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Abstract. Generative AI (GenAI) has fundamentally changed how knowl-
edge workers, such as software developers, solve tasks and collaborate to
build software products. Introducing innovative tools like ChatGPT and
Copilot has created new opportunities to assist and augment software
developers across various problems. We conducted an empirical study
involving interviews with 13 data scientists, managers, developers, de-
signers, and frontend developers to investigate the usage of GenAI. Our
study reveals that ChatGPT signifies a paradigm shift in the workflow
of software developers. The technology empowers developers by enabling
them to work more efficiently, speed up the learning process, and in-
crease motivation by reducing tedious and repetitive tasks. Moreover,
our results indicate a change in teamwork collaboration due to software
engineers using GenAI for help instead of asking co-workers which im-
pacts the learning loop in agile teams.

Keywords: Agile software development · Product development · Team-
work.

1 Introduction

There is a growing trend among companies to adopt digitalization and engage
in digital transformation[36]. This transformation process requires technologies
as software, data and artificial intelligence [5], forcing a shift in the use of strate-
gic frameworks [30], and new ways of developing technology for highly skilled
employees with intelligent technology [36].

Technology for assisting developers with writing code, particularly using In-
tegrated Development Environments (IDEs) is not a new concept [26,17]. The
task of autocompletion of code, and generating of test, and various other tasks
has been particularly interesting for software, as natural language matches quite
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well as the software code is hypothesized to be a natural language [16]. Sub-
suquently this hypothesis has led to lots of research on Artificial Intelligence
(AI) for software engineering [32,33]. With the introduction of Generative Arti-
ficial Intelligence (GenAI) - a type of artificial intelligence (AI), both the software
development processes and tooling have started to change fast. Further, GenAI
can revolutionize software development by automating repetitive tasks, improv-
ing code quality, enhancing collaboration, providing data-driven insights, and
ultimately accelerating the development lifecycle [31,25]. There is a growing re-
search into how to use Copilot [28], or Generative AI systems such as Chat GPT
[37], and its capability to automate software engineering tasks [20]. However,
good tooling is not enough.

In order for a company to succeed with software product development, well-
working teams and good processes are key. Software engineering is a social ac-
tivity that is focused on close cooperation and collaboration between all team
members [21] and across teams in the organization [2]. Therefore, it is important
to note that while AI has great potential, it also comes with challenges [1] such
as ethical considerations, data privacy concerns, the need for skilled profession-
als to handle the technology within software teams, and a potential change in
the team dynamics. However, research on team dynamics is lacking. In order
to understand the effects on team-dynamics however we also need to consider
the individual work practices, to grasp the effects on a team level. This paper
explores how are software engineer work practices transformed, and potential
impact on the transformation on collaboration.

We have interviewed 13 data scientists, managers, developers, designers, and
frontend developers to investigate how they use GenAI technology and how
their workday has changed. Finally, we discuss how this technology might affect
software development teamwork.

2 Related work

2.1 Productivity and work satisfaction

Competing for talents requires a conscious effort to offer an attractive workplace
[24]. Further, the ability to balance the need and nature of the workdays for
different team members is directly related to the outcome of the product [35].
For software developers, Meyer et al. [22] outline a framework that describes what
makes a good workday. There are three main factors: value creation, efficient use
of time, and perception. Value creation is about whether or not the developers
feel they are creating something, and the factor has six sub-factors. The second
factor, efficient use of time, has two sub-factors, meeting expectations and the
ability to work focused. In essence, the assessment of a workday being good or
bad is largely influenced by the expectations for the day. For example, if one
anticipates a day filled with meetings, the day can be considered good even
if most of the time is spent in meetings. However, if one hopes for a day of
focused work and the day is filled with meetings, the day is perceived as a
bad workday. Coworker interruptions were specifically described as negatively
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influencing developers’ ability to focus or work as planned, although being able
to help a co-worker was generally considered positive and rewarding. Lastly,
perception is about how they perceive their own productivity.

