
ar
X

iv
:2

40
5.

01
52

8v
1 

 [
ph

ys
ic

s.
at

om
-p

h]
  2

 M
ay

 2
02

4

Polarization dependent non-Hermitian atomic grating controlled by dipole blockade effect
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We propose a theoretical scheme for a non-Hermitian atomic grating within a ultra-cold rubidium-87 (87Rb)
atomic ensemble. The grating’s diffraction properties depend on the polarization states of incident photons and

are controlled non-locally through Rydberg interactions. Multiple types of polarization-dependent diffraction

modes are generated, benefiting from no crosstalk atomic transition channels based on transition selection rules.

Those polarization-dependent diffraction modes can be switched using dynamic optical pulse trains, exploiting

the Rydberg blockade effect, and are tunable by non-Hermitian optical modulation. Our work will advance the

application of asymmetric optical scattering by utilizing the polarization degree of freedom within continuous

media and benefit the application of versatile non-Hermitian/asymmetric optical devices.

I. INTRODUCTION

As a fundamental optical device, the grating operates on the

principle that optical media in spectroscopic systems have dis-

tinct refractive indices for different light frequencies. As a re-

sult, light beams acquire corresponding diffraction angle spec-

tra depending on frequencies after being far-field diffracted

and coherently superimposed. With advancements in current

technology, the performance indicators of gratings, such as

reflectivity, diffraction efficiency, and aberration, have signif-

icantly improved and advanced. Combined with binary optics

algorithms [1–3], it has become possible to design and pro-

cess gratings with a wide range of diffraction properties to

suit the needs of many modern technologies, including opti-

cal detection [4–8], spectroscopy [9–13], holographic imag-

ing [14–18], augmented reality (AR) [19–21], chirp amplifica-

tion [22–26], etc. However, based on such etching processes,

blazed and holographic gratings, for instance, have a set grat-

ing constant, implying the challenge of dynamic manipulation

of optical properties.

Electromagnetically induced grating (EIG) [27–30], based

on quantum coherence techniques such as electromagnetically

induced transparency (EIT) [31–33], was proposed by Xiao’s

Group in 1998. The optical properties of EIG (e.g., grating

constants) are dynamically tunable by standing wave modula-

tion techniques. Combined with cross-phase modulation, high

± 1st-order diffraction efficiencies can be attained with low

losses in the following EIG schemes [34–40]. In recent years,

the combination of non-Hermitian optical modulation tech-

niques, including optical Parity-time symmetric (PT ) [41–

45] and asymmetric (APT ) modulation [46–48], can achieve

dynamically tunable asymmetric diffraction in a symmetric

structure. Some schemes have combined EIGs with Rydberg

interactions to leverage non-local nonlinearity [49–52]. These

shemes consider the impact of photon statistical properties on

the diffraction characteristics of gratings. These works greatly

enrich the spectral principles and theoretical reserves of dy-

namically tunable gratings.

However, photons carry various degrees of freedom, includ-

ing orbital angular momentum (OAM) [53–57], spin angu-
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lar momentum, squeezed states, and polarization states, ex-

cept for frequency, amplitude, and phase information. Some

works combined optical diffraction with polarization states

have been reported in waveguides and liquid crystals [58–

61]. Research has also been conducted on the influence of

polarization states on the diffraction characteristics of opti-

cal fields, employing the optical metasurface technique [62–

66]. However, exploration of polarization state manipula-

tion within EIG structures (high-performance dynamic control

platforms) remains relatively limited [67–69]. It is worth not-

ing that the discussion of polarization states here differs from

that of ordinary and extraordinary beams discussed in optical

super-surfaces or birefringent crystals.

Inspired by this, we present a theoretical scheme of EIG

with diffraction properties dependent on the polarization state

of the optical field. Implemented in an ultra-cold 87Rb atomic

ensemble, this grating incorporates both non-local and non-

Hermitian optical modulation techniques. The non-Hermitian

optical modulation can effectively control grating’s symmetric

and asymmetric optical diffraction and beam splitting. We in-

troduce the Rydberg state into our model to achieve non-local

optical modulation. Benefit from the Rydberg blockade effect,

we can switch the optical response of the atomic system, uti-

lizing the dynamic modulation of optical pulse trains. Further-

more, channels are established for probe photons with differ-

ent polarization states (left- and right-handed circularly polar-

ized), applying Zeeman sublevels (hyperfine structure). These

two channels associated with incident polarization states can

be individually controlled by dynamic light pulses and a va-

riety of polarization-dependent diffraction modes generate in

this scheme. Our work provides a novel idea to utilize the po-

larization degree of freedom within EIG structures and gives

insights for the control of versatile non-Hermitian optical de-

vices.

