S"
Now, the first term of the right-hand side of the equation above is manifestly negative, so we have the bound
TS < > 15 VED Dk — > 15, (0)1s(0)ViVidhzy [Dig, Dja] G (6.31)
kEZ3\S k,1€Z3\S
= T — T2,

We computed the commutator [Dj ., D;;] in equation (5.6), with the result
[Dj . Dja] = > Gk Camtl — > A (6.32)
q€ByN(ByFk)N(ByFl) q€BYN(Bg+k)N(Bg+l)

Performing the substitution ¢ — ¢ + k£ + [ in the second sum, we can also write this as

[ D}k Dja] = > <1B;( )= lps(q+k+ l)) &kl (6.33)
q€(B%.Fk)N(B3FI)
= Z <1B;(Q)1(B;)c(q +khktl)—1pe)(q)lp (gL k£ l)>5:;j:lcéqj:l
q€(By¥k)N(BEF)

where we used the indicator function identity 14(x) — 14(y) = 14(2)14c(y) — 1ac(z)14(y). Writing out the
possible choices of By, = Bp, B}, it is straightforward to see that there holds the alternative identity

F [Djp Dja] = Z 1pe (q £k £1)CoypCoti (6.34)
q€BpN(ByFk)N(ByFl)
B > 1pe (¢ F k F 1) CogiCori-

q€BpN(B%+k)N(By£L)
Using this identity we can now estimate > s | Ip|* — <|_1T1§ as follows:

Proposition 6.3. For any symmetric set S C Z2 and € > 0 it holds as kr — oo that

1
S Ck”e VZH!
Zup\ —cr 2 Vit

€73 kEZ3\S
for a constant Ce > 0 depending only on e.
Proof: Tpc 1 can immediately be bounded as
Tot= D la@WEDDix < Chit | 3 15, (Vi | Hig (6.35)
keZ3\S keZ3\S

48



by Proposition 5.3, and by equation (6.34) we can for any ¥ € D(H|, ) estimate <\I/, TI,C’Z\IJ> as

2

(0,150 <2 > | D 15, (0) 1o k(@) Vi [|Ggr ¥

q€BF \keZ3\S

o eok(q) N
<> | > 1sk<p)vk2WF—2 > eesn(@) g FR* =l lén®)* | (6.36)

q€Br \keZ3\S F T keZ3\S
59 1o5k(9) / 1te 59 /
< Z Ls, (p)Vy Z o= k2 — ¢l <‘I’7Hkin‘1’> < Cekp Z Ls, (p)Vi <‘I’7Hkin‘1’>
keZ3\S wepe 14T RT = (] keZ3\S

where Proposition 3.2 could be applied due to the condition ¢ € B in the sum. Combining these estimates
and applying Proposition 3.2 once more, we conclude that

1 . - Ls, (p)
> 27_C|T§ <Ckp Y WY m}[{dn (6.37)

peZ3 [ Ip] keZ3\S  pezd
17.24+€ 2 17/
< CekF Z Vk Hkin'

keZ3\S
]
As we did for Tpc, we expand TpQ and commute for the identity
T2 = Z L, (p)1s,(P)ViViser Dk Dot
k,1€Z3\S
= Y 1501 @ViVi(Djiirk + [Egrr Dia]) (G Dig + [Di s Eovi])
k,1€Z3\S
+ Z Ls, (p)1s, (p)ViVic; et [ Digs Djt) G
kleZ3\S
2
== Z Ls, (0)Vidyei Dk + Z Ls, (P) Vi Dj D (6.38)
kEZ3\S kEZ3\S
+ Z Ls, (p)1s, () Vi Vi ot [ D Dyt Gp
kleZ3\S
+2Re Y 1s,(0)1s,(0)ViViDji&y, [D) s G
k,leZ3\S
+ > 1, (0)1s(0)ViVi D}y épi] " [Dig o] »
k,1€Z3\S
which yields the inequality
Q Q,1 Q,2 Q,3 Q.4
T2 < T2 +T2% +2Re(T,°°) + T, (6.39)
where
T2 = Y s (0)VEDaDj,
keZ3\S
2% = Y 1s.(0)ls()ViVigger [Dfgs Dit] G (6.40)
k,leZ3\S
T2 =) 15,015, (MViViDjlyps (D] G
k,l€Z3\S
T4 = Z Ls, () 1s,(P)ViVi [ D)1 Gk ) [Dies Gppt] -
k,l€Z3\S

We can then estimate > 75 | Ip)? = ¢ \flTpQ in a similar fashion:
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Proposition 6.4. For any symmetric set S C Z2 and € > 0 it holds as kp — oo that

> —— ! ‘ < Ckp Y VPH,

pez? ‘ ‘p‘ keZ3\S

for a constant C. > 0 depending only on €.

