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Abstract

Explanations for Convolutional Neural Networks (CNNs) based on re-
levance of input pixels might be too unspecific to evaluate which and
how input features impact model decisions. Especially in complex real-
world domains like biomedicine, the presence of specific concepts (e.g.,
a certain type of cell) and of relations between concepts (e.g., one cell
type is next to another) might be discriminative between classes (e.g.,
different types of tissue). Pixel relevance is not expressive enough to con-
vey this type of information. In consequence, model evaluation is limited
and relevant aspects present in the data and influencing the model deci-
sions might be overlooked. This work presents a novel method to explain
and evaluate CNN models, which uses a concept- and relation-based
explainer (CoReX). It explains the predictive behavior of a model on a
set of images by masking (ir-)relevant concepts from the decision-making
process and by constraining relations in a learned interpretable surro-
gate model. We test our approach with several image data sets and CNN
architectures. Results show that CoReX explanations are faithful to the
CNN model in terms of predictive outcomes. We further demonstrate
that CoReX is a suitable tool for evaluating CNNs supporting iden-
tification and re-classification of incorrect or ambiguous classifications.

Keywords: Explainable Artificial Intelligence, Interactive Machine Learning,
Convolutional Neural Networks, Concept Analysis, Logic Programming
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Fig. 1: Explaining why a sample image belongs to the target class “teapot” by
contrasting it with a sample from the contrastive class “vase” based on identified
concepts (handle, spout) and their relations (“spout right of handle”)

1 Introduction

In recent years, research in Explainable Artificial Intelligence (XAI) has pro-
duced a vast amount of explanatory methods that make transparent what deep
learning models, such as Convolutional Neural Networks (CNNs), have learned
[3, 4, 45]. Most methods developed for CNNs highlight pixels or groups of pix-
els in images that were relevant to class predictions for individual samples (via
heatmaps), e.g., LIME [42], or layer-wise relevance propagation (LRP) [27]. It
remains the task of the human to interpret what features the highlighted image
regions contain and to evaluate whether meaningful features were learned for
class discrimination. As long as it is a matter of the presence of relevant or
irrelevant simple features, such visual explanations are sufficiently expressive
to fit the evaluation task. However, as soon as several feature expressions apply
simultaneously (colors, textures, shapes, etc.) and also when the spatial con-
stellation of features in an image contribute to the characterization of a class,
heatmaps reach their limits. In such cases, explanatory approaches are needed
that ascribe meaningful and distinguishable concepts to the learned features
and which can take into account relations between these concepts.

In general, concepts are defined as mental representations for categories
of objects [48]. Concepts can be referred to with natural language, typically
nouns. For instance, the objects in Figure 1 are referred to as ‘vase’ and as
‘teapot’. Natural categories such as different animals and also many human-
made objects often have no crisp decision boundary [43]. Depending on the
shape, and the presence of a handle or lid, an object might be identified as
a teapot or not. Many concepts are members of a super-concept (a teapot



Springer Nature 2021 BTEX template

When a Relation Tells More Than a Concept 3

belongs to crockery) and also have sub-concepts (e.g., Japanese teapots) [43].
Often, concepts can be characterized by the structure of their parts [46]. For
instance, a handle, a spout, and a lid are parts of a teapot.

In machine learning, concept learning is a special case of classification
learning which approximates a binary target function that decides whether
an instance belongs to a target class (concept) or not [33]. In knowledge rep-
resentation, ontologies are used to model domains of discourse by concept
hierarchies [46]. To derive such ontologies, concept analysis has been intro-
duced [55]. In general, the inclusion of domain knowledge can lead to more
expressiveness and allows for more comprehensive evaluations of learned mod-
els. For example, knowledge about spatial relations can be used to perform
reasoning on the structure of found concepts in images [41]. In the spatial
domain, reasoning on position, orientation, and distance are of particular inter-
est (‘It is a teapot and not a vase because there is a handle right of a spout.’,
see image on the right in Figure 1). Why considering concepts and relations
at the same time? The separation of classes (here: “teapot” or “vase”) may be
based on a common set of present concepts (e.g., handle, spout, flowers) and
may therefore only be explainable if relevance of and spatial relations between
those concepts are taken into account. Our approach extracts and localizes
concepts for similar classes based on concept relevance representing the contri-
bution of conjunct pixel groups to an image classification. Concepts positively
contributing to a classification get positive relevance scores (red in Figure 1),
negatively contributing concepts get negative scores (blue in Figure 1), whereas
irrelevant concepts get a score near or equal zero (hwhite in Figure 1). Con-
cepts can be labelled according to their appearance in images, where they have
the highest absolute relevance score. We can learn from the above “teapot vs.
vase” example that high relevance scores may correlate with similar concepts
across classes (e.g., spout, handle) or that classes may differ by concept rele-
vance (e.g., negative relevance for flowers on teapots). For our selected teapot
example, we can explain the classification for the teapot by the relation “The
example shows a teapot and not a vase, because the spout is right of the han-
dle”, which holds, e.g., for all teapots oriented to the right in contrast to vases.
Apparently, this finding does not hold for all teapots, but for a sub-group or
cluster within the data.

For many real-world domains, objects are more or less typical members of
their category [43]. Where categories are similar, it is more difficult to correctly
classify objects near the category border [30]. A vase with a bulbous body
might be confused with a teapot; a teapot missing a handle might be confused
with a vase. The same problem occurs in critical domains such as medicine.
For instance, whether a tissue sample is indicative of a tumor class is harder
to decide for borderline cases than for prototypical tissue patterns [8].

The application of XAI methods supports humans in comprehending how
black box models such as CNNs derive a specific class output for a given
input instance. This information can be used to examine the learned model.
For instance, Clever Hans effects can be identified, that is, that the model
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output is right, but for the wrong reason, e.g., an image is classified as
a horse, but based on copyright text or the background [28, 52]. Further-
more, learned models might be prone to make more classification errors near
the decision boundaries between classes than near the center of the decision
area. Several XAI methods have been proposed to support the exploration
of decision boundaries of learned models. First, example-based explanations
providing information about prototypes and critics have been suggested [26].
Furthermore, contrastive explanations, where the neighborhood of a classified
example in the instance space is explored have been shown to be highly effi-
cient [32, 40, 52, 53]. Finally, cluster analysis, where clusters may be formed
around very common or unusual or biased samples, has been demonstrated to
be helpful [28]. In general, contrastive explanations provide information about
what has to be given or what has to be absent to make an object an instance
of a specific concept. When used to explain a model to a human, contrastive
examples uncover classification errors which might be corrected by providing
new examples or constraints on the learning and prediction process to shift
the decision boundary [13, 53].