This paper is organized through the following Sec. II, where

we describe the basic model and theoretical scheme for dy-

namically switching the optical response of atomic system

by Rydberg blockade effect. Two types of spatial modula-

tion methods are also discussed here. We further consider se-

lecting an appropriate level structure to achieve polarization-

dependent optical response channels. In Sec. III, we discuss

the multiple polarization-depndent diffraction modes and a

non-local control for various diffraction modes by controlled
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FIG. 1. Basic atomic energy level structure (a) and schematic di-

agram (equivalent energy level structures) for two stages (b1) and

(b2). Continuously applying two gate pulses (c), the dynamic opti-

cal response of the system switches from that of equivalent N -type

four level structure (b1) to that of Λ-type three-level system (b2).

Within the time region τ1 < t < τ2 (red area), the population of state

|s〉 (σss, blue dashed curve depicted in the right panel of (c)) tends

to zero, corresponding to “Switch on” stage (b2) and decoupling of

state |s〉. On the contrary, without the injection of gate pulses, the

system remains in a steady state for most of the time, corresponding

to “Switch off” stage (b1).

Rydberg excitation. We summarize, at last, our conclusions in

Sec. IV.

II. THE BASIC MODEL

We aim to exploit non-Hermitian optical modulation to de-

velop a polarization-dependent scheme that can effectively

control symmetric and asymmetric optical diffraction. Be-

fore that, we first focus on dynamic modulation to switch

the optical response of the atomic system, utilizing the pulse-

triggered Rydberg interactions illustrated in Fig. 1.

First, we consider ultra-cold atomic gas driven by three

classical laser fields (slow-varying amplitudes Ec, Ed and Es).

Travalling wave (TW) field ωc (ωs) with Rabi frequencyΩc =
Ec·℘me/2~ (Ωs = Es·℘ds/2~) acts upon transition |e〉 ↔ |m〉
(|d〉 ↔ |s〉, |s〉 is a Rydberg state). Standing wave (SW) field

(ωd) couples the state |m〉 to intermediate excited state |d〉
non-resonantly with Rabi frequencyΩd = Ed ·℘dm/2~. Weak

field Ω̂p(z) = Êp(z) · ℘ge

√

ωp/(2~εV ) with frequency (ωp)

probe transition |g〉 ↔ |e〉, where Êp(z) and V are the local

probe amplitude operator and probe quantum volume. Here,

ωµν and ℘µν describe the transition frequencies and the tran-

sition dipole moments (µ ∈ {g,m, d, s} and ν ∈ {e,m}). The

detuning of probe field is defined as δp = ωp−ωge with other

corresponding detunings as δc = ωc − ωme, ∆ = ωd − ωmd,

and δs = ωs − ωds. The gate Rydberg state |r〉 can be excited

by gate pulse (Ωπ(t), Ramman process) from ground state |g〉.
Under the far detuning condition ∆ ≫ Ωd and two pho-

ton resonance δms = ∆ + δs ≃ 0, the system can be re-

duced to a quasi-N -type configuration with effcetive coupling

D = Ωd · Ωs/∆, illustrated in Fig. 1(b1). With the rotating-

wave and electric-dipole approximations, the system can be

naturally described by an effective interaction Hamiltonian

Heff = HqN
I + VvdW , including an interaction Hamiltonian

HqN
I , as well as van der Waals type dipole-dipole interactions

between atoms VvdW :

HqN
I = ~

N
∑

k=1











0 Ω†
p 0 0 Ω∗

π(t)
Ωp −δp Ω∗

c 0 0
0 Ωc −δgm D∗(x) 0
0 0 D(x) −δgs 0

Ωπ(t) 0 0 0 −δr











, (1)

VvdW = ~

N
∑

i,j

C6(s, r)

R6
ij

σi
ssσ

j
rr, (2)

where σi
ss (σj

rr) is population of Rydberg state |s〉i (|r〉j) for

the i-th (j-th) atom in the ensemble. Here C6(s, r) is vdW -

type interaction coefficient between state |s〉 and |r〉, with R ≡
(ri − rj) being the relative position vector between an atom

at the position ri and rj [See panel (a) in Fig. 1]. Actually, we

ignore the self-interaction term (Uself ∝ ∑N
i,j

C6(s,s)
R6

ij

σi
ssσ

j
ss)

by choosing suitable Rydberg states (C6(s, s) ≪ C6(s, r))
and providing detuning complement δr scaling of GHz. The

following the Heisenberg-Langevin equations govern the dy-

namic evolution of the system:

∂tσ̂(z, t) =
i

~
[Heff , σ̂] + L[σ̂(z, t)], (3)

whereL[σ̂] = ∑

j cj σ̂c
†
j− 1

2 (c
†
jcj σ̂+σ̂c

†
jcj) with cj =

√

Γj σ̂

(e.g., ceg =
√

Γegσ̂eg). Before the gate pulse operation,

Ωπ(t) = 0, the susceptibility is obtained as χqN (ω, z) =
2g2

ωp
αqN (ω, z)ρ(z) with

αqN (ω, z) =
iγe[γ

′
mγ

′
s +D∗D]

γeγ′mγ
′
s + γ′mΩ∗

cΩc + γeD∗D
. (4)

Here γ′e = γe + iδp, γ′m = γm + i(δp − ∆m), and

γ′s = γs + i(δp − ∆m + δs) are also introduced to denote

the complex dephasing rates for convenience, with γµν =
∑

k(Γµk + Γνk)/2. The small vdW -induced average fre-

quency shift 〈ŝ(z)〉 (self interaction), which can be absorbed

into δs = δs0 − 〈ŝ(z)〉 suitably.

