
Hard-Thresholding Meets Evolution Strategies in Reinforcement Learning

Chengqian Gao∗1, William de Vazelhes∗1, Hualin Zhang1, Bin Gu†1, 2, and Zhiqiang Xu†1

1Mohamed bin Zayed University of Artificial Intelligence, UAE
2School of Artificial Intelligence, Jilin University, China

Abstract
Evolution Strategies (ES) have emerged as a compet-
itive alternative for model-free reinforcement learn-
ing, showcasing exemplary performance in tasks
like Mujoco and Atari. Notably, they shine in scenar-
ios with imperfect reward functions, making them
invaluable for real-world applications where dense
reward signals may be elusive. Yet, an inherent
assumption in ES—that all input features are task-
relevant—poses challenges, especially when con-
fronted with irrelevant features common in real-
world problems. This work scrutinizes this limita-
tion, particularly focusing on the Natural Evolution
Strategies (NES) variant. We propose NESHT, a
novel approach that integrates Hard-Thresholding
(HT) with NES to champion sparsity, ensuring only
pertinent features are employed. Backed by rigorous
analysis and empirical tests, NESHT demonstrates
its promise in mitigating the pitfalls of irrelevant fea-
tures and shines in complex decision-making prob-
lems like noisy Mujoco and Atari tasks1.

1 Introduction
Evolution Strategies (ES) offer a compelling alternative for
model-free reinforcement learning. Many studies proved
the effectiveness of the ES algorithm in addressing com-
plex decision-making problems, such as Mujoco and Atari
tasks [Salimans et al., 2017; Such et al., 2017; Mania et
al., 2018], and, particularly, its remarkable proficiency in
dealing with problems where imperfect reward functions are
demanded such as sparse reward signals or delayed feed-
back [Salimans et al., 2017; Majid et al., 2021; François-Lavet
et al., 2015; Qian and Yu, 2021]. This capability is particularly
appealing in real-world applications where acquiring dense
reward signals may be expensive or unachievable.

However, the ES works under a potentially oversimplify-
ing assumption, i.e., every input feature is inherently rel-
evant to the task at hand, which could lead to poor per-
formance in its application to real-world decision-making

∗Equal contribution
†Corresponding to: jsgubin@gmail.com,

zhiqiang.xu@mbzuai.ac.ae
1Code available at https://github.com/cangcn/NES-HT

systems. For example, for an autonomous driving system,
which receives pixel inputs from onboard cameras, while
its main objective is to ensure safe navigation, the data
stream might unintentionally include features irrelevant to
driving decisions, such as the vehicle color. The inclu-
sion of such irrelevant features in the learning process can
not only result in unnecessarily large model sizes, but also
lead to sub-optimal decisions. Although the detrimental ef-
fects of task-irrelevant features have been noticed across
deep learning [Hubara et al., 2017; Blalock et al., 2020;
Chen et al., 2023], reinforcement learning [Sokar et al., 2022;
Grooten et al., 2023a], and unsupervised learning [Li and
Tang, 2015] research, it remains unclear how the noise fea-
tures affect the performance of the ES algorithm.

This work aims to regularize the ES algorithm with spar-
sity, expecting that the obtained sparse policies can auto-
matically select and utilize a small but necessary portion
of available features. Specifically, we focus on the Natural
Evolution Strategies (NES) [Wierstra et al., 2014], a preva-
lent variant of the ES algorithm. NES estimates gradients,
by only evaluating the objective function, for the objective
optimization where irrelevant features can potentially drive
the training process to end up with poor policies. To miti-
gate the impact of task-irrelevant features, we introduce the
Hard-Thresholding (HT) operator [Blumensath and Davies,
2009] to the NES framework, given its popularity and sim-
plicity for performing L0 constrained optimization at a de-
sired sparsity level. However, the HT was originally devel-
oped for optimization problems where the gradient comes
with a closed-form expression [Garg and Khandekar, 2009;
Nguyen et al., 2017]. The compatibility and effectiveness of
the HT operator with the NES estimate of the gradient remains
unclear. To the best of our knowledge, this is the first time to
propose sparsity-induced natural evolution strategies.

We begin by examining the negative effects of task-
irrelevant observations on the NES. We find that the inclusion
of such irrelevant features increases the randomness of the
reward function, resulting in a higher variance of the estimated
gradient. Consequently, it hinders convergence to the optimal
policy. To address the issue of irrelevant features, we present
the NESHT, which seamlessly integrates the HT operator into
the NES algorithm. The modus operandi of the NESHT is
straightforward: the parameters are truncated to retain only
a specified proportion, upon each gradient descent/ascent up-

ar
X

iv
:2

40
5.

01
61

5v
1

 [
cs

.N
E

]
 2

 M
ay

 2
02

4

https://github.com/cangcn/NES-HT

date. In addition, we provide a comprehensive analysis of
the convergence and complexity of the NESHT, underpinning
it with the canonical assumptions of sparse learning. This
analytical deep dive effectively resolves the lingering uncer-
tainty regarding the compatibility of natural gradients with the
hard-thresholding operator. Further, an extensive empirical
study verifies the effectiveness of the NESHT, particularly in
challenging noisy Mujoco environments with sparse rewards
and Atari environments with pixel inputs.

2 Preliminaries
Markov decision process We are concerned with the re-
inforcement learning problem, where our objective is to op-
timize a policy, denoted by πθ, parameterized by θ. This
policy is defined over a Markov decision process represented
by M = ⟨S,A, T , d0,R, γ⟩. For each episode, the initial
state s0 is sampled from the distribution d0. At each time
step t, given an observation st ∈ S, the policy determines an
action at ∈ A, which then results in an immediate reward
r(st,at) ∈ R. Subsequently, the system transitions to a new
observation st+1 in accordance with the dynamics T . The re-
sulting trajectory can be presented as τ = {(st,at, r, st+1)}.
In order to balance the trade-off between immediate rewards
and long-term rewards, the discount factor γ is introduced.

3 Decision-Making with Irrelevant Features
We propose NESHT, equipping the Natural Evolution Strate-
gies with the Hard-Thresholding operator, for handling task-
irrelevant observations in decision-making problem.

3.1 The objective function
Our objective is to maximize the fitness score achieved by the
policy while minimizing the impact induced from the task-
irrelevant features. We hypothesize that employing a sparse
policy can effectively manage these redundant observations.
Fitness score The performance of the policy can be quanti-
fied by the fitness function, which is defined as the expected
sum of rewards over its rollout trajectories:

F (θ) := Eτ∼d0,πθ,T fτ (θ), with fτ (θ) :=

|τ |∑
t=0

r(st,at)

(1)
It’s important to note that, in this context, the discount factor γ
is set to 1. This is in contrast to traditional RL settings where
it often assumes values such as 0.99 or 0.9. Another character-
istic is that the fitness function can be discontinuous w.r.t. the
policy parameters due to the randomness in environments and
the complex reward function.
L0-constraint optimization We propose mitigating the im-
pact of task-irrelevant features through a sparse policy, under
the premise that sparsity can effectively filter out irrelevant
information present in inputs. Formally, our objective is to
improve a policy while also constraining its complexity, i.e.,
the L0 constrained optimization, with ∥ · ∥0 denotes the L0

(pseudo-)norm (number of non-zero components of a vector):

max
θ

F (θ) s.t. ∥θ∥0 < k (2)

Why L0 constraint? In our context, where only a small sub-
set of observations is task-relevant, irrelevant features can sig-
nificantly degrade performance. L0-constrained optimization
directly enforces a constraint on the L0 norm of the learned
parameter vector, ensuring the sparsity of the resulting model,
alluring for feature selection tasks. Unlike L1-constrained
optimization, which promotes sparsity but does not guarantee
exact zero values, L0-constrained optimization offers precise
control over sparsity by allowing certain model parameters
to be set exactly to zero. This capability not only enhances
model interpretability but also makes it well-suited for our
setting, i.e., decision-making with irrelevant observations.

