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ABSTRACT
Automated insight generation is a common tactic for helping knowl-
edge workers, such as data scientists, to quickly understand the
potential value of new and unfamiliar data. Unfortunately, auto-
mated insights produced by large-language models can generate
code that does not correctly correspond (or align) to the insight.
In this paper, we leverage the semantic knowledge of large lan-
guage models to generate targeted and insightful questions about
data and the corresponding code to answer those questions. Then
through an empirical study on data from Open-WikiTable, we show
that embeddings can be effectively used for filtering out semanti-
cally unaligned pairs of question and code. Additionally, we found
that generating questions and code together yields more diverse
questions.
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1 INTRODUCTION
In the Age of Copilots1, numerous companies have developed copi-
lots that leverage large-language models (LLMs) to answer and
perform tasks directly in products. To facilitate user interaction

1https://www.forbes.com/sites/forbestechcouncil/2023/09/08/the-age-of-co-pilots
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with the product copilot, a common tactic is to automatically gener-
ate suggested questions or followups. This tactic is also common in
exploratory data analysis, where automated insights are generated
to help data scientists initiate interaction with data [10]. More gen-
erally, a good question can be an effective tool for human knowledge
acquisition [4], and effective problem-solving [14].

Outcome Year Championship Opponent in final Score

Winner 1990 World Snooker Ch. Jimmy White 18–12
Winner 1990 Grand Prix (2) Nigel Bond 10–5
Winner 1987 Grand Prix Dennis Taylor 10–7
Winner 1990 Asian Open (2) Dennis Taylor 9–3
Winner 1990 Dubai Classic (2) Steve Davis 9–1
Winner 1990 UK Championship (2) Steve Davis 16–15
Winner 1988 British Open Mike Hallett 13–2
Runner-up 1988 UK Championship Doug Mountjoy 12–16
Winner 1989 Asian Open James Wattana 9–2
Winner 1989 Dubai Classic Doug Mountjoy 9–2
Winner 1989 UK Championship Steve Davis 16–12
Runner-up 1990 European Open John Parrott 6–10
Runner-up 1991 Classic Jimmy White 4–10
Runner-up 1989 International Open Steve Davis 4–9

Figure 1: A table displaying the snooker championship re-
sults from the Open-WikiTable corpus.

In this paper, we leverage large language models [1] to generate
semantically-aligned question and code pairs for supporting
automated insight generation. Data scientists (and other users)
often explore a new dataset, by using tools, writing queries, or
code. Unfortunately this process takes up a significant part of data-
driven workflows [3, 5]—understanding how to select and combine
operations such as sorting, filtering, reshaping, grouping, joining,
and pivoting data can be time-consuming. This problem can be
made even worse if a data scientist is mislead by using incorrect
code generated by an LLM.

For example, consider a table with snooker data for a specific
player, as shown in Figure 1. Following are a few examples of the
automated insights generated by a LLM.
In which championship did the player face the toughest com-
petition based on the average frames played in the finals?
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> (df.groupby('Championship')['Score']
.apply(lambda x:

sum(int(score.split('-')[0]) +
int(score.split('-')[1])
for score in x) / len(x))

.idxmax()
'UK Championship (2)'

Howmany championships did the player win consecutively?
> df.sort_values(by=["Year"])

.groupby(
(df['Outcome'] != df['Outcome'].shift())
.cumsum())['Outcome']

.transform('size')

.max()
5

The above insights, highlighted in green, are useful insights
that help in understanding different segments of the tabular data
and are beneficial to provide a head start with code that can be
used and extended. Unfortunately, the same approach, without any
additional filtering, also generates misleading and incorrect insights
or code, potentially negating the value of the entire approach:
What is the overall trend in the player’s performance over
the years?
>>> 'Increasing' if

df['Outcome'].eq('Winner').sum() >
df['Outcome'].eq('Runner-up').sum() else

'Decreasing' if↩→

df['Outcome'].eq('Winner').sum() <
df['Outcome'].eq('Runner-up').sum()
else 'Fluctuating'

'Increasing'

→ While the insight is interesting, the code does not appropri-
ately account for multiple championships in years.