Attribution and backpropagation methods explain class predictions of a
CNN (or other model types) by relating the class output to relevant features
in the input. For image data, these features correspond to pixels or groups of
pixels. Prediction boundaries are observed then on the prediction level, that
is, evaluating whether a (contrastive) example is classified correctly or not.
More recently, different approaches have been proposed to take into account
information represented in intermediate convolutional layers of CNNs which
will be discussed below [1, 2, 6, 19, 38]. Given information about concepts
represented in intermediate layers of a CNN together with relations between
such concepts allows us to provide more specific explanations, namely whether
the prediction is based on the right concepts and relations or not. Representing
both, concepts and relations in a human-understandable way further supports
meaningful interaction with data, explanations, and the model itself.

Given that heatmaps cannot adequately explain the classification of a
CNN model on complex, spatially-descriptive image data and that human-
understandable explanations are needed that allow the decision boundary to
be explored, we present a novel approach: the Concept- and relation-based
explainer (CoReX). Our approach learns relations on top of concepts with the
help of Inductive Logic Programming (ILP), which is inherently interpretable
[36]. CoReX makes the following contribution to the state of the art:

® [t combines relevance-based concept extraction with interpretable relational
learning to validate the predictive performance of a CNN w.r.t. contrastive
classes that cannot be distinguished easily solely based on concepts, but
rather general, domain-relevant spatial relations. Combining relevance infor-
mation with ILP has already been researched [51], but not for extracted
concepts and not for intermediate layers of CNNs.

e For a collection of data sets (abstract, in-the-wild, scientific), we show
quantitatively that our novel, combined explainer is faithful to a CNN
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model’s predictive outcomes. We further extend the quantitative evaluation
of fidelity by a concept-based ablation study, that examines the performance
of a CNN, when the CNN is permitted to use relevant and / or irrelevant
concepts. We further qualitatively show that constraining relations in the
learned interpretable relational model supports the identification and re-
classification of incorrect or ambiguous image classifications. We provide a
complete code basis to perform experiments presented here.

® In order to facilitate the exploration and adaptation of a CNN model’s
decision boundary, we include contrastive explanations and relation-based
cluster analysis into our approach.

Consequently, our main research question is, whether CoReX can identify
concepts and relations from features learned by a CNN that are representative
of contrastive classes and that are the main contributors to a model’s predic-
tive performance. We further examine the explanatory capabilities of CoReX
toward rectifiable models, in particular, its suitability for interactive learning
by constraints with a human-in-the-loop.

The paper is organized as follows: In Section 2 we present works that are
related to our approach. Section 3 introduces the technical background as a
basis to the implementation of CoReX and defines important terminology.
CoReX itself is described in Section 4. In Section 5 we introduce used materials
and experimental settings in preparation of our evaluation, which is presented
in Section 6, including quantitative and qualitative results. We conclude this
article with future prospects in Section 7.

2 Related Work

Our approach to concept- and relation-based explanations relates to methods
for disentangling representations in intermediate layers of CNNs. Furthermore,
we focus on contrastive explanations which support identifying classification
errors on decision boundaries. This type of explanation is especially relevant
for explainable interactive approaches of machine learning (XIML).

2.1 Concepts, Relations, and Disentangled
Representations

Research in human perception [31] shows that the classification of an image
depends not only on information about shape and texture but also on the
constituents it is composed of and their relations. These constituents typically
are concepts that can be named. Global explanations of categories typically
rely on verbal or symbolic descriptions of their defining concepts and relations
[15]. For instance, the concept of a grandparent can be explained as a person
who is the parent of a parent [36, 40] or the concept of a teapot could be
explained as an item having a spout, a handle, and a lid where the lid is on top
and the spout is on the side (see Figure 1). This observation that perception
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considers composition and relations has inspired approaches to disentangling
representations.

One of the first approaches, NetDissect [6], considers a predefined pool of
concepts given as objects, textures, and colors and finds units in convolution
layers in a CNN whose activation maps are highly correlated with ground-
truth masks of concepts in an image data set. The authors could confirm that
representations at different layers disentangle different categories of meaning
and that such disentanglements support interpretability of the representation
learned by hidden units. Net2Vec [19] is a modification of NetDissect, which
learns a concept segmentation layer for locating concepts on images. The
weight vector of this layer can then be understood as an embedding for the con-
cept. Both methods rely on a predefined set of concepts and predefined masks
which restricts explainability to the preconceptions of the model designers.

A recent method that builds upon the relevance-based approach LRP
[27] is Concept Relevance Propagation CRP [1, 2]. CRP provides inter-
pretable and class-specific features as concepts that are identified through
class-conditioned decomposition of relevance maps instead of activation. In
contrast to NetDissect and Net2Vec, CRP is able to automatically find sets
of pixels that represent interpretable features in terms of concepts. Instead of
comparing upscaled activation maps with ground-truth masks as in the pre-
vious approaches, CRP propagates class-specific relevance all the way to the
input layer. We introduce the method in more detail in Section 4. A survey
on other related concept-based explanation methods can be found in a recent
survey by Poeta et al. [37].

Approaches to relational symbolic learning, such as Inductive Logic Pro-
gramming (ILP, [35]) explicitly learn conceptual structures. ILP-learned
models are sets of rules for a target concept defined over sub-concepts and their
relations. The set of rules constitutes a global explanation of a concept. Local
explanations are generated when the model is evaluated for a specific instance
[17]. The reasoning trace generated for the instantiated rule constitutes the
explanation [18]. ILP has been applied as an explanatory surrogate model for
image classification with CNNs [39]. Furthermore, approaches to generating
contrastive explanations based on ILP models have been proposed [18, 40]. An
extensive survey on these and related methods can be found in [45].

2.2 Explanations for Interactive Learning

While measures of predictive accuracy give an overall indication of the quality
of a learned model w.r.t. its performance on new inputs, explanations can
provide a more specific understanding of the inner workings of a model. Global
explanations reflect the general structure of a model. For relational data, ILP
models constitute global explanations. ILP models can be learned stand-alone
or in neuro-symbolic settings [29]. For relevance maps generated with LRP,
Spectral Relevance Analysis (SpRAy) has been proposed [28] as an approach
for global explanation generation. SpRAy applies spectral clustering on LRP
explanations and thereby identifies different decision behaviors of the learned
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model. Prototypes are another form of global explanations which highlight the
typical pattern of examples which are classified as belonging to a specific class
[26].

While global explanations help to understand the general structure of
the model, local explanations allow for understanding the class decision of a
model for a specific instance. Heatmaps are an instance of local explanations
in the form of visualizations on input images. Contrastive explanations can
be given globally — by aligning two prototypes [5, 32] — or locally, by con-
trasting the current instance with one which is similar but belonging to a
different class [18, 23, 40]. Contrastive explanations have been identified as
especially helpful to understand the underlying reasons of classification errors.
Therefore, they are helpful as guidance for interactive approaches to machine
learning. Explanatory Interactive Machine Learning (XIML) has been intro-
duced as a term for approaches that combine explanation generation and
interactive model correction based on such explanations [53]. Corrections are
given by revising not only erroneous class decisions (i.e., labels) but also the
explanations, thereby constraining model adaption [44, 54].

