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Abstract. We study the periodic homogenization problem of state-constraint

Hamilton–Jacobi equations on perforated domains in the convex setting and ob-

tain the optimal convergence rate. We then consider a dilute situation in which

the holes’ diameter is much smaller than the microscopic scale. Finally, a homog-

enization problem with domain defects where some holes are missing is analyzed.

1. Introduction

This paper studies the following homogenization problem on perforated domains
and its applications. Consider an open and connected set Ω ⊂ Rn with C1 boundary
and assume Ω is Zn-periodic, which means it satisfies the condition Ω + Zn = Ω.
Note that for Ω to be connected, we need n ≥ 2. For ε > 0, consider the domain
Ωε := εΩ and let uε be the unique viscosity solution to the state-constraint problem

uε
t +H

(x
ε
,Duε

)
≤ 0 in Ωε × (0,∞),

uε
t +H

(x
ε
,Duε

)
≥ 0 on Ωε × (0,∞),

uε(x, 0) = g(x) on Ωε × {t = 0},

(1.1)

whereH is a given Hamiltonian and g is a given initial condition. Under appropriate
assumptions, we expect that as ε tends to 0, uε converges locally uniformly to u on
Ωε × [0,∞), where u is the unique viscosity solution to{

ut +H (Du) = 0 in Rn × (0,∞),

u(x, 0) = g(x) on Rn × {t = 0} .
(1.2)
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Here H is the effective Hamiltonian determined by the state-constraint cell problem
on Ω. More specifically, for any p ∈ Rn, H(p) is the unique constant such that the
following state-constraint cell problem has a Zn-periodic viscosity solution:{

H (y, p+Dv(y)) ≤ H(p) in Ω,

H (y, p+Dv(y)) ≥ H(p) on Ω.
(1.3)

If needed, we write H = HΩ to denote the dependence of H on Ω.
We are particularly interested in how fast uε converges to u. We prove that the

convergence rate of uε to u is O(ε), which is optimal, in the convex setting. We then
study related problems in perforated domains including a dilute situation in which
the holes’ diameter is much smaller than the microscopic scale ε and a problem with
domain defects.

Figure 1.1. An example in three dimensions with Ω,Ωc connected

Ω

Figure 1.2. An example of Ω in two dimensions
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1.1. Relevant Literature. The qualitative homogenization theory of Hamilton–
Jacobi equations on perforated domains was first studied in [9, 1, 2]. For the state-
constraint cell problems, see [5, 9, 14, 16]. See Figures 1.1–1.3 for examples of Ω.
Some properties of the effective Hamiltonian H were obtained in [6]. However, the
convergence rate of uε to u in this setting has not been studied.

Quantitative homogenization for first-order Hamilton–Jacobi equations in the pe-
riodic setting in the whole domain has received much attention since 2000. The
convergence rate O(ε1/3) was obtained for first-order equations in [4] for general
coercive Hamiltonians. The optimal rate of convergence O(ε) in the convex setting
was obtained in [20]. The method in [20] was generalized to handle problems with
multiscales in [8] and a spatio-temporal environment in [15]. For earlier progress
with nearly optimal convergence rates in the convex setting, we refer the reader to
[13, 10, 22, 19, 21] and the references therein.

1.2. Settings. Throughout this paper, we always assume the following conditions
for the Hamiltonian H : Rn × Rn → R and the initial data g : Rn → R.
(A1) H ∈ C(Rn × Rn); and for p ∈ Rn, y 7→ H(y, p) is Zn-periodic.
(A2) lim|p|→∞ (infy∈Rn H (y, p)) = +∞.
(A3) For each y ∈ Rn, the map p 7→ H(y, p) is convex.
(A4) g ∈ BUC(Rn) ∩ Lip(Rn).

Let Tn = Rn/Zn be the usual flat n dimensional torus. Then, we can also write
H ∈ C(Tn × Rn). Note that (A1) and (A2) imply that there exists a constant
C1 > 0 so that

H(y, p) ≥ −C1 for all (y, p) ∈ Rn × Rn. (1.4)

Although (1.1) and (1.3) only requireH to be defined on Ω×Rn, it is more convenient
for us to consider H on Rn × Rn for later usages.
The well-posedness of (1.1) has been well studied in the literature (see [17, 18, 5,

14]). Furthermore, one can show that the solution uε is globally Lipschitz, that is,
for ε ∈ (0, 1),

∥uε
t∥L∞(Ω×[0,∞)) + ∥Duε∥L∞(Ω×[0,∞)) ≤ C0, (1.5)

where C0 > 0 is a constant that depends only on H and ∥Dg∥L∞(Rn). Indeed, in

light of (1.4), g+C1t is a supersolution to (1.1). Besides, (A1) and (A4) yield that,
for C = C(H, ∥Dg∥L∞(Rn)) > 0 sufficiently large, g − Ct is a subsolution to (1.1).
By the usual comparison principle,

g(x)− Ct ≤ uε(x, t) ≤ g(x) + C1t for all (x, t) ∈ Ω× [0,∞).

Hence, ∥uε
t(·, 0)∥L∞(Ω) ≤ C. By using the comparison principle once more, we get

∥uε
t∥L∞(Ω×[0,∞)) ≤ C. Finally, we use this bound, (1.1), and (A2) to obtain (1.5).

Based on (1.5), we can modify H(y, p) for |p| > 2C0 + 1 without changing the
solutions to (1.1) and ensure that, for all (y, p) ∈ Rn × Rn,

|p|2

2
−K0 ≤ H(y, p) ≤ |p|2

2
+K0 (1.6)
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for some constant K0 > 0 that depends only on H and ∥Dg∥L∞(Rn). Consequently,

for all (y, v) ∈ Rn × Rn,

|v|2

2
−K0 ≤ L(y, v) ≤ |v|2

2
+K0, (1.7)

where L : Rn × Rn → R is the Legendre transform of H.
Moreover, we have the optimal control formulas for uε, that is,

uε(x, t)

= inf

{∫ t

0

L

(
ξ(s)

ε
, ξ̇(s)

)
ds+ g (ξ(0)) : ξ ∈ AC([0, t]; Ωε), ξ(t) = x

}
= inf

{
ε

∫ t
ε

0

L (γ(s), γ̇(s)) ds+ g (εγ(0)) : γ ∈ AC

([
0,

t

ε

]
; Ω

)
, γ

(
t

ε

)
=

x

ε

}
.

(1.8)
For u, we have the Hopf-Lax formula

u(x, t) = inf

{
tL

(
x− y

t

)
+ g (y) : y ∈ Rn

}
. (1.9)

Here, AC(J, U) denotes the set of absolutely continuous curves ξ : J → U and L
is the Legendre transform of H : Rn → R. Note that the admissible paths in the
optimal control formula for uε are restricted on Ωε or Ω after rescaling. Also, for
all p, v ∈ Rn,

|p|2

2
−K0 ≤ H(p) ≤ |p|2

2
+K0,

|v|2

2
−K0 ≤ L(v) ≤ |v|2

2
+K0. (1.10)

We always assume (1.6), (1.7), and (1.10) in our analysis from now on.

1.3. Main results. Our first main result is concerned with the convergence rate of
uε, the viscosity solution to (1.1), to u, the viscosity solution to (1.2).

Theorem 1.1. Assume (A1)–(A4). For ε > 0, let uε be the viscosity solution to
(1.1) and u be the viscosity solution to (1.2), respectively. Then, there exists a

constant C = C
(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0 such that, for ε ∈ (0, 1),

∥uε − u∥L∞(Ωε×[0,∞)) ≤ Cε. (1.11)

It is clear that the convergence rate O(ε) in the above theorem is optimal. We
refer the reader to [13, Proposition 4.3] for an explicit example confirming this
optimality. It is worth noting that we only require that Ω is open, connected, Zn-
periodic with C1 boundary here. In particular, Ωc can be connected (see Figure 1.1)
or can contain unbounded components such as periodic small tubes when n ≥ 3 (see
Figure 1.3 for one example.) To prove Theorem 1.1, we develop further the method
in [20] to the current setting of perforated domains where the admissible paths and
the optimal paths (geodesics) are restricted on Ωε or Ω after rescaling. Intuitively,
one can think of Ω

c

ε or Ω
c
after rescaling as obstacles that the admissible paths

cannot travel into.
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Figure 1.3. An example of Ω in three dimensions

Next, for each ε > 0, we consider the case that Ωε consists of ε-periodic copies
of a hole whose diameter is O(η(ε)ε) with limε→0 η(ε) = 0. As the holes’ diameter
O(η(ε)ε) vanishes faster than ε as ε → 0, it is natural to expect that we see the whole
space in the limit. This case is called a dilute situation in the homogenization theory,
that is, the volume fraction of the obstacles vanishes in the limit. Since Ωε behaves
like Rn as ε → 0, it is natural to make a connection with the usual homogenization
problems in the whole space. Let ũε solveũε

t +H
(x
ε
,Dũε

)
= 0 in Rn × (0,∞),

ũε(x, 0) = g(x) on Rn × {t = 0}.
(1.12)

Let H0 = HRn be the effective Hamiltonian corresponding to H in the whole space.
For any p ∈ Rn, H0(p) is the unique constant such that the following usual cell
problem has a Zn-periodic viscosity solution

H(y, p+Dv0(y)) = H0(p) in Rn.

It is important to note that H0 ̸= HΩ in general. By the usual comparison principle,
we have the one-sided inequality HΩ ≤ H0.
Let ũ solve {

ũt +H0 (Dũ) = 0 in Rn × (0,∞),

ũ(x, 0) = g(x) on Rn × {t = 0} .
(1.13)

To get quantitative convergence rates, we need to put a further assumption on
the Hamiltonian H.

(A5) For each y ∈ Rn, minp∈Rn H(y, p) = H(y, 0) = 0.

Theorem 1.2. Assume (A1)–(A5). Assume that there exists an open connected set
D ⋐

(
−1

2
, 1
2

)n
containing 0 with connected C1 boundary and η :

[
0, 1

2

)
→
[
0, 1

2

)
with

limε→0 η(ε) = 0. Let Ωη(ε) = Rn \
⋃

m∈Zn(m+η(ε)D) and Ωε = εΩη(ε) for ε ∈
(
0, 1

2

)
.
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For ε ∈
(
0, 1

2

)
, let uε and ũε be the viscosity solutions to (1.1) and (1.12), re-

spectively. Let ũ be the viscosity solution to (1.13). Then, there exists a constant

C = C
(
n, ∂D,H, ∥Dg∥L∞(Rn)

)
> 0 such that, for ε ∈

(
0, 1

2

)
and (x, t) ∈ Ωε×[0,∞),

ũ(x, t)− Cε ≤ ũε(x, t) ≤ uε(x, t) ≤ ũε(x, t) + C(ε+ η(ε)t) ≤ ũ(x, t) + C(ε+ η(ε)t).
(1.14)

In particular, for ε ∈
(
0, 1

2

)
and (x, t) ∈ Ωε × [0,∞),

|uε(x, t)− ũ(x, t)| ≤ C(ε+ η(ε)t).

We note that the requirement on Ωε in Theorem 1.2 is stricter than that of
Theorem 1.1. In particular, there cannot be any unbounded connected component in
Rn\Ωε. We think of D as the model hole for the perforated domain. The restriction
that ∂D is connected can be lifted as long as Ωε remains connected, for example, ifD
consists of several separated parts that have connected boundary (or in other words,
if the ‘hole’ is actually a group of several separated holes). We say that m+ η(ε)D
is a hole of Ωη(ε) and ε(m+ η(ε)D) is a hole of Ωε for m ∈ Zn, respectively. For the
Hamiltonian H, we need to require in addition that it satisfies (A5). A prototypical
example ofH in Theorem 1.2 isH(y, p) = a(y)|p| for a ∈ C(Tn, (0,∞)), which comes
from the first-order front propagation framework. To the best of our knowledge,
this is the first time that the homogenization of Hamilton–Jacobi equations in a
dilute perforated domain is studied, and the convergence rate obtained is essentially
optimal (see Lemma 5.1).

Remark 1. As we are in the convex setting, we have the inf-sup representation
formulas for the effective Hamiltonians (see [19]): For p ∈ Rn,

H0(p) = HRn(p) = inf
φ∈Lip (Tn)

ess sup
y∈Tn

H(y, p+Dφ(y)),

and

HΩ(p) = inf
φ∈Lip (Tn)

ess sup
y∈Ω

H(y, p+Dφ(y)). (1.15)

The inf-sup formulas confirm again that HΩ ≤ H0. The formula (1.15) is well-
known, but we give a proof in Lemma A.2 in Appendix A for the reader’s conve-
nience.

Let us now consider a sequence of nested domains {Ωk} such that Ωk ⊂ Ωk+1 for
k ∈ N and ⋃

k∈N

Ωk = Rn \ Zn.

Then, by the usual stability results for viscosity solutions, we have that, for p ∈ Rn,

lim
k→∞

HΩk
(p) = H0(p).

However, no convergence rate of HΩk
to H0 in the general setting is known in the

literature.
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In the setting of Theorem 1.2, {Ωη(ε)} is also a sequence of nested domains with
Ωη(ε1) ⊂ Ωη(ε2) for ε1 > ε2 > 0 and⋃

ε>0

Ωη(ε) = Rn \ Zn.

We have qualitatively that

lim
ε→0

HΩη(ε) = H0.

Let ũη(ε) be the unique viscosity solution to (1.2) with HΩη(ε) in place of H = HΩ.
By repeating the proof of Theorem 1.1, we have readily that, for ε ∈ (0, 1),

∥uε − ũη(ε)∥L∞(Ωε×[0,∞)) ≤ Cε.

Note that C does not depend on η(ε). However, we cannot control ũη(ε) − ũ quan-
titatively yet because we do not have any quantitative bound on HΩη(ε) −H0. This
shows that the quantitative convergence result in Theorem 1.2 is rather hard to
obtain through the above roadmap.

Once Theorem 1.2 is obtained, then we can use it to deduce back a quantitative
bound for HΩη(ε) −H0 in Corollary 5.2. For some related state-constraint problems
in changing domains, we refer the reader to [11, 23, 24] and the references therein
for quantitative convergence results.

Finally, we study a homogenization problem with domain defects. Here, domain
defects mean some holes in Ωε are missing. Let us describe the setting.
Let D ⋐ (−1

2
, 1
2
)n be an open connected set with C1 boundary containing 0. Let

Ω = Rn \
⋃

m∈Zn(m+D) and Ωε = εΩ for ε > 0. We say that m+D is a hole of Ω
and ε(m+D) is a hole of Ωε for m ∈ Zn, respectively. Note that the holes’ diameter
of Ωε is O(ε), and we are in the usual setting, not the dilute one. We remark that
while Ω in Figure 1.2 satisfies this requirement, the ones in Figures 1.1 and 1.3 do
not. Let I ⊊ Zn with I ̸= ∅ be an index set that denotes the places where the holes
are missing. Define

W = Ω ∪
⋃
m∈I

(m+D) = Rn \
⋃

m∈Zn\I

(m+D), Wε = εW.