What is the average score in the finals when the player wins
compared to when they are the runner-up?
>>> df[df['Outcome'] == 'Winner']['Score']

.apply(lambda x:
sum(map(int, x.split('--'))))

.mean()
18.0

→ The insight is computing interesting stats about the data but
the calculation is incorrect. The calculation must take the
first part of the score after splitting rather than both.

We conducted an empirical study to understand how we can
correctly identify semantically-aligned question and code amongst
all generated pairs. First, we conduct a user study to understand the
relevance of the question and code pairs we generate using LLMs.
Then, to determine if questions and code align, we comparemultiple
models on their ability to rate the correctness of (question, code)
pairs. Finally, to measure diversity, we compute the edit distance
between generated code snippets after masking constants. Based
on our study we found that: (1) users found most generated code
pairs to be interesting and meaningful for their work, (2) a semantic
alignment classifier based on code embeddings performs on par
with GPT-4 [13] on a human-annotated dataset and (3) generating
questions and code together gives more diverse inspirations.

2 RELATEDWORK
LLM are incrementally used for tasks that involve generating ex-
ecutable code given some textual context. This marks one of the
challenging problems because, unlike text, sequentially generated
code has to maintain its semantic and syntactical correctness. Sev-
eral fine-tuning and training efforts have been carried out over the
years to enhance the natural language to code generation capa-
bilities. For example, CodeBERT (BERT), CodeT5 (T5) and Codex
(GPT-3) have been fine-tuned for text-to-code tasks for multiple
domains like pandas, Java etc. Huge training datsets, bigger models,
expert tuning approaches, enriched training objectives specializing
in code context have led to improvements from the baselines in
terms of lower syntactical errors. Though semantics still remains a
concern [19] and there have been fewer efforts in generating similar
code and natural language together for tabular data analysis.

An integral part of the data science workflow involved analysing
the tabular data. Data analysis tasks such as data cleaning [6], for-
matting [15], transformation [17], and visualization [9] have been
explored and collectively fall under the workflow of Exploratory
Data Analysis (EDA). Previously these tasks where carried out by a
symbolic setup like MetaInsights [10] which mine common data
pattern to show insights. Similarly, LLM are also used as an or-
chestrator along with the symbolic systems to rank and summaries
insights [11]. Though none of these works focus on the alignment
issue between the question and the generate code.

Finally, our work is closely related to the research on automat-
ically generating question and answers in various domains, and
additional challenges associated with alignment [2, 16], and diver-
sity [18] of results. In contrast to these approaches, we specialize
our approach in the table code generation domain and to handle
tabular/code specific issues, leverage LLMs to derive semantic table
and column information during synthesis, and leverage embeddings
to train cost-effective classifiers for measuring alignment.

3 PROPOSED METHOD
Given a table 𝑇 , the goal is to find question and program pairs
(𝑞𝑖 , 𝑝𝑖 ). We make sure that the generated pairs (𝑞𝑖 , 𝑝𝑖 ) are aligned
and 𝑝𝑖 (𝑇 ) correctly answers𝑞𝑖 . Additionally, we need to ensure that
we maintain a balance between diversity (unique (𝑞𝑖 , 𝑝𝑖 ) pairs) and
complexity (𝑞𝑖 is non-trivial and provides an interesting insight).
We make no assumption of the type of the data present inside each
cell of the given table and consider it to be string.

3.1 Architecture
Figure 2 shows an overview of our approach. 1○ We analyse the
given table to 2○ build a prompt that contains relevant information
about the table, and we 3○ instruct the model to generate questions
and code pairs. 4○We then clean invalid and non-executable candi-
dates, and finally 5○ remove those candidates where the generated
code does not align with the question. These stages of our approach
are detailed in the following sections.

3.2 Table Analysis and Prompt Creation
The prompt contains three main relevant pieces of information,
which together allow the model to perform the right wrangling
operations when providing the code for insightful questions.
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Figure 2: Overview of approach. 1○ The table is analysed to gather relevant information to 2○ build a prompt that helps the
model 3○ to provide interesting insights. 4○ The output of the model is cleaned and invalid suggestions are filtered. 5○ The
suggestions are then screened by the Semantic Classifier to present the actionable insights.