3 Background and Terminology

This section introduces the theoretical background of methods integral to our
approach as well as the basic terminology relevant to this work.

3.1 Extracting Visual Features with CRP

The basis to CRP [1, 2] is LRP [27, 34]. LRP can be used to compute the contri-
bution of individual pixels to a predictive outcome (relevance maps visualized
as heatmaps). This is achieved by decomposing the relevance that is aggre-
gated in an output neuron through a backward pass. We shortly introduce its
basic computational rule:

0 _AiWi5 (l+1)

F; Z 2w (1)
The relevance of a neuron ¢ in a layer I can be determined as follows. Given the
relevance R; of a neuron j in a higher layer (I + 1) (e.g., the output neuron),
the backward relevance flow from j to ¢ is derived from dividing the product
of the activation a; and the weight w;; by the sum of all activation weight
products. If there is more than one neuron in [ + 1, the ratios get summed
up by the outer sum > i Applying this rule in a complete backward pass
leads to assigning relevance to every pixel p of the input image. This score is
computed in a conservative manner, meaning that > R, = f(x) holds for a
classifier f(z) on input z. The rule presented in Equation 1 has variants for
different layers [34]. Selecting the best variant for the given CNN architecture
is crucial to the quality of relevance computation. Here, we apply the e-variant,
which was developed for intermediate layers in CNNs. These layers are usually
convolutional layers. Thus, the rule works well for our approach as we only
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consider relevance in the last convolutional layer. The benefit of the € rule is,
that it preserves the most salient relevance and reduces noise resulting from
weight sharing in convolutions [34].

The relevance values of all pixels of an input constitute a relevance map.
The CRP method we use to extract concepts is based on the assumption that
a relevance map does not describe just one individual concept. Various filters
contribute to the relevance that is distributed across pixels in an image [2].
The advantage of CRP over LRP is that it can compute a class-conditional
relevance map R(x | y) for input x w.r.t. a class y and concept-conditional
relevance maps by masking (intermediate) network outputs before applying
LRP. It extends LRP as noted in Equation 1:

aiwij
2 aitij

Conditioning the relevance is achieved by setting all but the desired layer
outputs to zero by multiplying a model output f;(z) with a Kronecker-Delta
8y, such that RE (x| y) = 6;,f(x), where L denotes an output layer. Here,
jis a convolutlonal layer represented by a tensor (p,q,j), where p,q denote
the first and the second spatial axis of the tensor and j the concept-axis,
i.e., the filter. Conditioning the relevance by € is possible for an individual
network output for one or more filters in a convolutional layer. Achtibat et al.
further assume that each filter encodes one particular concept throughout all
model applications since their weights stay the same [1, 2]. This is the basis
for "filtering” specific concepts that were learned by the model.

The impact of a single concept ¢ on the prediction outcome of z is rep-
resented by the sum of relevance in the respective layer (see Equation 3). It
helps to select the concepts contributing most to a prediction. Achtibat et
al. use Relevance Maximization (RelMAx) to find for every concept a set of
input samples (reference samples), where the concept contributed most to the
prediction (see Equation 4).

R (x| ou6) = % 8jc, % RV (x| ) (2)

R'(z | 6) ZRwa (3)

max

mrel (x) = max Ri(x ] 6). (4)

By using a concept-specific constraint 6 on RelMax, a set of reference sam-
ples from the target class is selected. For this set, a human expert can decide
upon the overall concept label for the filtered pixel regions in reference samples.
We integrated this component into our implementation in order to optionally
support labeling of concepts by human users (e.g., a teapot handle). Localiza-
tion of a concept within a reference image is done by extracting the receptive
field information [1, 2]. The rest of the image is then masked out to empha-
size on the region of interest, where the concept displays. As this work focuses
on the technical evaluation of our proposed approach, we did not integrate
the reference sampling into our experiments, however, we used it for validity
checks on identified concepts. Furthermore, reference sampling helps to label
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concepts more efficiently. Presenting reference samples to a (human) labeler
according to the relevance rank of a concept helps to prioritize which concepts
should be labeled first. In Section 4, we will explain how we take advantage of
concept ranking to learn an interpretable relational surrogate model on fewer
data, yet faithful to a CNN model’s predictions.

In advance to describing how we learn a surrogate model on top of extracted
concepts and their relations, it is worth mentioning that CRP assigns concepts
with positive or negative relevance, depending on whether they contribute to
a decision in favor of the target class or not (likewise to LRP [27]). A relevance
value equal or near zero defines a low or missing contribution in any direction.
To be able to interpret the explanations produced by our approach, we define
the meaning of relevance such that if the relevance of some concept c is positive,
this concept is located in the image region for desirable reasons. If the relevance
of some concept (not necessarily the same ¢) is negative, the concept should
not be there, whichever concept is located at the relevant pixel area instead
of the desired one. We want to point out that images cannot contain nothing.
If a concept of interest is not displayed, there always will be another concept,
pixel group or pixel value with possibly no defined meaning instead.

3.2 Learning Symbolic Hypotheses with ILP

ILP is a machine learning approach that allows for induction and deduction.
It has been introduced back in the year 1991 by Stephen Muggleton [35].
Learned models are logic programs, which are induced from examples. These
logic programs can then be executed to derive explanations for classifications.
The overall goal of ILP is to derive a hypothesis H, also called theory, from a
set of examples ET belonging to the target class and a set of examples £~ not
belonging to the target class and background knowledge B. The background
knowledge B holds features of examples and optionally reasoning rules (called
domain theory) to derive further properties, e.g., transitive relations. H is
induced such that Ve € ET : BUH e and Ve € E~ : BU H [~ e. The first
condition demands H to be complete, i.e., covering all positive examples ET.
The second condition demands it to be consistent, i.e., not covering negative
examples E~.

These formal properties make ILP susceptible to noise in the underlying
data. This apparent downside comes in favor for generating explanations for
flawed models since ILP will not be robust to examples incorrectly labeled by
some base model, the explanandum. When instances contain noisy concepts
or relations which the model deems to be important, hypotheses generated by
ILP can make the noise explicit to the user which in turn gives them the power
to evaluate the model as well as the data.

For theory induction, this work uses the Prolog-based ILP Framework
Aleph [50]. The basic procedure that is performed by Aleph follows four steps.
First, for as long as there is an example in ET, a candidate example e € E+
gets selected. In the second step, a most specific clause (so-called bottom
clause) is constructed, which entails the selected example and adheres to B.
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Fig. 2: Overview of our CoReX approach for explaining and evaluating CNN image
classifications with concept- and relation-based explanations and constraints (concept
masking and relational constraints)

Then, Aleph searches for a rule that is more general than the bottom clause,
i.e., a subset of all literals in the current clause. Aleph tests which examples
from E+ or E~ are covered by the rule and finally removes all (now redun-
dant) examples from the list of candidate examples, that are already covered.
This procedure is repeated until all examples are covered, either by a rule or
added to the theory as instances without generalization [50].