When the gate pulse is incident, due to 〈ŝ(z)〉 → ∞, the

Rydberg excitation of state |r〉 will blockade state |s〉, re-

sulting in the dynamic decoupling of state |s〉 from the sys-

tem [See Fig. 1(b2)]. In this scenario, within the blockade

region of state |r〉 (blockade radius Rb(r, s) ≃ 6

√

C6(r,s)
w ),

the atomic level structure degenerates into Λ-type three-level

configuration with a large frequency detuning (ac Stark shift

δ = Ω2
d/∆). It corresponds to the effective Hamiltonian

H3l
I = ~

N
∑

k=1





0 Ω†
p 0

Ωp −δp Ω∗
c

0 Ωc −δgm + δ



 , (5)
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with the susceptibility χ(ω, z) =
ρ(z)℘ge

γ~ǫ0
α3Λ(ω, z) (α3Λ =

γeσge/Ωp) and

α3Λ(ω, z) ≃ iγe
γe + i[δp +Ω2

d/∆d] + Ω2
c/γ

′
m

(6)

obtained in the stationary regime. This dynamical decoupling

process is well demonstrated by Fig. 1(c). Within the time

interval τ1 < t < τ2, the population of state |s〉 (σss) rapidly

decreases, thereby decoupling from the system.

A. Diffraction

Aiming to produce diffraction patterns in the x direction,

we spatially modulate the ensemble with the coupling field as

SW Ωd(x) = Ωd/
√
2 cos[2πλd(x − x0)/a + ψ] along x di-

rection (with detuning ωdm − ωd = ∆ and small angle θ).

The dressing field also includes TW component (Ωd/
√
2 and

ωdm − ωd = −∆) along z direction. Meanwhile, there is

a phase shift of π/4 between the nodes of the SW field and z
axis (see Fig. 2(c) and follow the method in [46, 70]). Here λd
(a) is the wavelength (spatial period) of the coupling field with

ψ being controllable phase of detuning. Before the gate pulse

operation, the atoms with a quasi-N type four level struc-

ture experience a SW field amplitude modulation in the form

of D(x) = ΩsΩd0
cos[2πλd(x − x0)/a]/∆. Thus, the real

(imaginary) part of probe susceptibilities χ′(x, z) (χ′′(x, z))
is used to describe the dispersion (absorption/gain) property.

The transmission function of a probe beam at z = L takes the

form

T (x) = A(x) · P (x), (7)

where A(x) = e−
∫

L

0
kpχ

′′(x,z)dz (P (x) = ei
∫

L

0
kpχ

′(x,z)dz) de-

notes the amplitude (phase) component with kp = 2π/λp (λp)

being the probe wave vector (wavelength). The Fourier trans-

formation of T (x) then yields the Fraunhofer or far-field in-

tensity diffraction equation

EL(θn) =

∫ +a/2

−a/2

dx[T (x)e−i2πxR sin (θn)], (8)

I(θn) =
|EL(θn)|2 sin2[MπR sin(θn)]

M2 sin2[πR sin(θn)]
, (9)

with R = a/λp. In addition, θn denotes the nth order diffrac-

tion angle of probe photons to the z direction while M rep-

resents the ratio between the beam width ̟B and the grat-

ing period a (M = ̟B/a). The nth-order diffracted probe

field will be found at an angle determined by n = R sin θn ∈
(. . . ,−1, 0,+1, . . .). At this point, a normal far-field diffrac-

tion angle spectrum and diffraction pattern of EIG can be at-

tained.

Conversely, after the gate pulse operation, atoms will de-

coupled from the Rydberg state |s〉 would exhibit spatial mod-

ulation relative to the detuning δ(x) = δ0 · sin[4πλd(x −
x0)/a+ ψ], following the approach outlined in Ref. [46, 70].

FIG. 2. Atomic energy level structure for left/right-cirlar polarization

channels (a) and schematic diagram of polarization selective non-

Hermitian atomic grating (b, c). The spatial modulation scheme (PT
antisymmetry) follows the method in references [46, 70] and is also

discussed in Sec. II A.

Here δ0 = Ω∗
dΩd/∆ is ac Stark shift. In this case of de-

tuning spatial modulation δ0 6= 0, we can expend the real

amd imaginary parts of susceptibility as polynomials χ′(x) =
∑n′

ζ

k=0 Cn′δn
′

(x) and χ′′(x) =
∑n′′

k=0 Cn′′δn
′′

(x) for δ(x),
where Cn′,n′′ are polynomial coefficients (n, n′, n′′ ∈ Z).