Developer satisfaction and work productivity are related, therefore they need
to be key considerations for software companies [15]. More productive developers
may be more satisfied, and more satisfied developers may be more productive.
Autonomy, being able to complete tasks, and technical skills all affect productiv-
ity. By introducing new technology like GenAI, a team member’s productivity
may be positively affected. At the same time work culture and team collab-
oration are important for job satisfaction. An increased reliance on tools like
GenAI may enhance individual productivity while inadvertently reducing inter-
team interactions, ultimately affecting long-term job satisfaction and collective
productivity. Introducing GenAI in software teams is therefore a balancing act.

2.2 Software development, knowledge work and technology

Software engineering requires the input and consolidation of various informa-
tion to produce code [26]. Furthermore, with the advent of DevOps with its
increase in speed of delivering continuously [13], increased accessibility to third-
party libraries and frameworks, the process of software engineering has shifted
from being about understanding the computer and the programming language
towards understanding how to compose relevant libraries and frameworks, with
applicable testing.

Software development encompasses more than just programming and team-
work, it also involves actively seeking knowledge online and in knowledge man-
agement systems [12], conducting testing and code reviewing [14], and taking
advantage of software such as Integrated Development Environments. IDEs has
been a researched topic for quite some time [26] as well as how online resources
[8,18] aid and enhance the development process, both in speed and quality across
varying ranges of experience. Through the use of IDEs, software engineers have
gotten access to capabilities for refactoring, debugging, source repositories, third-
party plugins[26] and auto-completion of code [6]. In addition, developers need
to browse through a plethora of different files in existing software solutions in
order to get a grasp of how changes to the code need to be implemented [17].

More recently, better auto-completion methodologies and technologies have
been introduced to provide more context-relevant suggestions using statistical
methods [6], and the naturalness of software [16] is a great target for utiliz-
ing natural language processing and generative AI. Github Copilot has shown
promising effects for assisting developers in writing code, assisting with test writ-
ing [25,4]. Early studies on knowledge work show that generative AI are able to
disseminate knowledge previously shown as tacit[7] and dramatically increase
both quality and production[10]. Both studies show that the effects are most no-
ticeable for the lowers skilled workers while higher skilled workers have a lower
increase in prodcution and quality.
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2.3 Teams, knowledge sharing and performance

Software product development is done in teams [19], therefore, the success of
software development depends significantly on team performance. Today the
premise is that software teams should be autonomous or self-managed [27]. In
their review, Dickinson and McIntyre [11] identified and defined seven core com-
ponents of teamwork. Using these components and their relationships as a basis,
they proposed the teamwork model that is used in this work. The model consists
of a learning loop of the following basic teamwork components: communication,
team orientation, team leadership, monitoring, feedback, backup, and coordi-
nation. Later Moe et al. [23] used this model to explain agile teamwork. The
introduction of GenAI is likely to affect these teamwork components.

3 Research Method and Analysis

This study was conducted in the context of two research programs on software
development processes, where several companies introduced Generative Artificial
Intelligence (GenAI) in their product development process. GenAI, especially
those built on LLMs, is a new phenomenon that has not been previously studied.
Due to the uncertain nature of the phenomenon, we chose an exploratory multi-
case study [38]. We selected our informants using snowball sampling [3] in Slack
asking for subjects that used GenAI for a wide range of activities. As of the
tools used, our studies found that ChatGPT and GitHub Copilot were the most
common for code and text, while some reported that they used Midjourney and
DALL-E 2 for image creation.

3.1 Data Collection and Analysis

We interviewed 13 people, as shown in Table 1. The informant group had a
broad range of roles: data scientists, managers, developers, designers, and front-
end developers. Based on a literature review, we developed a semi-structured
interview guide. Questions included: How do you use GenAI services? andWhich
effects do you get from using them?. The interviews were done by the first, third,
fourth, and fifth authors to spread out any subjective biases.

The analysis was divided into two cycles of coding as suggested by Saldana
[29], with the third and first author conducting a combination of descriptive and
initial coding [9] on the first eight interviews. Then the third and first authors
had a discussion about the emerging categories and themes. This led to a revised
interview guide. Finally, the last five interviews were conducted.