3.2 Our proposal: NESHT
We introduce NESHT, a solution for decision-making prob-
lems involving both task-relevant and irrelevant features.
While NES and the Hard-Thresholding operator are not novel
concepts individually, their compatibility when used together
may raise questions. To be self-contained, we now provide
brief descriptions of each.
NES We employ the competitive NES algorithm, to optimize
the policy, with the following gradient estimator:

∇θEϵ∼N (0,I)F (θ + σϵ) =
1

σ
Eϵ∼N (0,I)F (θ + σϵ)ϵ (3)

In NES, the gradient is approximated through sampling and
serves as an approximation, bypassing challenges with non-
differentiable functions or exploding gradients. For the deriva-
tion about Equation (3), please refer to Appendix.
Hard-thresholding operator To achieve the L0-constrained
optimization described as Equation (2), we introduce the hard-
thresholding operator into NES. It truncates the parameter
vector, retaining only k components with the most significant
absolute magnitudes, represented as trunc(θ, k), or, more
succinctly, as trunc(θ). While incorporating HT into NES
is straightforward, the compatibility between HT and NES
remains an open question.
Compatibility concerns To establish the convergence of
NESHT, it is essential to demonstrate the convergence of the
hard-thresholding algorithm for non-convex and discontinuous
F , with a gradient estimated as in (3) via the NES algorithm.
In the literature, [Xu et al., 2019] proved the convergence
of stochastic algorithms in the case of non-convex objective
functions F , for a non-convex proximal term which can be
taken as the indicator function of the set of all k-sparse vectors
(i.e. the L0 pseudo-ball). This proof of convergence applies
to stochastic hard-thresholding algorithms. However, their
analysis assumes Lipschitz-smoothness of F and considers
a general stochastic estimator of the gradient. Therefore, it
does not account for the specific errors introduced by the gra-
dient estimator from (3). More recently, the work of [Metel,
2023], analyzes the convergence of zeroth-order methods (sim-
ilar to evolutionary strategies) for a Lipschitz-continuous and
non-convex function F . However, in our case, F is discon-
tinuous in general. Thus, to the best of our knowledge, the
convergence of evolutionary strategies in such setting remains
an open question. In the next section, we address this ques-
tion by demonstrating that, under mild assumptions, proper
convergence of Algorithm 1 is guaranteed.

Algorithm 1 NES with Hard-Thresholding

Input:
α - Learning rate,
θ0- Initial policy parameters in Rd,
n - Population size,
N - Number of rollouts collected for each agent,
σ - Noise standard deviation,
k - Number of parameters to be kept.
for t = 0, 1, 2, ...T − 1 do

for i = 1, ..., n do
Sample a Gaussian perturbation ϵi ∼ N (0, I) .
for j = 1, ..., N do

Sample a rollout τϵij
Compute returns fτϵi

j
(θt + σϵi)

end for
end for
Set θt+ 1

2
← θt +

α
nNσ

∑n
i=1

∑N
j=1 fτϵi

j
(θt + σϵi)ϵi

Truncate the parameters: θt+1 ← trunc(θt+ 1
2
, k)

end for

4 Convergence Analysis
The integration of NES with HT is detailed in Algorithm 1,
where the hard-thresholding operator is applied to the learned
parameters after each update. In this section, we pro-
vide a proof of convergence for NES combined with Hard-
Thresholding, i.e., our NESHT, addressing the compatibility
concern. Additionally, we would like to highlight that our
analysis can also cover the case where no hard-thresholding
operator is used (it only suffices to take the proximal term
r in our proof of Theorem 1 in Appendix to be the constant
zero): to our knowledge, such a proof of convergence for NES
for general discontinuous functions F (which correspond to a
realistic reinforcement learning setting) is the first in the litera-
ture, and we hope that such a result, as well as the subsequent
remarks and discussions on the influence of each parameter
on the convergence rate (bound on the expected reward B,
dimension d, etc.) can be of interest to the NES community.

4.1 Assumptions
To proceed with the proof of convergence of NESHT, we will
need the following assumptions below.

Assumption 1 (Boundedness of F). The fitness function F
is bounded on its domain, that is, there exists a universal
constant B > 0 such that:

∀θ ∈ Rd : |F (θ)| ≤ B

Remark 1. F (θ) represents the expected rewards obtained by
executing policy πθ . The boundedness assumption is typically
reasonable since immediate rewards do not tend to infinity, and
evaluation trajectories always have finite lengths. Importantly,
this assumption remains valid even when dealing with task-
irrelevant features.

Additionally, we will need the following assumption on
the variance of the cumulative reward, for a given parameter
vector θ.

Assumption 2 (Bounded variance of fτ). We posit the exis-
tence of a universal constant C > 0 such that the variance of
the cumulative reward for any θ ∈ {θ0,θ 1

2
, ...,θT− 1

2
,θT } is

bounded by C, i.e.:

Eτ

[
|fτ (θ)− F (θ)|2

]
≤ C.

Remark 2. Assumption 2 reflects the inherent randomness
from both the policy, whether it is deterministic or stochastic,
and the environment, which introduces randomness through
factors such as the dynamics T , the reward function r(s, a),
and the initial distribution of states d0. Also, please note
that if the reward and the episode length are limited, as is
usually the case in RL, then Assumptions 1 and 2 are satisfied.
An observant reader may notice that the inclusion of task-
irrelevant features unavoidably leads to an increase in the
constant C due to the introduction of randomness. As we
will see later, this increase hampers the convergence of NES
algorithms.

4.2 Smoothness
Since F can be discontinuous in general, maximizing F di-
rectly is impossible with evolutionary strategies. For instance

if F is Dirac-like, such as F (θ) =

{
1 if θ = 0

0 otherwise
, the prob-

ability (for a given θ), to successfully sample an ϵ such that
F (θ + σϵ) = 1 is actually zero, which means the parameters
will be updated with probability zero. However, we can in-
stead analyze the convergence of a smoothed version of F ,
Fσ , defined below:

Fσ(θ) := Eϵ∼N (0,I)F (θ + σϵ)

Note that Fσ converges towards F for small σ in terms of
eh-convergence, as described in Theorem 3.2 from [Yu et
al., 1992]. The first step, to derive the convergence rate of
our algorithm with Fσ, is to prove that Fσ is smooth, and to
derive its smoothness constant, which we then use in a proof
framework similar to [Xu et al., 2019].

Lemma 1. Under Assumption 1, Fσ is Lipschitz-smooth (i.e.
its gradient is Lipschitz-continuous), with a smoothness con-
stant L = (d+1)B

σ2 , that is, such L verifies:

∀θ1,θ2 ∈ (Rd)2 : ∥∇Fσ(θ1)−∇Fσ(θ2)∥ ≤ L∥θ1 − θ2∥

Proof. Proof in Appendix.

For discontinuous functions F , the fact that Fσ is smooth
was already known before in the literature (see e.g. [Ermoliev
and Norkin, 1995]). However, such works did not provide an
explicit formula for the smoothness constant L. Here, for the
first time in the literature (to the best of our knowledge), using
the boundedness assumption on F , we could derive an explicit
formula for the smoothness constant L.

One can therefore see that L is proportional to both the
bound of the fitness function, B, and the dimension of the
policy parameters, d, while being inversely proportional to the
variance σ2. In Section 4.4, we will observe the role of such
smoothness constant L: the smaller it is, the faster the NES
algorithm will converge.