We can determine whether the optical medium satisfies PT -

antisymmetry by judging the parity of the real and imaginary

parts with respect to the spatial position x based on these

polynomials (See (A1) in Appendix). So, in this scenario,

if we discuss the diffraction of the probe field, we can obtain

an asymmetric diffraction spectrum characteristic of a non-

Hermitian grating.

B. Polarization-dependent Optical Response

Thirdly, we consider selecting an appropriate level struc-

ture to achieve optical response channels depending on veri-

ous polarization states (left- and right-circular polarized light,

as well as linearly polarized light) of incident beams. We uti-

lize the Zeeman sublevels to construct two symmetrically cou-

pled channels, as shown in Fig. 2(a), |g〉 → |e±〉 → |mξ〉 →
|dξ〉 → |sξ〉, where ξ = {1, 2} (|e+〉 and |e−〉) correspond

left- and right-circular polarization channels (	 and �), re-

spectively. Weak fields Ω̂	,�(z) = Êp(z)·℘ge±

√

ωp/(2~εV )
with different circular polarization (σ+ and σ−) but the same

frequency (ωp) probe transitions |g〉 ↔ |e±〉. The classi-

cal control fields ωc1,c2 (Ωc1,c2 = Ec1,c2 · ℘me±/2~) act

upon transitions |m1,2〉 ↔ |e±〉. Additionally, two driving

fields that are spatially modulated couple non-resonantly the

states |mξ〉 to intermediate excited states |dξ〉 with Rabi fre-

quency Ωdξ
= Edξ

· ℘dmξ
/2~. Here, ωµν and ℘µν describe

the transition frequencies and the transition dipole moments

(µ ∈ {g,mξ, dξ} and ν ∈ {e+, e−}). The detuning of

the left (right) circular polarization probe field is defined as

δ	 = ωp−ωge+ ( δ� = ωp−ωge−) with other corresponding

detunings as δcξ = ωcξ − ωmξe± and ∆ξ = ωdξ
− ωmξdξ

.

Similarly, without the gate pulse operation, the suscep-

tibilities for different polarized photons are obtained as
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χqN
ζ (ω, z) =

℘ge

γ~ǫ0
αqN
ζ (ω, z)ρ(z) with

αqN
lc (δ	, z) =

iγ	[γ
′
m1
γ′s1 +D∗

1D1]

γ	γ′m1
γ′s1 + γ′m1

Ω∗
c1Ωc1 + γ	D∗

1D1
,

αqN
rc (δ�, z) =

iγ�[γ
′
m2
γ′s2 +D∗

2D2]

γ�γ′m2
γ′s2 + γ′m2

Ω∗
c2Ωc2 + γ	D∗

2D2
, (10)

where γ′sξ = γsξ + i[δ	,� − δcξ + δsξ ] (ζ ∈ {lc, rc}). And

different dark states can be attained under the zero detuning

condition (δsξ = δcξ = 0), |DS〉	 =
Ωc1

D1

Nlc
|g〉−Ω	D1

Nlc
|m1〉+

Ω	Ωc1

Nlc
|s1〉 and |DS〉� =

Ωc2
D2

Nrc
|g〉−Ω�D1

Nrc
|m2〉+Ω�Ωc2

Nrc
|s2〉,

with Nlc,rc =
√

D2
ξ(Ω

2
�,	 +Ω2

cξ
).

With control gate pulses coupling to states |r1〉 and |r2〉
(Rydberg states), we can obtain two individual controllable

channels for different circle polarization beams. The selection

of Rydberg states, characterized by C6(rξ, sξ) ≫ C6(sξ, sξ)
and the depreciation of cross-interactions, renders the Ryd-

berg excitation of gate states |rξ〉. Actually, when the block-

ade effect occurs, the steady-state optical response in the cor-

responding channel corresponds to Λ-type suspectibilities

α3Λ
lc (δ	, z) =

iγγm1

γ	γm1
+Ω2

c1

,

α3Λ
rc (δ�, z) =

iγγm2

γ�γm2
+Ω2

c2

. (11)

Naturally, continuing to discuss the diffraction of beams with

different polarization states can be analogous to Eqs. (7-9), us-

ing polarization-state-related physical quantities (Tζ , Aζ , Pζ ,

EL
ζ , Iζ ) for description. The corresponding spatial modulation

are then expressed as

δl(x) = δl0 · sin[4πλd(x − x0)/a+ ψ1],

δr(x) = δr0 · sin[4πλd(x − x0)/a+ ψ2], (12)

where ψξ are controllable phases with ac Stark shift δl0,r0 =
Ω∗

dξ
Ωdξ

/∆ξ for different polarization channels (ξ ∈ {1, 2}).