Proof: Exactly as in the previous proposition we see that the bound

T2, 122 < Ckp |l Y 15, (V2 | Hign
kEZ3\S

(6.41)

holds: The TI,Q’1 bound follows since Dj,kD;k = D; _Dj— and Proposition 5.3 is also valid for D, D
(indeed, this is the final equality of the proposition), and the TpQ’2 bound follows since it is readily computed

that [Dg ., Do can also be written in the form

- [DS,]{H DOJ] - Z 1A2 (q + k + Z)E;k]+kéq+l
qEAglﬁl(Agfk)lﬁl(Agfl)

- > 1a,(q — k — )& _ 0,
qeASN(A2+k)N(A2+1)

and the fact that AS = B(0,2kr) N Z3 ensures that Proposition 3.2 still applies.
For T,2° (and T2*) we calculate
(D s Gpt] = % Z [ChinCar Cpgl] = F Z Og:tk,pFiCq
q€BS.N(BLFk) q€BSN(B%Fk)
=Flpe, (0 F Dl (p F bk F)ipgry

0 TpQ’3 can be written as

=F > 1s,(0Ls(P)ps (0 F D1ps (0 F b F DViViD; 18 epra
kIEZ3\S

=7 > 1Ml @TOVD| D 16,(0)1ss (0 F kT DVilhprloprs

lez3\S keZ3\S

which implies the estimate

(6.42)

(6.43)

2

(o, 7220 < | S 1s@VRIDEIE | Y s | D 1500 F k¥ DVichpylprhn ¥

1eZ3\S 1eZ3\S kEZ3\S

Again

S 15 VR ID T < Ckp™ > 15,(p) Vi (U, Hyy, T)
leZ3\S leZ3\S

while the second factor obeys

2

Z Ls,(p) Z Ls, (p) 1B (pFkF)We CpriCprrTY

leZ3\S k€Z3\S
lps(pFEFI) -
< 1| Y. 1s(p) p— 72
1€73\S kEZ3\S [pFkFIU* =

S (kTP FEF I —CGprn V]
kEZ3\S

20

(6.44)

(6.45)



- lpe (pF kFI)
< Y 1R Y 1gp)—= (¥ Hign )

2
kezZ3\S 1€Z3\S llpFkFI"—¢
< Csk;'—’—e Z 1Sk (p)VkQ <\Ij7 Hl/ﬂn\Il>
kEZ3\S

where we could use Proposition 3.2 once more since the summation over [ is restricted by the indicator
function 1g, (p), with S; being either BpN(Bp — 1) C (Bp — 1) or AqN (A1 +1) C (Ay + 1), since |Bp|, |A;| <
|B(0,2kp) N Z?|.

Combining the two estimates we get

iTpr) < Cskjlv—’—e Z 1Sk (p)VI?HI/(in (646)
keZ3\S
and equation (6.43) also yields
T4 = Z L, (p)Ls, (P)1gs, (p F k) 1pe (p F Dlgs (p F k F OViVichzrsiCoriri (6.47)

k,1€Z3\S

which as the summand is symmetric in k& and [ can be estimated by

T2 < Y 1s,(P)s(P)1as (p F k) lse (p F D1ge (p F b F DVEE pppilprn (6.48)
kJeZ3\S
< Z Ls, (p)VPNE < Z Ls, (p) Vi -
keZ3\S keZ3\S

All in all this shows that TpQ < Cekpte > kezs\s LSy (p)VkQHl’{
6.4.

., and the claim now follows as in Proposition

O
By the equations (6.28) and (6.29) combined with these propositions we see that

+E za\s, £(Ea — Eou—Eop) < Cekpt | Y VHY, (6.49)
keZ3\S

which implies the second estimate of Theorem 6.1.