4.3 Error of the gradient estimator
We now consider the gradient estimator with a general popula-
tion of n random perturbations, and a number of rollouts of N
for each perturbation. More precisely, assume that we sample
n random directions {ϵi}ni=1 := {ϵ1, ..., ϵn} independently
and identically distributed, and that for each of these random
directions ϵi, we sample we sample N rollouts {τϵij }Nj=1 :=

{τϵi1 , .., τϵiN } independently and identically distributed, to ob-
tain a final collection of rollouts {{τϵij }Nj=1}ni=1 , and to get
N ×n gradient estimators ĝσ,ϵi,τϵi

j
, (i, j) ∈ [n]× [N] defined

below:

ĝσ,ϵi,τ
ϵi
j
(θ) :=

1

σ
fτϵi

j
(θ + σϵi)ϵi

which we aggregate in the following estimator:

ḡσ,{ϵi}n
i=1,{{τ

ϵi
j }N

j=1}n
i=1

(θ) :=
1

nN

n∑
i=1

N∑
j=1

ĝσ,ϵi,τ
ϵi
j
(θ)

Lemma 2. Under Assumptions 1 and 2, the estimator above is
an unbiased estimate of the gradient of the smoothed function
F , and its variance is bounded, more precisely, for any θ ∈
{θ0,θ 1

2
, ...,θT− 1

2
,θT }:

Eḡσ,{ϵi}n
i=1,{{τ

ϵi
j }N

j=1}n
i=1

(θ) = ∇θFσ(θ)

E∥ḡσ,{ϵi}n
i=1,{{τ

ϵi
j }N

j=1}n
i=1

(θ)−∇θFσ(θ)∥2 ≤
Cd

Nσ2
+

dB2

nσ2

Proof. See Appendix. We begin by examining the unbiased-
ness (using a standard proof) and variance (using a novel proof
up to our knowledge) of the gradient estimator for a single
perturbation, i.e., ĝσ,ϵi,τϵi

j
. We then generalize our results to

account for multiple perturbations (n) and rollouts (N).

Advantages of NESHT: reduction in constant C We
present here a formal explanation for the superiority of
NESHT over NES in the lens of constant C. Thanks to hard-
thresholding, along training, θt and θt+ 1

2
remain in the space

of k-sparse vectors (up to small perturbations σϵ), whereas
they could live anywhere in Rd in the case of NES. Based on
the hypothesis that the hard-thresholding operation effectively
selects relevant features (which we have verified experimen-
tally in Section 5.2), NESHT can successfully mitigate the
impact of irrelevant features and reduces the value of C. To
illustrate this, one can consider the following scenario.

Example 1. Consider a one-step decision-making experi-
ment, with linear policy, and fitness score given as: fτ (θ) :=
x⊤(θ − θ∗), where θ∗ is a k-sparse vector, with S ⊆ [d] be-
ing the set of coordinates of its non-zero components, i.e., the
relevant features. In addition, x is the input state, which we
assume follows a normal distribution N (0, σId×d) for σ > 0
(Id×d denoting the identity). We then have, for any bounded
policy θ ∈ [−1, 1]d:

Ex|fτ (θ)− F (θ)|2 = Ex(θ − θ∗)⊤xx⊤(θ − θ∗)

= (θ − θ∗)⊤σ2Id×d(θ − θ∗) = σ2∥θ − θ∗∥2

Therefore, if there are many irrelevant components present
(i.e. |[d] \ S| is large), the episode-wise variance of fτ (and
its bound C) will be higher when θ is dense (proportionally
to σ2). As established in Lemma 2, the proper convergence
of NESHT depends on this variance. The application of a
hard-thresholding operator explicitly filters out some of the
noisy features, introducing a bias that steers the policy towards
making decisions exclusively based on sparse observations.
This reduces the variance and ensures better convergence to
the optimal policy.

In practical terms, given a fixed interaction budget for n
and N , the variance of the gradient estimator may be too high
for vanilla NES, causing it to fail to converge to the optimal
policy. However, with the reduced variance of the gradient
estimator in NESHT, as described above, convergence of the
parameters θ to a stationary point of the fitness function F
can be successfully ensured, as stated in Theorem 1. Section 5
provides illustrations of cases where NES fails to converge to
a successful policy, but NESHT can learn a successful policy
in several RL tasks. This validates our hypothesis that learning
a sparse policy with NESHT can properly handle irrelevant
noise in the observations.

4.4 Convergence rate
Equipped with Lemmas 1 and 2, we can now prove the conver-
gence of Algorithm 1, following for the most part the frame-
work of [Xu et al., 2019] for stochastic gradient descent with
a non-convex function and a non-convex non-smooth prox-
imal term, but plugging into it our novel bounds for (i) the
smoothness constant of Fσ and (ii) the variance of the gradient
estimator ḡσ,{ϵi}n

i=1,{{τ
ϵi
j }N

j=1}n
i=1

(θ) , under our specific as-
sumption of boundedness of F . Because of such non-convex
and non-smooth optimization problem, convergence is proven
in terms of the expected distance of the Fréchet sub-differential
∂̂(−Fσ(θ) + 1L0(k)(θT)) to zero [Rockafellar, 1976], where
1L0(k) denotes the indicator function of the L0 constraint,

i.e. 1L0(k)(θ) =

{
0 if θ is k-sparse
+∞ otherwise

. Note that this is the

standard way to define stationary points for non-smooth regu-
larizers (such as sparsity constraints) (see e.g. Thm. 2 in [Xu
et al., 2019] or Thm. 3 in [Deleu and Bengio, 2021]).
Theorem 1. Under Assumption 1 and 2, run Algorithm 1,
with α = c

L

(
0 < c < 1

2

)
, a number of iterations T =

2c2B/
(
αε2
)

and N ≥ 4c1dC
σ2ε2 and n ≥ 4c1dB

2

σ2ε2 for t =
0, . . . , T − 1, then the output θT of Algorithm 1 satisfies

E
[
dist

(
0, ∂̂

(
−Fσ (θT) + 1L0(k)(θT)

))]
≤ ε,

where c1 = 2c(1−2c)+2
c(1−2c) , and c2 = 12−8c

1−2c , and
where dist(z, S) is the distance of a set S to a point
z, defined as the minimal Euclidean distance of any
point in S to z. In particular in order to have
E
[
dist

(
0, ∂̂(−Fσ(θ) + 1L0(k)(θT))

)]
≤ ε, that is, in or-

der to ensure convergence to a stationary point, it suffices to
set T = O

(
1/ε2

)
.

Proof. Proof in Appendix.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch (× 50)

0
1
2
3
4
5
6
7
8
9

10

Se
gm

en
t

Heatmap of learned weights with HT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch (× 50)

0
1
2
3
4
5
6
7
8
9

10

Heatmap of learned weights without HT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1: Heatmap illustrating the evolution of learned weights from a NESHT policy (left) and a NES policy (right) over epochs. The
environment studied is Hopper-V3, with tenfold Gaussian noise. Among the 11 distinct observation segments (Y-axis), only the first (0-th)
segment corresponds to the environment-provided features, while all subsequent 10 segments represent Gaussian noise (task-irrelevant
features). The heatmap color indicates the norm of the learned weights. With the HT operator, only the portion of the neuron corresponding to
task-relevant features (the 0-th segment) is activated. Without HT, NES struggles with task-irrelevant features, leading to poor performance.

Remark 3. As per Theorem 1, we can see that a large smooth-
ing radius σ will ease convergence, as it allows one to evaluate
fewer random perturbations and rollouts. However, the coun-
terpart is that the function optimized Fσ may be further away
from the true function F .
Remark 4 (Overall complexity). From Theorem 1, to ensure
convergence to a stationary point up to tolerance ε, we need

to take N = O(dC
σ2ε2), n = O(dB2

σ2ε2) , and T = O(B
αε2)

(a)
=

O(BL
ε2)

(b)
= O(B2d

ε2σ2), where (a) follows from the definition of
α from Theorem 1, and (b) follows from Lemma 1. Therefore,
the overall number of episodes needed to ensure convergence
is TNn = O(d

3B4C
σ6ε6). Note however that if one has access

to a massively parallel device able to run in parallel Nn
simulations, which is very common in RL settings (e.g. as
in [Salimans et al., 2017]), the time complexity of the whole
optimization process is simply T = O(B2d

ε2σ2).

5 Experiment
The design of NESHT is based on two central premises: (1)
weights and biases corresponding to task-irrelevant features
can be set to zero by the hard-thresholding operator, and (2)
the hard-thresholding operator is compatible with the NES
algorithm. In this section, we design experiments to address
the following questions:

1) Does HT truly capture task-irrelevant observations?
2) Can the NESHT policy outperform other solutions?
3) Can the effect of HT be extended to visual tasks?
4) How does the HT ratio affect performance?