4 Method

Our approach is illustrated in Figure 2. Tt combines (1) extracting concepts
from visual features learned by CNNs with CRP, and (2) learning symbolic
hypotheses by means of relations with ILP, where we integrate spatial rela-
tional knowledge for a more expressive evaluation of the CNN output. The
visual and verbal explanations resulting from (1) and (2) are the basis for
providing (3) contrastive explanations, and (4) rule-based cluster analysis
for a given explanandum. To evaluate the importance of the concepts and
relations that are learned by the surrogate ILP model, we then suppress con-
cepts in learned CNN models by (5) masking the respective concepts before
application on the same data, and we suppress relations by (6) constraining
relations in the ILP model to identify and re-classify samples based on human
domain-knowledge.

4.1 Building Background Knowledge from Concepts

In Section 3 we introduced how concepts are extracted from the relevance of
filters in convolutional layers of CNN models. In principle, we only analyze
the last convolutional layer of our utilized models for concept extraction. More
details on the architectures of our models and their parameters are given in
Section 5. For the preparation of learning a surrogate model with ILP, we store
concepts in the background knowledge B as introduced earlier. That means, we
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write a first-order-logic 2-ary predicate to the Prolog background knowledge
for each example image if a concept is present (see first line of part D in Figure
3).

Depending on the architecture of the respective CNN model, the amount of
extracted concepts can be large (> 500) as noted in Section B of the appendix.
One observation we make is that the majority of these concepts often has
low relevance values. This does not necessarily imply that these concepts are
useless, however, it is probable that many of them can be removed without
seriously harming the performance of a CNN model. For improved compu-
tational performance, we therefore decided to write only the concepts to the
background knowledge that have a relevance, which exceeds a predefined rel-
evance threshold. Since every model may produce a different distribution of
relevance dependent on the data set under consideration, we set the threshold
according to a quantile of the relevance distribution. This can result in varying
amounts of concepts in the background knowledge accross data sets, however,
this strategy is more flexible and less biased compared to a fixed amount of
concepts or a fixed value for a threshold.

In our experimental results in Section 6, we speak of three different kinds of
concepts. Based on the thresholding, we distinguish between relevant concepts
(in the background knowledge) and irrelevant concepts (not in the background
knowledge). Within the concepts that are in the background knowledge, we
further introduce another category of concepts: the concepts from the back-
ground knowledge that are included in the rules of the interpretable surrogate
model after learning a theory with ILP.

Besides storing predicates for concepts that exceed the relevance threshold,
we also compute spatial relations between these concepts.

4.2 Integration of Spatial Relational Knowledge

The Prolog background knowledge that basically consists of concepts with
positive or negative relevance, can be additionally enriched by knowledge that
is generally applicable to the image data domain, such as spatial relations. The
relations are labeled according to existing spatial frameworks. In particular,
we integrate a symbolic representation of relations from the DE-9 Intersection
Model [11], orientation in a 8-cell grid and categorized distance. For each
framework, we first localize the pre-computed concepts with the help of concept
relevance, we then transform the conjunct pixel regions into polygons and
relate the polygons in accordance to the respective spatial framework. We
then store the labeled relations in Prolog syntax as 3-ary predicates with 2-
ary predicates as arguments for denoting the relevance sign of a concept (see
bottom lines of part D in Figure 3). An overview of all possible predicates is
presented in Section A of the appendix.
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4.3 Model Truth and Explainer Truth

A useful interpretable surrogate model should produce outcomes similar to the
machine learning model in question as a precondition to providing explana-
tions faithfully. In particular, observing the output of the base model and the
output of the interpretable explainer gives insight in how closely an explainer
resembles the model’s predictive behavior. To compare the two, we use the
terms model truth 4 and explainer truth f/d for a given sample d. These terms
manifest what the model or the explainer deem to be true for d. Both of these
give either 1 or 0 depending on whether d was being rendered as belonging to
a target class or not. We use this notation and terminology for evaluating the
fidelity of an explainer (see Subsection 5.3).

Having introduced concept extraction, rule induction on concepts, spatial
relations between them and evaluation terminology, we put all components
together that form our approach and introduce its algorithmic foundation in
the next section.

4.4 Algorithm

We summarize the main procedure of CoReX as presented in Algorithm 1. For
all positive and negative model truth examples, background knowledge B for
ILP is generated. For one example e, concept relevance maps C; are found by
CRP on all selected layers [ € L. The most important concepts exceeding the
relevance threshold 7 are used to localize polygons P, fitted on the relevance
maps. Utilizing spatial calculi, relations between the polygons are then found
and stored in symbolic form. This information is then used to induce a logic
theory H in form of rules by Aleph. Optionally, it is possible to provide the
CRP procedure with a parameter ¢ for masking concepts. Furthermore, in ILP
it is possible to add a set of constraints ¢ on concepts and relations that must
not appear in learned theories.

An exemplary rule for our running example of separating teapots from
vases is presented below. It expresses that some sample A belongs to the
target class (here: teapot) if there are two concepts in A (concept “spout”
and concept “handle”), both concepts contributing with positive relevance
(“pos”), and it holds that the “spout is located right of the handle” (as pre-
sented in Figure 1).

is_class(4) :-
right_of (A, pos(A, spout), pos(A, handle)).

The rule results from the process presented in Figure 3. For each e € Et
and e € E~ we get the classification of e and the CRP-based concepts, condi-
tioned by the target (see step A in Figure 3). We then localize and polygonize
the extracted concepts (step B). Then, spatial relations between polygons
are computed (step C) and the resulting relations are transferred into Prolog



Springer Nature 2021 BTEX template

When a Relation Tells More Than a Concept 13

Algorithm 1 CoReX Algorithm

Input: Original model f, positive/negative model truth samples ET/E~, set
of probed layers L, optional masking ¢, relevance threshold 7, set of possible
relations S, optional ILP constraints ¢

1: B < domain theory

2. for all ® € {+,-} do

3: for all e € E® do

4: Pe — [Z)

5: for alll € L do

6: Cy + crp(e, f,1,¢)

7: C} < filter_concepts(e, 1, q)
8: for all c € C} do

9: P, + P, Ulocalize(c, 7)
10: end for

11: end for

12: R, + find_relations(P,, S)