For k ∈ N, let
Ik = I ∩ [−k, k]n.

We assume

|Ik|
k

= ω0

(
1

k

)
(1.16)

where |Ik| is the cardinality of the set Ik and ω0 is a modulus of continuity. Note
that Ik collects all indices m ∈ Zn ∩ [−k, k]n such that Ym := m+ [−1

2
, 1
2
]n does not

have a hole. For instance, if |Ik| is of the size kθ for some θ ∈ (0, 1) as k → ∞, then
ω0 (s) = s1−θ for s > 0.
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Interestingly, W is not Zn-periodic anymore (see Figure 1.4). For ε > 0, let wε

be the unique viscosity solution to the state-constraint problem
wε

t +H
(x
ε
,Dwε

)
≤ 0 in Wε × (0,∞),

wε
t +H

(x
ε
,Dwε

)
≥ 0 on W ε × (0,∞),

wε(x, 0) = g(x) on W ε × {t = 0}.

(1.17)

Note that the only difference between (1.17) and (1.1) is the domain of consideration
Ωε ⊊ Wε. We now show that if we can control the size of I, which is allowed to
be infinite, the domain defects do not affect the limiting behavior. Specifically, we
prove that wε behaves essentially like uε, the solution of (1.1), as ε → 0. Moreover,
we also get a convergence rate of wε to u, the solution of (1.2).

W

Figure 1.4. W with some missing holes in two dimensions

Theorem 1.3. Assume (A1)–(A5), (1.16) and the above setting. For ε > 0, let uε

and wε be the unique viscosity solutions to (1.1) and (1.17), respectively. Then, there
exists a constant C = C

(
n, ∂D,H, ∥Dg∥L∞(Rn)

)
> 0 and C̃ = C̃

(
n, ∂D,H, ∥Dg∥L∞(Rn)

)
>

0 such that

u(x, t)− C (M0t+ |x|+ 1)ω0

(
ε

M0t+ |x|

)
− C̃ε

≤ uε(x, t)− C (M0t+ |x|+ 1)ω0

(
ε

M0t+ |x|

)
− Cε

≤ wε(x, t) ≤ uε(x, t) ≤ u(x, t) + Cε.

(1.18)

for all ε ∈ (0, 1) and (x, t) ∈ W ε × [0,∞). In particular, for ε ∈ (0, 1) and (x, t) ∈
W ε × [0,∞),

|wε(x, t)− u(x, t)| ≤ C (M0t+ |x|+ 1)ω0

(
ε

M0t+ |x|

)
+ Cε. (1.19)

The optimality of the convergence rate in Theorem 1.3 is confirmed by Lemma
6.4 with ω0(s) = s

1
2 for s > 0. It is worth emphasizing that the control of the size of

I is optimal, that is, if we allow the size of I to be bigger, then we will not observe
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the same limiting behavior (see Lemma 6.5). One intriguing aspect of (1.19) is
that it eliminates the necessity of pinpointing the exact locations of domain defects;
instead, it relies solely on discerning the relative frequency of their occurrence. It
also does not hold if (A5) is not assumed (see Lemma 6.6). To the best of our
knowledge, this type of homogenization problem with domain defects has not been
studied in the literature.

As I can be infinite, it does not seem clear if the cell problem (1.3) withW in place
of Ω has sublinear solutions. This is fine as we do not use the corrector approach
in the proofs of Theorems 1.1–1.3, and we use the optimal control formula together
with the metric distance approach. While the corrector approach works for general
settings including the nonconvex cases, it does not give the optimal convergence
rates.

We also note that the results of Theorems 1.1–1.3 hold if we only require g ∈
Lip (Rn), a weaker assumption than (A4). This is clear as the constant C =

C
(
n, ∂D,H, ∥Dg∥L∞(Rn)

)
in the bounds of Theorems 1.1–1.3 depends only on

∥Dg∥L∞(Rn) but not ∥g∥L∞(Rn).

Notations. Let {e1, e2, . . . , en} be the canonical basis of Rn. We write Y = [−1
2
, 1
2
]n

as the unit cube in Rn. For m ∈ Zn, set Ym = m+[−1
2
, 1
2
]n, which is the cube of unit

size centered at m. For ∅ ≠ U, V ⊂ Rn, denote by dist (U, V ) = infx∈U,y∈V |x − y|.
For x, y ∈ Rn, denote by [x, y] the line segment connecting x and y. Let AC(J, U)
be the set of absolutely continuous curves ξ : J → U . To avoid confusion, we recall
thatH = HΩ is the effective Hamiltonian corresponding toH of the state-constraint
problem on Ω, and H0 = HRn is the effective Hamiltonian corresponding to H in
the whole space. If a function h : Rn → R is Zn-periodic, we can think of h as a
function from Tn to R and vice versa.

Organization of this paper. In Section 2, we give some preliminaries and extend
the cost function (the metric distance) to the whole space. We prove the subaddi-
tivity and superadditivity of the extended cost function in Section 3. The proof of
Theorem 1.1 is given in Section 4. Section 5 is devoted to the study of homogeniza-
tion in a dilute setting, which includes the proof of Theorem 1.2. The problem of
domain defects and the proof of Theorem 1.3 are given in Section 6. In Appendix
A, we give the proofs of some auxiliary results.

2. Preliminaries and extension of the cost function to Rn

We introduce the following definition of a metric, which measures the cost to go
from one point to another on Ω in a given time.

Definition 1. Let x, y ∈ Ω and t > 0. Define

m(t, x, y) = inf

{∫ t

0

L (γ(s), γ̇(s)) ds : γ ∈ AC
(
[0, t] ; Ω

)
, γ(0) = x, γ (t) = y

}
.

(2.1)
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Figure 2.1 gives an example of an admissible path γ ∈ AC
(
[0, t] ; Ω

)
. Note that

γ might touch and run on ∂Ω for some time.

γ(0)

γ(t)

Figure 2.1. An admissible path

The following lemma, the proof of which is given in Appendix A, tells us that all
the optimal paths for uε and u have a uniform velocity bound, which will help us
simplify the optimal control formulas for uε and u.

Lemma 2.1. Assume (A1)–(A4). Let ε, t > 0 and x ∈ Rn. Suppose that γ :[
0, t

ε

]
→ Ω is a minimizing curve of uε(x, t) in the sense that γ is absolutely con-

tinuous, and

uε(x, t) = ε

∫ t
ε

0

L (γ(s), γ̇(s)) ds+ g (εγ(0)) (2.2)

with γ
(
t
ε

)
= x

ε
. Then there exists a constant M0 = M0

(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0

such that

∥γ̇∥L∞([0, t
ε
]) ≤ M0.

Using Definition 1 and Lemma 2.1, we can rewrite the optimal control formula
for uε as the following:

uε (x, t) = inf

{
εm

(
t

ε
,
y

ε
,
x

ε

)
+ g (y) : y ∈ εΩ

}
= inf

{
εm

(
t

ε
,
y

ε
,
x

ε

)
+ g (y) : |x− y| ≤ M0t, y ∈ εΩ

}
.

(2.3)

Note that in Definition 1, m is only defined for x, y ∈ Ω. We extend this metric
to the whole Rn × Rn as follows.

Definition 2. Let x, y ∈ Rn and t > 0. Define

m∗ (t, x, y) = inf {m (t, x̃, ỹ) : x̃, ỹ ∈ ∂Ω, x̃− x ∈ Y, ỹ − y ∈ Y } . (2.4)
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As we prove in Lemmas 3.1–3.2, m∗ satisfies the subadditivity and superaddi-
tivity properties, which guarantee the limit of the scaling (large time average)
1
k
m∗(kt, kx, ky) as k → ∞. The subadditivity and superadditivity further allow

us to quantify the convergence rate of this limit optimally in Theorem 4.2. More-
over, as we prove in Proposition 2.4 below, m−m∗ is bounded, which plays a key
role in characterizing the limit of uε as ε → 0 (see Lemma 4.3.) Combining these
results, we obtain Theorem 1.1.

We now explore some properties of the metric m∗ and its connection with m
in the following two propositions. First, we provide the existence of a particular
admissible path for m∗ with a velocity bound and get an upper bound for m∗. See
[9, Lemma 2.6] for a related result.

Proposition 2.2. Let t ≥ δ for some δ > 0, and x, y ∈ Rn with |x − y| ≤ M0t.
Then, there exists an absolutely continuous curve ξ : [0, t] → Ω such that ξ(0) = x̃
and ξ(t) = ỹ, for some x̃, ỹ ∈ ∂Ω with x̃ − x ∈ Y, ỹ − y ∈ Y . Moreover, for some
constant Cb > 0 that only depends on ∂Ω and n, we have

∥∥∥ξ̇∥∥∥
L∞([0,t])

≤ Cb

(
M0 +

2
√
n

δ

)
, m∗ (t, x, y) ≤

C2
b

(
M0 +

2
√
n

δ

)2
2

+K0

 t.

(2.5)

Proof. Choose any x̃, ỹ ∈ ∂Ω such that x̃ − x ∈ Y, ỹ − y ∈ Y . Consider the path

ξ(s) :=
s

t
(ỹ − x̃)+ x̃ for s ∈ [0, t], which is a straight line segment connecting x̃ and

ỹ. Note that for any s ∈ (0, t),∣∣∣ξ̇(s)∣∣∣ = |ỹ − x̃|
t

≤ |ỹ − y|
t

+
|y − x|

t
+

|x− x̃|
t

≤ M0 +
2
√
n

t
≤ M0 +

2
√
n

δ
.

(2.6)

If the whole segment [x̃, ỹ] is contained in Ω, ξ is a curve satisfying the required
velocity bound. Otherwise, ξ([0, t]) has nonempty intersections with Ω

c
, and we

modify ξ to obtain a desired path. In the latter case, there are finitely many time
segments [t1, t2] ⊂ [0, t] such that ξ(s) ∈ Ω

c
for s ∈ (t1, t2) and ξ(t1), ξ(t2) ∈ ∂Ω.

For each such segment, the end points p = ξ(t1) and q = ξ(t2) must belong to a
same connected component M of ∂Ω, and by Lemma A.1 in Appendix A, there is a
curve γ ∈ C1([0, 1];M) joining p to q with arc length ℓ, and, moreover, ℓ ≤ Cb|p−q|.
Let γ̃ : [0, ℓ] → M be the arc length (re-)parametrization of γ. We modify ξ(s) for
s ∈ (t1, t2) to

ξ̃(s) = γ̃

(
(s− t1)ℓ

t2 − t1

)
.

Since | ˙̃γ| = 1, we check that for all s ∈ (t1, t2),∣∣∣ ˙̃ξ(s)∣∣∣ = ℓ

t2 − t1
≤ Cb|p− q|

t2 − t1
= Cb|ξ̇(s)| ≤ Cb

(
M0 +

2
√
n

δ

)
.
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x
x̃

y
ỹ

ξ̃

Figure 2.2. A modified admissible path ξ̃

Modify each segment of ξ([0, t]) that is in Ω
c
in the above manner, and call the

whole modified curve as ξ̃. See Figure 2.2 for one representative example of ξ̃. It is
a path on Ω satisfying the desired velocity bound in (2.5) and hence an admissible
path for the definition of m∗(t, x, y). Finally, using the bound (1.7), we check

m∗ (t, x, y) ≤
∫ t

0

L
(
ξ̃(s), ˙̃ξ(s)

)
ds ≤

(
1

2

∥∥∥ ˙̃ξ∥∥∥2
L∞([0,t])

+K0

)
t

≤

C2
b

(
M0 +

2
√
n

δ

)2
2

+K0

 t.

This is the desired bound for m∗ in (2.5) and completes the proof. □

Proposition 2.3. Let t, τ > 0 with t ≥ 1 or τ ≥ 1. Consider x, y, z ∈ Rn with |x−
y| ≤ M0t and |y−z| ≤ M0τ . Then, there exists a constant C = C (n, ∂Ω,M0, K0) >
0 such that

m∗ (t+ τ, x, z) ≤ m∗ (t, x, y) +m∗ (τ, y, z) + C.

Proof. Without loss of generality, we can assume t ≥ 1. Suppose ξ : [0, t] → Ω is
an optimal path for m∗(t, x, y), that is, ξ (0) = x̃, ξ (t) = ỹ, for some x̃, ỹ ∈ ∂Ω with
x̃− x ∈ Y, ỹ − y ∈ Y and

m∗ (t, x, y) =

∫ t

0

L
(
ξ(s), ξ̇(s)

)
ds.

We claim that there exists d ∈
{
0,

1

4
,
1

2
,
3

4
, · · · , ⌊t⌋ − 1

4

}
such that∫ d+ 1

4

d

L
(
ξ(s), ξ̇(s)

)
ds ≤ C2

b (M0 + 8
√
n)

2

2
+K0. (2.7)

If not, ∫ ⌊t⌋

0

L
(
ξ(s), ξ̇(s)

)
ds ≥ 4⌊t⌋

(
C2

b (M0 + 8
√
n)

2

2
+K0

)
. (2.8)
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Then, by Proposition 2.2,

C2
b (M0 + 8

√
n)

2

2
t+K0t ≥

∫ ⌊t⌋

0

L
(
ξ(s), ξ̇(s)

)
ds+

∫ t

⌊t⌋
L
(
ξ(s), ξ̇(s)

)
ds

≥ 4⌊t⌋

(
C2

b (M0 + 8
√
n)

2

2
+K0

)
−K0,

(2.9)

where the last inequality comes from (1.7) and (2.8). On the other hand, since
t ≥ 1,

4⌊t⌋

(
C2

b (M0 + 8
√
n)

2

2
+K0

)
−K0 >

C2
b (M0 + 8

√
n)

2

2
t+K0t,

which is a contradiction.
Let η be an optimal path for m∗ (τ, y, z), that is, η(0) = ỹ′, η(τ) = z̃ for some

ỹ′, z̃ ∈ ∂Ω with ỹ′ − y ∈ Y, z̃ − z ∈ Y , and

m∗ (τ, y, z) =

∫ τ

0

L (η(s), η̇(s)) ds.

Similar to the proof of Proposition 2.2, we can find a path γ : [0, 1] → Ω such that
γ(0) = ỹ and γ(1) = ỹ′ with

∥γ̇∥L∞([0,1]) ≤ Cb

(
2
√
n+ 2

√
n
)
= 4

√
nCb, (2.10)

since |ỹ − ỹ′| ≤ 2
√
n. Define ζ : [0, t+ τ ] → Ω by

ζ(s) :=



ξ(s), if 0 ≤ s ≤ d,

ξ (2(s− d) + d) , if d ≤ s ≤ d+
1

8
,

ξ

(
s+

1

8

)
, if d+

1

8
≤ s ≤ t− 1

8
,

γ

(
8

(
s− t+

1

8

))
, if t− 1

8
≤ s ≤ t,

η(s− t), if t ≤ s ≤ t+ τ,

(2.11)

which is an admissible path for m∗ (t+ τ, x, z). Therefore,

m∗ (t+ τ, x, z) ≤
∫ t+τ

0

L
(
ζ(s), ζ̇(s)

)
ds,



14 Y. HAN, W. JING, H. MITAKE, H. V. TRAN

that is,

m∗ (t+ τ, x, z)

≤
∫ d

0

L
(
ξ(s), ξ̇(s)

)
ds+

∫ d+ 1
8

d

L
(
ξ (2(s− d) + d) , 2ξ̇ (2(s− d) + d)

)
ds

+

∫ t− 1
8

d+ 1
8

L

(
ξ

(
s+

1

8

)
, ξ̇

(
s+

1

8

))
ds

+

∫ t

t− 1
8

L

(
γ

(
8

(
s− t+

1

8

))
, 8γ̇

(
8

(
s− t+

1

8

)))
ds

+

∫ t+τ

t

L (η(s− t), η̇(s− t)) ds.