After the last round of interviews, the fourth author performed a descriptive
coding of the remaining interviews. At the same time, the first author performed
a second cycle [29] focused coding of all interviews. Then, the observed themes
and categories were merged through mutual workshops and discussions with all
authors.
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Table 1. Data sources

ID Role Work experience in years

I1 Developer & Team lead 5
I2 Developer 5
I3 Technical Strategy Consultant & Director 30
I4 Tech Lead & Machine learning engineer 6
I5 Principal Engineer and Enterprise Architect 15
I6 Data Science Manager 6
I7 Developer 10
I8 CTO 25
I9 Director 30
I10 Developer N/A
I11 Designer 13
I12 Designer 3
I13 Developer 3

4 What is Generative AI Used for in Software
Development?

Software development consists of a number of activities, ranging across multiple
roles in cross-functional teams. When using source repository systems or IDEs,
the use case is often clear. However, the use of GenAI takes on a much more
individual form. There are currently no standards or norms for how, when, and
for what purpose you should apply GenAI to, and employees in software-intensive
organizations are using it based on their own preferences. GenAI tools for a wide
range of activities. See Table 2 for an overview of such activities.

The type of GenAI activities and utilization depends on individual prefer-
ences, the task to be solved, and the user’s role in the organization. Developers
typically use GenAI when working with the source code, while managers use it
for, e.g. organizing workshops or creating content for PowerPoint presentations.

4.1 Asking for assistance when stuck

When a person was stuck on a particular problem or did not know how to
proceed, ChatGPT was used as an assistant or fellow team member, where in-
teracting with it using chat could help a person solve complex problems or get
increased progress. For non-technical problems, this could be a case of writer’s
block, formulations, or when they are zoning out: ”For me, the main thing is
to get unstuck, whether I am struggling with writer’s block or formulations, just
by interacting with ChatGPT and getting an immediate response is something
else.”

This highlights that there is an effect of just having the chat window open,
and getting feedback without interrupting others. Formulating the problem to
ChatGPT made it easier to keep focus on the task, helped on the thought pro-
cesses, and helped see the problem in a new light. Developers referred to such
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Table 2. List of GenAI Activities

Activity Description

Asking for assistance when
stuck

When stuck on a particular task, GenAI can help
getting out of the slump.

Learning GenAI provide an interactive way of learning new
things.

Creating a virtual environ-
ment for a product

By asking GenAI to provide an simulated/virtual
environment to learn and test products.

PowerPoint and email writing GenAI is useful for helping with writing text for email,
powerpoint.

Non-technical boilerplate Providing a boilerplate for how to get started with
powerpoint, workshops.

Boilerplate code GenAI can provide boilerplate code that acts as a
skeleton for further development.

Working with existing code GenAI are used for refactoring, adding small features,
making code more robust, converting code, debugging,
writing tests, Search Engine Optimization (SEO).

interaction with ChatGPT as rubber-ducking. The idea of rubber-ducking is to
explain the problem one seeks to solve to an inanimate object (e.g. a rubber
duck), in an attempt to achieve a deeper understanding of the problem and a
potential solution through the process of explaining it to someone (or something)
using natural language.

Using GenAI as a sparring partner was both faster than asking human col-
leagues and also took away the feeling of disturbing them in their work. Further,
being able to formulate the question as you would to a human felt easier than
the alternate Google search, where you need to consider the specific keywords,
and what results they can give you.

4.2 Learning

GenAI provided more opportunities and avenues for engagement in learning
compared to reading books, using Google, or watching videos. One approach
was to engage interactively with the chat, assigning a role to the AI like ”act
as a tester”, and then engaging with that persona to learn about testing. They
could then ask that persona to explain a particular topic like they were doing
testing for the first time.

”And then I continue. And I notice that I learn much faster this way. Because
it’s like having a personal tutor. Where you can ask yourself questions. And then
I always have to double-check.”