5.1 Experimental Setups
We perform evaluations on two popular RL protocols, Mu-
joco [Todorov et al., 2012] and Atari [Bellemare et al., 2013]
environments.

Mujoco setups Observations in the Mujoco continuous en-
vironment are represented as floating-point values. Detecting
redundancy features in these observations is challenging due
to the complexity of the environment dynamics. To simulate
decision-making in the presence of task-irrelevant features, we
concatenate Gaussian noise with the environment-provided ob-
servations. Additionally, we set 90% of the immediate rewards
to zero, replicating a more challenging real-world scenario
characterized by an imperfect reward function. In the analysis
section, we use the notation k to represent the number of pa-
rameters to be retained. In the experiment section and in our
implementation, we prefer β to denote the hard-thresholding
ratio, which refers to the ratio of activated neurons.
Protocol for Mujoco tasks We primarily base our imple-
mentation on the framework outlined in [Salimans et al., 2017].
In this context, we use i.i.d. Gaussian perturbations in the pa-
rameter space to estimate the gradient. As a result, the natural
gradient simplifies to the plain gradient, as shown in Equa-
tion 3. It is worth noting that we choose a linear policy for
NESHT since it is easier to train and has been shown to be
expressive enough for such tasks [Mania et al., 2018].
Atari Beside the Mujoco benchmarks, we include the more
challenging Atari games with pixel inputs to answer the ques-
tion of whether the hard-thresholding algorithm can handle ir-
relevant features in visual observations. We use the full screen
of the Atari game as input (110x84 pixels). This includes not
only the playing area, but also other task-irrelevant features,
such as the scoreboard and backgrounds. Notably, we employ
a CNN module for extracting latent features from the pixel
inputs for Atari Games only, alone with a linear layer mapping
them to the action space. A prevalent challenge associated
with NES is their sample efficiency. In Atari experiments, we
mirror the training configuration in [Salimans et al., 2017].
Specifically, we train the policy for a duration of 1 hour using
a 500-core machine. Furthermore, we set an upper limit on
the interaction budget at 10M steps.

Env Name Noise Ratio TRPO DDPG TD3 Vanilla NES ANF-SAC NES-L1 NES+HT(Ours)

HalfCheetah
×5 198.3 1369.8 665.7 819.2 28.8 1152.7 1851.8
×10 31.6 1285.2 197.7 805.9 8.5 918.4 1722.5
×20 19.2 843.4 198.5 773.4 8.4 669.1 1213.9

Hopper
×5 266.9 917.6 972.5 803.7 1014.3 679.4 1354.5
×10 43.7 824.3 918.0 241.2 1010.7 204.5 1187.1
×20 23.0 809.5 991.2 147.7 1015.4 62.9 1006.6

Walker2d
×5 441.9 1030.1 1000.7 784.0 986.5 745.2 1043.8
×10 420.3 907.3 559.7 384.7 966.6 364.2 940.3
×20 229.9 780.6 485.8 240.6 960.2 33.8 675.2

Table 1: Comparison on the performance of RL and ES algorithms on Mujoco locomotion tasks with varying levels of noise. The term Noise
Ratio indicates the amount of redundancy observations (Gaussian noise). For example, ×5 signifies that the dimension of Gaussian noises is
five times that of the environment-provided observations. For RL algorithms, we train for 1 million environment steps while 10 million steps
for ES approaches. We report the average scores received by last 10 evaluations across 20 random seeds. Notably, the results for the NESHT
algorithm are from runs with a fixed hard-thresholding ratio, β = 0.9.

0 20 40 60 80 100
Timesteps (×10)

0

2000

4000

6000

8000

10000

12000

14000

Tr
aj

ec
to

ry
 R

ew
ar

d

BattleZoneNoFrameskip-v4

ht=0.0
ht=0.1
ht=0.2
ht=0.4
A3C FF
A2C FF

0 20 40 60 80 100
Timesteps (×10)

0

500

1000

1500

2000

FrostbiteNoFrameskip-v4

0 20 40 60 80 100
Timesteps (×10)

0

1000

2000

3000

4000

5000

KangarooNoFrameskip-v4

0 20 40 60 80 100
Timesteps (×10)

−20

−10

0

10

20
PongNoFrameskip-v4

Figure 2: Comparison of NES in four representative Atari tasks with and without HT. We report the outcomes of NESHT under varying
hard-thresholding ratios, based on 20 random seeds. Results from the A3C and A2C algorithms are adapted from [Salimans et al., 2017].

5.2 Efficacy of the hard-thresholding operator

We begin by evaluating the effectiveness of the hard-
thresholding operator in identifying and truncating task-
irrelevant features. To do this, we devise a toy example using
the Mujoco Hopper-V3 environment with added noise. Specif-
ically, the environment-provided 11-dimension features are
augmented with 110-dimension i.i.d. Gaussian noise. We set
the hard-thresholding ratio to 0.9, ensuring that only the top
10% of the large learned weights are retained.

The main focus of our analysis is to examine the norm of
the learned weights across each segment of observations. As
shown in Figure 1, the first segment (index 0) relates to the
features provided by the environment. This visualization show-
cases the weight norms (L1 norm) for the genuine features
(0-th segment) and the task-irrelevant features (remaining 10
segments). By employing the hard-thresholding operation iter-
atively, the learned weights for relevant features remain large,
while those for irrelevant features are truncated. By compar-
ing results with and without the use of the hard-thresholding
operator in Figure 1, we offer empirical evidence of its utility,
i.e., sparse policy learned from the NESHT can select relevant
features. Notably, it’s essential to apply hard-thresholding iter-
atively during each update rather than just once post-learning.

5.3 Performance on noised Mujoco tasks
As illustrated in the preceding section, the hard-thresholding
operator can successfully assist the NES algorithm in captur-
ing task-relevant features. In this section, we evaluate the
performance of the proposed NESHT algorithm in compari-
son to the original NES algorithm, as well as other commonly
employed methods for decision-making tasks, such as RL
algorithms.

Baselines Experiments are conducted in three popular Mu-
joco environments: Hopper, Walker2d, and HalfCheetah. We
introduce Gaussian noise ranging from 5-fold to 20-fold,
which is merged with the environment-provided features. Our
baseline algorithms fall into three categories:

• Vanilla NES policy: We follow the implementation
in [Salimans et al., 2017], but with a modification: the
agent is instantiated with a one-layer linear network.

• Classic RL algorithms: Since ES algorithms are often
viewed as alternatives to RL, we include algorithms like
TRPO [Schulman et al., 2015], DDPG [Lillicrap et al.,
2015], and TD3 [Fujimoto et al., 2018] in our baselines.

• Other Solutions: One effective way to address irrelevant
features is by incorporating an L1-norm penalty. We
explored this approach with the NES algorithm. A com-
plexity penalty, the L1-norm of the learned weights, is

0 20 40 60 80 100
Timesteps (×20)

0

200

400

600

800
Tr

aj
ec

to
ry

 R
ew

ar
d

Walker2d-v3
β= 0.0
β= 0.7
β= 0.9
β= 0.95

0 20 40 60 80 100
Timesteps (×20)

0

200

400

600

800

1000

Hopper-v3

0 20 40 60 80 100
Timesteps (×20)

0

500

1000

1500

HalfCheetah-v3

Figure 3: Ablation study. We assess the impact of hard-thresholding operation in the presence of Gaussian noise with a 20× noise dimension
on the Mujoco environment. We vary the value of β from 0.0 (corresponding to Vanilla NES) to 0.95 while retaining only 5% of the neurons.

subtracted from the fitness score, and we refer to this
as NES-L1. Additionally, we include a solution in the
literature of RL, ANF-SAC [Grooten et al., 2023b]. This
baseline algorithm is designed for RL with very dense
rewards, while ours can handle the sparse reward signal.

It’s worth noting that while NES, NESHT and NES-L1

agents utilize one-layer linear networks, all other baseline
algorithms for comparison are based on three-layer non-linear
networks. We report the average scores across the last ten
evaluations. Notably, we find ANF-SAC shows a failure after
achieving impressive performance in HalfCheetah tasks.