(2.12)

Note that

∫ d

0

L
(
ξ(s), ξ̇(s)

)
ds+

∫ t− 1
8

d+ 1
8

L

(
ξ

(
s+

1

8

)
, ξ̇

(
s+

1

8

))
ds

=

∫ d

0

L
(
ξ(s), ξ̇(s)

)
ds+

∫ t

d+ 1
4

L
(
ξ(s), ξ̇(s)

)
ds

=

∫ t

0

L
(
ξ(s), ξ̇(s)

)
ds−

∫ d+ 1
4

d

L
(
ξ(s), ξ̇(s)

)
ds

≤m∗ (t, x, y) +
K0

4
,

(2.13)

where the last inequality comes from (1.7). Besides,

∫ d+ 1
8

d

L
(
ξ (2(s− d) + d) , 2ξ̇ (2(s− d) + d)

)
ds

≤ 1

2

∫ d+ 1
4

d

L
(
ξ(s), 2ξ̇(s)

)
ds ≤ 1

2

∫ d+ 1
4

d

(
2
∣∣∣ξ̇(s)∣∣∣)2
2

+K0 ds

≤
∫ d+ 1

4

d

∣∣∣ξ̇(s)∣∣∣2 ds+
K0

8
ds ≤ 2

∫ d+ 1
4

d

L
(
ξ(s), ξ̇(s)

)
ds+

17

8
K0 ds

≤ C2
b

(
M0 + 8

√
n
)2

+
33

8
K0,

(2.14)
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where the second and the fourth inequalities come from (1.7) and the last inequality
follows from (2.7). Moreover,∫ t

t− 1
8

L

(
γ

(
8

(
s− t+

1

8

))
, 8γ̇

(
8

(
s− t+

1

8

)))
ds

+

∫ t+τ

t

L (η(s− t), η̇(s− t)) ds

=
1

8

∫ 1

0

L (γ(s), 8γ̇(s)) ds+m∗ (τ, y, z)

≤ 4

∫ 1

0

|γ̇(s)|2 ds+
K0

8
+m∗ (τ, y, z)

≤ 64nC2
b +

K0

8
+m∗ (τ, y, z) ,

(2.15)

where the last inequality follows from (2.10).

Combining (2.12), (2.13), (2.14), and (2.15), we have

m∗ (t+ τ, x, z) ≤ m∗ (t, x, y)+m∗ (τ, y, z)+C2
b

(
M0 + 8

√
n
)2
+64nC2

b+
9

2
K0. (2.16)

The proof for the case where τ ≥ 1 is similar. □

For the points x, y ∈ Ω, the cost calculated by m∗ is fairly similar to the one
computed by m, as demonstrated in the following proposition.

Proposition 2.4. Let t ≥ 1 and x, y ∈ Ω with |x− y| ≤ M0t. Then, there is a
constant C > 0 depending only on n, ∂Ω,M0 and K0 such that

|m∗(t, x, y)−m(t, x, y)| < C. (2.17)

Proof. We proceed to prove

m∗(t, x, y) ≤ m(t, x, y) + C.

The proof for the other direction follows similarly.

Let ξ : [0, t] → Ω be an optimal path for m(t, x, y), that is, ξ(0) = x, ξ(t) = y,
and

m(t, x, y) =

∫ t

0

L
(
ξ(s), ξ̇(s)

)
ds.

Choose x̃, ỹ ∈ Ω such that x̃ − x ∈ Y and ỹ − y ∈ Y . Consider the path α(s) :=
s

t
(y − x) + x, which is a straight line segment connecting x and y. Therefore,

∥α̇∥L∞([0,t]) ≤ M0. We can revise α into a new path α̃ : [0, t] → Ω which is restricted

in Ω with
∥∥ ˙̃α∥∥

L∞([0,t])
≤ CbM0, similar to the argument in the proof of Proposition

2.3. Therefore,

m(t, x, y) =

∫ t

0

L
(
ξ(s), ξ̇(s)

)
ds ≤

(
C2

bM
2
0

2
+K0

)
t.
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Furthermore, we can also prove that there exists d ∈
{
0,

1

4
,
1

2
,
3

4
, · · · , ⌊t⌋ − 1

4

}
such

that ∫ d+ 1
4

d

L
(
ξ(s), ξ̇(s)

)
ds ≤ C2

bM
2
0

2
+K0, (2.18)

by a similar argument as in the proof of Proposition 2.3. Moreover, by the same
argument, we can find a path γ : [0, 1] → Ω connecting x̃ to x, and a path η : [0, 1] →
Ω connecting ỹ to y with ∥γ̇∥L∞([0,1]) , ∥η̇∥L∞([0,1]) ≤ 3

√
nCb. Define ζ : [0, t] → Ω by

ζ(s) :=



γ(16s), if 0 ≤ s ≤ 1

16
,

ξ

(
s− 1

16

)
, if

1

16
≤ s ≤ d+

1

16
,

ξ

(
2

(
s− d− 1

16

)
+ d

)
, if d+

1

16
≤ s ≤ d+

3

16
,

ξ

(
s+

1

16

)
, if d+

3

16
≤ s ≤ t− 1

16
,

η

(
16

(
s− t+

1

16

))
, if t− 1

16
≤ s ≤ t,

(2.19)

which is an admissible path for m∗(t, x, y). Therefore,

m∗(t, x, y)

≤
∫ 1

16

0

L (γ(16s), 16γ̇(16s)) ds+

∫ d+ 1
16

1
16

L

(
ξ̃

(
s− 1

16

)
, ˙̃ξ

(
s− 1

16

))
ds

+

∫ d+ 3
16

d+ 1
16

L

(
ξ̃

(
2

(
s− d− 1

16

)
+ d

)
, 2 ˙̃ξ

(
2

(
s− d− 1

16

)
+ d

))
ds

+

∫ t− 1
16

d+ 3
16

L

(
ξ̃

(
s+

1

16

)
, ˙̃ξ

(
s+

1

16

))
ds

+

∫ t

t− 1
16

L

(
η

(
16

(
s− t+

1

16

))
, 16η̇

(
16

(
s− t+

1

16

)))
ds.

. (2.20)

Similar to (2.13), (2.14), and (2.15) in the proof of Proposition 2.3, we have

∫ d+ 1
16

1
16

L

(
ξ̃

(
s− 1

16

)
, ˙̃ξ

(
s− 1

16

))
ds

+

∫ t− 1
16

d+ 3
16

L

(
ξ̃

(
s+

1

16

)
, ˙̃ξ

(
s+

1

16

))
ds

≤ m(t, x, y)−
∫ d+ 1

4

d

L
(
ξ̃(s), ξ̇(s)

)
ds ≤ m(t, x, y) +

K0

4
,

(2.21)
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and ∫ d+ 3
16

d+ 1
16

L

(
ξ̃

(
2

(
s− d− 1

16

)
+ d

)
, 2 ˙̃ξ

(
2

(
s− d− 1

16

)
+ d

))
ds

≤ C2
bM

2
0 +

21

8
K0,

(2.22)

and ∫ 1
16

0

L (γ(16s), 16γ̇(16s)) ds

+

∫ t

t− 1
16

L

(
η

(
16

(
s− t+

1

16

))
, 16η̇

(
16

(
s− t+

1

16

)))
ds

≤ 144nC2
b +

K0

8
,

(2.23)

which gives us

m∗(t, x, y) ≤ m(t, x, y) + 144nC2
b + C2

bM
2
0 + 3K0.

□

Next, we show that if H satisfies (A5), then L also satisfies a dual version of (A5).
This property of L is important for our analysis in the proofs of Theorems 1.2–1.3.

Lemma 2.5. Assume (A3), (A5). Then, for y ∈ Rn,

min
v∈Rn

L(y, v) = L(y, 0) = 0.

Proof. Fix y ∈ Rn. We compute that

L(y, 0) = sup
p∈Rn

(−H(y, p)) = − inf
p∈Rn

H(y, p) = 0.

Besides, for any v ∈ Rn,

L(y, v) = sup
p∈Rn

(p · v −H(y, p)) ≥ −H(y, 0) = 0.

The proof is complete. □

3. Superadditivity and subadditivity of the extended cost function

We first prove the subadditivity of the metric m∗.

Lemma 3.1. For t ≥ 1, |y| ≤ M0t, we have

m∗ (2t, 0, 2y) ≤ 2m∗ (t, 0, y) + C.

Proof. By Proposition 2.3, we know

m∗ (2t, 0, 2y) ≤ m∗ (t, 0, y) +m∗ (t, y, 2y) + C

for some constant C = C (n, ∂Ω,M0, K0). It suffices to prove that

m∗ (t, y, 2y) ≤ m∗ (t, 0, y) + C,

for some constant C = C(n, ∂Ω,M0, K0). Suppose ξ : [0, t] → Ω is an optimal path
for m∗(t, 0, y), that is, ξ(0) = x̃, ξ(t) = ỹ for some x̃, ỹ ∈ ∂Ω with x̃ − 0 ∈ Y and
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ỹ − y ∈ Y . Similarly to the proof of Proposition 2.3, we know that there exists

d ∈
{
0,

1

4
,
1

2
,
3

4
, · · · , ⌊t⌋ − 1

4

}
such that∫ d+ 1

4

d

L
(
ξ(s), ξ̇(s)

)
ds ≤ C2

b (M0 + 8
√
n)

2

2
+K0. (3.1)

Choose k ∈ Zn such that x̃ + k ∈ y + Y and define ξ̃(s) := ξ(s) + k for s ∈ [0, t].
Then,∫ d+ 1

4

d

L
(
ξ̃(s), ˙̃ξ(s)

)
ds =

∫ d+ 1
4

d

L
(
ξ(s), ξ̇(s)

)
ds ≤ C2

b (M0 + 8
√
n)

2

2
+K0.

Choose z̃ ∈ ∂Ω such that z̃ − 2y ∈ Y . From Proposition 2.2, we can find a path
γ : [0, 1] → Ω such that γ(0) = ỹ + k and γ(1) = z̃ with

∥γ̇∥L∞([0,1]) ≤ Cb

(
4
√
n+ 2

√
n
)
= 6

√
nCb, (3.2)

since |ỹ + k − z̃| ≤ |ỹ + k − 2y|+ |z̃ − 2y| ≤ 3
√
n+

√
n = 4

√
n.

Define ζ : [0, t] → Ω by

ζ(s) :=



ξ̃(s), if 0 ≤ s ≤ d,

ξ̃ (2(s− d) + d) , if d ≤ s ≤ d+
1

8
,

ξ̃

(
s+

1

8

)
, if d+

1

8
≤ s ≤ t− 1

8
,

γ

(
8

(
s− t+

1

8

))
, if t− 1

8
≤ s ≤ t,

(3.3)

which is an admissible path form∗ (t, y, 2y). Then,m∗ (t, y, 2y) ≤
∫ t

0
L
(
ζ(s), ζ̇(s)

)
ds,

that is,

m∗ (t, y, 2y)

≤
∫ d

0

L
(
ξ̃(s), ˙̃ξ(s)

)
ds+

∫ d+ 1
8

d

L
(
ξ̃ (2(s− d) + d) , 2 ˙̃ξ (2(s− d) + d)

)
ds

+

∫ t− 1
8

d+ 1
8

L

(
ξ̃

(
s+

1

8

)
, ˙̃ξ

(
s+

1

8

))
ds

+

∫ t

t− 1
8

L

(
γ

(
8

(
s− t+

1

8

))
, 8γ̇

(
8

(
s− t+

1

8

)))
ds

=

∫ d

0

L
(
ξ(s), ξ̇(s)

)
ds+

∫ d+ 1
8

d

L
(
ξ (2(s− d) + d) , 2ξ̇ (2(s− d) + d)

)
ds

+

∫ t− 1
8

d+ 1
8

L

(
ξ

(
s+

1

8

)
, ξ̇

(
s+

1

8

))
ds

+

∫ t

t− 1
8

L

(
γ

(
8

(
s− t+

1

8

))
, 8γ̇

(
8

(
s− t+

1

8

)))
ds.

(3.4)
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Similar to (2.13), (2.14), and (2.15) in the proof of Proposition 2.3, we have∫ d

0

L
(
ξ(s), ξ̇(s)

)
ds+

∫ t− 1
8

d+ 1
8

L

(
ξ

(
s+

1

8

)
, ξ̇

(
s+

1

8

))
ds ≤ m∗ (t, 0, y) +

K0

4
,

(3.5)

∫ d+ 1
8

d

L
(
ξ (2(s− d) + d) , 2ξ̇ (2(s− d) + d)

)
ds ≤ C2

b

(
M0 + 8

√
n
)2

+
33

8
K0, (3.6)

and ∫ t

t− 1
8

L

(
γ

(
8

(
s− t+

1

8

))
, 8γ̇

(
8

(
s− t+

1

8

)))
ds

=
1

8

∫ 1

0

L (γ(s), 8γ̇(s)) ds

≤ 4

∫ 1

0

|γ̇(s)|2 ds+
K0

8
≤ 144nC2

b +
K0

8
,

(3.7)

which gives

m∗(t, y, 2y) ≤ m∗(t, 0, y) + 144nC2
b + C2

b

(
M0 + 8

√
n
)2

+
9

2
K0.

□

Next, we show the superadditivity of the metric m∗.

Lemma 3.2. For t ≥ 1, |y| ≤ M0t, we have

2m∗ (t, 0, y) ≤ m∗ (2t, 0, 2y) + C. (3.8)

Proof. Let ξ : [0, 2t] → Ω be an optimal path of m∗ (2t, 0, 2y), that is, ξ(0) = x̃,
ξ(2t) = z̃ for some x̃, z̃ ∈ ∂Ω with x̃−0 ∈ Y and z̃−2y ∈ Y . Define γ(s) := (ξ(s), s)
for 0 ≤ s ≤ 2t. By Burago’s lemma ([3], see also [20]), there exists a collection of
disjoint time intervals {[ai, bi]}1≤i≤k ⊂ [0, 2t] with k ≤ n

2
+ 1 such that

k∑
i=1

(γ (bi)− γ (ai)) =
γ(2t)− γ(0)

2
=

(
z̃ − x̃

2
, t

)
.