III. RESULTS AND DISCUSSION

This section discusses the grating’s far-field diffraction

(Fraunhofer diffraction or under paraxial approximation) and

its manipulation, employing real atomic levels and parame-

ters that closely emulate experimental conditions. We con-

sider an ensemble of ultra-cold 87Rb atoms in an elongated

trap of length L ≃ 200µm. The ground |g〉, metastable

states |m1,2〉 and excited states |e±〉 of the medium atoms

would correspond to suitable sub levels of the 5S1/2|F =
2,mF = 0,−2,+2〉 and 5P1/2|F = 1,mF = −1,+1〉. For

convenience, the selection of Rydberg states will be discussed

later. The quantization direction is taken along the z axis. We

choose the atomic density N = 1.0 × 1011 cm−3 with the

probe wavelength λp = 795 nm and transition dipole moment

℘ge± = 2.534× 10−29 C·m.

-1 -0.5 0 0.5 1
-0.5

0

0.5

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

FIG. 3. Polarization dependent diffraction Mode I: Absorption

(orange-solid) and dispersion (blue-dashed) curves versus x of left-

circlar (circle-marked) and right-circlar (triangle-marked) polariza-

tion probe beams in (a1) and (a2). Panel (b1) and (b2) show diffrac-

tion intensity Ip(θ) vesurs diffraction angle θ for 	 and � probe

fields, with Ωcξ = 3.0 × 2π MHz, Ωdξ = 2.0 × 2π MHz,

∆ξ = 20× 2π MHz (ξ = 1, 2), ψ1 = 0, and ψ2 = π/2.

A. Diffraction for Polarization-dependent Λ-type channels

We starting from discussing the basic diffraction prop-

erties of polarization gratings without considering Rydberg

states (assuming Rydberg states decoupled from the system).

Despite having equal frequencies (ωξ ≃ ωp), the varied

polarization probe photons interact on the distinct effective

level structures, resulting in diverse linear responses. It in-

dicates a variety of polarization state-dependent behaviors

of atomic ensembles, including absorption, dispersion, and

scattering, which enables the implementation of a controlled

polarization-dependent electromagnetically induced optical

diffraction scheme. Three diverse diffraction modes are de-

picted, depending on the polarization of the input beams:

Mode I. Asymmetric diffraction for the left circle (	, lc for

simplify) beam but symmetric diffraction for the right circle

(�, rc for simplify) beam are illustrated in Figure 3. As men-

tioned above, setting the phase to ψ1 = nπ engenders a dis-

tinctive interaction for left-circularly polarized photons with

the ensemble atoms, wherein the effective susceptibility man-

ifests a spatially odd-function real part χ′
lc(−x) = −χ′

lc(x)
alongside a spatially even-function imaginary part χ′′

lc(−x) =
χ′′
lc(x), conforming to PT-antisymmetry (APT ), as illustrated

in Fig. 3(a1). Consequently, this leads to perfect asymmet-

ric diffraction (only diffracted asymmetrically into positive

angles θ > 0) upon passing through the atomic ensemble,

as illustrated in Fig. 3(b1). Conversely, the susceptibility for

rc photons χrc(−x) = χrc(δ cos[πx/a]) = χrc(x) is even-

function of axial x [see Fig. 3(a2)], which corresponds to sym-

metric diffraction in Fig. 3(b2), with ψ2 = π/2.

Mode II. Asymmetric diffraction in the different direc-

tions for distinct polarization photons is depicted in Figure 4,

with the spatial modulation as ∆1/2π = ∆2/2π = 50.0
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FIG. 4. Polarization dependent diffraction Mode II: Absorption

(orange-solid) and dispersion (blue-dashed) curves versus x of left-

circlar (circle-marked) and right-circlar (triangle-marked) polariza-

tion probe beams in (a1) and (a2). Panel (b1) and (b2) show diffrac-

tion intensity Ip(θ) vesurs diffraction angle θ for 	 and � probe

fields, with ψ1 = 0, and ψ2 = π. Other parameters are the same as

Fig. 3.

MHz, ψ1 = 2nπ, and ψ2 = (2n + 1)π (n ∈ Z). A

polarization-dependent beam splitter is implied here, which

depicts that photons with different circlar polarization states

will be diffracted into separate channels (at lopsided positive

or negative angles), shown as Fig. 4(b1) and (b2). The inten-

sity distribution of the two polarization-dependent diffraction

channels and the diffraction direction are different under these

circumstances.

Additionally, it is easily attained the same response of the

two different channels (	 and �) by modifying the sign of

detuning ∆2 in Mode II (∆2/2π = −50 MHz) or setting

ψ2 = ψ1 = kπ (k = 2n and k = 2n + 1 for both lopsided

positive or negative angle diffraction), which is Mode III. the

same direction asymmetric diffraction under PT -symmetric

spatial modulation.

Mode I and II demonstrate the beam-splitting capability of

the non-Hermitian grating according to its polarization prop-

erties demonstrating that through the strategic configuration

of the level structure, we possess the capability to precisely

modulate the diffraction characteristics of polarized photons,

merely by adjusting the phase responsible for inducing ac

Stark shifts.