13: B+ BUR,

14: end for

15: end for
16: H < induce(E™, E~, B, ¢)
17: return H

Overy,
Ps E.
lef *Plang,
of n

Fig. 3: Overview of the process of generating explanations with ILP from extracted
concepts and learned relations

syntax as input to ILP (step D). A theory is induced (step E) and finally, eval-
uation analysis or explanations take place (steps in F). For explanations, the
Prolog syntax is translated into natural language based on a fixed scheme.
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Table 1: The characteristics of the non-contrastive pre-trained models used for
contrastive classification after fine-tuning (CE is cross entropy; BCE is its binary
equivalent)

#Train  #Test Train F1  Test F1  #Class Batch Size Max. Epochs  Optimizer Loss Function  Learning Rate

Picasso (VGG16) 18,002 1998 0.9933 09924 1 32 20 Adam BCE 0.0001
Adience (VGG16) 9942 2252 0.9913 0.8702 2 32 20 Adam CE 0.0001
Teapot and Vase (VGG16) 231 100 1.0000 0.9200 2 32 20 Adam CE 0.0001
PathMNIST (ResNet50) 25,765 2462 0.9974 0.9709 2 128 10 Adam CE 0.001

5 Experiments

This section presents the materials, metrics and the experimental setting of
our evaluation.

5.1 Models

For our experiments, we use two CNN architectures well established, especially
for LRP-based explanation methods, namely VGG16 [47] and ResNet50 [22].
For both architectures exist optimized variants of the e rule for the compu-
tation of concept relevances [1, 2], which is another favorable property of the
chosen architectures.

For the classification of most of our selected data sets, we use VGG16 mod-
els pre-trained on the ImageNet database [14] and fine-tune the fully connected
layers on our selected data sets. Table 1 states the performance metrics and
hyperparameters we use for the fine-tuning on our selected data sets. This way,
we preserve the features learned in the network, while updating the weights.
The rationale behind not fine-tuning features for our specific classification tasks
is that we assume that the pre-trained features are already general purpose for
a variety of tasks. By fine-tuning the fully connected layers, the relevance val-
ues for CRP, which is calculated down-stream dependent on weights, become
task-specific and thus indicate relevance of features for a specific classification
problem. One particular data set (see descriptions below) is classified based
on a pre-trained model with a ResNet50 architecture. For this network, we
fine-tuned the last layers, in particular the average pooling layer and the lin-
ear output layer. This was necessary, since we had to make adaptations to the
composition of classes. More details are given in the paragraphs on the chosen
data sets.

For all our models, we only examine features in the very last convolution
layer of the architecture, although the CRP method would allow for inspection
of preceding layers as well. This is of particular interest, when concepts may be
organized in a hierarchy. This would, however, require the consideration of the
relevance flow between different layers, for which there exists no thoroughly
evaluated method for CNNs so far.
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(a) Picasso: correct (left) vs incorrect
(right) faces (b) Adience: female (left) vs male (right)

(d) PathMNIST: cancerous (left) vs
(c) ImageNet: teapots (left) vs vases (right) healthy (right) tissue

Fig. 4: Examples of contrastive classes

5.2 Data Sets

The data sets we have chosen cover a range of characteristics, which makes
them suitable for a comprehensive evaluation of our approach. We use artifi-
cially generated image data, benchmark image data, showing either static and
aligned objects or in-the-wild recorded scenes, and a benchmark that contains
scientifically and application relevant samples, e.g., for medical diagnosis. All
data sets are thoroughly chosen w.r.t. the criterion that they contain classes,
which are very likely to share concepts, while not sharing the same spatial
relationships between those concepts. Figure 4 shows example images from the
data sets.

Picasso: Correct Faces versus Incorrect Faces.

The Picasso data set [39] is a constructed data set derived from the FASSEG
set [25] for segmentation of facial features in frontal faces. Picasso contains
224x224 images where the positive class holds faces with three features, the
eyes, nose and mouth, in natural position, whereas in the negative class, the
features are swapped randomly. For ILP, we use 250 each from train and test
data. The reason, why we evaluate our approach on training data and test data
is that explanations may differ depending on the kind of data. Explanations
on training data evaluate which representations the model has learned, while
explanations on test data evaluate how well these explanations generalize.

Adience: Female versus Male Persons.

The Adience data set [16] features 224x224 cropped face images labeled by
gender. The images were taken in the wild and contain a variety of backgrounds
and illumination conditions. We sampled 200 male and 200 female labeled
images. We chose the data set as we expected different spatial relations for
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(probably biased) properties of persons, like the localization of hair due to its
length.

ImageNet: Teapots versus Vases.

We took 161 images from teapots and 170 images from vases (224x224) from
the ImageNet data set [14]. Because labels were missing, we let the original
VGG16 classify these images. The same images were taken as input to generate
our explanations. Due to the small size of the data set, we could only use
training data as well as test data for the VGG16 evaluation. For our ILP
model, we only considered training data for evaluation.

PathMNIST: Healthy versus Tumorous Tissue.

The PathMNIST data set [24], subset of MedMNIST [56], consists of 28x28
pathological histology slides taken from healthy as well as cancerous colon
tissue. PathMNIST originally is a 9 class classification task. For our experi-
ments, we re-sampled the images to form a 2-class task by keeping all images
in the cancer-associated class as positive images (12,885) and then performed
a stratified sampling over the other 8 healthy classes to receive approximately
as many images (12,880) in the contrastive class. We sampled 250 positive and
246 negative images for ILP.

5.3 Evaluation Metrics

When evaluating the generalization power of our models, we use the standard
F1 metric (harmonic mean of precision and recall). The respective scores for
the ground truth labels of the train and test sets can be found in Table 1.

For the evaluation of fidelity of an explanation model w.r.t. an original black
box model, we compare the model truth (output of the original model) with the
explainer truth (output of the explanation model) which were introduced in
Subsection 4.3. Adopting the method from [39], in accordance with the notion
of fidelity introduced in [21] and [9], we calculate the accuracy of the explainer
truth f/d w.r.t. the model truth g3 when feeding instances d from a data set
D, where 6(a,b) is 1, if a and b are equal and 0 otherwise (Equation 5). For
better readability, the index of the samples is omitted.

5 (5)

5.4 Ablation Study

We combine model explanations with ablation studies to evaluate the used
CNN models (see section 6.1 for more details). In machine learning, ablation
studies refer to the removal of architectural components or model features.
The goal is to evaluate a model w.r.t. its predictive performance and the
contribution of architectural components or features to the predictive outcome.
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Approaches for CNN ablation are, e.g., pruning, drop out or suppression of
activation and weight flows between neurons [10].

To perform an ablation study based on our concept- and relation-based
explainer CoReX, we apply masking on the filters of the CNN to suppress
concepts. This technique is realized in a first step by setting all filters in the
CNN to zero that do not match with concepts appearing in the background
knowledge of ILP (masking irrelevant concepts). We measure the predictive
performance of the adapted CNN. We then mask all irrelevant concepts as
well as the concepts that appear in a theory learned by ILP (masking rule
concepts). We hypothesize that, if the performance drop is larger for the second
case compared to the first one, the concepts learned by the CNN and provided
to ILP have an decreasing effect on the confidence of the CNN in accordance
to their relevance. For our experiments we applied Aleph with default settings.