Results The results of our experiments are presented in Ta-
ble 1. Our findings highlight the viability of NES as an al-
ternative to RL approaches. Specifically, the performance
of the NES agent consistently aligns with the state-of-the-art
DDPG and TD3 methods. However, the NES policy shows
dramatic performance degradation when confronted with in-
creasing task-irrelevant observations. This trend highlights a
harmful assumption within NES algorithms, which assumes
that all features are task-relevant. Fortunately, the introduction
of the hard-thresholding operator successfully mitigates this
performance drop. Compared to vanilla NES, NESHT not
only demonstrates enhanced resilience against irrelevant ob-
servations, but also consistently outperforms the RL baselines,
emphasizing its effectiveness.

5.4 Comparison on visual Atari benchmarks
We expand our comparison to include Atari environments that
involve visual inputs. This extension is motivated by concerns
raised about the presence of artificial noises in previous eval-
uations. In Atari games, task-irrelevant features are from the
environment and vary significantly. For instance, elements
such as scoreboards in each game (with different locations)
are considered important yet distracting observations that can
hinder performance, as noted in [Mnih et al., 2015].

We present the results on four representative Atari games in
Figure 2. Remarkably, we observed a significant improvement
in the performance of NES algorithms when employing the
hard-thresholding operator. It is important to note that the opti-
mal hard-thresholding ratio, denoted as β, differs across these
environments. We will discuss its influence in the next part. It

is worth mentioning that this investigation does not include a
comprehensive review of solutions in the RL or ES literature.
Our main focus here is not to determine whether NES is a
competitive solution (as already demonstrated by [Salimans
et al., 2017]), nor to claim that NESHT is the ultimate solu-
tion for Atari-type tasks. Instead, our goal is to explore the
impact of the hard-thresholding operator on NES performance
in decision-making tasks with pixel inputs.

5.5 Hyper-parameter study
The NESHT algorithm, proposed in this work, introduces a
critical hyperparameter known as the hard-thresholding ratio,
denoted as β, which plays a fundamental role in controlling
the activation of neurons. In this section, we assess its impact.
We employ the noised Mujoco locomotion tasks, where we can
control the amount of task-irrelevant features. Specifically, we
use three environments with ×20 Gaussian noises, where the
noise dimension is 20 times that of the environment-provided
observations. Results depicted in Figure 3 illustrate the effec-
tiveness of hard-thresholding in mitigating the impact of noisy
observations.The vanilla NES algorithm (β = 0.0) struggles
to learn from the noisy observations for policy improvement.
However, as we increase β, truncating more small weights,
we observe a significant performance improvement. This sug-
gests that the hard-thresholding operation effectively filters
out noise and enhances the algorithm’s ability to learn from
challenging, noisy environments.

6 Conclusion
Hard-thresholding emerges as a promising solution for L0-
constrained optimization, offering a solution to address task-
irrelevant features frequently encountered in real-world sce-
narios. Yet, the compatibility between HT and NES gradients
remains an area of active inquiry, rendering the practical im-
plementation of such algorithms a subject of caution. In this
study, we provide a theoretical foundation that establishes the
convergence of the NES gradient descent (ascent) when paired
with the HT operator, thus bolstering the credibility of our
NESHT algorithm. Empirical assessments conducted across
both Mujoco and Atari environments further substantiate the
efficacy of our proposed method.

References
[Bellemare et al., 2013] Marc G Bellemare, Yavar Naddaf,

Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–279,
2013.

[Blalock et al., 2020] Davis W. Blalock, Jose Javier Gonza-
lez Ortiz, Jonathan Frankle, and John V. Guttag. What is
the state of neural network pruning? In Inderjit S. Dhillon,
Dimitris S. Papailiopoulos, and Vivienne Sze, editors, Pro-
ceedings of Machine Learning and Systems 2020, MLSys
2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.

[Blumensath and Davies, 2009] Thomas Blumensath and
Mike E Davies. Iterative hard thresholding for compressed
sensing. Applied and computational harmonic analysis,
27(3):265–274, 2009.

[Chen et al., 2023] Jou-An Chen, Wei Niu, Bin Ren, Yanzhi
Wang, and Xipeng Shen. Survey: Exploiting data redun-
dancy for optimization of deep learning. ACM Comput.
Surv., 55(10):212:1–212:38, 2023.

[Deleu and Bengio, 2021] Tristan Deleu and Yoshua Bengio.
Structured sparsity inducing adaptive optimizers for deep
learning. arXiv preprint arXiv:2102.03869, 2021.

[Ermoliev and Norkin, 1995] Yuri M Ermoliev and
Vladimir Ivanovich Norkin. On nonsmooth problems of
stochastic systems optimization. 1995.

[François-Lavet et al., 2015] Vincent François-Lavet,
Raphaël Fonteneau, and Damien Ernst. How to discount
deep reinforcement learning: Towards new dynamic
strategies. CoRR, abs/1512.02011, 2015.

[Fujimoto et al., 2018] Scott Fujimoto, Herke Hoof, and
David Meger. Addressing function approximation error
in actor-critic methods. In International conference on
machine learning, pages 1587–1596. PMLR, 2018.

[Garg and Khandekar, 2009] Rahul Garg and Rohit Khan-
dekar. Gradient descent with sparsification: an iterative
algorithm for sparse recovery with restricted isometry prop-
erty. In Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman, editors, Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML
2009, Montreal, Quebec, Canada, June 14-18, 2009, vol-
ume 382 of ACM International Conference Proceeding
Series, pages 337–344. ACM, 2009.

[Grooten et al., 2023a] Bram Grooten, Ghada Sokar, Shib-
hansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola
Pechenizkiy, and Decebal Constantin Mocanu. Automatic
noise filtering with dynamic sparse training in deep rein-
forcement learning. In Noa Agmon, Bo An, Alessandro
Ricci, and William Yeoh, editors, Proceedings of the 2023
International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2023, London, United Kingdom,
29 May 2023 - 2 June 2023, pages 1932–1941. ACM, 2023.

[Grooten et al., 2023b] Bram Grooten, Ghada Sokar, Shib-
hansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola
Pechenizkiy, and Decebal Constantin Mocanu. Automatic

noise filtering with dynamic sparse training in deep rein-
forcement learning. The 22nd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
2023. URL: https://arxiv.org/abs/2302.06548.

[Hubara et al., 2017] Itay Hubara, Matthieu Courbariaux,
Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low
precision weights and activations. J. Mach. Learn. Res.,
18:187:1–187:30, 2017.

[Li and Tang, 2015] Zechao Li and Jinhui Tang. Unsuper-
vised feature selection via nonnegative spectral analysis
and redundancy control. IEEE Trans. Image Process.,
24(12):5343–5355, 2015.

[Lillicrap et al., 2015] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[Majid et al., 2021] Amjad Yousef Majid, Serge Saaybi,
Tomas van Rietbergen, Vincent François-Lavet, R. Venkate-
sha Prasad, and Chris J. M. Verhoeven. Deep reinforcement
learning versus evolution strategies: A comparative survey.
CoRR, abs/2110.01411, 2021.

[Mania et al., 2018] Horia Mania, Aurelia Guy, and Ben-
jamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 1805–1814, 2018.

[Metel, 2023] Michael R Metel. Sparse training with lips-
chitz continuous loss functions and a weighted group l0-
norm constraint. Journal of Machine Learning Research,
24(103):1–44, 2023.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning.
Nat., 518(7540):529–533, 2015.

[Nesterov and others, 2018] Yurii Nesterov et al. Lectures on
convex optimization, volume 137. Springer, 2018.

[Nguyen et al., 2017] Nam Nguyen, Deanna Needell, and
Tina Woolf. Linear convergence of stochastic iterative
greedy algorithms with sparse constraints. IEEE Trans. Inf.
Theory, 63(11):6869–6895, 2017.

[Qian and Yu, 2021] Hong Qian and Yang Yu. Derivative-
free reinforcement learning: a review. Frontiers Comput.
Sci., 15(6):156336, 2021.