Shift ξ on {[ai, bi]}ki=1 in a periodic way to define a new path ξ̃ : [0, t] → Ω so that

(1) t0 := 0, tj :=
∑j

i=1 (bi − ai) for 1 ≤ j ≤ k;

(2) ξ̃(0+) ∈ Y ∩ Ω;

(3) ξ̃
∣∣
(tj−1,tj)

is a periodic shift of ξ
∣∣
(tj−1,tj)

for 1 ≤ j ≤ k;

(4) Define ξ̃ (0−) := 0 and ξ̃
(
t+k
)
:= z̃−x̃

2
. Choose ỹ ∈ ∂Ω such that ỹ − y ∈ Y .

Define ξ̃(tk+1) := ỹ. Note that∣∣∣ξ̃(tk+1)− ξ̃
(
t+k
)∣∣∣ ≤ 2

√
n. (3.9)

(5) Shift ξ
∣∣
(tj−1,tj)

so that 1 ≤ j ≤ k − 1, ξ̃
(
t+j
)
− ξ̃

(
t−j
)
∈ Y , which gives that
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ξ(0)

ξ(2t)

ζ(0)

ζ(t)

Figure 3.1. An example of ξ and ζ

∣∣∣ξ̃ (t+j )− ξ̃
(
t−j
)∣∣∣ ≤ √

n. (3.10)

Note that ∣∣∣ξ̃ (t+k )− ξ̃
(
t−k
)∣∣∣ ≤ k

√
n. (3.11)

A key point here is ξ̃([0, t]) ⊂ Ω as Ω is ZN -periodic. In other words, periodic shifts
of pieces of ξ still stay in Ω and hence are admissible. Moreover, we have

k∑
j=1

(
ξ̃
(
t−j
)
− ξ̃

(
t+j
))

=
z̃ − x̃

2
.

Now we define another curve ζ : [0, t] → Ω from ξ̃ such that ζ is an admissible path
for m∗ (t, 0, y). See Figure 3.1. From Proposition 2.2, we know

m∗ (2y, 0, 2y) =

∫ 2t

0

L
(
ξ(s), ξ̇(s)

)
ds ≤

(
C2

b (M0 +
√
n)

2

2
+K0

)
2t (3.12)

and by using a similar reasoning as that in Proposition 2.3, there exists d ∈{
0,

1

4
,
1

2
,
3

4
, · · · , ⌊t⌋ − 1

4

}
such that

∫ d+ 1
4

d

L
(
ξ̃(s), ˙̃ξ(s)

)
ds ≤ C2

b

(
M0 +

√
n
)2

+ 2K0. (3.13)

Define ζ :
[
0, t− 1

8

]
→ Rn by

ζ(s) :=



ξ̃(s), if 0 ≤ s ≤ d,

ξ̃ (2(s− d) + d) , if d ≤ s ≤ d+
1

8
,

ξ̃

(
s+

1

8

)
, if d+

1

8
≤ s ≤ t− 1

8
.

(3.14)
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Therefore, by (1.7) and (3.13),∣∣∣∣∣
∫ t

0

L
(
ξ̃(s), ˙̃ξ(s)

)
ds−

∫ t− 1
8

0

L
(
ζ(s), ζ̇(s)

)
ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ d+ 1

8

d

L
(
ξ̃(2(s− d) + d), ˙̃ξ(2(s− d) + d)

)
ds

∣∣∣∣∣+
∣∣∣∣∣
∫ d+ 1

4

d

L
(
ξ̃(s), ˙̃ξ(s)

)
ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ d+ 1

4

d

L
(
ξ̃(s), 2 ˙̃ξ(s)

)
ds

∣∣∣∣∣+ C2
b

(
M0 +

√
n
)2

+
5

2
K0

≤
∫ d+ 1

4

d

∣∣∣2 ˙̃ξ(s)∣∣∣2
2

ds+
K0

4
+ C2

b

(
M0 +

√
n
)2

+
5

2
K0

≤ 4

∫ d+ 1
4

d

L
(
ξ̃(s), ˙̃ξ(s)

)
ds+ C2

b

(
M0 +

√
n
)2

+
27

4
K0

≤ 5C2
b

(
M0 +

√
n
)2

+
59

4
K0.

(3.15)

We now create k + 2 paths connecting ξ̃
(
t+j
)
and ξ̃

(
t−j
)
for 0 ≤ j ≤ k, and ξ̃ (tk+1)

and ξ̃
(
t+k
)
, each of which takes time 1

8(k+2)
. Similar to the proof of Proposition 2.2,

we can find such paths with a velocity bound 8k(k + 2)Cb

√
n according to (3.9),

(3.10), and (3.11). Then we glue these k + 2 paths to ζ and get a new admissible

path ζ̃ for m∗ (t, 0, y). Then,

m∗ (t, 0, y) ≤
∫ t

0

L
(
ζ̃(s), ˙̃ζ(s)

)
ds ≤

∫ t

0

L
(
ξ̃(s), ξ̃(s)

)
ds+ C (3.16)

for some constant C that is independent of t, y. We can show a similar result for
m∗ (t, y, 2y) and hence

m∗ (t, 0, y) +m∗ (t, y, 2y) ≤ m∗ (2t, 0, 2y) + C (3.17)

for some constant C that is independent of t, y. Moreover, by a similar argument
as in the proof of Lemma 3.1, we have

m∗(t, 0, y) ≤ m∗(t, y, 2y) + C (3.18)

for some constant C that is independent of t, y. Combine (3.17) and (3.18), we have

2m∗ (t, 0, y) ≤ m∗ (2t, 0, 2y) + C.

□

4. Proof of Theorem 1.1

We proved the subadditivity and the superadditivity of the metric function m∗ in
Section 3. Hence, the following proposition is a quick application of Fekete’s lemma
and we omit the proof here. (See [21, Lemma D.1] for a proof.)
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Proposition 4.1. For any t > 0 and x, y ∈ Rn with |x − y| ≤ M0t, the following
limit exists

m∗(t, x, y) := lim
k→∞

1

k
m∗ (kt, kx, ky) .

We refer the reader to [5, Proposition X.1] for some qualitative convergence results
which are related to that of Proposition 4.1. From the limit in the above proposition,
it is clear to see that m∗ is positive homogeneous of degree 1, that is, for t, s > 0
and x, y ∈ Rn,

m∗(st, sx, sy) = sm∗(t, x, y).

The next result is the key point for the main results in this paper.

Theorem 4.2. Let ε > 0, t ≥ ε and x, y ∈ Rn with |x − y| ≤ M0t. Then, there
exists a constant C = C (n, ∂Ω,M0, K0) > 0 such that∣∣∣∣m∗ (t, x, y)− εm∗

(
t

ε
,
x

ε
,
y

ε

)∣∣∣∣ ≤ Cε. (4.1)

Proof. Without loss of generality, we can assume x = 0 and we only prove the
direction

εm∗
(
t

ε
,
0

ε
,
y

ε

)
−m∗ (t, 0, y) ≤ Cε.

The proof for the other direction is similar.
Let t̃ := t

ε
and ỹ := y

ε
. Then t̃ ≥ 1 and |ỹ| ≤ M0t̃. From Lemma 3.2, we can

iterate (3.8) for k times and get

2k
(
m∗ (t̃, 0, ỹ)− C

)
≤ m∗ (2k t̃, 0, 2kỹ)− C. (4.2)

Dividing both sides of (4.2) by 2k and sending k to infinity, we obtain

m∗ (t̃, 0, ỹ)− C ≤ m∗ (t̃, 0, ỹ) (4.3)

which implies

εm∗
(
t

ε
, 0,

y

ε

)
− εC ≤ εm∗

(
t

ε
, 0,

y

ε

)
= m∗ (t, 0, y) .

□

We have not shown any connection between the limit m∗ and u. Next, we show
that after replacing the running cost in the original optimal control formula (1.9)
of u with m∗, we still obtain the limiting solution u.

Definition 3. Let t > 0 and x ∈ Rn. Define

u(x, t) := inf {m∗ (t, y, x) + g(y) : |x− y| ≤ M0t, y ∈ Rn} .

Recall that for all x ∈ Rn,

u(x, t) = inf

{
tL

(
x− y

t

)
ds+ g (y) : y ∈ Rn

}
.

by (1.9), and for all x ∈ εΩ,

uε(x, t) = inf

{
εm

(
t

ε
,
y

ε
,
x

ε

)
+ g (y) : |x− y| ≤ M0t, y ∈ εΩ

}
.
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Lemma 4.3. Let t > 0 and x ∈ Rn. Then u(x, t) = u(x, t).

Proof. Let δ > 0. By the qualitative homogenization result, for ε small enough with
x ∈ εΩ, we have

|uε(x, t)− u(x, t)| < δ. (4.4)

By Theorem 4.2, for any t ≥ ε, we have∣∣∣∣m∗(t, y, x)− εm∗
(
t

ε
,
y

ε
,
x

ε

)∣∣∣∣ ≤ Cε, (4.5)

for any y ∈ Rn with |y − x| ≤ M0t.
For any such ε and t ≥ ε, there exists yε,t,x ∈ εΩ with |yε,t,x−x| ≤ M0t such that

uε (x, t) = εm

(
t

ε
,
yε,t,x
ε

,
x

ε

)
+ g(yε,t,x). (4.6)

Note that y can potentially depend on ε, t, x. It follows from Proposition 2.4 that∣∣∣∣uε (x, t)− εm∗
(
t

ε
,
yε,t,x
ε

,
x

ε

)
− g(yε,t,x)

∣∣∣∣ ≤ Cε. (4.7)

Therefore, combining (4.4), (4.5), and (4.7), we have

u(x, t)− u(x, t) ≤ m∗(t, yε,t,x, x) + g(yε,t,x)− u(x, t)

≤ εm∗
(
t

ε
,
yε,t,x
ε

,
x

ε

)
+ Cε+ g (yε,t,x)− u(x, t)

≤ uε(x, t) + 2Cε− u(x, t)

≤ 2Cε+ δ.

(4.8)

Sending ε to zero and then δ to zero, we obtain u(x, t)− u(x, t) ≤ 0 for any t > 0.
On the other hand, there exists yt,x,δ ∈ Rn with

∣∣yt,x,δ − x
∣∣ ≤ M0t such that

u(x, t) + δ ≥ m∗ (t, yt,x,δ, x)+ g
(
yt,x,δ

)
. (4.9)

Then for ε small enough with x, yt,x,δ ∈ εΩ, we have

u(x, t) ≤ uε(x, t) + δ

≤ εm∗
(
t

ε
,
yt,x,δ
ε

,
x

ε

)
+ g(yt,x,δ) + Cε+ δ

≤ m∗(t, yt,x,δ, x) + g(yt,x,δ) + 2Cε+ δ

≤ u (x, t) + 2Cε+ 2δ.

(4.10)

Sending ε to zero and then δ to zero, we obtain u(x, t)−u(x, t) ≤ 0 for any t > 0. □

Now, we are ready to prove our first main theorem.

Proof of Theorem 1.1. If 0 < t < ε, by the comparison principle, we know

|uε(x, t)− g(x)| ≤ Ct,

and
|u(x, t)− g(x)| ≤ Ct,
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for some constant C > 0 that only depends on H and ∥Dg∥L∞(Rn). Therefore,

|uε(x, t)− u(x, t)| ≤ Ct ≤ Cε,

for some constant C > 0 that only depends on H and ∥Dg∥L∞(Rn).
If t ≥ ε, from Lemma 4.3, it suffices to prove

|uε (x, t)− u (x, t)| ≤ Cε.

On the one hand, we have

u (x, t) = inf {m∗ (t, y, x) + g(y) : |x− y| ≤ M0t, y ∈ Rn}

≤ inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ g(y) + Cε : |x− y| ≤ M0t, y ∈ Rn

}
≤ inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ g(y) + Cε : |x− y| ≤ M0t, y ∈ εΩ

}
≤ uε (x, t) + Cε,

(4.11)

where the second line follows from Theorem 4.2.
On the other hand, it follows from Lemma 2.1 and Proposition 2.4 that

uε (x, t) = inf

{
εm

(
t

ε
,
y

ε
,
x

ε

)
+ g (y) : |x− y| ≤

(
M0 +

√
nε
)
t, y ∈ εΩ

}
≤ inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ g (y) + Cε : |x− y| ≤

(
M0 +

√
nε
)
t, y ∈ εΩ

}
.

(4.12)
We claim that

inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ g (y) : |x− y| ≤

(
M0 +

√
nε
)
t, y ∈ εΩ

}
≤ inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ ∥Dg∥L∞

√
nε+ g (y) : |x− y| ≤ M0t, y ∈ Rn

}
.

(4.13)

Suppose y /∈ εΩ, then there exists
ỹ

ε
,
x̃

ε
∈ ∂Ω with

ỹ

ε
− y

ε
∈ Y and

x̃

ε
− x

ε
∈ Y

such that

m∗
(
t

ε
,
y

ε
,
x

ε

)
= m

(
t

ε
,
ỹ

ε
,
x̃

ε

)
. (4.14)

Now, by the definition of m∗ ( t
ε
, ỹ
ε
, x
ε

)
, we have

m

(
t

ε
,
ỹ

ε
,
x̃

ε

)
≥ m∗

(
t

ε
,
ỹ

ε
,
x

ε

)
. (4.15)

Hence, combining (4.14) and (4.15), we obtain

εm∗
(
t

ε
,
y

ε
,
x

ε

)
+ g (y) + ∥Dg∥L∞

√
nε ≥ εm∗

(
t

ε
,
ỹ

ε
,
x

ε

)
+ g(ỹ),
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which gives us (4.13). Moreover, it follows from Theorem 4.2 that

inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ ∥Dg∥L∞

√
nε+ g (y) : |x− y| ≤ M0t, y ∈ Rn

}
≤ inf {m∗ (t, y, x) + Cε+ g (y) : |x− y| ≤ M0t, y ∈ Rn}
≤ u (x, t) + Cε.

(4.16)

Combining (4.12), (4.13), and (4.16), we have

uε(x, t) ≤ u (x, t) + Cε.

□

5. Homogenization in a dilute setting

In this section we prove Theorem 1.2. The following setting is always assumed:
Let D ⋐ (−1

2
, 1
2
)n be an open connected set with C1 boundary containing 0 and

η : [0, 1
2
) → [0, 1

2
) be such that limε→0 η(ε) = 0. For ε > 0,

Ωη(ε) = Rn \
⋃

m∈Zn

(m+ η(ε)D), and Ωε = εΩη(ε).

Recall the optimal control formulas for ũε, for (x, t) ∈ Rn × [0,∞),

ũε(x, t)

= inf

{∫ t

0

L

(
ξ(s)

ε
, ξ̇(s)

)
ds+ g (ξ(0)) : ξ ∈ AC([0, t];Rn), ξ(t) = x

}
= inf

{
ε

∫ t
ε

0

L (γ(s), γ̇(s)) ds+ g (εγ(0)) : γ ∈ AC

([
0,

t

ε

]
;Rn

)
, γ

(
t

ε

)
=

x

ε

}
.