B. Polarization-dependent response under Rydberg control

Next, we will discuss the cases considering Rydberg states

and interactions integrated into the system. Without consider-

ing Rydberg interactions, we can get quasi-four level structure

(N -type) optical response of the atomic ensemble including

the effective coupling Dξ = −ΩcξΩdξ
/∆ξ separately for dif-

ferent polarization channels, depicted in Fig. 2. It is notewor-

thy that, since Ωdξ
(x) = Ωdξ

cos[2πx/a] functions versus x,
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FIG. 5. Diffraction angle spectrum Ip(θ) for 	 and � probe fields,

showed in left/right two panels, respectively. Top two panels, (a1)

and (a2), dispaly diffraction intensity Ip(θ) under the switch-on con-

dition. The switch-off cases correspond to the bottom two panels,

(b1) and (b2). The phase of detunings are set asψ1 = 0, and ψ2 = π.

Other parameters are the same as Fig. 3.

the effective coupling within the new structure retains a peri-

odic spatial modulation. Consequently, the system’s spatial

modulation transitions from detuning modulation to ampli-

tude modulation, ensuring the emergence of another type of

EIG structure.

Considering the corresponding detuning compensation δsξ
(scale of GHz), an approximate two-photon resonance con-

dition ∆ξ + δsξ − 〈ŝsξ〉 ≃ 0 is provided, after taking into

account the relatively weak self-interaction of the |sξ〉 state,

denoted as Uself
ξ ∝ C6(sξ, sξ). Choosing suitable Rydberg

states (C6(rξ, sξ) ≫ C6(sξ, sξ)) renders the Rydberg exci-

tation of gate states |rξ〉 (σg
rξrξ

) as the key point in control-

ling the ensemble optical response via van der Waals (vdW )

interactions. This control is facilitated through vdW interac-

tions that operate across diverse channels, with the interaction

strength UvdWξ
∝ C6(sξ,rξ)

|rt−rg |6
σg
rξrξ

.

In the absense of gate pulses (in form of Ramman process)

to Rydberg spin (〈σ̂grξ (τ)〉 = 0), the blockade effect induced

by vdW interaction (UvdWξ
) does not occur. Fig. 4(b1) and

(b2) illustrate the diffraction intensity distribution of photons

with different polarizations utilizing distinct phases, ψ1 = 0
and ψ1 = π/2, respectively. Photons are primarily diffracted

into the 0th order, which is reflected by the almost zero disper-

sive capability indicated by the blue curves in the subfigures.

Upon the excitation of the gate states |rξ〉, a blockade ef-

fect ensues for the corresponding state |sξ〉 of the ensemble

atoms, with blockade radius Rb(rξ, sξ) ≃ 6

√

C6(rξ,sξ)
w under

the laser line-width w = 3MHz, leading to its decoupling

from the optical field denoted by Ωsξ . Due to the large detun-

ing condition ∆ξ ≫ Ωdξ
(between |mξ〉 ↔ |dξ〉), only with

the small ac Stark frequency shift δξ ≃ −Ω2
dξ
/∆ξ left. Hence,

with the symmetric coupling condition Ωc1 = Ωc2 = Ωc and
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TABLE I. Rydberg atom states with the corresponding vdW interaction coefficient C6, lifetime τ (decay rate Γ = 1

τ
) ignoring blackbody

radiation (BBR), the Le Roy radius RLR, two-type blockade radius (Rss
b self-interaction between state |sξ〉; R

rs
b cross-interaction between

state |rξ〉 and |sξ〉).

State vdW -type interaction Decay rate LR radius Blockade radius I. Blockade radius II.

n C6(n, n
′) (GHz·µm6) Γ (2π·kHz) RLR(µm) Rrr

b (µm) Rrs
b (µm)

n′ = 40S1/2 44S1/2 41S1/2 45S1/2

40S1/2 −1 neg. 12 neg. 15.95 0.5 2.0 4.0

44S1/2 neg. −3 neg. −16 11.7 0.6 2.1 4.2

FIG. 6. Two dimensional diffraction angle spectrum Ip(θx, θy) for

	 and � probe fields, under the different OD with L = 45µm

(65µm) for the left (right) four panels. Top four panels, (a1)- (d1),

dispaly diffraction intensity Ip(θ) under the switch-on condition.

The switch-off cases correspond to the bottom four panels, (a2)-

(d2). The phase of detunings are set as ψ1 = 0, and ψ2 = π.

Other parameters are the same as Fig. 3, except for Ωdξ (x, y) =
Ωd0 [sin(πx/a+ ψxξ

) + sin(πy/a+ ψyξ )].

∆1 = ∆2 = ∆, the identical medium linear susceptibilities

for different polarization beams will be attained as Eqs. (11),

the consistent linear response. Including the diffraction prop-

erties after propagation through the atomic ensembles, it re-

verts to the scenario described in Sect. III A [See Fig. 5(a1)

and (a2)]. The collective excitation of the gate states (|rξ〉)
is the switch for the system’s Polarization-dependent optical

response.