6.3 Estimation of £o4 and g5
For £g 4 we can make the following estimate:

Proposition 6.5. Let Vi, be radially decreasing with respect to k € Z2. Then for any symmetric S C 72 it
holds that

Egu > —2 (Z Vi, 4+ sup Vp) H,,.

kes PEBE

Proof: We can write £g 4 in the form

€0a=2> | Y 1o+ bV |&EH -2 [ D 1.0 - k)Vi | &6, (6.50)
pEBr \keZ3 pEBS \ keZ3
—2 ) (Z Ipp(p+ k)f/k> Eept2 Y <Z Ipp(p— k)f/k> &y
pEBR \keS pEBE \keS

which, estimating the final line as in Proposition 6.2, implies that

E0u>2 ) oo Wk@ga-2> | D Vil|gs-2> ViHi, (6.51)

pEBF \k€(Bpr+p)\{0} pEBE \ke(Bpr+p) keS

o1



where we also absorbed the indicator functions into the summation range (and substituted k& — —k in the
first sum).

Now we note that there must exist a v € R such that

s%pc Z Vi <v< piergF Z Vi (6.52)
PEPF ke (Br+p)\{p} ke (Br+p)\{0}

by the assumption that Ve is radially decreasing, since each sum is over |Br|—1 points. Then by particle-hole
symmetry we have

SY w2 X u)w

pEBr \ke(Br+p)\{0} pEBE \k€(Br+p)
=y Yo Ve—v|Eam+ > (v— D Vi|gsg— > Vibd (6.53)
pEBp \ke(Br+p)\{0} pEBS, ke(Br+p)\{p} pEBE
> — Z VpE;Ep > — sup V,Ng > — sup V, Hi;,
pEBS. pEB% pEBS,

for the claim.

Estimation of £g 5

Finally we come to £g 5, which we recall is

Eo5= Y. Vi Y. Gl alelpr (6.54)
keZ3\S p,qEAaN(Aa+k)

where Ay = Z3\B(0,2kr). Noting as in Proposition 5.3 that

. o —17.-2 g/
Z CpCq—1CqCp—t = Dg Dok — Z Cplp = =3 kp"Hy, (6.55)
p,g€AaN(Aa+k) pEAN(A2+k)

we can for any S’ C Z3 containing S estimate

Cos= > Vi > @Gt D Vi > B kllp (6.56)

keS\S  p,qeAxn(Az+k) keZ3\S"  p,q€A2N(Az+k)
= —3hF ket i + k ok CqCpk
kes’ keZ3\S'  p,qeA2N(Az+k)

and the k}Q factor ensures that we can take S’ to be considerably larger than S without worsening the overall
estimate. The remaining sum then not only involves exclusively momenta which are large, but we can also
assume k to be large. In that case we can make the following estimate:

Proposition 6.6. For any e >0 and S’ containing B(0,3kr) N Z3 it holds that

YUY ghana<C| Y Soe [ 02k | e,

2
k€Z3\S'  p,q€Aan(Az+k) keZ3\ S’ K| keZ3\ S’
for a constant Ce > 0 depending only on e.

Proof: By the triangle inequality we have for all k € Z3\ S’ C Z3\ B(0, 3kr) that

371 k] < (k] = 2k < |pl = b+ p — K| = ke < /1ol = K3+l — K — & (6.:57)
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when p € Ay N (A2 + k), so for any ¥ € D(H|, ) we can estimate

Z Vi Z <\If CpCy—kCqCp— k\I’>

kEeZ3\S"  p,qeAanN(Az+k)

< > Ve > el llegep ¥l (6.58)

keZ3\S"  p,qeAan(Az+k)

Y Y VIpP = B2/l — k2 -

31 [k

||Cq k|| [legep—k V||
keZ3\S’ p,q€AaN(Aa+k)

Vi 5
SCID IS - D DRV Y R T TR

keZ3\S’ p,q€AaN(Aza+k)

where we also made the substitutions p — p+ k£ and k — —Fk in one sum to reduce to the same expression.