First, a small subset of rows allows the model to understand the
syntax of each column. For example, in Figure 1, an example of
the score “10–7” is required to understand that splitting on “–” and
integer conversion is required to compute averages.

Second, properties about columns provide the model with a
complete picture about the scope of the data. These properties are
the appropriate data-type information (integer, float, string, and
date-time) and number of missing elements of each column, and
cardinality, extrema, peak-frequency, column position and entropy
for each column.

Third, we leverage these features to predict columns that are suit-
able candidates for grouping and aggregation. A similar approach
was used by Auto-Suggest [17] for generating such operations, and
we use their dataset for training the model. Instead of complex post-
processing, we only use the predictor to provide a weak signal to
the LLM, which then leverages its semantic understanding to refine
these candidates. Our predictor is a decision tree, which achieves
88% accuracy on an 80/20 split.

3.3 Filtering and Semantic Alignment
We instruct the model to generate question and code pairs and filter
pairs for which 𝑝𝑖 cannot be executed on the input table. Inspecting
the resulting code pairs, we discovered that the question and code
do not always align well together.

For example, consider the generated insight for the snooker data
from Figure 1: Which player has the longest winning streak in the
finals?

> table[table['Outcome'] == 'Winner']
.groupby('Opponent in final')
.size().idxmax()

"Steve Davis"

While this is an interesting question, the corresponding code does
not take consecutive years into account. Similarly, consider the
generated insight for another table with columns [year, starts, wins,

poles, position, teams]: What is the average number of starts by
drivers in the top 5 positions?

>table[table['Position']
.str.contains('5th')]['Starts']
.mean()

"23"

The code only takes the 5𝑡ℎ position in account, rather than the top
5, and this question and code pair is not semantically aligned.

We propose to predict the semantic alignment of question-code
pairs (𝑞, 𝑝) by leveraging pre-trained embeddings of text and code
[12]. Instead of directly using the embeddings, we train a small,
fully connected network to predict semantic alignment from the
concatenated embeddings of 𝑞 and 𝑝 . Binary cross entropy between
the predicted and the ground truth label is used as loss function.

We use a dataset of natural language descriptions and pandas
expressions [7] to create a dataset of aligned and misaligned pairs.
By using GPT-3 to generate code from these descriptions and using
the execution result, we obtain 2209 aligned and 422 misaligned
pairs. Next, we swap the code for two pairs (𝑞1, 𝑝1) and (𝑞2, 𝑝2) to
generate additional misaligned pairs (𝑞1, 𝑝2) and (𝑞2, 𝑝1). In total,
this resulted in 1552 misaligned pairs. The semantic alignment
classifier achieves 95.6% F1 score on 80/20 split.

4 USER STUDY
Effective insights should be perceived as useful and relevant to
data analysis tasks. Prior to evaluating the semantic alignment of
generated question and code pairs, we ensure the insights generated
by our approach, enable productive exploration of datasets and are
sufficiently complex. To measure the quality of generated questions,
we performed a user study where we asked annotators to rate
insights and provide feedback.
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4.1 Methodology
4.1.1 Participants. We recruited 5 participants from within our
organization, who have a background in computer science, and
varying levels of experience with data analysis tasks.

4.1.2 Task. Participants were asked to examine a sample of 12
tables randomly selected from our dataset, and rate 6–7 insights
generated for each table. To ensure that participants spent sufficient
time on each table, we first asked them to describe five exploratory
analysis questions they might have about the table. This enabled
participants to get acquainted with the data, and identify meaning-
ful metrics and columns of interest from the data. Next, for each
of the 76 insights presented, participants answered each of the
following questions on a 7-point (1–7) Likert-scale:

(M1) This insight is relevant and enhances my understanding
of the table.

(M2) This insight saves time and improves my productivity.
(M3) I would not have been able to independently arrive at a

similar query as suggested by this insight.
Ratings provided for these questions help us assess the relevance

and usefulness of generated questions. Once the participants have
provided ratings for all 76 insights, we ask them for their overall
feedback and additional comments.