(5.1)
We give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let ε ∈
(
0, 1

2

)
, t > 0, and x ∈ Ωε. By [20, Theorem 1.1],

∥ũε − ũ∥L∞(Rn×[0,∞)) ≤ Cε,

which yields the first and last inequalities in (1.14).
By the definition of optimal control formulas for ũε and uε, we have

ũε(x, t) ≤ uε (x, t) ,

which proves the second inequality in (1.14). The rest is to show the third inequality
in (1.14), i.e.,

uε (x, t) ≤ ũε (x, t) + C (ε+ η (ε) t) . (5.2)

Let γ :
[
0, t

ε

]
→ Rn be an optimal path for ũε(x, t), that is,

ũε (x, t) = ε

∫ t
ε

0

L (γ(s), γ̇(s)) ds+ g (εγ(0)) ,

with γ
(
t
ε

)
= x

ε
. Thanks to [19], we have ∥γ̇∥L∞[0, tε ]

≤ M0.
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For k ∈ Zn, we denote Dη
k := k + η(ε)D and

J :=

{
k ∈ Zn : γ

([
0,

t

ε

])
∩Dη

k ̸= ∅
}
.

Note that J collects all the indices k such that γ intersects with Dη
k. Of course,

if J = ∅, then (5.2) holds immediately. Let us assume that J ̸= ∅ from now on.
We claim that |J | ≤ 2M0t

ε
. Indeed, for k, j ∈ Zn with k ̸= j, dist

(
Dη

k, D
η
j

)
> 1

2
as

η(ε) ∈ (0, 1
2
). Since ∥γ̇∥L∞[0, tε ]

≤ M0, it takes at least 1
2M0

in time for γ to travel

from Dη
k to Dη

j . Therefore,

|J | ≤
t
ε
1

2M0

≤ 2M0t

ε
.

Without loss of generality, we can assume Dη
k1

is the first hole that γ enters, and γ
enters Dη

ki+1
after the final exit from Dη

ki
for i ∈ {1, 2, · · · , |J |}. Define t0 = 0 and

si : = inf
{
s : γ(s) ∈ Dη

ki
, s ≥ ti−1

}
,

ti : = sup
{
s : γ(s) ∈ Dη

ki
, s ≥ si

}
,

for i ∈ {1, 2, · · · , |J |}. Intuitively, si is the first time γ intersects Dη
ki

after its
final exit from Dη

ki−1
, while ti is the last time point at which γ exits Dη

ki
. Since

∥γ̇∥L∞ ≤ M0, we have

t1 − s1 ≥
|γ(t1)− γ(s1)|

M0

.

We claim that for some constant C > 0 independent of ε, η(ε) and determined later,∫ t1

s1

L (γ(s), γ̇(s)) ds ≤ Cη(ε),

and there exists a path γ̃1 : [s1, t1] → Ω
η(ε)

such that∫ t1

s1

L
(
γ̃1(s), ˙̃γ1(s)

)
ds ≤ Cη(ε). (5.3)

Indeed, consider a path ξ : [s1, t1] → Rn defined by

ξ(s) :=


γ(t1)− γ(s1)

|γ(t1)− γ(s1)|
M0 (s− s1) + γ(s1), if s ∈

[
s1, s1 +

|γ(t1)− γ(s1)|
M0

]
,

γ(t1) if s ∈
[
s1 +

|γ(t1)− γ(s1)|
M0

, t1

]
.

(5.4)
This path essentially represents the line segment from γ(t1) to γ(s1), traversed at
a constant velocity M0. After reaching γ(t1), the path remains at γ(t1) for the rest
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of the time. Then,∫ t1

s1

L
(
ξ(s), ξ̇(s)

)
ds =

∫ s1+
|γ(t1)−γ(s1)|

M0

s1

L
(
ξ(s), ξ̇(s)

)
ds

≤
(
M2

0

2
+K0

)
|γ(t1)− γ(s1)|

M0

≤
(
M0

2
+

K0

M0

)
η(ε),

where the first equality comes from (A5) and Lemma 2.5, and the second inequality
follows from (1.7). Since γ is an optimal path for ũε(x, t), the cost functional
with respect to γ is optimal on any subinterval of [0, t

ε
]. As ξ(s1) = γ(s1) and

ξ(t1) = γ(t1), ∫ t1

s1

L (γ(s), γ̇(s)) ds ≤
∫ t1

s1

L
(
ξ(s), ξ̇(s)

)
ds ≤ Cη(ε).

If γ(0) ∈ Dη
k1
, then s1 = 0 and γ(s1) = γ(0) ∈ Dη

k1
. We can define γ̃1 : [0, t1] →

Ω
η(ε)

by γ̃1(s) = γ(t1) for s ∈ [0, t1]. Then,∫ t1

0

L(γ(t1), 0) ds = 0,

in which case (5.3) obviously holds. Note that |γ(0)− γ̃1(0)| ≤ η(ε).

If γ(0) ∈ Ω
η(ε)

, we can revise ξ and construct a path γ̃1 : [s1, t1] → Ω
η(ε)

, where

γ̃1 runs on ∂Dη
k1

and connect γ(s1) to γ(t1) on
[
s1, s1 +

|γ(t1)−γ(s1)|
M0

]
, and γ̃1 stays at

γ(t1) for the rest of the time. Then, we obtain∫ t1

s1

L
(
γ̃1(s), ˙̃γ1(s)

)
ds ≤

(
C2

bM0

2
+

K0

M0

)
η(ε).

Similarly, for each i = 1, . . . , |J |, one can prove∫ ti

si

L (γ(s), γ̇(s)) ds ≤
(
M0

2
+

K0

M0

)
η(ε), (5.5)

and construct γ̃i : [si, ti] → Ω
η(ε)

with γ̃i(si) = γ(si), γ̃i(ti) = γ(ti), and∫ ti

si

L
(
γ̃i(s), ˙̃γi(s)

)
ds ≤

(
C2

bM0

2
+

K0

M0

)
η(ε), (5.6)

Hence, when necessary we can revise γ to a new path γ̃ :
[
0, t

ε

]
→ Ω

η(ε)
by

γ̃(s) :=


γ(s), if s ∈

[
0,

t

ε

]
\

 |J |⋃
i=1

[si, ti]

 ,

γ̃i(s), if s ∈ [si, ti] , i = 1, 2, · · · , |J |,

(5.7)
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which is an admissible path for uε(x, t). Therefore,

uε(x, t) ≤ ε

∫ t
ε

0

L
(
γ̃(s), ˙̃γ(s)

)
ds+ g (εγ̃(0))

≤ ε

∫ t
ε

0

L (γ(s), γ̇(s)) ds+ g (εγ(0)) + Cε|γ(0)− γ̃(0)|

+ ε|J |
(
M0

2
+

K0

M0

)
η(ε) + ε|J |

(
C2

bM0

2
+

K0

M0

)
η(ε)

≤ ũε(x, t) + Cεη(ε) + tη(ε)
(
4K0 +M2

0 + C2
bM

2
0

)
,

where the second inequality follows from (A4), (5.5), and (5.6), and the last in-
equality comes from the fact that |J | ≤ 2M0t

ε
. Thus, (5.2) holds and the proof is

complete.
□

In the above proof, we obtained

uε(x, t) ≤ ũε(x, t) + Cεη(ε) + tη(ε)
(
4K0 +M2

0 + C2
bM

2
0

)
, (5.8)

which is a bit stronger than (5.2).
We show the obtained convergence rate in Theorem 1.2 and (5.8) are essentially

optimal through the following lemma.

Lemma 5.1. Consider n = 2. Let D := B
(
0, 1

4

)
⊂ R2 and η :

[
0, 1

3

)
→
[
0, 1

3

)
with limε→0 η(ε) = 0 such that Ωη(ε) = R2 \

⋃
m∈Z2(m+ η(ε)D) and Ωε = εΩη(ε) for

ε ∈ (0, 1
3
). Assume

H(y, p) :=
a(y)|p|2

2
for (y, p) ∈ R2 × R2,

where a ∈ Lip (R), which is Z-periodic and satisfies a(y) := 1−|y2| for y2 ∈
[
−1

2
, 1
2

]
.

Let g(x) = −x1 for x ∈ R2.
For ε ∈

(
0, 1

3

)
, let uε : Ωε × [0,∞) → R be the unique viscosity solution to (1.1)

and ũε : R2 × [0,∞) → R be the unique viscosity solution to (1.12), respectively.
Let {e1, e2} be the canonical basis for R2. Then, there exists a constant C > 0
independent of ε ∈ (0, 1

3
) such that

uε

(
εη(ε)

4
e2, 1

)
≥ ũε

(
εη(ε)

4
e2, 1

)
− Cεη(ε)− Cε+ Cη(ε)2. (5.9)

Proof. For y2 ∈
[
−1

2
, 1
2

]
and v ∈ R2, we have

L(y, v) =
|v|2

2a(y)
=

|v|2

2 (1− |y2|)
.

In particular, L(se1, v) =
|v|2
2

for s ∈ R.
We first compute ũε(0, 1) and find an optimal path for ũε(0, 1). Suppose that

γ :
[
0, 1

ε

]
→ R2 is an optimal path for ũε(0, 1), that is,

ũε(0, 1) = ε

∫ 1
ε

0

L (γ(s), γ̇(s)) ds+ g(εγ(0)),
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and γ
(
1
ε

)
= 0. We compute

ũε(0, 1) ≥ ε

∫ 1
ε

0

|γ̇(s)|2

2
ds+ g(εγ(0))

≥ 1

2

∣∣∣∣∣ε
∫ 1

ε

0

γ̇(s) ds

∣∣∣∣∣
2

+ g(εγ(0))

≥ 1

2
|εγ(0)|2 − |εγ(0)|

≥ −1

2
.

The second inequality above follows from Jensen’s inequality. Further, the minimum
is attained at |εγ(0)| = 1. In fact,

ũε(0, 1) = −1

2
(5.10)

and γ̃ :
[
0, 1

ε

]
→ R2 defined by

γ̃(s) :=

(
1

ε
− s

)
e1 for s ∈

[
0,

1

ε

]
is an optimal path for ũε(0, 1), which is a straight line segment connecting

(
1
ε
, 0
)

and (0, 0). As ũε is globally Lipschitz, we use (5.10) to yield

ũε

(
εη(ε)

4
e2, 1

)
≤ −1

2
+ Cεη(ε). (5.11)

Next, we estimate the value of uε
(

εη(ε)
4

e2, 1
)
. Suppose ξ :

[
0, 1

ε

]
→ Ω

η(ε)
is an

optimal path for uε
(

εη(ε)
4

e2, 1
)
, that is,

uε

(
εη(ε)

4
e2, 1

)
= ε

∫ 1
ε

0

L
(
ξ(s), ξ̇(s)

)
ds+ g(εξ(0)),

and ξ
(
1
ε

)
= η(ε)

4
e2. For i ∈ Z, we define

Si :=

{
(y1, y2) ∈ R2 : y1 ∈

[
i− η(ε)

8
, i+

η(ε)

8

]}
,

which is a vertical strip region of width η(ε)
4

centered at ie1. We will estimate the
running cost of ξ based on whether it falls within or outside the strip regions. Let
ξ(0) = (ξ1(0), ξ2(0)) ∈ R2. The initial condition g(x) = −x1 implies that ξ(0)
falling in the negative part of the e1 axis would incur higher costs. In fact, as long
as ξ1(0) < 3/2, the control formula yields

uε

(
η(ε)

4
e2, 1

)
> −3ε

2
≥ −1

2
≥ ũε

(
η(ε)

4
e2, 1

)
− Cεη(ε),

which confirms (5.9). Hence we can, without loss of generality, assume that ξ1(0) ∈[
K + 1

2
, K + 3

2

]
for some positive integer K ∈ N. Then, ξ

([
0, 1

ε

])
passes through



30 Y. HAN, W. JING, H. MITAKE, H. V. TRAN

at least K strip regions, i.e., S1, S2, · · · , SK . Let

I :=

{
s ∈

[
0,

1

ε

]
: ξ(s) ∈ Si for some i ∈ N

}
,

which collects all the time that ξ is in a vertical strip region. Since
∥∥∥ξ̇∥∥∥

L∞[0, 1ε ]
≤ M0,

we have |I| ≥ Kη(ε)
4M0

where |I| denotes the measure of I. Similarly, ξ
([
0, 1

ε

])
passes

through at least K gap regions between Si’s, each of which is also a strip region of

width 1 − η(ε)
4
. Hence, for Ic =

[
0, 1

ε

]
\ I, we have |Ic| ≥ K

M0

(
1− η(ε)

4

)
. Note that

if ξ(s) ∈ Si ∩ Ω
η(ε)

for some i ∈ Z, then

L
(
ξ(s), ξ̇(s)

)
=

∣∣∣ξ̇(s)∣∣∣2
2 (1− ξ2(s))

≥

∣∣∣ξ̇(s)∣∣∣2
2

(
1 +

η(ε)

8

)
. (5.12)

This is because ξ has to avoid the hole of radius η(ε)
4

and the strip is centered on

the same point as the hole and has a width of η(ε)
4
. Besides, for s ∈ Ic =

[
0, 1

ε

]
\ I,

we simply have

L
(
ξ(s), ξ̇(s)

)
≥

∣∣∣ξ̇(s)∣∣∣2
2

. (5.13)

We use (5.12) and (5.13) to imply

uε

(
εη(ε)

4
e2, 1

)
= ε

∫ 1
ε

0

L
(
ξ(s), ξ̇(s)

)
ds− εξ1(0)

≥ ε

2

∫
Ic

∣∣∣ξ̇(s)∣∣∣2 ds+
ε

2

(
1 +

η(ε)

8

)∫
I

∣∣∣ξ̇(s)∣∣∣2 ds− εξ1(0)

≥ ε

2|Ic|

(
K

(
1− η(ε)

4

))2

+
ε

2|I|

(
1 +

η(ε)

8

)(
Kη(ε)

4

)2

− εξ1(0)

=
ε

2
φ (|Ic|)− εξ1(0)

(5.14)
where the third line follows from Jensen’s inequality and

φ(z) :=
1

z

(
K

(
1− η(ε)

4

))2

+
1

1
ε
− z

(
1 +

η(ε)

8

)(
Kη(ε)

4

)2

.