Now we split the ¢ summation into a |g| > |k| and |g| < |k| part. In the first case we can estimate

Vi
o X e @y - Kl lee vl
keZ3\S" ' ' p,qeAan(Az+k)

Vi Iql—kF\/ﬁ
SR DR = Ut CR (A

keZ3\S’ p,q€AaN(Aa+k)

3 Vi
SO VIpP = 824/1a — K2 lleg-rep ¥ llcgep 17| (6.59)

keZ3\S’ p,q€A2N(Ax+k)

3 Vi
<3 2 am X (e -#) gl

keZ3\S’ p,q€AaN(Aa+k)

as also |k| — kp > 2 |k| for k € Z3\S’. Meanwhile, in the second case,

Vi
> Tl Yo eourn(@y ol = K ke ¥l llegey—1 ¥

kez3\s’ P,q€A2N(Az+k)

s\/ > VRT3 (=) g ¥

keZ3\S' P,q€A2N(Aa+k)
1o, (@) Ipl” — k2 )
XY e e (6.60)
kEZ3\S' p,gE AsN(Az+k) q F

keZ3\S’

s\/ > V2O N, )

2 He(H ) S (P k) legrep®l?

geas lal KEZB\S pEAsn(Az+k)
PP 1
DI AL REDY e (U, NpHi;, )
keZ3\S’ gEA lq| <|Q| - kp)
and for g € Ag, k% < % g%, so
1 4 1
DL o i TN (661

qEA2 |Q| ‘ (|q| - k%‘) qEAg |q|



O
By inserting this bound in equation (6.56) and using the trivial bound NgH{. < |Bp|H{, < Ck¥LH{, we
arrive at the final estimate of Theorem 6.1.
6.4 Proof of Theorem 1.2
We can now prove the first part of Theorem 1.2:
Proposition 6.7. Let % < B <1 and let V obey Assumption 1.1. Then it holds as kr — oo that
HN > Ers + Ecorr,bos + Ecorryex + €

for an operator £ obeying

5+H2(1— 5)+e(

£> —Cyckp? HYyp + kr)

for any € > 0 where Cy, > 0 is a constant depending only on Cy and €.
Proof: As remarked in the beginning of the section we have by Theorem 4.1 that
HN > EFS + Ecorr,bos + Ecorr,ex +&

for E =&+ & + 2_1(277)73k:;ﬁ (55 + 522\5‘)- By the Theorems 3.1 and 5.1, &g and &¢ obey the bounds

+Ep < Cek2! [ Y VE+kp 2ka S V2 min { k|, kp} (Hg, + kr) + CERD ST 08
keZ3\S

keS keZ3 keZ3
~ _1 ~
+& < Cokt <k 2 ka> > VZmin{|k| kp} +kp® Y Vi | (Hig, + kr) (6.62)
kes keZ3 kes

and under Assumption 1.1 it holds that with S = B(0, kl/ Nz

*

N _1 N _1 N
S OVE kR ) Vi< Cukpt, > VE<Cy, (6.63)
keZ3\S keS kez3

> Vimin{|k|,kr} < Cf log(kr) < Cyeks (6.64)
keZ3

and

which together imply a bound of the form

+2(1-B)+e

_1
Es+ & > —Cyckp® (Higy + kr) (6.65)

where we used the assumption g > % to absorb the kiﬁ(l_ﬁ )

By Theorem 6.1 it follows that with S’ = B(0, k;ﬂ) Nnz3

Es+&ms > —Ce| kit [ S 2+ Wi+ sup V, V, | H
kEZ3\S kes peBE

AL ] I AT I IR IRl I P

term into the rest.

kes’ keZ3\S’ keZ3\S’
> —Cv,ek;éJrHeran
so all in all s 1
E=Eptect (;)3 (Es + Exng) > —Cuckps T (HL 4 k) (6.67)

o4



since 8 < 1.

O
As remarked in the introduction, we can by this result conclude the inequality
(1 - 0(1))Hll<in < 2(HN - EFS) - Ecorr,bos + Ckip, kF — 00, (668)
when 3 > 3 (to ensure —% +2(1 — 8) 4+ € < 0 for some €), where
2Vkl<:_ Ak
Ecorr bos = Z / 3 Z )\2 j—)tQ dt, F(z)=log(l+z)— x. (6.69)
keZS
The second part of Theorem 1.2 is now an immediate consequence of the following:
Proposition 6.8. Let V' obey Assumption 1.1. Then for any e > 0 it holds that
Ecorr bos < C’\/Ek3 2ﬁ+57 kF — 00,
for a constant Cy, > 0 depending only on Cy and e.
Proof: By the inequality log(1 + =) > = — %xQ, valid for all x > 0, we see that
A /B 2
- 1 1 [ 2Vik, Ak
—Ecorr,bos < — Z / 5 }; Z 2 P 5 dt
T kez3 ”Y 2 (2m) pELy )\’W it
Ak, Ak,
- 7ZVkZ/ 2 p22 q2dt (6.70)
)\ t= Ag +t
kezZ?  p.gELy
e
kezd  pacly P A
where we applied the integral identity fo a2+t2 e t2 dt = 5(a + b)fl, valid for all a,b > 0. Now
1
Ly —— < Ck¥min{|k|, kp 6.71
> o < 12 5, S Ckbmin i k) (6.71)