For a qualitative evaluation of our approach, we integrated user-defined
constraints on relations and concepts as provided by the Aleph framework [50].
In Section 6 we demonstrate the usefulness of such constraints in combination
with contrastive and clustered rule-based explanations.

6 Evaluation

This section presents the main results of our experiments, including an analysis
of the fidelity of our interpretable, relational surrogate model as well as the
predictive performance of both, the base model as well as the surrogate model,
respectively. We further examine the explanatory applicability of CoReX, in
particular for contrastive explanations and cluster analysis. We further discuss
the role of constraints in our approach, which extends beyond the masking and
constraining in our ablation study.

6.1 Fidelity and Predictive Performance

Table 2 presents the correct and incorrect predictions for all CNN models on
training and test data, which form the input for the ILP-based explainer. The
table denotes the amount of positive examples (ET) and negative examples
(E7), accordingly. The column “# Rule Concepts” documents the amount of
concepts that were included by ILP into rules.

Our results indicate that our explanations (generated for the samples stated
in Section 5.2) have a high fidelity w.r.t. the original model when measured by
the comparison of the model truth and the explainer truth (as calculated by
the fidelity Equation 5). Table 3 then states the fidelity of the ILP explanations
for the training and test samples.

We additionally measured the F1 scores for models that were altered by
masking. We differentiate two cases: (1) masking concepts that occurred in
the learned ILP theory as well as irrelevant concepts versus (2) masking only
concepts deemed irrelevant because they are not occurring in the ILP back-
ground knowledge. We expect to see a drop in performance when masking
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Table 2: Model truth for the train/test data (seen/not yet seen by the model) and
the number of concepts occurring in the learned rules

Experiment True Positives  True Negatives False Positives  False Negatives  #Rule Concepts  ILP Input (ET)  ILP Input (E~)
Picasso-Train (VGG16) 250 243 7 0 44 257 243
Adience-Train-FM (VGG16) 197 195 5 3 10 202 198
Adience-Train-MF (VGG16) 195 197 3 5 9 198 202
Teapot-Vase-Train (VGG16) 157 166 1 1 10 161 170
Vase-Teapot-Train (VGG16) 166 157 1 1 13 170 161
PathMNIST-Train (ResNet50) 250 246 0 0 6 250 246
Picasso-Test (VGG16) 250 250 0 0 31 250 250
Adience-Test-FM (VGG16) 179 164 36 21 10 215 185
Adience-Test-MF (VGG16) 164 179 21 36 6 185 215
PathMNIST-Test (ResNet50) 238 239 7 12 7 245 251

concepts occurring in rules. Table 3 shows that in almost all scenarios, the per-
formance is reduced (in bold: F1 score of “Rule + Non-BK-Masking” is lower
than the F1 score of “Non-BK-Masking”). This further may be an indicator
that the learned rules constitute explanations of the original model’s predic-
tion strategies. The magnitude of the performance drop appears to be rather
low, however, related to the amount of masked concepts and the amount of
concepts in total (see Section B) this drop is not insignificant. Thus, we can
observe that the concepts from the background knowledge, which have a high
relevance due to the relevance threshold, but are not included in ILP rules can-
not fully compensate for the impact of the concepts in learned rules. This may
not hold for the Teapot and Vase experiments on the training set as well as the
PathMNIST test set, since the performance is equal in both of the masking
settings. Thus, the results do not perfectly support our hypothesis of dropping
performance upon masking concepts from learned rules, however, they highly
support it. Moreover, there was not a single case in which the performance of
the network improved when concepts were masked. We further examined at
which rank in the relevance ranking the concepts from rules with the largest
coverage appeared across all samples. The frequency of occurrence per rank is
indicated in Section D. We can see that the top 10 most frequent ranks per
concept are usually the first ranks or at least upper 20 % top ranks of possible
ranks. In few cases, higher rank numbers occur in the 10 most frequent ranks.
This can be explained by auziliary concepts that occur as part of a relation
together with more important concepts, indicating that not only single con-
cept occurrences are important but also the inter-relations between them. In
summary, the findings support the claim that not only the calculated relevance
can be transferred to the importance of concepts, but also the spatial constel-
lation of concepts as learned by the ILP model contributes to the performance
of an image classifier.

6.2 Explanatory Applicability of CoReX

6.2.1 Contrastive Explanations and Clusters

We enhance CoReX by exploration of sample classifications based on con-
trastive explanations and rule-based cluster analysis. Contrastive local expla-
nations are produced by evaluating our ILP model for a specific misclassified
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Table 3: Explainer fidelity and train/test data metrics for the networks after mask-
ing of rule 4+ non-background-knowledge (BK) concepts compared to only masking
non-background-knowledge concepts. Bold values indicate an expected drop in per-
formance

Rule + Non-BK-Masking Non-BK-Masking
Experiment Explainer Fidelity ~Amount of Masked Concepts F1 score  Amount of Masked Concepts F1 score
Picasso-Train (VGG16) 0.9860 208 0.2985 164 0.9921
Adience-Train-FM (VGG16) 1.0000 18 0.9437 8 0.9913
Adience-Train-MF (VGG16) 1.0000 17 0.9896 8 0.9913
Teapot-Vase-Train (VGG16) 0.9970 24 1.0000 14 1.0000
Vase-Teapot-Train (VGG16) 0.9970 27 1.0000 14 1.0000
PathMNIST-Train (ResNet50)  1.0000 1384 0.9872 1378 0.9873
Picasso-Test (VGG16) 0.9980 193 0.6689 162 0.9924
Adience-Test-FM (VGG16) 0.9975 15 0.8079 5 0.8708
Adience-Test-MF (VGG16) 0.9975 11 0.8673 5 0.8708
PathMNIST-Test (ResNet50)  0.9980 1374 0.9367 1367 0.9367

sample. This means that we try to unify the background knowledge of a mis-
classified sample with rules from the ILP model (e.g., the rule with the highest
coverage). The evaluation returns concepts and relations that are missing in
the sample in order to belong to the target class. CoReX provides a component
that verbalizes these failures with the help of an implemented Prolog-based
prover (see code repository given in Section 7). Note that concepts presented
here, have been labeled according to a majority vote for a label derived from
the reference sampling with maximized relevance, introduced in Section 3.

Rule-based cluster analysis allows for outlier and prototypical example
detection. In particular, we analyze, which rules jointly cover which samples
by building the power set of combinations. We examine clusters that cover
most of examples, samples not covered by any rule, and clusters that cover few
samples with just a small set of rules. The clusters computed for the different
data sets can be found in Section C of the appendix.