4.1.3 Analysis. To analyze the ratings and assess which insights
are considered meaningful by the participants, we use three metrics,
one corresponding to each Likert-scale question: Relevance (M1),
Productivity (M2), and Ingenuity (M3). We then rank all insights
using a combined metric:

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝐼𝑛𝑔𝑒𝑛𝑢𝑖𝑡𝑦

We qualitatively analyze the ranked insights to identify desirable
properties that contribute to increased usefulness of insights, and
properties that lead to lower ratings.

4.2 Findings
4.2.1 Ratings for Questions/Insights. 76 insights generated over 12
tables by our method were inspected by five raters for perceived
relevance, improvements in productivity, and ingenuity. We report
the ratings obtained in Table 1. Participants positively rated the
relevance of insights overall (79% agreement, median 6), and find
them to be time-saving in analyzing data (77% agreement, median
6). Lastly, participants find the presented insights to be a mix of
trivial and complex generations, as suggested by the low agreement
on Ingenuity of insights (35.5% agreement, median 3).

4.2.2 Qualitative findings. We qualitatively inspected the ranked
insights (as discussed in 4.1.3) to find desirable properties that make
generated questions useful. We find three overarching categories
of insights, and present representative examples for each stratum:

The top 20 percentile insights provide highly semantically rele-
vant statistics about the table. These insights have high M1, M2, and
M3 ratings. They present non-trivial code generations that use com-
plex operations in moderately long chains (such as groupby, apply,
and diff). These insights highlight the most critical data points and
exploratory findings while having high entropy (in other words,
being interesting to the raters). Following are examples from this
category of insights:

Howmany locations have a capacity in use greater than 100%
(Rank 7; Score 13.67)
> len(table[table['Capacity_in_use']

.str.rstrip('%
> 100]

)

→ The LLM realizes that the data reports transport capacity and
utilization across cities, and the insight brings to attention
the cities with overburdened transportation facilities.

What is the range of municipality areas in each region? (max
area - min area) (Rank 8; Score 13.5)
> table.groupby('Regional_County_Municipality')

['Area_km_2_']
.apply(lambda x: x.max()-x.min())

→ The insight groups the data by regions and uncovers the
range of land area. Our model is able to pick the correct
columns names, while presenting a complex and meaningful
insight.

The next stratum of insights lying in 20–80 percentile have high
M1 andM2 ratings, with lowM3 ratings—these insights are relevant,
and improve productivity, but are commonly thought of by the
raters (indicated by low Ingenuity ratings). These insights involve
computation of meaningful but commonly reported statistics (such
as min, max, avg, value counts, and top-n) after performing groupby
operations, or conditional filtering of data. Some examples include:
How many games have been released in all three regions?
(Rank 16; Score 13.00)
> table.loc[(table['Europe'] != 'N/A N/A')

& (table['North_America'] != 'N/A N/A')
& (table['Japan'] != 'N/A N/A')]

.shape[0])

→ The insight presents a sufficiently complex code snippet,
but is commonly thought of by users. It identifies that the
table contains release dates in three countries and leverages
missing values to count games available in all countries.

What is the most common nationality among the directors
who have won awards? (Rank 41; Score 11.8)
>>> table.groupby('Nationality_of_director')

['Award'].count().idxmax()

→ Though this question helps participants gain a highly mean-
ingful insight about their data, it is commonly thought of.

Upon analyzing the bottom 20 percentile insights we find three
sub-categories, exposing characteristics of insights that are unde-
sirable for participants. These findings further motivate the need
for a filtering mechanism:

• Majority of the insights in this strata compute trivial statis-
tical measures for the data (such as min, max, mean, sum,
nunique). Participants provided low M1, M2, and M3 ratings
for these questions. For instance:
How many unique NFL teams are present in the data?
(Rank 62; Score 10.16)

> table['NFL_Team'].nunique()

• Few insights contained highly instance-specific conditions
or constraints to filter data, and are not perceived to be useful
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Table 1: Study Survey Responses