[Rockafellar, 1976] R Tyrrell Rockafellar. Monotone opera-
tors and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

https://arxiv.org/abs/2302.06548

[Salimans et al., 2017] Tim Salimans, Jonathan Ho, Xi Chen,
and Ilya Sutskever. Evolution strategies as a scalable alter-
native to reinforcement learning. CoRR, abs/1703.03864,
2017.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on
machine learning, pages 1889–1897. PMLR, 2015.

[Sokar et al., 2022] Ghada Sokar, Elena Mocanu, Dece-
bal Constantin Mocanu, Mykola Pechenizkiy, and Peter
Stone. Dynamic sparse training for deep reinforcement
learning. In Luc De Raedt, editor, Proceedings of the
Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
pages 3437–3443. ijcai.org, 2022.

[Such et al., 2017] Felipe Petroski Such, Vashisht Madhavan,
Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks
for reinforcement learning. CoRR, abs/1712.06567, 2017.

[Todorov et al., 2012] Emanuel Todorov, Tom Erez, and Yu-
val Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on
intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[Wierstra et al., 2014] Daan Wierstra, Tom Schaul, Tobias
Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhu-
ber. Natural evolution strategies. J. Mach. Learn. Res.,
15(1):949–980, 2014.

[Xu et al., 2019] Yi Xu, Rong Jin, and Tianbao Yang. Non-
asymptotic analysis of stochastic methods for non-smooth
non-convex regularized problems. Advances in Neural
Information Processing Systems, 32, 2019.

[Yu et al., 1992] Ermoliev Yu, V Norkin, and R Wets. The
minimization of discontinuous functions: Mollifier sub-
gradients. Technical report, Working Paper, International
Institute for Applied Systems Analysis . . . , 1992.

A Appendix

A.1 NES Gradients

OpenAI NES [Salimans et al., 2017] approximates the gradient with the following estimator:

∇θEϵ∼N (0,I)F (θ + σϵ) =
1

σ
Eϵ∼N (0,I){F (θ + σϵ)ϵ}, (4)

with θ for the learned policy’s parameters, ϵ for the Gaussian noise on the parameter vector, and σ to control the standard
deviation.

∇θEϵ∼N (0,I)F (θ + σϵ) = ∇θEx∼N (θ,σ2I)F (x)

= ∇θ

∫
x

P (x|θ, σ2I)F (x)dx

=

∫
x

∇θP (x|θ, σ2I)F (x)dx (Leibniz integral rule)

=

∫
x

P (x|θ, σ2I)∇θ log
[
P (x|θ, σ2I)

]
F (x)dx

(
log derivative trick

)
= Ex∼N (θ,σ2I)

{
F (x)∇θ

(
− ∥x− θ∥22

2σ2

)}
(Gaussian P.D.F.)

=
1

σ
Eϵ∼N (0,I)

{
F (θ + σϵ) · ϵ

} (
x← θ + σϵ

)
A.2 Proof of Lemma 2

Our proof of Lemma 2 is novel up to our knowledge, although it uses standard tools in optimization. We derive our Lemma 4
using a simple application of our assumptions, and derive Lemma 6 with special care on the use of conditional expectations,
since the rollouts τ are sampled for a given ϵ.

Bias and Variance of the single perturbation, full expected policy gradient estimator

Before deriving the error of the full gradient estimator (i.e. averaged over both the n perturbations, and the N rollouts), we first
provide the bias and variance of the gradient estimator for a single random perturbation ϵ, defined below as:

ĝσ,ϵ(θ) =
1

σ
F (θ + σϵ)ϵ.

Bias: We first start by deriving the bias of such estimator.

Lemma 3.

Eτ,ϵ[ĝσ,ϵ(θ)] = ∇θFσ(θ)

Proof. We proceed as in [Ermoliev and Norkin, 1995].

Let us denote the following d-dimensional isotropic Normal distribution ϕ(ϵ) = 1
(2π)d/2

e−
∥ϵ∥2

2 .

Note that we have:

∇ϕ(ϵ) = −ϵ 1

(2π)
d/2

e−
∥ϵ∥2

2 = −ϵϕ(ϵ). (5)

Therefore:

∇Fσ(θ) = ∇θEF (θ + σϵ)

= ∇θ

∫
Rd

F (θ + σϵ)ϕ(ϵ)dϵ

(a)
=

1

σd
∇θ

∫
Rd

F (ϵ′)ϕ

(
ϵ′ − θ

σ

)
dϵ′

=
1

σd
∇θ

∫
Rd

F (ϵ)ϕ

(
ϵ− θ

σ

)
dϵ

(b)
=

1

σd

∫
Rd

F (ϵ)∇θ

[
ϕ

(
ϵ− θ

σ

)]
dϵ (6)

=
1

σd

∫
Rd

F (ϵ)

(
− 1

σ

)(
−ϵ− θ

σ

)
ϕ

(
ϵ− θ

σ

)
dϵ

(c)
=

∫
Rd

F (σϵ′ + θ)

(
1

σ

)
ϵ′ϕ (ϵ′) dϵ′

= Eϵ
1

σ
F (θ + σϵ)ϵ = Eĝσ,ϵ(θ)

Where in (a), we do the change of variable ϵ′ = θ + σϵ , in (b) we exchange integral and differentiation (as per Leibniz
integral rule), which is possible in our case since F is bounded per Assumption 1 (see [Ermoliev and Norkin, 1995] (24) for
instance), and in (c) we use the reverse change of variable as before (ϵ′ = ϵ−θ

σ , so ϵ = σϵ′ + θ).

Variance: We now proceed with deriving the variance of such estimator: such result, expressed in terms of the bound B on F ,
is, up to our knowledge, novel.
Lemma 4. Under Assumption 1, we have:

Eτ,ϵ∥ĝσ,ϵ(θ)−∇θFσ(θ)∥2 ≤
dB2

σ2

Proof. With ϵ ∼ N(0, Id×d), we have:

E∥ϵ∥2 = Eϵ⊤ϵ = E
d∑

i=1

u2
i =

d∑
i=1

Eu2
i = d. (7)

Using the definition of ĝσ,ϵ and Assumption 1, we have that:

∥ĝσ,ϵ∥2 ≤
B2

σ2
∥ϵ∥2

Therefore:

E∥ĝσ,ϵ∥2 ≤
B2

σ2
E∥ϵ∥2 =

B2

σ2
d.

We now use the bias-variance decomposition (in norm) (for a random variable X , E∥X − EX∥2 = E∥X∥2 − ∥EX∥2):
For any θ ∈ Rd:

E∥ĝσ,ϵ(θ)−∇Fσ(θ)∥2 = E∥ĝσ,ϵ(θ)∥2 − ∥∇Fσ(θ)∥2 ≤ E∥ĝσ,ϵ(θ)∥2 =
dB2

σ2

Bias and Variance of the single perturbation, single rollout policy gradient estimator
We now proceed with proving the bias and variance of the policy gradient estimator for a single perturbation ϵ, and a single
rollout τ , defined below as:

ĝσ,ϵ,τ (θ) :=
1

σ
fτ (θ + σϵ)ϵ

where the rollout τ is sampled for a given ϵ (i.e. one first samples some ϵ to obtain a policy parameterized by θ + σϵ, and
then, one samples a rollout τ from that policy).

Lemma 5 (Bias). The gradient estimator is unbiased:

Eϵ,τ ĝσ,ϵ,τ (θ) = ∇θFσ(θ)

Proof. By the law of total probabilities, and using Assumption 2 we have:

Eϵ,τ ĝσ,ϵ,τ (θ) = EϵEτ |ϵĝσ,ϵ,τ (θ) = EϵEτ |ϵ
1

σ
fτ (θ + σϵ)ϵ

= Eϵ
1

σ

(
Eτ |ϵfτ (θ + σϵ)

)
ϵ

= Eϵ
1

σ
F (θ + σϵ)ϵ = ∇θFσ(θ)

Where the last equality follows from Lemma 3.