The same approach was also applied when working on code, where using new
features, or when working on areas that the informants were not that knowledge-
able about, a data scientist explained how to use the technology to learn more
about programming: ”Almost as if I were asking someone much more skilled,
like a developer in this case.”
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4.3 Virtual environments

Creating a virtual environment for a product was used to develop software for
a trading platform. They engaged with the Chat GPT and asked it to simulate
that it was a stock exchange. They then provided the Chat GPT with informa-
tion about which stocks could be traded at the exchange and asked it to simulate
different trading scenarios. This provided a novel way for the informant to un-
derstand the intricacies of a stock exchange. Further, this means that the Chat
GPT had the context for the particular trading platform the informants were
interested in.

”And then I said, ”now I’m going to make an application out of this in such-
and-such language.” And so it has the context for everything while I kept asking
it further questions.” This integrated approach to both understanding a domain,
also then produced the relevant context that ChatGPT could use to generate
relevant code.

4.4 Copywriting

Maybe not surprisingly, Chat GPT was used to assist in copywriting text, es-
pecially useful when integrated into the tool the informant was using, getting
live feedback; this was particularly useful for persons that were not native or
fluent in English or Norwegian. However, some experienced that GenAI was not
very useful for email and text writing for two main reasons, there was a signifi-
cant overhead in engaging sufficiently with ChatGPT to create emails, and the
quality did not get better.

”I think I have asked it to write emails, but for me it is just faster to write
it myself. The formulation was better though.”

4.5 Boilerplating code and text

Getting started with a relatively novel coding project in any company requires
quite a lot of boilerplate code; this type of code does not add functionality
relevant to the business case but is required to get the project up and running
with the necessary declarations and structures. Both back-end and front-end
developers used ChatGPT to create tailored boilerplate code:

”If I have a task, to create a list of tricks with something, and thumbs up and
thumbs down on each element, for instance. I often start by describing what I
want to ChatGPT. Then, it writes the code for me.” GenAI was also used for
repetitive or tedious non-technical tasks. For example, managers and architects
stated to use ChatGPT to consolidate text used for production of bid to cus-
tomers. One manager explained, ”A bid I would normally have spent a lot of
time in writing, I only spent 20 minutes on. Previously I would have spent a lot
of time, looking for previous bids, adapting it and merging it. It is terrible to say
it out loud [laughing], as this kind of is in someway reducing the need for my
work. This type of work is what the company pays me to do.”
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Another example is when you are building up technical specifications and
technical architectures where the style of the text is quite consistent but the
content varies between use cases. Or getting feedback on emails, and getting a
headstart on the writing of the text.

4.6 Working with existing code

This was the most common activity among software developers. GenAI was
used on many different tasks, ranging from refactoring or simplifying code, code
review, translating code from one programming language to another, and simply
explaining the code. Testing was also well-suited for GenAI utilization, given its
repetitive nature, GenAI was used to create numerous tests for the code. The
informants also noted that the generated tests sometimes accounted for scenarios
and test cases that they themselves had not thought of.

”It was mostly a matter of thinking up all the things that could go wrong and
creating unit tests for them. And that’s where CoPilot was brilliant, as it came
up with things that could go wrong that I had never thought of.”

5 How and why do we interact with GenAI?

In the previous section, we described how GenAI is used for a variety of activities.
In the studied companies GenAI was becoming an integrated part of their daily
work, and most explained that they used GenAI daily, or ”all the time”.

Among the study participants we found two styles of interaction: simple dia-
logue and advanced dialogue extended with prompt engineering. The interaction
style depended on the work context and types of problems to be solved. Table 3
contains an overview of the effects and drawbacks from interacting with GenAI.

5.1 Effects

By spending less time on manual and repetitive tasks, the improved productivity
brought more enjoyment, motivation and fun to the work. The repetitive tasks
were seen as menial, and not particularly mentally challenging. Further, as time
was freed up, more time could be spent on creative and challenging tasks. More-
over, engaging with the GenAI itself was experienced as fun and increased the
motivation to experiment with different applications of the new technology.