Likert Response Counts1

% Agree SD D SwD N SwA A SA Distribution2

50% 50%0%

The insight is relevant & enhances my understanding. 79.21% 12 30 17 20 67 100 134
The insight saves time & improves my productivity. 76.84% 14 35 15 24 62 105 125
I would not have independently arrived at a similar query. 35.52% 77 64 59 45 48 55 32

1 Strongly Disagree (SD), Disagree (D), Somewhat Disagree (SwD), Neutral (N), Somewhat Agree (SwA), Agree (A), Strongly Agree (SA).
2 Net stacked distribution removes the Neutral option and shows the skew between positive and negative responses.
Strongly Disagree, Disagree, Somewhat Disagree, Somewhat Agree, Agree, Strongly Agree.

despite performing complex operations. Such insights also
receive low ratings on M1, M2, and M3. For instance:
What is the highest position secured by Scissor Sisters
in the chart? (Rank 76; Score 8.00)

> table[table['Artist']
=='Scissor Sisters']

['Highest_Position'].max()

→ Here, participants did not find much use in insight finding
for ‘Scissor Sisters’ in particular, and expected the insight
to be more generic.

• Lastly, two insights could not be drawn from the provided
table, and their code generations used incorrect target col-
umn(s). For instance, one of these insights attempts to report
information on population age, while the table does not
contain any columns that indicate age: Which region has
municipalities with the highest and lowest average
population age? (Rank 68; Score 10.33)

4.2.3 End-of-study survey. Ratings from the end-of-survey ques-
tions show that 4 of 5 participants found it challenging to get
acquainted with the data, and identify meaningful insights that can
be derived — “It is difficult to think of meaningful queries without con-
text of the data. While the tables in most cases were self-explanatory,
there were a few which I just didn’t understand. I think generated in-
sights were very helpful in this” (R3). Responses from the open-field
feedback suggest that insights generated using our method help
participants by (1) enhancing their understanding of the data, (2)
identifying columns of interest, and (3) suggesting non-trivial and
semantically relevant insights.

5 EVALUATION
We conducted an empirical study to answer the following research
questions:

RQ1 Can we leverage embeddings to select semantically aligned
(question, code) pairs from model generations?

RQ2 How do the generation task, number of insights and prompt
influence the diversity of insights?

We used the Open-WikiTable corpus [8] for our experiments.
The dataset contains 24,680 tables, and natural language questions.
The dataset was specifically constructed for the purpose of eval-
uating systems that perform complex reasoning tasks over tables.

To ensure our evaluation would be tractable, we randomly selected
430 tables from the 24,680 tables available.

5.1 Semantic Alignment (RQ1)
We evaluate whether embeddings can be used to detect seman-
tic alignment, and perform an ablation on different strategies of
combining the embeddings for question and code.

5.1.1 Experimental Setup. We compare our semantic alignment
classifier against data annotated by humans.

To create our annotated dataset, we first generated 10,175 in-
sights across 430 tables—about 25 insights per table. For some tables,
fewer insights were produced when token limits were exceeded.
We were able to execute 8,954 out of 10,175 (88%) of the generated
insights. From the executable insights, a sample of 309 (question,
code) pairs—stratified on code length—was annotated by expert
data scientists as semantically aligned or not.

We use the OpenAI gpt-3.5-turbo, gpt-3.5-turbo-16k,
and gpt-4 models as baselines for comparison. Table 2 shows in-
dividual annotation statistics and an ensemble that only considers
alignment if all other annotators (human and LLM) agree.

Table 2: Annotation dataset with 309 data points amongst
different annotators.

Annotator Positive Negative

Human 251 58
GPT-4 222 87
GPT-3.5 230 79
GPT-3.5 16 K 228 81
Ensemble 173 136

Besides concatenating individual embeddings, we also consider
two settings to test performance: (1) classification using a single
embedding for question and code, and (2) applying two fully con-
nected networks to the individual embeddings and measuring the
cosine similarity between the projected embeddings. We show the
performance of each technique on the annotated data.