Lemma 6 (Variance). Assume that Assumption 1 is verified, as well as Assumption 2. We have, for any θ ∈
{θ0,θ 1

2
, ...,θT− 1

2
,θT }:

Eτ,ϵ∥ĝσ,ϵ,τ (θ)−∇Fσ(θ)∥2 ≤
Cd

σ2
+

dB2

σ2

Proof. For simplicity, let us fix θ ∈ {θ0,θ 1
2
, ...,θT− 1

2
,θT } and denote ĝσ,ϵ,τ := ĝσ,ϵ,τ (θ).

Eτ,ϵ∥ĝσ,ϵ,τ −∇Fσ(θ)∥2

=Eτ,ϵ∥ĝσ,ϵ,τ −
1

σ
F (θ + σϵ)ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

+ 2Eτ,ϵ⟨ĝσ,ϵ,τ −
1

σ
F (θ + σϵ)ϵ,

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)⟩

=Eτ,ϵ∥
1

σ
(fτ (θ + σϵ)ϵ− F (θ + σϵ)ϵ) ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

+ 2Eτ,ϵ⟨
1

σ
fτ (θ + σϵ)ϵ− 1

σ
F (θ + σϵ)ϵ,

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)⟩

=
1

σ2
Eτ,ϵ|fτ (θ + σϵ)− F (θ + σϵ)|∥ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

+ 2Eϵ⟨Eτ |ϵ
1

σ
fτ (θ + σϵ)ϵ− 1

σ
F (θ + σϵ)ϵ,

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)⟩

(a)
=

1

σ2
Eτ,ϵ|fτ (θ + σϵ)− F (θ + σϵ)|∥ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

(b)

≤ 1

σ2
CEτ,ϵ∥ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

(c)

≤ Cd

σ2
+

dB2

σ2

Where (a) follows from Lemma 5 (which implies Eτ |ϵ
1
σfτ (θ + σϵ)ϵ− 1

σF (θ + σϵ)ϵ = 0), (b) follows from Assumption 2,
and (c) follows from Lemma 4.

Proof of Lemma 2: Bias and Variance of the averaged gradient estimator
We can now finally proceed with proving the bias and variance of the full gradient estimator, which is the averaging of the
above single random perturbation and rollout gradient estimator, over several random perturbations ϵ and rollouts τ . We recall
Lemma 2 in its full form, including the necessary notations, in Lemma 7 below:
Lemma 7 (i.e. Lemma 2 from subsection 4.3). Assume that we sample n random directions {ϵi}ni=1 := {ϵ1, ..., ϵn} in-
dependently and identically distributed, and that for each of those random directions ϵi, we sample we sample N rollouts
{τϵij }Nj=1 := {τϵi1 , .., τϵiN } independently and identically distributed, to obtain a final collection of rollouts {{τϵij }Nj=1}ni=1

, and to get N × n gradient estimators ĝσ,ϵi,τ
ϵi
j
, (i, j) ∈ [n] × [N], and to obtain the following estimator, for any

θ ∈ {θ0,θ 1
2
, ...,θT− 1

2
,θT }:

ḡσ,{ϵi}n
i=1,{{τ

ϵi
j }N

j=1}n
i=1

(θ) =
1

nN

n∑
i=1

N∑
j=1

ĝσ,ϵi,τ
ϵi
j
(θ)

Then , we have:

ḡσ,{ϵi}n
i=1,{{τ

ϵi
j }N

j=1}n
i=1

(θ) = ∇θFσ(θ)

and:

E∥ḡσ,{ϵi}n
i=1,{{τ

ϵi
j }N

j=1}n
i=1

(θ)−∇θFσ(θ)∥2 ≤
Cd

Nσ2
+

dB2

nσ2

Proof. The unbiasedness follows from the linearity of expectation and the proof of Lemmas 5, and the variance follows from
the fact that using m i.i.d. samples of a random variable X (for some integer m) divides the variance of the sample mean of X
by m, in the previous proof of 6.

A.3 Proof of Lemma 1

Such proof is, up to our knowledge, novel, and uses the bound B on F to derive a bound on the Hessian ∇2Fσ(θ), using
properties of the spectral norm for rank-1 matrices.

Proof. We have, with ϕ(ϵ) = 1
(2π)d/2

e−
∥ϵ∥2

2 (cf. Equation 6):

∇θFσ(θ) =
1

σd

∫
Rd

F (ϵ)∇θ

[
ϕ

(
ϵ− θ

σ

)]
dϵ (8)

And we also have, from Equation (5), and with ∂
∂ϵ denoting the partial derivative with respect to ϵ, and denoting for simplicity

ϕ′′ the Hessian of ϕ:

ϕ′′(ϵ) =
∂

∂ϵ
(−ϵϕ(ϵ))

Therefore:

ϕ′′(ϵ) = −Iϕ(ϵ)− ϵ(−ϵ⊤ϕ(ϵ)) = (ϵϵ⊤ − I)ϕ(ϵ)

In Equation (8) above, we can exchange differentiation and integral since the gradient of the Gaussian function, which we
denote by ϕ′(θ), is continuously differentiable and tends to zero faster than any polynomial of θ, and F (θ) is bounded according
to our assumptions (and therefore grows to infinity not faster than a bounded polynomial of θ, cf. [Ermoliev and Norkin, 1995] p.
(20)). Therefore, we obtain: :

∇2
θFσ(θ) =

1

σd

∫
Rd

F (ϵ)∇2
θ

[
ϕ

(
ϵ− θ

σ

)]
dϵ

=
1

σd+2

∫
Rd

F (ϵ)ϕ′′
(
ϵ− θ

σ

)
dϵ

=
1

σd+2

∫
Rd

F (ϵ)

((
ϵ− θ

σ

)(
ϵ− θ

σ

)⊤

− I

)
ϕ

(
ϵ− θ

σ

)
dϵ

=
1

σ2

∫
Rd

F (θ + σϵ)
(
ϵϵ⊤ − I

)
ϕ (ϵ) dϵ.

Therefore, we have, with ∥ · ∥s denoting the spectral norm:

∥∇2Fσ(θ)∥s = ∥
1

σ2

∫
Rd

F (θ + σϵ)
(
ϵϵ⊤ − I

)
ϕ (ϵ) dϵ∥s

(a)

≤ 1

σ2

∫
Rd

∥F (θ + σϵ)
(
ϵϵ⊤ − I

)
∥sϕ (ϵ) dϵ

=
1

σ2

∫
Rd

|F (θ + σϵ)|∥
(
ϵϵ⊤ − I

)
∥sϕ (ϵ) dϵ

≤ 1

σ2

∫
Rd

B∥
(
ϵϵ⊤ − I

)
∥sϕ (ϵ) dϵ

=
B

σ2

∫
Rd

∥ϵϵ⊤ − I∥sϕ (ϵ) dϵ

(b)

≤ B

σ2

∫
Rd

(
∥ϵϵ⊤∥s + ∥I∥s

)
ϕ (ϵ) dϵ

(c)
=

B

σ2

∫
Rd

(
∥ϵ∥22 + 1

)
ϕ (ϵ) dϵ

=
B

σ2

[
(E∥ϵ∥22) +

(∫
Rd

ϕ(ϵ)dϵ

)]
=

B

σ2
[d+ 1]

=
(d+ 1)B

σ2
.

Where (a) follows from Jensen inequality for expectation (and since any norm, including the spectral norm, is convex) , and
where (b) follows from the triangular inequality. And where (c) follows from the fact that the spectral norm of ϵϵ⊤ is ∥ϵ∥22 since
the Singular Value Decomposition of ϵϵ⊤ is ϵϵ⊤ = ϵ

∥ϵ∥2
∥ϵ∥22 ϵ⊤

∥ϵ∥2
(therefore, the largest singular value of ϵϵ⊤, which is the

spectral norm by definition, is equal to ∥ϵ∥22). We can now use Lemma 1.2.2 in [Nesterov and others, 2018] to relate such bound
on the Hessian to the smoothness constant of Fσ .

A.4 Proof of Theorem 1: Final convergence rate
We can now use the above results into the general framework from [Xu et al., 2019], with some additional modifications to adapt
their proof to our case of rewards maximization (and not function minimization), and to our specific proximal term, which is the
indicator function of the L0 pseudo-ball of radius k (for which the Euclidean projection onto it is the hard-thresholding operator),
as well as a few modifications where we use our boundedness assumption on F (Assumption 1) instead of Assumption 1(ii) in
[Xu et al., 2019].