In order to obtain a good estimate of uε
(

εη(ε)
4

e2, 1
)
, we need to minimize the last

line in (5.14) over |Ic| ∈
[
0, 1

ε

]
. Essentially, we minimize the function φ over z =

|Ic| ∈
[
0, 1

ε

]
. By setting φ′(z) = 0 and solving for z, we get the critical point

z0 = ε−1

(√
1 + η(ε)

8
η(ε)
4

+ 1− η(ε)
4

)−1 (
1− η(ε)

4

)
and

min
z∈[0, 1ε ]

φ(z) = φ(z0) = εK2

(
1 +

(√
1 +

η(ε)

8
− 1

)
η(ε)

4

)2

.
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Plugging back in (5.14), we obtain

uε

(
εη(ε)

4
e2, 1

)
≥ ε2K2

2

(
1 +

(√
1 +

η(ε)

8
− 1

)
η(ε)

4

)2

− εξ1(0)

≥ ε2K2

2

(
1 + 2

(√
1 +

η(ε)

8
− 1

)
η(ε)

4

)
− εξ1(0)

≥
(
1

2
+

η(ε)2

64

)
ε2K2 − εξ1(0)

≥
(
1

2
+

η(ε)2

64

)
ε2
(
ξ1(0)−

3

2

)2

− εξ1(0),

(5.15)

where the fourth inequality comes from the fact that ξ1(0) ≤ K + 3
2
. By further

computations, we have(
1

2
+

η(ε)2

64

)
ε2
(
ξ1(0)−

3

2

)2

− εξ1(0)

≥
(
1

2
+

η(ε)2

64

)
(εξ1(0))

2 −
(
1 + 3ε

(
1

2
+

η(ε)2

64

))
εξ1(0) +

9

8
ε2

≥−

(
1 + 3ε

(
1
2
+ η(ε)2

64

))2
2 + η(ε)2

16

+
9

8
ε2

≥− 1

2 + η(ε)2

16

− 3

2
ε− 9

4
ε2 +

9

8
ε2

≥− 1

2
+

η (ε)2

100
− 3

2
ε− 9

8
ε2

≥− 1

2
+

η (ε)2

100
− 3ε.

(5.16)

Combining (5.15), (5.16), and (5.11), we obtain

uε

(
εη(ε)

4
e2, 1

)
≥ ũε

(
εη(ε)

4
e2, 1

)
− Cεη(ε)− 3ε+

η(ε)2

100
.

□

Remark 2. In the inequality (5.9), we have the term Cη(ε)2 instead of Cη(ε)
because we have only used the rough lower bound (5.13) and have not utilized the
minimizing property of the action functional on Ic.
Nevertheless, as η(ε) can tend to 0 as slow as it wants as ε → 0, (5.9) implies

that (5.8) is essentially optimal.

We now use Theorem 1.2 to deduce a convergence rate of HΩη(ε) to H0 under
assumptions (A1)–(A3) and (A5).
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Corollary 5.2. Assume the settings of Theorem 1.2. For R > 0, there exists
C = C(n, ∂D,H,R) > 0 such that, for ε ∈ (0, 1),∣∣HΩη(ε)(p)−H0(p)

∣∣ ≤ C(ε+ η(ε)) for |p| ≤ R.

Proof. Fix p with |p| ≤ R. Let g(x) = p ·x for x ∈ Rn. By Theorem 1.2 and Remark
1, for x ∈ B(0, 1) ∩ Ωε,

|uε(x, 1)− ũ(x, 1)| ≤ C(ε+ η(ε)),

and

|uε(x, 1)− ũη(ε)(x, 1)| ≤ Cε.

Combine the two inequalities to yield

|ũ(x, 1)− ũη(ε)(x, 1)| ≤ C(ε+ η(ε)). (5.17)

On the other hand, as g(x) = p · x, we have that, for (x, t) ∈ Rn × [0,∞),

ũ(x, t) = p · x−H0(p)t, and ũη(ε)(x, t) = p · x−HΩη(ε)(p)t. (5.18)

Combine (5.17) and (5.18) to conclude. □

Remark 3. Assume the settings of Theorem 1.2. Let η(ε) = ε for ε > 0. For
R > 0, there exists C = C(n, ∂D,H,R) > 0 such that, for ε ∈ (0, 1),∣∣HΩε(p)−H0(p)

∣∣ ≤ Cε for |p| ≤ R. (5.19)

Note that Ωε ̸= Ωε, and more precisely,

Ωε = Rn \
⋃

m∈Zn

(m+ εD).

It seems that the rate in (5.19) is the best one can hope for. However, this has not
been studied in the literature and deserves some attention. Here, {Ωε} does not
have the scaling property as those in [11, 23, 24].

6. Homogenization with domain defects

In this section, we always assume the following setting. Let D ⋐ (−1
2
, 1
2
)n be an

open connected set with C1 boundary containing 0. Let Ω = Rn \
⋃

m∈Zn(m +D)
and Ωε = εΩ for ε > 0. Let I ⊊ Zn with I ̸= ∅ be an index set that specifies the
places where the holes are missing and

W = Ω ∪
⋃
m∈I

(m+D) = Rn \
⋃

m∈Zn\I

(m+D), Wε = εW.

Note that for Ωε to be connected, we need n ≥ 2. For k ∈ N, Ik = I ∩ [−k, k]n and
condition (1.16) reads

|Ik|
k

= ω0

(
1

k

)
where ω0 is a given modulus of continuity.
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6.1. Proof of Theorem 1.3. We always assume the settings of Theorem 1.3 in
this subsection.

Let wε : W ε× [0,∞) → R be the viscosity solution to (1.17). The optimal control
formula for wε is as follows:

wε(x, t)

= inf

{∫ t

0

L

(
ξ(s)

ε
, ξ̇(s)

)
ds+ g (ξ(0)) : ξ ∈ AC

(
[0, t];W ε

)
, ξ(t) = x

}
= inf

{
ε

∫ t
ε

0

L (γ(s), γ̇(s)) ds+ g (εγ(0)) : γ ∈ AC

([
0,

t

ε

]
;W

)
, γ

(
t

ε

)
=

x

ε

}
.

(6.1)

Lemma 6.1. Assume the settings of Theorem 1.3. Let ε, t > 0 and x ∈ Rn. Suppose
that γ :

[
0, t

ε

]
→ W is a minimizing curve of wε(x, t) in the sense that γ is absolutely

continuous, and

wε(x, t) = ε

∫ t
ε

0

L (γ(s), γ̇(s)) ds+ g (εγ(0)) (6.2)

with γ
(
t
ε

)
= x

ε
. Then there exists a constant M0 = M0

(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0

such that

∥γ̇∥L∞([0, t
ε
]) ≤ M0.

The proof of Lemma 6.1 is given in Appendix A. We can also define a metric
function md similar to m in Section 2.

Definition 4. Let x, y ∈ W . Define

md(t, x, y) = inf

{∫ t

0

L (γ(s), γ̇(s)) ds : γ ∈ AC
(
[0, t] ;W

)
, γ(0) = x, γ (t) = y

}
.

(6.3)

With the metric md and Lemma 6.1, we can rewrite the optimal control formula
for wε as

wε(x, t) = inf

{
εmd

(
t

ε
,
y

ε
,
x

ε

)
+ g (y) : y ∈ W ε, |x− y| ≤ M0t

}
. (6.4)

Lemma 6.2. Let t ≥ 1 and x ∈ W . Consider y ∈ W with |y − x| ≤ M0t. Assume
that there exists an optimal path η : [0, t] → W for md (t, y, x), that is,

md (t, y, x) =

∫ t

0

L (η(s), η̇(s)) ,

with ∥η̇∥L∞[0,t] ≤ M0. Then, there exists a constant C = C
(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
>

0 and a constant C̃ = C̃
(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0 such that

m∗ (t, y, x) ≤ md(t, y, x) + C
∣∣I⌈M0t+|x|⌉

∣∣+ C̃,

where
∣∣I⌈M0t+|x|⌉

∣∣ is the cardinality of the set I⌈M0t+|x|⌉.
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Proof. Let t > 1 and x ∈ W . Let η : [0, t] → W be an optimal path for md (t, y, x)
with ∥η̇∥L∞[0,t] ≤ M0.

In [−⌈M0t+ |x|⌉ , ⌈M0t+ |x|⌉]n, there are |I⌈M0t+|x|⌉| unit cells that do not have

holes in them. For mi ∈ I⌈M0t+|x|⌉ and i ∈
{
1, 2, · · · ,

∣∣I⌈M0t+|x|⌉
∣∣}, define

Hi := mi +D,

which are the holes in the defective unit cells. Note that Hi ⊂ W and hence η can
run into Hi ⊂ W for any i ∈ {1, 2, · · · ,

∣∣I⌈M0t+|x|⌉
∣∣}. Without loss of generality, we

can assume H1 is the first hole that η enters and η enters Hi after the final exit
from Hi−1. There are two cases to be considered.

Case 1. Suppose x, y ∈ Ω. Define t0 = 0 and

si : = inf {s : η(s) ∈ ∂Hi, s ≥ ti−1} ,
ti : = sup {s : η(s) ∈ ∂Hi, s ≥ si} ,

for i ∈ {1, 2, · · · ,
∣∣I⌈M0t+|x|⌉

∣∣}. Intuitively, si represents the initial time point at
which η enters Hi after its final exit from Hi−1, while ti denotes the final time point
at which η exits Hi.
Consider s ∈ [s1, t1] and define y1 := η(s1) and x1 := η(t1). We claim that there

exists a path η1 : [s1, t1] → Ym1 ∩ Ω with η1(s1) = y1, η1(t1) = x1, and∫ t1

s1

L(η1(s), η̇1(s)) ds ≤ C, (6.5)

for some constant C = C
(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0.

(a) Suppose t1 − s1 ≤ 1. Since ∥η̇∥L∞[0,t] ≤ M0, we have

|y1 − x1| ≤
∫ t1

s1

|η̇(s)| ≤ M0(t1 − s1),

which implies |y1−x1|
t1−s1

≤ M0. By a similar argument as in the proof of Propo-

sition 2.2, there exists a path η1 : [s1, t1] → Ym1 ∩ Ω such that η1(s1) = y1,
η1(t1) = x1, and ∥η̇1∥L∞[s1,t1]

≤ CbM0. Moreover,

∫ t1

s1

L(η1(s), η̇1(s)) ds ≤
∫ t1

s1

(
|η̇1(s)|2

2
+K0

)
ds

≤
(
C2

bM
2
0

2
+K0

)
(t1 − s1)

≤
(
C2

bM
2
0

2
+K0

) (6.6)

since t1 − s1 ≤ 1.
(b) Suppose t1 − s1 > 1. Consider the straight line segment connecting y1, x1

using time 1, that is,

γ(s) := (x1 − y1)s+ y1,
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for s ∈ [0, 1], and ∥γ̇∥L∞[0,1] = |x1−y1|. By a similar argument as in the proof

of Proposition 2.2, we can revise this straight line segment into γ̃ : [0, 1] →
Ym1 ∩ Ω with γ̃(0) = y1, γ̃(1) = x1, and ∥γ̇∥L∞[0,1] ≤ Cb|x1 − y1| ≤ Cb

√
n.

Define a new path η̃1 : [s1, t1] → Ym1 ∩ Ω by

η̃1(s) :=

{
γ̃(s− s1), for s ∈ [s1, s1 + 1],

x1, for s ∈ [s1 + 1, t1].

Now

∫ t1

s1

L(η̃1(s), ˙̃η1(s)) ds

≤
∫ s1+1

s1

L
(
γ̃(s− s1), ˙̃γ(s− s1)

)
ds+

∫ t1

s1+1

L(x1, 0) ds

≤
∫ 1

0

L
(
γ̃(s), ˙̃γ(s)

)
ds+ 0 ≤

∫ 1

0

(∣∣ ˙̃γ(s)∣∣2
2

+K0

)
ds

≤ nC2
b

2
+K0,

(6.7)

where the second inequality follows from (A5) and Lemma 2.5.

Combining (6.6) and (6.7), we prove the claim (6.5). In general, for 1 ≤ i ≤∣∣I⌈M0t+|x|⌉
∣∣, define yi := η(si) and xi := η(ti). Then, there exists a path ηi : [si, ti] →

Ymi
∩ Ω with ηi(si) = yi, ηi(ti) = xi, and

∫ ti

si

L(ηi(s), η̇i(s)) ds ≤ C, (6.8)

for some constant C = C
(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0. Note that xi and yi may not

exist, but this is perfectly acceptable as we do not need to consider them in that
case. Now, define a new path ξ : [0, t] → Ω defined by

ξ(s) :=


η(s), for s ∈ [0, t] \

|I⌈M0t+|x|⌉|⋃
i=1

[si, ti]

 ,

ηi(s), for s ∈ [si, ti], i ∈
{
1, 2, · · · ,

∣∣I⌈M0t+|x|⌉
∣∣} ,

(6.9)

and this is an admissible path for m(t, y, x). Therefore,
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m(t, y, x)

≤
∫ t

0

L
(
ξ(s), ξ̇(s)

)
ds

≤
∫
[0,t]\

(⋃|I⌈M0t+|x|⌉|
i=1 [si,ti]

) L(η(s), η̇(s)) ds+

|I⌈M0t+|x|⌉|∑
i=1

∫
[si,ti]

L(ηi(s), η̇i(s)) ds

≤
∫ t

0

L(η(s), η̇(s)) ds+

|I⌈M0t+|x|⌉|∑
i=1

∫
[si,ti]

(L(ηi(s), η̇i(s))− L(η(s), η̇(s))) ds

≤
∫ t

0

L(η(s), η̇(s)) ds+

|I⌈M0t+|x|⌉|∑
i=1

∫
[si,ti]

L(ηi(s), η̇i(s)) ds

≤ md (t, y, x) + C
∣∣I⌈M0t+|x|⌉

∣∣ ,
(6.10)

where the second to last inequality follows from (A5) and Lemma 2.5, and C =
C
(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
comes from (6.8). By Proposition 2.4, we have

m∗(t, y, x) ≤ C̃ +md (t, y, x) + C
∣∣I⌈M0t+|x|⌉

∣∣
for some constant C̃ = C̃

(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0.