Interacting through dialogue with ChatGPT increased engagement. It was
experienced as a more ”natural” engagement then searching for answers to prob-
lems on Google. Having a dialogue with ChatGPT was also described as faster
than concocting the necessary string of Google search keywords. Moreover, Chat-
GPT responds immediately with the, assumed, correct answer to the question,
while googling often required additional steps, vetting the correct site on the
search page, entering the particular page, and analysing the web page for the
potential answer to the question. One informant was so conscious about speed
that they deliberately chose GPT v3.5 over v4 in certain cases (at the time of
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Table 3. Use of GenAI - Benefits and Challenges

Mode Benefits Challenges

Simple

– Asking questions is eas-
ier than searching

– ChatGPT immediately
provides an (almost) us-
able result

– More efficient
– More fun
– More time to learn
– Increased motivation

and work satisfaction

– Input cleaning
– Lack of tool integration
– Lack of information af-

ter 2021
– Output needs to be

worked on
– Culturally biased out-

put

Advanced (Simple and
Prompt engineering)

– Interactive learning
– More precise answers
– Ability to take on differ-

ent roles
– Pair-prompt engineer-

ing
– ChatGPT as advisor -

rubberducking

– Limited context ability
– Less pair-programming
– Still requires other peo-

ple when the complexity
increases

– Prompt engineering re-
quires competence

our data collection v3.5 was faster than v4) , where the precision and quality of
the v3.5 answer was assumed to be sufficient.

GenAI’s utility also extended beyond quick and precise answers, with in-
formants reporting a freedom in interacting with an artificial tool rather than
having to deal with the social considerations involved in asking a team member.

”Yeah, so you don’t need to be too polite either. You don’t have to have the
correct phrasing or anything. You can just throw something out, I feel. Then you
can get an answer, and if it’s not quite right, you can refine the question again.”

The threshold of asking ChatGPT was significantly lower than asking an-
other person or in a Slack channel. This threshold for asking colleagues could
potentially be high in a busy work environment, as one does not wish to inter-
rupt an already-busy colleague. Further, you get feedback immediately, while it
might take a while to get feedback on Slack.

5.2 Challenges

While there are many positive benefits of using GenAI, there are also challenges.
The elusiveness of data confidentiality, data policy, and sensitivity meant that
everyone was acutely conscious about which data to input into the chat inter-
face. This made the work process somewhat awkward, requiring cleansing and
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anonymization of the text being sent into ChatGPT. Developers in companies
using open-source technology were less lenient in protecting code than those in
companies with internal code repositories. Moreover, the general lack of tool in-
tegration meant that there was a substantial amount of copy-paste to move text
and code between different windows. One developer using Copilot X reported
that the integration in the IDE meant that the code could be autocompleted,
and explained by ChatGPT in a seamless process, which reduced their work im-
mensely: ”I think it would have been easier to adopt a GenAI tool if I had used
something like Copilot. Because then it would have been, in a way, integrated
into the workflow.”

With regards to the output, all informants noted that the content produced
by GenAI, regardless of tool, seldom represented a final product and typically
required further refinement to be applicable in a real-world context. The general
attitude from the interviewees was that they expected the output to be wrong.

Regarding technological development, which is characterized by a rapid pace
and a increasing number of available libraries and technology, the cut off date for
ChatGPT’s training data in September 2021 represented a significant drawback,
were the error-rate was annoyingly high.

One architect creating project startup documents, experienced that Chat-
GPT was culturally biased towards how more hierarchical companies would per-
form activities in a project. This meant that ChatGPT had to be prompted with
specific information regarding the methodology and project practices:

”You kind of have to trick it into the right context if it’s (GenAI) going to
be part of agile processes.”

5.3 Prompt engineering

Several interviewees talked about how the quality of their prompt affected the
quality of the response, and how the use of prompt engineering techniques like
contextualizing the problem, using personas, etc. to guide and steer the dialogue
with ChatGPT. Prompt engineering was applied to all the activities in table 2.
One informant explained asking ChatGPT to create a description of the most
critical code reviewer in the world. They then told ChatGPT to act like this
description while reviewing the codein a pull request. Another more technical
aspect was telling ChatGPT to act like an SQL database to test queries. The
effect of using prompt engineering was seen as a matter of precision and quality,
thus reducing the time spent on working on modifying the output. One explained
the usage of prompt engineering as follows:

”It’s like putting up fences on the bowling lane and then narrowing it down
even more. It can almost only go one way, and that’s a strike.”