In selecting Rydberg states, several guiding principles

should be observed. Foremost, it is important to limit the prin-

cipal quantum number of the Rydberg states (nsξ ) to com-

pensate for frequency shifts caused by self-interactions. Ad-

ditionally, it is imperative that the interaction coefficient be-

tween the gate Rydberg state and the target state of the en-

semble atoms significantly exceeds the self-interaction coef-

ficients C6(nsζ , nrξ) ≫ C6(nsξ , nsξ) (ξ = 1, 2), with the

parameters C6(ns1 , nr2) and C6(ns2 , nr1) closely approxi-

mated to zero to prevent the introduction of crosstalk in the

control process. Accordingly, the states selected and their

pertinent details are listed as |s1〉 ≡ |40S1/2,mj = 1/2〉,
|s2〉 ≡ |44S1/2,mj = 1/2〉, |r1〉 ≡ |41S1/2,mj = 1/2〉,
and |r2〉 ≡ |45S1/2,mj = 1/2〉 with the related vdW in-

teraction coefficients and lifetimes detailed in Table I, ex-

pect for the blockade radius Rb(41S, 40S) = 4.0µm and

Rb(45S, 44S) = 4.2µm.

A pair of Raman pulses, involved in the STIRAP (Stim-

ulated Raman Adiabatic Passage) process, acts between the

states |g〉 and |sξ〉. Due to the dipole blockade effect among

|sξ〉 states, the medium forms an arrangement of blockade

spheres with a blockade radius of 2.6 µm, within which at

most a single collective excitation of the |sξ〉 state can ex-

ist. The interaction between |sξ〉 and |rξ〉 states results in

the medium being segmented into a stack of blockade spheres

to the |rξ〉 state, each having a blockade radius of approx-

imately 4.0 µm. It is noteworthy that, based on the atomic

number density, the blockade spheres for the |rξ〉 state, with

a radius of 2.0 µm, are calculated to contain only 7-8 atoms

(nsa = 7.5). If a detuning compensation of 〈δsξ〉 ≃ nsa× 1.0
GHz is provided, it precisely enables the blockade of the |sξ〉
state against the |rξ〉 state, whereas the blockade effect among

|rξ〉 states can be disregarded.

TABLE II. Diffraction mode under non-Hermitian/Hermitian spatial

modulation and Rydberg-switching control with detuning phases

ψlc = 0 and ψrc = ψlc+∆ψ for left-/right circlar polarization state,

lc (	) and rc (�).

Phase Difference Diffraction Mode [Asymmetric/Symmetric, A/S]

(∆ψ = ψrc − ψlc)
Switch on Switch off

lc (	) rc (�) lc (	) rc (�)

∆ψ = 0 left (A) left (A) none none

∆ψ = π/2 left (A) normal (S) none Damman (S)

∆ψ = π left (A) right (A) none none

Based on these principle outlined above, we extend the spa-

tial modulation of the atomic ensemble to a two-dimensional

scenario, as Ωdξ
(x, y) = Ωd0

[cos(2πx/a) + cos(2πy/a)] (or

δξ(x, y) = δξ0 [sin(4πx/a+ ψxξ
) + sin(4πy/a+ ψyξ

)]). We

further explore the diffraction properties of photons with vary-

ing polarizations at different optical depths (L = 45, 65µm),

illustrated in Figure 6. Showing in the left four panels

Fig. 6(a1) to (b2), we achieve a controlled photon polariza-

tion beam splitter. Observing the right four ones, Fig. 6(c1)

to (d2), gate pulses merely demonstrate directional control of

diffraction for left-circlar polarized photons, but implement a

control mechanism similar to a odd-Dammann grating for the

optical routing switch of beam splitting for right-circlar po-

larized photons. In contrast, Fig. 6(a2) to (d2) demonstrate

that before the application of the gate pulses, there is an inten-

sity distribution present solely in the 0th order. This indicates

that the incident beam undergoes no diffraction, regardless of

its polarization state. This methodology underscores the nu-

anced manipulation of photon paths and splitting strategies,

predicated on their polarization characteristics. We have tab-

ulated the achievable diffraction modes and conditions of the
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atomic grating in Table. II.

IV. CONCLUSIONS

In summary, the ultra-cold atomic ensemble driven into a

dual-N -type configuration (like “VVV”) can provide an inter-

esting venue to realize polarization dependent non-Hermitian

EIG by Rydberg dynamical control. The transition selec-

tion rule ensures that the channels of photons with different

polarizations have no crosstalk and can be controlled sepa-

rately by different non-Hermitian space modulation (detun-

ing), which can result in a variety of polarization-selective

diffraction modes or functions, such as controlled polariza-

tion beam splitting. In addition, spatial tuning mode of grat-

ing has been shifted from amplitude spatial modulation to de-

tuning spatial modulation, by the Rydberg cross-blockade ef-

fect for both non-crosswalk polarized light transition chan-

nels. Therefore, pulse excitation of different gate Rydberg

states provides dynamic switching control for corresponding

polarization photon diffraction modes.