Case 2. Suppose either x or y is inHi = mi+D for some i ∈
{
1, 2, · · · ,

∣∣I⌈M0t+|x|⌉
∣∣},

that is, a hole in one of the defective unit cells. Without loss of generality, we assume
y ∈ H1 = m1 + D and x ∈ Ω. One can prove for the case where x is in a hole of
a defective unit cell and y is not and the case both x, y are in some holes similarly.
Define

t1 := sup {s : η(s) ∈ ∂H1, s ≥ 0} ,
and

si : = inf {s : η(s) ∈ ∂Hi, s ≥ ti−1} ,
ti : = sup {s : η(s) ∈ ∂Hi, s ≥ si} ,

for i ∈
{
2, · · · ,

∣∣I⌈M0t+|x|⌉
∣∣} as in Case 1. Similar to (6.9) in Case 1, we can find a

revised path ξ : [0, t] → Ω defined by

ξ(s) :=


η(s), for s ∈ [0, t] \

|I⌈M0t+|x|⌉|⋃
i=2

[si, ti]

 ,

ηi(s), for s ∈ [si, ti], i ∈
{
2, · · · ,

∣∣I⌈M0t+|x|⌉
∣∣} ,

(6.11)

for some paths ηi : [si, ti] → Ymi
∩ Ω with ηi(si) = yi, ηi(ti) = xi, and∫ ti

si

L(ηi(s), η̇i(s)) ds ≤ C, (6.12)
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with i ∈
{
2, · · · ,

∣∣I⌈M0t+|x|⌉
∣∣}. Moreover,

∥∥∥ξ̇∥∥∥
L∞[0,t]

≤ C̃ := max
{
CbM0, Cb

√
n
}
. (6.13)

By the proof in Case 1, we know

∫ t

0

L (ξ(s), ξ(s)) ds ≤ md(t, y, x) + C
∣∣I⌈M0t+|x|⌉

∣∣ . (6.14)

(a) Suppose t1 < 1
8
. Let x̃, ỹ ∈ ∂Ω with x̃ − x ∈ Y, ỹ − y ∈ Y . From the proof

of Proposition 2.2, we know there exists a path α :
[
0, 1

8

]
→ Ω such that

α(0) = ỹ, α
(
1
8

)
= ξ (t1) = η (t1), and a path β :

[
0, 1

8

]
→ Ω such that

β(0) = x, β(1
8
) = x̃. Now consider a new path η : [0, t] → Ω defined by

η̃(s) :=



α(s), if s ∈
[
0,

1

8

]
,

ξ

(
2

(
s− 1

8

)
+ t1

)
, if s ∈

[
1

8
,
3

8

]
,

ξ

(
s+

1

8
+ t1

)
, if s ∈

[
3

8
, t− t1 −

1

8

]
,

x, if s ∈
[
t− t1 −

1

8
, t− 1

8

]
,

β

(
s− t+

1

8

)
, if s ∈

[
t− 1

8
, t

]
,

(6.15)
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which is an admissible path for m∗ (t, y, x). Therefore,

m∗ (t, y, x)

≤
∫ t

0

L
(
η̃(s), ˙̃η(s)

)
ds

≤
∫ 1

8

0

L (α(s), α̇(s)) ds+

∫ 3
8

1
8

L

(
ξ

(
2

(
s− 1

8

)
+ t1

)
, 2ξ̇

(
2

(
s− 1

8

)
+ t1

))
ds

+

∫ t−t1− 1
8

3
8

L

(
ξ

(
s+

1

8
+ t1

)
, ξ̇

(
s+

1

8
+ t1

))
+

∫ t− 1
8

t−t1− 1
8

L(x, 0) ds

+

∫ t

t− 1
8

L

(
β

(
s− t+

1

8

)
, β̇

(
s− t+

1

8

))
ds

≤
(
32C2

bn+K0

) 1
8
+

1

2

∫ 1
2
+t1

t1

L
(
ξ(s), 2ξ̇(s)

)
ds+

∫ t

1
2
+t1

L
(
ξ(s), ξ̇(s)

)
ds

+ 0 +
(
32C2

bn+K0

) 1
8

≤ 8C2
bn+

K0

4
+

1

4

(
4C̃2

2
+K0

)
+

∫ t

0

L
(
ξ(s), ξ̇(s)

)
ds

≤ 8C2
bn+

C̃2

2
+

K0

2
+md(t, y, x) + C

∣∣I⌈M0t+|x|⌉
∣∣ ,

(6.16)
where the third inequality follows from (2.2) and (6.13) and the last inequal-
ity follows from (6.14).

(b) Suppose t1 ≥ 1
8
. Let x̃, ỹ ∈ ∂Ω with x̃ − x ∈ Y, ỹ − y ∈ Y . By the proof

of Proposition 2.2, there exists a path α : [0, 1
16
] → Ω such that α(0) = ỹ,

α
(

1
16

)
= η (t1) = ξ (t1), and ∥α̇∥L∞[0, 1

16 ]
≤ 16Cb

√
n. And there exists a path

β :
[
0, 1

16

]
→ Ω with β(0) = x, β

(
1
16

)
= x̃, and

∥∥∥β̇∥∥∥
L∞[0, 1

16 ]
≤ 16Cb

√
n. Now

consider a new path η̃ : [0, t] → Ω defined by

η̃(s) :=



α(s), if s ∈
[
0,

1

16

]
,

ξ

(
s− 1

16
+ t1

)
, if s ∈

[
1

16
, t− t1 +

1

16

]
,

x, if s ∈
[
t− t1 +

1

16
, t− 1

16

]
,

β

(
s− t+

1

16

)
, if s ∈

[
t− 1

16
, t

]
,

(6.17)
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which is an admissible path for m∗(t, y, x). Therefore,

m∗(t, y, x)

≤
∫ 1

16

0

L (α(s), α̇(s)) ds+

∫ t−t1+
1
16

1
16

L

(
ξ

(
s− 1

16
+ t1

)
, ξ̇

(
s− 1

16
+ t1

))
ds

+

∫ t− 1
16

t−t1+
1
16

L(x, 0) ds+

∫ t

t− 1
16

L

(
β

(
s− t+

1

16

)
, β̇

(
s− t+

1

16

))
ds

≤ 1

16

(
162C2

bn

2
+K0

)
+

∫ t

t1

L
(
ξ(s), ξ̇(s)

)
ds+ 0 +

1

16

(
162C2

bn

2
+K0

)
≤ 8C2

bn+
K0

8
+md(t, y, x) + C

∣∣I⌈M0t+|x|⌉
∣∣ ,

where the last inequality follows from (6.14).

□

We give the proof of Theorem 1.3.

Proof of Theorem 1.3. Fix x ∈ W ε. If 0 < t < ε, by the comparison principle, we
know

|wε(x, t)− g(x)| ≤ Ct,

and

|u(x, t)− g(x)| ≤ Ct,

for some constant C > 0 that only depends on H. Therefore,

|wε(x, t)− u(x, t)| ≤ Ct ≤ Cε,

for some constant C > 0 that only depends on H.
If t ≥ ε, suppose

wε(x, t) = εmd

(
t

ε
,
ỹ

ε
,
x

ε

)
+ g(ỹ)

for some ỹ ∈ W ε with |ỹ − x| ≤ M0t. Let γ :
[
0, t

ε

]
→ W be an optimal path for

md
(
t
ε
, ỹ
ε
, x
ε

)
. Then ∥γ̇∥L∞([0, t

ε
]) ≤ M0 by Lemma 6.1. From Lemma 6.2, we have

εm∗
(
t

ε
,
ỹ

ε
,
x

ε

)
≤ εmd

(
t

ε
,
ỹ

ε
,
x

ε

)
+ εC

∣∣∣∣I⌈M0t+|x|
ε

⌉∣∣∣∣+ εC̃

≤ εmd

(
t

ε
,
ỹ

ε
,
x

ε

)
+ εC

∣∣∣∣I⌈M0t+|x|
ε

⌉∣∣∣∣⌈
M0t+|x|

ε

⌉ ⌈M0t+ |x|
ε

⌉
+ εC̃

≤ εmd

(
t

ε
,
ỹ

ε
,
x

ε

)
+ Cω0

 1⌈
M0t+|x|

ε

⌉
 (M0t+ |x|+ ε) + εC̃

≤ εmd

(
t

ε
,
ỹ

ε
,
x

ε

)
+ C (M0t+ |x|+ 1)ω0

(
ε

M0t+ |x|

)
+ εC̃.

(6.18)
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Therefore,

u (x, t) = inf {m∗ (t, y, x) + g(y) : |x− y| ≤ M0t, y ∈ Rn}

≤ inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ g(y) + Cε : |x− y| ≤ M0t, y ∈ Rn

}
≤ inf

{
εm∗

(
t

ε
,
y

ε
,
x

ε

)
+ g(y) + Cε : |x− y| ≤ M0t, y ∈ W ε

}
≤ εm∗

(
t

ε
,
ỹ

ε
,
x

ε

)
+ g(ỹ) + Cε

≤ εmd

(
t

ε
,
ỹ

ε
,
x

ε

)
+ g(ỹ) + C (M0t+ |x|+ 1)ω0

(
ε

M0t+ |x|

)
+ εC̃

= wε (x, t) + C (M0t+ |x|+ 1)ω0

(
ε

M0t+ |x|

)
+ εC̃.

(6.19)

On the other hand, by the optimal control formulas for uε and wε and Theorem 1.1,
we have

wε(x, t) ≤ uε(x, t) ≤ u(x, t) + Cε,

and

u(x, t)− Cε ≤ uε(x, t).

Therefore, (1.18) holds and the proof is complete. □

6.2. The optimality of the bound in Theorem 1.3 and some nonconvergent
results. We now show the optimality of the bound in Theorem 1.3.

Lemma 6.3. Assume that

H(y, p) =
|p|2

2
for (y, p) ∈ Ω× Rn.

Then,

H(p) ≤ |p|2

2
for all p ∈ Rn,

and

H(−e1) =
1

2
.

Here, {e1, e2, . . . , en} is the canonical basis of Rn.

Proof. As H(y, p) = |p|2
2

for (y, p) ∈ Ω× Rn, by the inf-sup representation formula,
we see that

H(p) = HΩ(p) = inf
φ∈Lip (Tn)

ess sup
y∈Ω

|p+Dφ(y)|2

2
.

By taking φ = 0, we imply

H(p) ≤ |p|2

2
for all p ∈ Rn. (6.20)

We now show that

H(−e1) =
1

2
. (6.21)
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Thanks to (6.20), we only need to prove H(−e1) ≥ 1
2
. Indeed, fix a test function

φ ∈ Lip (Tn). For y ∈ Rn, write y = (y1, y
′) ∈ R × Rn−1. There exists δ > 0 such

that

E = [0, 1]×
[
1

2
− δ,

1

2
+ δ

]
× · · · ×

[
1

2
− δ,

1

2
+ δ

]
= [0, 1]× E ′ ⊂ Ω.

As φ is Zn-periodic, φ(0, y′) = φ(1, y′) for y′ ∈ E ′. We have∫
E

| − e1 +Dφ(y)|2

2
dy ≥

∫
E

|1− φy1(y)|2

2
dy

≥ 1

2

∫
E′

(∫ 1

0

(1− φy1) dy1

)2

dy′ =
1

2
|E ′| = 1

2
|E|.

Hence, ess supy∈Ω
|−e1+Dφ(y)|2

2
≥ 1

2
. The proof is complete. □

Remark 4. Assume the settings in Lemma 6.3. We proved that H(p) ≤ |p|2
2

for all
p ∈ Rn. Following the same argument as that for (6.21), we have further that

H(sei) =
s2

2
for 1 ≤ i ≤ n, s ∈ R.

However, we do not yet have the explicit formula for H(p) for general values of p.
This is a complicated task as we need to consider the geometry of Ω. See [6] for
some results along this line.

Lemma 6.4. Assume (− 9
20
, 9
20
)n ⋐ D ⋐ (−1

2
, 1
2
)n and

H(y, p) =
a(y)|p|2

2
for (y, p) ∈ Rn × Rn.

Here, a ∈ C(Rn) is a given Zn-periodic function such that a = 1 on Ω, a > 1 in
Rn \ Ω, and ∫ 1

2

− 1
2

1

a( e2
4
+ se1)

ds <
1

4
. (6.22)

Assume further that

I = {m2e1 : m ∈ N}.

Then, the modulus of continuity is ω0(ε) = ε
1
2 .

Let g(x) = −x1 for x ∈ Rn. For ε > 0, let wε be the unique viscosity solution to
(1.17). Let u be the unique viscosity solution to (1.2). Then, there exists δ = δ(a) >
0 such that, for ε ∈ (0, 1

4
),

wε
(εe2

2
, 1
)
≤ u

(εe2
2
, 1
)
− δε

1
2 + ε = −1

2
− δε

1
2 + ε. (6.23)

The inequality (6.23) confirms the optimality of the bound in Theorem 1.3. The
assumption that the hole D is rather big, nearly filling the whole cell (−1

2
, 1
2
)n is

needed in order for (6.22) to satisfy.
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Proof. As H(y, p) = |p|2
2

for (y, p) ∈ Ω× Rn, by Lemma 6.3,

H(−e1) =
1

2
.

We then use the assumption g(x) = −x1 for x ∈ Rn to yield

u(x, t) = −x1 − tH(−e1) = −x1 −
t

2
for (x, t) ∈ Rn × [0,∞).

In particular, u
(
εe2
2
, 1
)
= −1

2
.

By the hypothesis, we have

L(y, v) =
|v|2

2a(y)
for (y, p) ∈ Rn × Rn.

Denote by ξ : [0, 1] → Rn by

ξ(s) =


−e1+e2

2
− se2 for 0 ≤ s ≤ 1

4
,

−e1
2

+ e2
4
+ 2(s− 1

4
)e1 for 1

4
≤ s ≤ 3

4
,

e1
2
+ e2

4
+ (s− 3

4
)e2 for 3

4
≤ s ≤ 1.

In light of (6.22), we have that∫ 1

0

L(ξ(s), ξ̇(s)) ds =

∫ 1

0

|ξ̇(s)|2

2a(ξ(s))
ds <

1

2
.

Construct γ : [0,∞) → W such that

γ(s) =

{
e2
2
+ se1 for s /∈ [m2 − 1

2
,m2 + 1

2
],

m2e1 + ξ(s−m2 − 1
2
) for s ∈ [m2 − 1

2
,m2 + 1

2
] with m ∈ N.

Here, γ travels on the straight ray { e2
2
+ se1 : s ≥ 0} when it sees the normal cell

with a hole. And when it sees a cell with a missing hole, it detours to reduce the
running cost. Each detour is a shift of ξ by an integer vector.
By the optimal control formula for wε,

wε
(εe2

2
, 1
)
≤ g

(
εγ

(
1

ε

))
+ ε

∫ 1
ε

0

L(γ(s),−γ̇(s)) ds

≤ −1 + ε+ ε

∫ 1
ε

0

1

2
ds+ ε

⌊ε−
1
2 ⌋∑

m=1

∫ m2+ 1
2

m2− 1
2

(
L(γ(s),−γ̇(s))− 1

2

)
ds

≤ −1

2
+ ε− 1

2

(
ε

1
2 − ε

)∫ 1

0

(
1− |ξ̇(s)|2

a(ξ(s))

)
ds.

The proof is complete by setting

δ =
1

4

∫ 1
2

− 1
2

(
1− |ξ̇(s)|2

a(ξ(s))

)
ds > 0.

□
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Next, we demonstrate if the size of I is bigger than that in Theorem 1.3, then wε

does not converge to u as ε → 0.

Lemma 6.5. Assume

H(y, p) =
a(y)|p|2

2
for (y, p) ∈ Rn × Rn.

Here, a ∈ C(Rn) is a given Zn-periodic function such that a = 1 on Ω, a > 1 in
Rn \ Ω. Assume further that

I = {me1 : m ∈ N ∪ {0}}.

Let g(x) = −x1 for x ∈ Rn. For ε > 0, let wε be the unique viscosity solution to
(1.17). Let u be the unique viscosity solution to (1.2). Then,

lim sup
ε→0

wε(0, 1) < u(0, 1) = −1

2
.

Proof. As above, we have H(−e1) =
1
2
and

u(x, t) = −x1 − tH(−e1) = −x1 −
t

2
for (x, t) ∈ Rn × [0,∞).

In particular, u(0, 1) = −1
2
.

By the assumptions, we have

L(y, v) =
|v|2

2a(y)
for (y, p) ∈ Rn × Rn.