In Figure 5 we present a collection of interesting cases. Consider the con-
trastive sample from ImageNet (target: teapot), which is a teapot in the ground
truth as well as in the model truth (CNN), but not in the explainer truth
(ILP). When evaluating the ILP model on the sample, we can observe that a
concept from the best covering rule was missing in the background knowledge:
the spout. It did not belong to the most relevant concepts for this sample and
was therefore not included in the background knowledge. Probably, the tree
in the image may have been the disturbing factor.

Our cluster analysis on the Adience Test data set (target: female) yields
interesting results as well. The most representative cluster mainly contains
samples with the relation “eyes above of smiling mouth” (see Figure 5). Fur-
ther analysis identifies a cluster that is small with few examples covered. In
this cluster all samples have in common that one concept comprises a border
artefact, among others this applies to the outlier, which is displayed in the
top row on the right side of Figure 5. One cluster was empty (an example
not covered by any rule. This example was misclassified by the CNN model as
“female”, although its ground truth was “male”. The coverage of the sample
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Contrastive Sample Misclassified Outlier
(Target Teapot): (Target Female): (Target Female):

Cluster:

Rule 1,
Rule 2,
Rule 3

Fig. 5: Teapot (top left), false positive female (top middle), outlier female (top right)
and rule cluster for smiling persons (bottom row)

fails due to failed unification of the background knowledge of the sample with
the learned rules.

7 Conclusion and Future Work

We presented CoReX as a novel XAl approach for image classification with
CNNs, which relies on identifying concepts and relations between concepts
in intermediate layers of a CNN. Concept relevance ist combined logic rules
constructed from learned ILP theories. An evaluation with different data sets
shows that the CoReX explainer is highly faithful to the examined CNN mod-
els and that it provides meaningful explanations for correctly and incorrectly
classified instances. In the next step, a human could interact with the model as
demonstrated in the evaluation of our approach, giving the information about
what concept must be suppressed or kept by a model or explainer, pathing
the way for regularization of the model to align with the provided corrective
feedback [7, 13]. The evaluation of our approach and similar future approaches
would highly benefit from a larger availability of contrastive data sets, where
the classification of an image depends on the relations between concepts. As
already laid out in the motivation, the instances of many domains in the real
world can be explained in a way that aids humans by contrasting them with
similar instances. We argue that there is a need for more data sets, that help
researchers to explore methods and to generate expressive, contrastive and
potentially multimodal explanations for improved explainability.
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Appendix A Spatial Relations

See Table Al.

Table A1l: Overview of all supported relations. Relations are organized in unary
and binary sets and apply w.r.t. a sample. Negative relations represent a concept’s
relevance scores sign. Sets like the SimpleAlignment, Distance and Surrounding are
implemented based on the geometric interfaces of the python shapely library [20].
CompassAlignment is loosely based on a direction-based spatial navigation model of
[49]. NinelntersectionModel is based on the DE-9IM developed by Clementini, et al.
[11, 12] with the omission of the intersect-relation

Set relation definition semantic

unary relations

Existence has_a(A) neg(A) V pos(A) has A

Negativity neg(A) R(A) <0 A, that shouldn’t be there
pos(A) R(A) >0 A, that should be there

binary relations

SimpleAlignment

CompassAlignment

NinelntersectionModel

Distance

above_of (A, B)
below_of(A, B)
leftof(A,B)
right_of(A, B)
center(A, B)
middle_right(A, B)
bottom_right(A, B)
bottom_middle(A, B)
bottom_left(A, B)
middle_left(A, B)
top_left(A, B)
top-middle(A, B)
top_right(A, B)
disjoint(A, B)
equals(A, B)
touches(A, B)
overlaps(A, B)
covers(A, B)
contains(A, B)
covered_by(A, B)
within(A, B)
close_to(A, B)

A.centroid.y < B.centroid.y
A.centroid.y > B.centroid.y
A.centroid.x < B.centroid.x
A.centroid.x > B.centroid.x
A.centroid.buf fer.intersects(B)
A(A, l%w léw)jntersects(B)
A(A, l;ﬂ,l%ﬂ).intersects{B)
A(A, Z%W, lgw).intcrsﬁcts(B)
A(A s,z ) intersects(B)
A(A, Z%W, lgw).inf,ersscts(B)
A(Alg 11 ) intersects(B)
A(A, l%ﬂ, l%").intersects(B)
A(A, Z%W l%sw).intﬁ'rsects(B)
A.disjoint(B)

A.equals(B)

A.touches(B)

A.overlaps(B)

A.covers(B)

A.contains(B)
A.covered_by(B)

A.within(B)

A.distance(B) < range

A is above of B

A is below of B

A is left of B

A is right of B

B is centered on A

B is middle right to A
B is bottom right to A
B is middle bottom to A
B is bottom left to A
B is middle left to A
B is top left to A

B is middle top to A
B is top right to A

A is disjoint of B

A equals B

A touches B

A overlaps B

A covers B

A contains B

A is covered by B

A is within B

A is close to B

special binary relation

Surrounding

amid_z(A, B)

amid_y(A, B)

B.between(A; .centroid.x, Az.centroid.x)

B.between(A; .centroid.y, Az.centroid.y)

B is horizontally
surrounded by A
B is vertically

surrounded by A
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Appendix B Number of concepts

Figure B1 shows the distribution of concepts for all experiments, split by the
concepts occurring in the rules of a learned ILP theory, the other concepts in
the background knowledge, and the irrelevant concepts. Table B2 additionally
gives the absolute values.

Concept distribution in all experiments in percent

100
9
8
6 - Concepts in theory
5 - Other concepts in background knowledge
B Irrelevant concepts
4
3
2

Fig. B1: The distribution of concepts (given in percent) in the theory, in the back-
ground knowledge (excluding the theory concepts), and irrelevant concepts. See
Table B2 for a detailed breakdown

= ~
© o & &5 © &6 & 6 o

o

Table B2: The number of concepts in the theory, in the background knowledge
(excluding the theory concepts), and irrelevant concepts

Experiment ‘ # Rule % Rule ‘ # BK % BK ‘ # Irrel. % Irrel.
Picasso-Train 44 8.59 304 59.38 | 164 32.03
Picasso-Test 31 6.05 319 62.30 | 162 31.64
Adience-Train-FM | 10 1.95 494 96.48 | 8 1.56
Adience-Test-FM 10 1.95 497 97.07 | 5 0.98
Adience-Train-MF | 9 1.76 495 96.68 | 8 1.56
Adience-Test-MF 6 1.17 501 9785 | 5 0.98
Teapot-Vase-Train | 10 1.95 488 95.31 | 14 2.73
Vase-Teapot-Train | 13 2.54 485 94.73 | 14 2.73
PathMNIST-Train | 6 0.29 664 32.42 | 1378 67.29
PathMNIST-Test | 7 0.34 674 32.91 | 1367 66.75
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Appendix C Rule clusters that cover most

samples

In Figures C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, for all experiments, we
listed the rule clusters that covered the most number of samples. The x axis
lists all elements from the power set of rules from the learned theory that had
a sample coverage greater than zero. ri refers to the ith rule in the theory. The
empty set indicates samples not covered by any rule.