Proof. Let F−
σ (θ) := −Fσ(θ), then we have

max
∥θ∥0≤k

Fσ(θ) = min
∥θ∥0≤k

F−
σ (θ)

Note that the nonconvex optimization problem min∥θ∥0≤k F
−
σ (θ) can be reformulated as an alternative nonconvex optimization

problem, wherein a nonsmooth, nonconvex indicator function serves as a regularization term:

min
∥θ∥0≤k

F−
σ (θ) = min

θ∈Rd
F−
σ (θ) + r(θ) where r(θ) :=

{
0, if ∥θ∥0 ≤ k

+∞, otherwise

Note that r(θ) is a nonconvex lower-semicontinuous function (cf. the Introduction of [Xu et al., 2019] for instance).
For simplification, denote by gt the averaged gradient estimator of∇θF

−
σ (θt) at time step t, i.e.,

gt = −ḡσ,{ϵi}n
i=1,{{τ

ϵi
j }N

j=1}n
i=1

(θt).

Then the update rule of θt+1 is equivalent to
θt+1 =trunc (θt − αgt)

∈ argmin
θ∈Rd

{
r(θ) +

1

2α
∥θ − (θt − αgt)∥2

}
=argmin

θ∈Rd

{
r(θ) + ⟨gt,θ − θt⟩+

1

2α
∥θ − θt∥2

}

Then we have, with ∂̂ denoting the Fréchet derivative (see [Xu et al., 2019; Deleu and Bengio, 2021] for more details, in
particular the proof of Theorem 2 in [Xu et al., 2019].):

− (gt +
1

α
(θt+1 − θt)) ∈ ∂̂r(θt+1), ∇F−

σ (θt+1)− (gt +
1

α
(θt+1 − θt)) ∈ ∂̂(F−

σ + r)(θt+1), (9)

r(θt+1) + ⟨gt,θt+1 − θt⟩+
1

2α
∥θt+1 − θt∥2 ≤ r(θt) + ⟨gt,θt − θt⟩+

1

2α
∥θt − θt∥2 = r(θt)

According to Lemma 1, the spectrum norm of Hessian matrix of Fσ is bounded by L := (d+1)B
σ2 , which also implies that F−

σ is
L smooth. Then we have,

F−
σ (θt+1) ≤ F−

σ (θt) +
〈
∇F−

σ (θt),θt+1 − θt
〉
+

L

2
∥θt+1 − θt∥2.

Then we have 〈
gt −∇F−

σ (θt),θt+1 − θt
〉
+

1

2
(
1

α
− L)∥θt+1 − θt∥2 ≤ (F−

σ + r)(θt)− (F−
σ + r)(θt+1). (10)

By Young’s inequality,

1

2
(
1

α
− L)∥θt+1 − θt∥2 ≤ (F−

σ + r)(θt)− (F−
σ + r)(θt+1) +

1

2L
∥gt −∇F−

σ (θt)∥2 +
L

2
∥θt+1 − θt∥2.

Summing up the above inequality over time steps t = 0, . . . , T − 1, we have(
1

2α
− L

) T−1∑
t=0

∥θt+1 − θt∥2 ≤(F−
σ + r)(θ0)− (F−

σ + r)(θT−1) +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2

≤(F−
σ + r)(θ0)− (F−

σ + r)(θT−1) +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2

=F−
σ (θ0)− F−

σ (θT−1) +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2

≤2B +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2, (11)

where the equality is due to the definition of the indicator function r(θ) and since θ0 and θT−1 are k-sparse, and the last
inequality is due to Assumption 1. According to Eq.(10), we also have:

2

α

〈
gt −∇F−

σ (θt+1),θt+1 − θt
〉
+

1− αL

α2
∥θt+1 − θt∥2

≤2 ((F−
σ + r)(θt)− (F−

σ + r)(θt+1))

α
− 2

α

〈
∇F−

σ (θt+1)−∇F−
σ ,θt+1 − θt

〉
.

Since 2
〈
gt −∇F−

σ (θt+1),
1
α (θt+1 − θt)

〉
= ∥gt −∇F−

σ (θt+1) +
1
α (θt+1 − θt)∥2 − ∥gt −∇−

σ (θt+1)∥2 − 1
α2 ∥θt+1 − θt∥2,

we have :

∥gt −∇F−
σ (θt+1) +

1

α
(θt+1 − θt)∥2

≤∥gt −∇−
σ (θt+1)∥2 +

1

α2
∥θt+1 − θt∥2 −

1− αL

α2
∥θt+1 − θt∥2

+
2 ((F−

σ + r)(θt)− (F−
σ + r)(θt+1))

α
− 2

α

〈
∇F−

σ (θt+1)−∇F−
σ ,θt+1 − θt

〉
≤2∥gt −∇F−

σ (θt)∥2 + 2∥∇−
σ (θt)−∇−

σ (θt+1)∥2 +
L

α
∥θt+1 − θt∥2

+
2 ((F−

σ + r)(θt)− (F−
σ + r)(θt+1))

α
− 2

α

〈
∇F−

σ (θt+1)−∇F−
σ ,θt+1 − θt

〉
≤2∥gt −∇F−

σ (θt)∥2 +
2 ((F−

σ + r)(θt)− (F−
σ + r)(θt+1))

α
+ (2L2 +

3L

α
)∥θt+1 − θt∥2,

where the second inequality is due to Young’s inequality and the last inequality is due to the smoothness of the gradient. Summing
up the above inequality over time steps t = 0, . . . , T − 1, we have :

T−1∑
t=0

∥gt −∇F−
σ (θt+1) +

1

α
(θt+1 − θt)∥2

≤2
T−1∑
t=0

∥gt −∇F−
σ (θt)∥2 +

2 ((F−
σ + r)(θ0)− (F−

σ + r)(θT−1))

α
+ (2L2 +

3L

α
)

T−1∑
t=0

∥θt+1 − θt∥2

≤2
T−1∑
t=0

∥gt −∇F−
σ (θt)∥2 +

4B

α
+

2

α2

T−1∑
t=0

∥θt+1 − θt∥2,

where the last inequality is due to Assumption 1 and setting α = c
L < 1

2L . Combing the above inequality with Equation (11) and
Equation (9), we have :

E[dist(0, ∂̂(F−
σ + r)(θT))

2]

≤ 1

T

T−1∑
t=0

E
[
∥gt −∇F−

σ (θt+1) +
1

α
(θt+1 − θt)∥2

]

≤ 2

T

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2 +

4B

Tα
+

2

α2T

T−1∑
t=0

∥θt+1 − θt∥2

≤ 2

T

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2 +

4B

Tα
+

2

α2T

(
4B

1
α − 2L

+
1

L
α − 2L2

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2

)

=
2c(1− 2c) + 2

c(1− 2c)

1

T

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2 +

12− 8c

1− 2c

B

αT

We can now plug the result we obtained in Lemma 7 in the result above, to obtain:

E
[
dist

(
0, ∂̂

(
−Fσ (θT) + 1L0(k)(θT)

))2]
≤ ε2,

Using Jensen inequality and the fact that the square-root function is concave, we obtain Theorem 1.

	Introduction
	Preliminaries
	Decision-Making with Irrelevant Features
	The objective function
	Our proposal: NESHT

	Convergence Analysis
	Assumptions
	Smoothness
	Error of the gradient estimator
	Convergence rate

	Experiment
	Experimental Setups
	Efficacy of the hard-thresholding operator
	Performance on noised Mujoco tasks
	Comparison on visual Atari benchmarks
	Hyper-parameter study

	Conclusion
	Appendix
	NES Gradients
	Proof of Lemma 2
	Bias and Variance of the single perturbation, full expected policy gradient estimator
	Bias and Variance of the single perturbation, single rollout policy gradient estimator
	Proof of Lemma 2: Bias and Variance of the averaged gradient estimator

	Proof of Lemma 1
	Proof of Theorem 1: Final convergence rate