Through the integration of non-Hermitian optical modula-

tion and based on non-interfering channels, this grating facil-

itates tunable asymmetric diffraction that correlates with the

photons’ polarization states. Furthermore, controlled Rydberg

excitation provides a non-local control mode as switching ef-

fects combined with the optical scattering system. This inves-

tigation gives a novel idea for harnessing the polarization de-

gree of freedom of photons within EIG structures. It advances

the application of asymmetric optical scattering, underpinned

by non-Hermitian optical modulation. The potential demon-

strated by Rydberg atomic gratings opens up exciting possibil-

ities for further exploration and utilization in non-Hermitian/

non-local optical manipulation research.
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Appendix A: APT and Asymmetric Diffraction

In this section, we decompose the susceptibility of the

medium into its real and imaginary components based on the

results presented in Eq. (11), aiming to examine their spatial

variation and parity, which is crucial for ascertaining whether

they conform to non-Hermitian spatial modulation. Conse-

quently, the following expression is derived:

̺′ξ(ω, x) =
γγ2mξ

δξ(x)

[γγmξ
+Ω2

c(x)]
2 + γ2mξ

δ2ξ (x)
, (A1)

̺′′ξ (ω, x) =
i[γ2γ2mξ

+ γγmξ
Ω2

c(x)]

[γγmξ
+Ω2

c(x)]
2 + γ2mξ

δ2ξ (x)
,

where δξ(x) = δ0,ξ · sin[2πλc(x − x0)/a + ψξ] is an odd

function of x with ψξ = 2nπ (n ∈ Z). Obviously, ̺′ξ(ω, x)

and ̺′′ξ (ω, x) are the odd and even function versus x here,

which is satisfied with the optical PT anti-symmetry condi-

tion (APT ) with χ′
ξ(x) ∝ ̺′ξ(ω, x) (χ′′

ξ (x) ∝ ̺′′ξ (ω, x)) and

χ′
ξ(−x) = −χ′

ξ(x) (χ′′
ξ (−x) = χ′′

ξ (x)).
Focus on the nth-order (n 6= 0) diffraction by exam-

ining Eξ,n = EL
ξ (θn). For simplicity, with αξ(x) =

kp
∫ L

0 χ′
ξ(x, z)dz ∝ ̺′ξ(ω, x), βξ(x) = kp

∫ L

0 χ′′
ξ (x, z)dz

∝ ̺′′ξ (ω, x), and γn(x) = 2nπx, we can make a power se-

ries expansion of Eq. (8),

Eξ,n =

∫
+a
2

−a
2

e−iγn(x)
m
∑

0

[iαξ(x)]

m!

m

e−βξ(x)dx, (A2)

if αξ ≪ 1 with small optical depths (OD, η =
8πρ0℘

2
egL

ε~λpγ
≃

11.7), with {m, k} ∈ N. Defining

f ′
n,ξ = −

∫ +a/2

−a/2

dx · αξ(x) sin[γn(x)], (A3)

f ′′
n,ξ =

∫ +a/2

−a/2

dx · αξ(x) cos[γn(x)],

g′n,ξ =

∫ +a/2

−a/2

dx · αξ(x)
2 cos[γn(x)],

g′′n,ξ =

∫ +a/2

−a/2

dx · αξ(x)
2 sin[γn(x)],

with the replacement αξ(x) → εnαξ(x) and low absorption

βξ → 0, we further get

En ≃ [f ′
nεn − g′nε

2
n/2] + i[f ′′

nεn − g′′nε
2
n/2], (A4)

the scattering factor εn is small enough to keep only the first-

and second-order scattering terms [70, 71]. It is easy to find

that f ′
n = −f ′

−n, f ′′
n = f ′′

−n, g′n = g′−n and g′′n = −g′′−n, and

we can write down the intensities I±n ≃ |f ′
nεn ± g′nε

2
n/2|2 +

|f ′′
nεn ± g′′nε

2
n/2|2 for the ±nth diffraction orders. Accord-

ingly, the intensity contrast ratio can be introduced as

ηn =

∣

∣

∣

∣

In − I−n

In + I−n

∣

∣

∣

∣

≃ 2

∣

∣

∣

∣

f ′
n · g′n + f ′′

n · g′′n
(f ′

n)
2 + (f ′′

n )
2

∣

∣

∣

∣

, (A5)

to evaluate the degree of asymmetric diffraction. From

Eq. (A1), we can get αξ(−x) = −αξ(x), and γn(−x) =
−γn(x), under the APT modulation. It is easily obtained

that f ′′
n = g′′n = f ′′

n · g′′n = 0. After simplification, we can at-

tain the relationship between the asymmetry coefficients and



8

the scattering coefficients

ηAPT
n,ξ = 2

∣

∣

∣

∣

∣

g′n,ξ
f ′
n,ξ

∣

∣

∣

∣

∣

6= 0, (A6)

indicting the absence of high-order scattering terms results in

asymmetric diffraction of the grating under APT -symmteric

modulation.
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