Rule clusters with most coverage for experiment 'Picasso-Train'

Number of covered samples

Fig.

Rule cluster

C2: Rule clusters with most coverage for experiment ’Picasso-Train’. Clusters

with a frequency of 1 are omitted for better readability. There were 89 such clusters

Rule clusters with most coverage for experiment 'Picasso-Test'

Number of covered samples
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C3: Rule clusters with most coverage for experiment ’Picasso-Test’. Clusters

with a frequency of 1 are omitted for better readability. There were 117 such clusters
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Rule clusters with most coverage for experiment 'Adience-Train-FM'
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Fig. C4: Rule clusters with most coverage for experiment ’Adience-Train-FM’

Rule clusters with most coverage for experiment 'Adience-Test-FM'

sa(dwies paianod Jo JaquinN

Rule cluster

Rule clusters with most coverage for experiment ’Adience-Test-FM’

Fig. C5
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Rule clusters with most coverage for experiment 'Adience-Train-MF'
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Fig. C6: Rule clusters with most coverage for experiment ’Adience-Train-MFE’

Rule clusters with most coverage for experiment 'Adience-Test-MF'
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Fig. C7: Rule clusters with most coverage for experiment ’Adience-Test-MF’
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Rule clusters with most coverage for experiment ‘Teapot-Vase-Train'
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Fig. C8: Rule clusters with most coverage for experiment 'Teapot-Vase-Train’

Rule clusters with most coverage for experiment 'Vase-Teapot-Train'

Number of covered samples

N I B R I R R B A B B R B B B R B R R B R S R R R R R R R R R RS R E RS S
E R R R R AR R AN A R RR R R RN AR I I I R I N R O A
o Paoy Ty TNy o O R R R R R R R R R R R R e T R R ST
§OREFY Y RNy Ty gy ey ey eIy rE e eyegrersres
& & FEYYE FYY FEY LEY FEoEET LOLLY vrrorre

o 5 5 5 Tyoe Ty
o & 2 & & FeEFEE

Rule cluster

Fig. C9: Rule clusters with most coverage for experiment ’'Vase-Teapot-Train’

Appendix D Frequency of concepts from
top-3 rules per concept rank

The Figures D12, D13, D14, D15, D16, D17, D18, D19, D20, D21 show occur-
rences of concepts from top-3 rules (the 3 rules with the highest coverage of
examples) given per concept rank. The ranking stems from the absolute value
of the concept relevance. The x-axis shows the 10 ranks a given concept was
ranked most frequently, calculated over all samples in a data set. Typically,
high rankings (low numbers) in the 10 most occurring ranks are expected.
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Rule clusters with most coverage for experiment 'PathMNIST-Train'
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Fig. C10: Rule clusters with most coverage for experiment 'PathMNIST-Train’
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Fig. C11: Rule clusters with most coverage for experiment 'PathMNIST-Test’
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Fig. D12: Ranks that are reached the most over all samples for the top-3 rule
concepts for experiment ’Picasso-Train’. The 3 rules with the most covered samples
(sample count in bold) are:

(44) Face, if concept 357 above of concept 407

(43) Face, if concept 407 is right of concept 101

(40) Face, if concept 492 is below concept 282
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Fig. D13: Ranks that are reached the most over all samples for the top-3 rule
concepts for experiment 'Picasso-Test’. The 3 rules with the most covered samples
(sample count in bold) are:

62) Face, if concept 282 is above of concept 396
52) Face, if concept 226 is above of concept 407

40) Face, if concept 214 is below concept 445
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Fig. D14: Ranks that are reached the most over all samples for the top-3 rule
concepts for experiment ’Adience-Train-FM’. The 3 rules with the most covered
samples (sample count in bold) are:

(152) Female, if concept 259 is above of concept 439

(148) Female, if concept 132 is above of concept 496

(145) Female, if concept 157 is above of concept 496
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Fig. D15: Ranks that are reached the most over all samples for the top-3 rule con-
cepts for experiment ’Adience-Test-FM’. The 3 rules with the most covered samples
(sample count in bold) are:

(169) Female, if concept 259 is above of concept 496

(132) Female, if concept 157 is left of concept 259

(118) Female, if concept 157 is above of concept 439
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Fig. D16: Ranks that are reached the most over all samples for the top-3 rule
concepts for experiment ’Adience-Train-MF’. The 3 rules with the most covered

samples (sample count in bold) are:

(165) Male, if concept 259 is above of concept 417
(78) Male, if concept 259 is left of concept 377
(55) Male, if concept 24 is above of concept 439
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Fig. D17: Ranks that are reached the most over all samples for the top-3 rule con-
cepts for experiment ’Adience-Test-MF’. The 3 rules with the most covered samples
(sample count in bold) are:

(144) Male, if concept 259 is above of concept 417

(48) Male, if concept 259 is above of concept 450

(25) Male, if concept 259 is below concept 417
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Fig. D18: Ranks that are reached the most over all samples for the top-3 rule
concepts for experiment ’Teapot-Vase-Train’. The 3 rules with the most covered
samples (sample count in bold) are:

(97) Teapot, if concept 27 is above of concept 311

(89) Teapot, if concept 30 is middle right of concept 9

(52) Teapot, if concept 30 is right of concept 9
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Fig. D19: Ranks that are reached the most over all samples for the top-3 rule
concepts for experiment ’Vase-Teapot-Train’. The 3 rules with the most covered

samples (sample count in bold) are:
(70) Vase, if concept 350 is below concept 266

(66) Vase, if concept 71 is below concept 416
(49) Vase, if concept 84 is right of concept 3
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Fig. D20: Ranks that are reached the most over all samples for the top-3 rule
concepts for experiment 'PathMNIST-Train’. The 3 rules with the most covered
samples (sample count in bold) are:

(213) Cancerous, if concept 1097 is bottom right of concept 247

(197) Cancerous, if sample contains concept 110

(115) Cancerous, if concept 1369 is middle right of concept 929
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Fig. D21: Ranks that are reached the most over all samples for the top-3 rule con-
cepts for experiment '"PathMNIST-Test’. The 3 rules with the most covered samples
(sample count in bold) are:

(208) Cancerous, if concept 247 is bottom middle of concept 2008

(191) Cancerous, if concept 110 is middle right of concept 2008

(166) Cancerous, if concept 1475 is middle right of concept 1546
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