By the optimal control formula for wε,

wε(0, 1) ≤ g(e1) + ε

∫ 1
ε

0

L(se1,−e1) ds

≤ −1 + ε

∫ 1
ε

0

1

2
ds+ ε

⌊ε−1⌋∑
m=1

∫ m+ 1
2

m− 1
2

(
1

2a(se1)
− 1

2

)
ds

≤ −1

2
− 1

2
(1− ε)

∫ 1
2

− 1
2

(
1− 1

a(se1)

)
ds

≤ −1

2
− θ,

for ε ∈ (0, 1
2
), where

θ =
1

4

∫ 1
2

− 1
2

(
1− 1

a(se1)

)
ds > 0.

Here, θ > 0 as, for s ∈ [−1
2
, 1
2
], a(se1) > 1 for se1 ∈ D and a(se1) = 1 for

se1 /∈ D. □

A key point used in the above proof is the ray γ(s) = se1 for s ∈ [0,∞) stays on
W and is admissible for the optimal control formula of wε. This ray does not stay
on Ω and is not admissible for the optimal control formula of uε.



44 Y. HAN, W. JING, H. MITAKE, H. V. TRAN

Remark 5. Assume the settings in Lemma 6.5. We have shown in Lemma 6.5 that
wε does not converge to u in general because of the impact of the missing holes.
We have not shown that wε is convergent as ε → 0 and have not quantified the
convergence rate in this scenario.

Finally, we show that (A5) is needed to obtain the convergence result in Theorem
1.3.

Lemma 6.6. Assume

H(y, p) =
|p|2

2
+ V (y) for (y, p) ∈ Rn × Rn.

Here, V ∈ C(Rn) is a given potential energy which is Zn-periodic satisfying V = 0
on Ω and V > 0 in Rn \ Ω. Assume that I = {0}, that is, only one hole at the
origin is missing.

Let g = 0. For ε > 0, let wε be the unique viscosity solution to (1.17). Let u be
the unique viscosity solution to (1.2). Then,

lim sup
ε→0

wε(0, 1) ≤ −V (0) < u(0, 1) = 0.

Proof. As H(y, p) = |p|2
2

for (y, p) ∈ Ω×Rn, by Lemma 6.3, H(0) = 0. We then use
the assumption g = 0 to yield u = 0. In particular, u(0, 1) = 0.
In our classical mechanic setting,

L(y, v) =
|v|2

2
− V (y) for (y, v) ∈ Rn × Rn,

and V (0) > 0 by the hypothesis. Let ξ : [0,∞) → W be such that ξ(s) = 0 for all
s ≥ 0. By the optimal control formula for wε, we imply

wε(0, 1) ≤ g(0) + ε

∫ 1
ε

0

L(ξ(s), ξ̇(s)) ds = −V (0) < 0,

which concludes the proof. □

Remark 6. The idea of the above proof is simple. The missing hole D is an
attractor of minimizing curves as it is cheaper to stay inside D. Specifically, the
Aubry set in this case is

A = {y ∈ D : V (y) = maxV }.

It is clear that, for y0 ∈ A,

L(y0, 0) = −V (y0) = minL.

By using the same idea as the proof above, we have further that, for t > 0,

lim
ε→0

wε(0, t) = −(maxV )t.
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Appendix A. Proof of some auxiliary results

We first show that the metric on ∂Ω is comparable with the Euclidean metric.
Recall that the unit-scale perforated domain Ω is assumed to be connected, and ∂Ω
is C1. The set O := Rn \Ω may have disconnected components. Similarly, ∂Ω may
have disconnected components, and the boundary of each connected component of
O is contained in ∂Ω. For a connected component D of O, we say D is extended if
D is an unbounded set and call D localized if otherwise. Since we assume that Ω is
connected, for n = 2 each D must be localized, and we can find a finite number of
Di ⊂ 2Y , 1 ≤ i ≤ ND, so that

O =

ND⋃
i=1

⋃
m∈Zn

(m+Di)

and the union over i is a disjoint one. For n ≥ 3, O can have both extended and
localized components, but the same structure above for O still holds, except now
the sets Di, 1 ≤ i ≤ ND, can be divided into localized and extended ones. Note
that for i ̸= j, Di ∩Dj = ∅, and ∂Di is a connected component of ∂Ω.

Lemma A.1. Suppose p and q are two points in ∂Ω such that the line segment
[p, q] := {p+t(q−p) : t ∈ [0, 1]} has intersections with Ω only at p and q. Then p and
q belong to a connected component M of ∂Ω, and there exists a curve γ : [0, 1] → M
so that γ(0) = p, γ(1) = q, and∫ 1

0

|γ̇(t)| dt ≤ Cb|p− q| (A.1)

for some constant Cb that depends only on n and ∂Ω.

The above (after some generalization) shows

d∂Ω(x, y) ≤ Cb|x− y|, if x, y ∈ ∂Ω and x ∼ y.

Here x ∼ y means they belong to a connected component of ∂Ω, and the distance
d∂Ω(x, y) is defined to be the minimal length of curves in ∂Ω joining x and y.
Note also that this estimate still holds with the same Cb even after the ε-rescaling.
The result above should be compared with Lemma 2.6 of [9] which says there is a
constant C > 0 so that dΩ(x, y) ≤ C|x− y|.

Proof. We denote by (p, q) the set {p+ t(q− p) : t ∈ (0, 1)}. Because p, q ∈ ∂Ω and
(p, q) ∈ Ω

c
, the segment (p, q) must be in a connected component D of O. Let M

be the boundary of this component. Then M must be connected.
Without loss of generality, assume D has a nonempty intersection with Y . Let ℓ

be a fixed integer greater than 4
√
n, say ℓ = 3n, then M ∩ ℓY is compact and hence

there exists a finite open cover {Br(xi) ⊂ Rn : i = 1, 2, · · · , K} consisting of open
balls of some radius r > 0 centered at {xi}, and each xi is in M ∩ ℓY , such that
for each i ∈ {1, 2, · · · , K}, Γi := M ∩ ℓY ∩ B2r (xi) is the graph of a C1 mapping
in some coordinate system. Moreover, the projection of this graph to the domain
of definition of the mapping is a compact domain of Rn−1, and hence we can find a
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constant C1 > 0 (uniform for all i’s) so that any two points x, y in the same graph
Γi can be connected by a C1 path γx,y : [0, 1] → Γi, γ(0) = x, γ(1) = y, so that

arc length(γx,y) =

∫ 1

0

|γ̇(t)| dt ≤ C1|x− y|.

Finally, for any pair of points p, q ∈ M ∩ ℓY , if |p− q| < r, then we can find some
xi so that p, q are in Γi. Then the above and hence (A.1) hold. If |p − q| ≥ r and
p, q do not belong to any same element of {B2r(xi)}, then we can find a piecewise
curve γp,q joining them so that each piece stays in an element of {Γi}. Clearly, we
need at most K such pieces. Hence the arc length of γp,q can be bounded by

KC1(4r) ≤ C2|p− q|,

where C2 = 4KC1 is a constant depending only on n and ∂Ω (and is uniform for all
p, q ∈ M ∩ ℓY ).

Now for any segment [p, q] that intersects withM only at p, q, we aim to construct
a curve γ in M joining them with controlled arc length. We consider two cases.

Case 1. p and q are relatively close: |p− q| ≤ 2
√
n. By periodic translation, we

may assume that p ∈ Y and hence [p, q] ⊂ ℓY . Then by the argument above, we
find the desired path joining p, q, with arc length bounded by C2|p− q|.
Case 2. p and q are relatively far away: |p − q| > 2

√
n. Let N be the integer

such that N
√
n < |p− q| ≤ (N + 1)

√
n; note that N < |p− q|/

√
n. Set

xi = p+

(
|p− q| −N

√
n

2
+

(
i− 1

2

)√
n

)
q − p

|q − p|
, 1 ≤ i ≤ N.

We observe that {xi}Ni=1 are evenly distributed points in (p, q), and |xi−xi+1| =
√
n,

for each i ∈ {1, . . . , N}. Also, we check
√
n/2 < |p− x1| <

√
n,

√
n/2 < |q − xN | <

√
n.

For each 1 ≤ i ≤ N , the ball B√
n/2(xi) has nonempty intersection withM because

the component D of O enclosed by M cannot contain a copy of the unit cube. So
we can find pi ∈ M ∩ B√

n/2(xi). Note that for different i, j ∈ {1, . . . , N}, the
balls B√

n/2(xi) and B√
n/2(xj) can intersect only in (p, q) which is in M c; therefore,

pi ̸= pj. Similarly, pi’s are different from p, q. Set p0 = p and pN+1 = q, then
{pi}N+1

i=0 ⊂ M satisfy

|pi − pi+1| ≤ 2
√
n, for 0 ≤ i ≤ N.

For each 0 ≤ i ≤ N , now that pi and pi+1 are two points in M that are within
distance 2

√
n, we can use the result of Case 1 and find a curve γi in M joining pi

and pi+1 and whose arc length is bounded by 2
√
nC2. Combine those curves we

finally get a curve in M joining p to q whose arc length is bounded by

(N + 1)2
√
nC2 ≤ 3C2|p− q|.

Setting Cb = 3C2 we see that the proof is complete. □

We next give a proof of Lemma 2.1.



HOMOGENIZATION ON PERFORATED DOMAINS AND APPLICATIONS 47

Proof of Lemma 2.1. Define a new path γ̃ : [0, t] → Ωε by γ̃(s) := εγ
(
s
ε

)
for s ∈

[0, t]. Then we have γ̃(t) = x and

uε(x, t) =

∫ t

0

L

(
γ̃(s)

ε
, ˙̃γ(s)

)
ds+ g(γ̃(0)),

and γ̃ is an optimal path for uε(x, t) as

uε(x, t) = inf

{∫ t

0

L

(
ξ(s)

ε
, ξ̇(s)

)
ds+ g (ξ(0)) : ξ ∈ AC([0, t]; Ωε), ξ(t) = x

}
.

Note that ˙̃γ(s) = γ̇
(
s
ε

)
for s ∈ [0, t]. Therefore, it suffices to prove∥∥ ˙̃γ∥∥

L∞[0,t]
≤ M0

for some constant M0 = M0

(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0.

Suppose γ̃ is differentiable at t0 ∈ (0, t). For t1 ∈ (t0, t), by the dynamic pro-
gramming principle, we have

uε(γ̃(t1), t1) =

∫ t1

t0

L

(
γ̃(s)

ε
, ˙̃γ(s)

)
ds+ uε (γ̃(t0), t0) ,

which implies

uε (γ̃(t1), t1)− uε (γ̃(t0), t0)

t1 − t0
=

1

t1 − t0

∫ t1

t0

L

(
γ̃(s)

ε
, ˙̃γ(s)

)
ds. (A.2)

On the other hand, for t1 ∈ (t0, t) and sufficiently close to t0,

uε (γ̃(t1), t1)− uε (γ̃(t0), t0)

t1 − t0

=
uε (γ̃(t1), t1)− uε (γ̃(t0), t1) + uε (γ̃(t0), t1)− uε (γ̃(t0), t0)

t1 − t0

≤ |uε (γ̃(t1), t1)− uε (γ̃(t0), t1)|
|γ̃(t1)− γ̃(t0)|

· |γ̃(t1)− γ̃(t0)|
t1 − t0

+
|uε (γ̃(t0), t1)− uε (γ̃(t0), t0)|

t1 − t0

≤ C
|γ̃(t1)− γ̃(t0)|

t1 − t0
+ C,

(A.3)
where the last inequality and the constant C = C

(
n, ∂Ω, H, ∥Dg∥L∞(Rn)

)
> 0 comes

from (1.5) and Lemma A.1. Combining (A.2) and (A.3), we obtain

1

t1 − t0

∫ t1

t0

L

(
γ̃(s)

ε
, ˙̃γ(s)

)
ds ≤ C

|γ̃(t1)− γ̃(t0)|
t1 − t0

+ C.

Taking the limit as t1 goes to t0, we get

L

(
γ̃(t0)

ε
, ˙̃γ(t0)

)
≤ C

∣∣ ˙̃γ(t0)∣∣+ C. (A.4)

From (1.7), we also have

L

(
γ̃(t0)

ε
, ˙̃γ(t0)

)
≥
∣∣ ˙̃γ(t0)∣∣2

2
−K0. (A.5)
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From (A.4) and (A.5), it follows that there exists a constant M0 > 0 dependent on
n, ∂Ω, H, ∥Dg∥L∞(Rn) such that ∣∣ ˙̃γ(t0)∣∣ ≤ M0.

Since t0 is an arbitrary point where γ̃ is differentiable, we conclude∥∥ ˙̃γ∥∥
L∞[0,t]

≤ M0.

□

Remark 7. In fact, upon careful analysis, the constants C in (A.3) and M0 can
be made independent of both n and ∂Ω. However, as this lies outside our primary
focus, we leave this to the reader.

Proof of Lemma 6.1. The proof of this lemma follows that of Lemma 2.1 verbatim
and hence is omitted. □

We prove the inf-sup formula for HΩ.

Lemma A.2. Assume (A1)–(A3). We have, for p ∈ Rn,

HΩ(p) = inf
φ∈Lip (Tn)

ess sup
y∈Ω

H(y, p+Dφ(y)).

Proof. Fix p ∈ Rn. By using the vanishing discount procedure for the state con-
straint problem (see e.g., [5, 14, 16]), we can find

(
HΩ(p), v

)
∈ R×Lip (Ω) satisfying{

H (y, p+Dv(y)) ≤ HΩ(p) in Ω,

H (y, p+Dv(y)) ≥ HΩ(p) on Ω.
(A.6)

in the sense of viscosity solutions. Here, v is Zn-periodic. Extend v to a function
ṽ ∈ Lip (Rn) which is Zn-periodic. Then,

ess sup
y∈Ω

H(y, p+Dṽ(y)) = ess sup
y∈Ω

H(y, p+Dv(y)) = HΩ(p).

Hence,

HΩ(p) ≥ inf
φ∈Lip (Tn)

ess sup
y∈Ω

H(y, p+Dφ(y)).

We now prove the converse inequality. Assume otherwise that there exist φ ∈
Lip (Tn) and δ > 0 such that

ess sup
y∈Ω

H(y, p+Dφ(y)) < HΩ(p)− 2δ.

For λ > 0 sufficiently small, we see that{
λφ(y) +H (y, p+ φ(y)) ≤ HΩ(p)− δ in Ω,

λv(y) +H (y, p+Dv(y)) ≥ HΩ(p)− δ on Ω.

By the usual comparison principle, we yield v ≥ φ. By the same argument, v−C ≥
φ for any C ∈ R, which leads to a contradiction.

□
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Remark 8. Although we have the inf-sup formula for HΩ, it is not too clear for us
whether the following inf-max formula holds

HΩ(p) = inf
φ∈C1(Tn)

max
x∈Ω

H(y, p+Dφ(y)) ?

A technical difficulty here is that, for v ∈ Lip (Ω), Zn-periodic solving (A.6), it is
not easy to smooth it up using convolutions with a standard mollifier because of
the appearance of ∂Ω.
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