5.1.2 Results. Figure 3 shows precision-recall (PR) curves for dif-
ferent variations of the embedding models on human labelled data.
It highlights that concatenating embeddings (Concat) retains the
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Figure 3: PR curve showing performance of three different
embedding variations, on annotated dataset.

highest precision for more recall. At a recall of 80%, this variation
is 5.74% and 6.8% more precise than the embedding question and
code together and the cosine similarity model, respectively. We
hypothesize that full attention between both embeddings allows
the classifier to capture the most interactions.

Table 3 shows agreement between different models (our classifier
and LLM baselines) and the human annotations, showing that our
classifier (90%) performs on par with GPT-4 (89.2%). Our embedding-
based classifier is 728 times more cost effective2 than GPT-4.

Table 3: Agreement between models and human annotator.
∗∗ best setting (Concat).

Classifier TP TN FP FN Acc. F1

GPT-4 211 47 11 40 83.5% 89.2%
GPT-3.5 200 27 30 51 73.7% 83.1%
GPT-3.5 16K 198 27 31 53 72.8% 82.5%
Embed∗∗ 217 46 12 34 85.1% 90.0%

Figure 4 shows how the alignment (logits from the classification
model) slightly degrades as more insights are generated. We ob-
served that the complexity of the insights increases as they were
generated, which increases the potential for semantic alignment
errors. For example, an initial insight generated for the table in
Figure 1 is Which year had the highest number of championships?
> table['Year'].value_counts().idxmax()

As we generate more insights, the complexity increases. Two ex-
amples are Which position has the highest number of goals in the
league?
> table.groupby(['Position_'])

.agg({'League_Goals':sum})

.sort_values(by=['League_Goals'],
ascending=False)

.iloc[0].name

andWhat is the most common party of Presidents who served multiple
terms?

2Currently, the average embedding computation cost per question and code pair is
0.007 cents in comparison to 5.1 cents by gpt-4. (7th December 2023)

0 1 2 3 4 5 6 7 8 9 1011 12131415161718192021222324
Insight Id
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Figure 4: Distribution of semantic alignment between gen-
erated question and code pairs across different insights for
tables.

> table[table['Name_'].isin(
table['Name_'].value_counts()[

table['Name_'].value_counts()>1
].index)

].groupby('Party')['Name_']
.count()
.sort_values(ascending=False)
.iloc[0]

Complex questions typically require grouping, sorting and filtering.
By manually inspecting cases where our classifier disagreed with

human labels, we encountered situations where the distinction
between aligned and misaligned was blurry. This suggests that
additional context might be necessary to identify alignment. For
example: Which universities had the highest number of students sign
up in a given year?

> table.loc[table.groupby('Year')['#SignedUp']
.idxmax()]

[['Year', 'University', '#SignedUp']]

The classifier identifies the above case as aligned, while humans
disagree due to the presence of additional information (year and
number of sign-ups).

5.1.3 Execution Prediction. Executing code generated by the lan-
guage model is not desired in production settings. We therefore
investigate whether the semantic alignment classifier can detect if
code will execute or not.

Figure 5 shows the logits distribution of the classifier over both
executable and non-executable pairs. Note that the semantic align-
ment is not known for executable pairs. In general, non-executable
pairs are given lower scores—scores close to zero occur the most
often. High alignment scores still occur for non-executable scores
due to subtle syntax errors, which the embeddings do not capture.
Consider the following insight:Who played the character with the
maximum duration on the show?

> table.iloc[table['Duration']
.apply(lambda x: sum(

int(i.split('x')[1]) -
int(i.split('x')[0]) + 1
for i in x.split('-'))

.idxmax()]['Actor']

The code looks correct, but a parenthesis is unmatched, causing an
alignment score of 0.9.
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Figure 5: Distribution of semantic alignment scores among
the executable and non-executable question code pairs
stacked after one after another.

5.2 Diversity (RQ2)
We evaluate how different generation tasks, few-shot prompting
and the number of insights influences the diversity of generations.