p,qELy,

and as noted above, Y, /s f/,f min {|k|,kr} < Cy k% under Assumption 1.1, from which the claim follows.
U

A Appendix

A.1 Kinetic Sum Estimates

We will use the following estimate for the number of lattice points on a sphere (see for instance [9, Section
2]):
Proposition A.1. For any n € N and € > 0 it holds that
1
r3(n) = [{p € Z° | |p* = n}| < Cen>*
for a constant Ce > 0 depending only on e.

We note that
1
(= 5( inf [p|>+ sup |q] ) (A1)

qe€BR
obeys |¢ — k%] < kr +1 ([11, eq. A.90]) and crucially

1
ol = ¢l > 5. vpeZ’. (A.2)
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Lemma (3.2). For any A C Z3 with |A| < |§(0, 2kp) N Zg‘ and any € > 0 it holds that

1 €
2 pE—q = O

peEA

for a constant C. > 0 depending only on €.

Proof: By rearrangement it holds for sufficiently large kr that

Z 1 < Z 1 5 I %k};Q (A.3)

ST =0 s |7 -

since | |p|2 — (|71 is radially increasing for p € B, radially decreasing for p € B%, and

_ —1 -1 1 _
lpl*> = ¢t < (4kE —¢Q) < (BkE —kp—1) < kit kp — oo, (A.4)
for p ¢ B(0,2kr) while
- 1
P =¢I7 = ¢t = (k4 ke +1) 7 2 Sk ke — oo, (A5)
for p € Br. The sum can now be written as
|4k | | 4K2, (n)
rs(n
= A6
RO R Z,n—c o
pEB(0,2kp)NZ3 n=m
where
m = sup |¢|*, m'= inf |p|*. (A7)

qe€BR PEBE

We can use Proposition A.1 and the fact that ¢ — /£({ — t)f is increasing for t € (0, () to estimate the first
sum as

m m 1,1 _1
m t
223(” Z ntet <Ckp< +Z )gCek;<2\/E+/ QC—\[tdt> (A.8)
n=1 o n=1 1 o
where we also used that equation (A.2) implies that (¢ —m) ™' < 2. The integral obeys

S IR L ) Y A 2 = Sorog( YT
[ s [ = [ = Vo () v 4

—/TCf“ﬂ>4ﬁkﬁm@@—Mﬁ

whence .
WerE (5v2) < cunf. a0
n=1
For the other sum we can similarly estimate
L4k‘%—‘J L4k J
ra() e | Y Z < CkS | 2vm! + / HVE (A.11)
e 6 mee s may E=C

as t — Vi(t — ¢)" is decreasing on (¢,00). This integral can be bounded as

l4k%] /% 2kp 942 2%kr 9
/ ’ Ldtg/ 2—dt:4/<;F—2\/m’+/ QC dt
mel t—C Vi t7—C iy 7= ¢

=

o6



2kp +/C V' + /¢
< dkp — 2Vm’ +/Clog (8m’)

= dkp — 2Vm/ + f( ( */Z> log <M>> (A.12)

whence 452
4k
Z ;3( 2 <C, kF<4kp +/Clog (8m/ )) < ClkL (A.13)

Combining the estimates yields the claim.

A.2 One-Body Operator Estimates

Let (V, (-,-)) be an n-dimensional Hilbert space, h : V' — V be a positive self-adjoint operator with eigenbasis
(x;)i_ and eigenvalues ()\;);_,, and let v € V be a vector with (z;,v) >0 for all 1 <i <n.