An important prompt engineering technique was assigning different roles to
ChatGPT for the same question to get more than one perspective or answer on
a problem. One explained,

”I want you to respond like a wealth manager,” ”I want you to respond like
a friend,” or ”like a so-and-so...” And then you get different answers.”
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Using prompt engineering while writing code was described as feeling similar
to programming with a partner. The flip side was that the developers mentioned
that they were doing less pair programming as they were getting the wanted
rubber ducking effect from using GenAI.

6 Discussion

One of the notable consequences of integrating GenAI tools into software devel-
opment tasks is a visible shift in collaborative communication dynamics. Some
of the informants appear to have a growing inclination to consult AI-driven solu-
tions for issues and tasks they previously discussed with their human colleagues.
This shift can have dramatic effects on the team’s ability to perform. Accord-
ing to Liu et al., [19], a team’s ability to perform is highly dependent on the
knowledge sharing of the team. This implies that reducing knowledge sharing
by replacing this with Generative should be observed. This opposes the findings
by Brynjolfsson et al. [7], where knowledge dissemination between high-skilled
and low-skilled workers in customer service. These findings point to a significant
difference between work done by teams in software development and individ-
ual work in customer service. However, we find that individuals become more
efficient and save time, which they spend on more rewarding tasks.

If team members reduce their interactions in favor of focusing on individual
tasks, a phenomenon known as an isomorphic team structure may emerge. The
advantages of this structure are that it is organizationally simple, allows many
tasks to be completed in parallel, and can clearly define and understand task
responsibilities. However, the effect of such a structure is that the developers
focused on their own modules and often created their own plans and made their
own decisions. In addition, problems are seen as personal, individual goals are
more important than team goals, and team members become less aware of what
others are doing and get less support and help from others [23]. In a good working
team, learning is a continuous feedback, see Figure 1(a). By introducing GenAI;
this loop will be disrupted, or reduced, Figure 1(b), thus reducing teamwork
performance[23]. Additionally, this can also contribute to making persons less
satisfied as helping others is a key factor for good workdays [22].

This model posits that the incorporation of GenAI in software development
may disrupt the established learning loop. Such disruption will subsequently
affect individual and team performance in software development. While it is
anticipated that GenAI might enhance individual performance by streamlining
tasks, there is a concurrent risk of diminishing overall team performance.

However, everything is not dark; as multiple informants noted, they had an
increasing amount of knowledge sharing on how to use GenAI in their work and
context. Notably, the practice of ”pair prompt engineering” has emerged, akin
to the concept of pair programming. This approach facilitates knowledge sharing
[34] both on-site and when working remotely. This can thus involve a shift in
how the programmers program, creating yet another abstraction layer for code
production.
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(a) Regular learning loop

(b) Disrupted learning loop

Fig. 1. Regular and disrupted learning loops.

7 Concluding remarks

In essence, GenAI serves a dual purpose: making everyday tasks more efficient
and reigniting creative thinking for leaders and developers. By automating the
production of routine code snippets and related tasks, these tools enable pro-
grammers to focus on higher-level conceptualization and innovation, resulting
in enhanced productivity and code quality. This is similar to findings by Meyer
et al. [22], where good workdays are understood as days where they feel pro-
ductive and are able to work focused. In addition, similar to Brynjolfsson et al.
where there is knowledge dissemination through the GenAI [7], we observe that
there are data scientists using GenAI for coding purposes and frontend develop-
ers getting assistance in back-end development. Both programmers and leaders
acknowledged the potential of generative AI in freeing up valuable time and
cognitive resources that could be better allocated to more creative and complex
problem-solving tasks.

This is reported to enhance both efficiency and enjoyment. By automating
the production of routine code snippets and documentation, these GenAI en-
abled programmers to focus on higher-level conceptualization and other more
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complicated tasks, resulting in higher reported productivity. Most informants
reported that AI reduced the amount of time developers spent on projects.
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