5.2.1 Experimental Setup. We measure the diversity of two (ques-
tion, code) pairs by masking constants in the code and computing
the edit distance on 8, 954 executable insights generated across 430
tables. For example,
table[table['Outcome']=='Winner']

.groupby('Opponent in final')

becomes table[table[]==].groupby(). Diversity of multiple
insights is computed as the average diversity across all pairs of
code.

Besides generating questions and code together, we consider
three variations: (1 and 2) generating only questions or code and
performing the corresponding translation task, and (3) generating
code and questions (in reverse order). We use the gpt-3 model
again to generate the code for the given question and vice versa.
Only executable code generations are retained.

Apart from the zero-shot setup, we also try a one-shot (due to
token limitations) setup with 3 static samples of question and code
pairs. The goal is twofold: showing the model what interesting
questions look like, and ensuring that it follows the desired output
format.

5.2.2 Results. Figure 6a shows that generating questions and code
together, in that particular order, yields more diverse questions than
any other setup. Generating a single modality (questions or code
only) yields the least diversity. We hypothesize that having code
or questions closer together biases the model towards generating
similar output. Generating code only results in the least diverse
questions. When generating code and questions (in that order) the
model likely pays more attention to the code, and again becomes
more repetitive.

Figure 6b shows that providing an example of insights reduces
the diversity. We noticed that the model tries to mimic the given
example for different columns, which harms the overall diversity.
For example, when providingWhat is the average salary amongst
all participants? as a seed insight, the model generates questions
like What is the average number of matches played by each team?
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Figure 6: Variation in diversity across different (a) Generation
styles (b) Prompting techniques.
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Figure 7: Evolution of diversity as more insights are gener-
ated for all tables and divided by number of columns. T(4-
8) means tables with 4 to 8 columns. For tables with more
columns, the model becomes repetitive.

and What is the average difference between “Points” and “Against”
for all the teams? In total, 9 out of 25 questions are about averages.

Table 4: Token and time costs associated with different gen-
eration styles.

Generation Style Tokens Inference (in sec)

Only Question 56,382 121.52
Only Code 12,833 62.3
Code + Question 1,512 19.89
Question + Code 1,515 20.9

Figure 4 shows that generating questions only and then translat-
ing to code yields higher alignment (93%). Two drawbacks of this
approach are diversity and cost. Table 4 shows the average number
of tokens and associated inference time for different approaches.
Generating questions and code together is 37 times cheaper and six
times faster than generation questions and translating them.

Figure 7 shows that initial generations are diverse, but we see
diminishing returns form generating more insights. After around
20 insights, the questions becomes more repetitive. Surprisingly,
this effect is stronger for tables with more columns. We find that
the model repeats the the exact same insight for multiple columns.
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Figure 8: Evolution of code length as more insights are gen-
erated.

To verify this effect, Figure 8 shows how the length of the code
(after removing column names) evolves for tables with different
numbers of columns. For smaller number of columns, the model
cannot just repeat itself, and it generates more complex questions.

6 LIMITATIONS
In this work, we have focused solely on English text generation,
leaving the exploration of suggestions in other languages as a poten-
tial avenue for future research. Furthermore, we observed a notable
drop in performance due to the data-distribution shift when testing
the model from human annotated to machine-generated data. It
is essential to build models that can account for such variations.
Additionally, we treat the generated suggestions as an unordered
set and do not rank or filter them based on diversity or relevance,
which could be a promising direction for future investigation. For
generation tasks, we have only considered models from the gpt-3
and gpt-3.5 class, as these are state-of-the-art in generation ca-
pabilities. However, the results may differ with smaller models, as
they may lack in-context learning abilities.

7 CONCLUSION
In this paper, we explore leveraging LLMs to aid automated inisght
generation, by using them to generate aligned question and code
pairs for tabular data. Obtaining diverse and interesting questions,
along with the code to generate them—even when transformations
are required—is not possible with traditional methods, which rely
on statistical features or historical operations from other users. In
our study, performed on data from Open-WikiTable, we showed
that insights thus generated are meaningful and interesting to users.
Further we showed that generating questions and code together
yields diverse questions, and that an embedding-based semantic
alignment classifier performs on par with GPT-4 for filtering cases
where question and code are misaligned at a fraction of the cost.