We define

1 1.1 1
= (h2(h +2P,)h2)2 = (h? +2P 1 )2 (A.14)
where P, = |w) (w| for any w € V, and in terms of this further define
111 11 1y 11 11
C:§(h 2E2 + h2E 2), S:§<h 2B — h2F 2). (A.15)

Note that E3 is the fourth root of a rank one perturbation. Asin [11, Proposition 9.9], the Sherman-Morrison
formula

-1 _ 4-1_ g
(At gPy) = A7 = P, (A.16)

and the integral identity ai = % fooo <1 —tt (a + t4)_ >dt, a > 0, yields the following characterization of
such operator roots:

Proposition A.2. Let A: V — V be a positive self-adjoint operator. Then for any w € V it holds that

PN
4>-I>—‘

(A+Py)

2\/ t4
/ B P(A+t4)71wdt
1+ < (A4t >

4
Aii — 2\/—/ t PA,I(A,1+t4)—lwdt.
wA L(A-1 4 ¢4y >t4

IS
Il

(A+P,)~

This implies the following:

Proposition A.3. For all 1 <1i,j <n it holds that

1 1 20NN (z,0) (v, 25) - <x<E2 _h%> > Aidj  (zi, ) (v, 25)
L+2(,h o) VA + /A At \/_+\/j i+ A
1 2 (xi,v) (v,x5) _1 1 2 (@i, v) (v, @)
< iy h 2 —-FE 2 .
L+2(u,h ) VA + /A At —<x < ) > Vit A At
Proof: Taking A = h? and w = \/ih%v in Proposition A.2, we have
4 tt
E2 =h? + \/—/ Py dt (A.17)
1+2<vh(h2+t4) > 22+
1 1 42 ¢t
Ere=hre - / -1 Ph‘%(h*2+t4)‘1vdt
T Jo 1—|—2<v,h_1(h_2+t4) v> t4

o7



SO

o} 4 ) . . .
(i, (BY = n)ay) = 4\/5/ ! Vi (i o) @@’fﬁdt (A.18)
7r 1+2<U h(h2 +t4)flv> N+t A+t

_3

s 4 h TP W (VR
<.%'i7 (h% — E‘%)mj> = 4\/5/ f A 72(3:2,1;) J72< i>dt
TS0 12 (e h Tt () o) e N AT

and the estimates now follow from the fact that

[S1[o%

0< <v, h(h2 + t4)71v> , <v, ht (h72 + t4)71v> tt < (v, h71v> (A.19)
for all t > 0, as well as the integral identities (for a,b > 0)
3 3
© g3 b3, ] 1, 1 1
t*dt = ————t7dt = . A.20
/0 242 44 /0 a? +t4p% +t4 2V2 /a++vba+b (4.20)
U

This leads to the following bounds for C' and S:
Proposition A.4. For all 1 <1i,j5 <n it holds that

iy (€ = D), |y, S| < 222 {002)

i+ )\j
(zi, v) (v, z5) C1 0 (0 0) (0, 25)
i, Sy — —————=| < 2(v,h —
(i, Sxj) Ay (v v) N
Proof: From the definition of C' we have
1 _1 1
(@i, (C = Vaj) = 5 ()\Z. 2 <m (E% - h%>mj> — A7 <x (h—% - E_l)x>> (A.21)
and by the proposition
1 1 1 2,/ (x5,0) (v, 24) (xi,v) (v, x;)
<\ 2 {z;(E2—h _’ e A22
0< A\ <:E,<2 2) > Yy JWY < N ( )
A WA (wiv) ) (i) (v,1)
<A {miy,|h 2 —F <2
0= Z<x < i 2> > VA +‘/j )\—i—)\ )‘Z+)\_]

whence the claim for C' — 1. For S we have

(o 507) = 5 (A (o (B2 = b))+ 2k (o (17 = B7)s)) (A.29)

2N @) 2V (@) (vag)) _ (o) (o.a)
=3 VA + A At VA + A At Ai A

hence the general bound for S, and also

1 <xl v) (v, 24)
i S ! L A.24
whence
(wi,0) (v, ) I (wi,0) (v, ) () (o,2)
. Sai) — < (1= <2{(v,h . A.25
S W v T+2(, )y ) N+r (v, ") Py (4.25)
O
o =P
Proposition 3.10 now follows by the substitutions A\; — Ay ,, (;,v) = ;/?:753 and using that
Vi ki

(vg, by Log,) = == o STl < ok, (A.26)

pELy

o8
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