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[2] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When deep learning met code search. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 964–974.

[3] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav
Shkapenyuk. 2002. Mining database structure; or, how to build a data qual-
ity browser. In ACM SIGMOD Conference.

[4] Arthur C Graesser, Shulan Lu, George Tanner Jackson, Heather Hite Mitchell,
Mathew Ventura, Andrew Olney, and Max M Louwerse. 2004. AutoTutor: A tutor
with dialogue in natural language. Behavior Research Methods, Instruments, &
Computers 36 (2004), 180–192.

[5] Philip Guo. 2013. Data science workflow: Overview and challenges. Commun.
ACM (2013).

[6] Zhipeng Huang and Yeye He. 2018. Auto-detect: Data-driven error detection in
tables. In Proceedings of the 2018 International Conference on Management of Data.
1377–1392.

[7] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: Large Lan-
guage Models Meet Program Synthesis. In Proceedings of the 44th International
Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). As-
sociation for Computing Machinery, New York, NY, USA, 1219–1231. https:
//doi.org/10.1145/3510003.3510203

[8] Sunjun Kweon, Yeonsu Kwon, Seonhee Cho, Yohan Jo, and Edward Choi. 2023.
Open-WikiTable: Dataset for Open Domain Question Answering with Complex
Reasoning over Table. arXiv preprint arXiv:2305.07288 (2023).

[9] Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and
Aditya G. Parameswaran. 2021. Lux: Always-on Visualization Recommendations
for Exploratory Dataframe Workflows. Proceedings of the VLDB Endowmen 15, 3
(nov 2021), 727–738.

[10] Pingchuan Ma, Rui Ding, Shi Han, and Dongmei Zhang. 2021. Metainsight:
Automatic discovery of structured knowledge for exploratory data analysis. In
Proceedings of the 2021 International Conference on Management of Data. 1262–
1274.

[11] Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. 2023.
Demonstration of InsightPilot: An LLM-Empowered Automated Data Exploration
System. arXiv preprint arXiv:2304.00477 (2023).

[12] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry
Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-training. arXiv preprint
arXiv:2201.10005 (2022).

[13] OpenAI. 2023. GPT-4 technical report. arXiv (2023), 2303–08774.
[14] Kumar Shridhar, Jakub Macina, Mennatallah El-Assady, Tanmay Sinha, Manu

Kapur, and Mrinmaya Sachan. 2022. Automatic Generation of Socratic Sub-
questions for Teaching Math Word Problems. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Abu Dhabi, United Arab Emirates, 4136–4149. https:
//aclanthology.org/2022.emnlp-main.277

[15] Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Mo-
hammad Raza, and Gust Verbruggen. 2022. CORNET: A neurosymbolic ap-
proach to learning conditional table formatting rules by example. arXiv preprint
arXiv:2208.06032 (2022).

[16] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[17] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data prepa-
ration steps using data science notebooks. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 1539–1554.

[18] Sen Yang, Qingyu Zhou, Dawei Feng, Yang Liu, Chao Li, Yunbo Cao, and Dong-
sheng Li. 2021. Diversity and Consistency: Exploring Visual Question-Answer
Pair Generation. In Findings of the Association for Computational Linguistics:
EMNLP 2021. Association for Computational Linguistics, Punta Cana, Dominican
Republic, 1053–1066. https://doi.org/10.18653/v1/2021.findings-emnlp.91

[19] Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan,
Wang Yongji, and Jian-Guang Lou. 2023. Large language models meet NL2Code:
A survey. In Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). 7443–7464.

https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://aclanthology.org/2022.emnlp-main.277
https://aclanthology.org/2022.emnlp-main.277
https://doi.org/10.18653/v1/2021.findings-emnlp.91

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Architecture
	3.2 Table Analysis and Prompt Creation
	3.3 Filtering and Semantic Alignment

	4 User Study
	4.1 Methodology
	4.2 Findings

	5 Evaluation
	5.1 Semantic Alignment (RQ1)
	5.2 Diversity (RQ2)

	6 Limitations
	7 Conclusion
	References

