arXiv:2405.01663v1 [csLG] 2 May 2024

ATNPA: A Unified View of Oversmoothing
Alleviation in Graph Neural Networks

Yufei Jin and Xingquan Zhu
Dept. of Electrical Engineering & Computer Science, Florida Atlantic University, FL-33431, USA
{yjin2021, xzhu3}@fau.edu

Abstract

Oversmoothing is a commonly observed challenge in graph neural network (GNN)
learning, where, as layers increase, embedding features learned from GNNs
quickly become similar/indistinguishable, making them incapable of differenti-
ating network proximity. A GNN with shallow layer architectures can only learn
short-term relation or localized structure information, limiting its power of learn-
ing long-term connection, evidenced by their inferior learning performance on
heterophilous graphs. Tackling oversmoothing is crucial to harness deep-layer ar-
chitectures for GNNs. To date, many methods have been proposed to alleviate
oversmoothing. The vast difference behind their design principles, combined with
graph complications, make it difficult to understand and even compare their differ-
ence in tackling the oversmoothing. In this paper, we propose ATNPA, a unified
view with five key steps: Augmentation, Transformation, Normalization, Propaga-
tion, and Aggregation, to summarize GNN oversmoothing alleviation approaches.
We first outline three themes to tackle oversmoothing, and then separate all meth-
ods into six categories, followed by detailed reviews of representative methods, in-
cluding their relation to the ATNPA, and discussion about their niche, strength, and
weakness. The review not only draws in-depth understanding of existing methods
in the field, but also shows a clear road map for future study.

1 Introduction

Graph Neural Networks (GNN) [1, 2, 3] have become prevalent in support learning from networked
data, especially after the success of the Graph Convolution Network (GCN) [4]. The main goal of
GNN is to learn feature representation [5] for network entities, such as nodes or edges, in order
to support downstream tasks, like node classification or link prediction. While GNN has achieved
competitive performance in many benchmark graph datasets, it is known to only perform well with
shallow layer architectures and cannot learn long-term node-node relation well. One consequence
of such inability leads to its inferior performance on heterophilous graph [6].

It has been shown that simply stacking GNN layers to build a deep architecture cannot learn well
due to the observed oversmoothing phenomenon [7, 8]. GNN models equipped with oversmoothing
alleviation can in general accommodate more GNN layers and therefore allow nodes to have a larger
receptive fields [9]. As a result, models aiming to alleviate oversmoothing also tend to gain advan-
tage over heterophilous datasets. Such dual relation has been observed in several studies [10, 11].

Oversmoothing can be described as a phenomenon that all node mebeddings, after deep GNN layers,
become similar to each other. Several measures such as Dirichlet energy [12] and Mean Average
Distances (MAD) have been proposed to quantify the extent of oversmoothing of a model [13].
In this paper, unless otherwise specified, Dirichlet energy will be used as the major measure of
oversmoothing for analysis.

Preprint. Under review.

http://arxiv.org/abs/2405.01663v1

Majority theoretical works studying when oversmoothing occurs are based on dynamic systems.
One important work [14] uses subspace theorem to analyze when GCN becomes oversmoothing
asymptotically (i.e., infinite layers behavior). This theory motivates many alleviation approaches,
such as constrain-based and random edge dropping such as EGNN [15] and edge-drop [16]. Another
work [12] uses perturbation theory to analyze how Dirichlet energy (energy of the dynamic system)
behaves under different coupled systems [12]. This theory mostly serves as basis for dynamic-based
alleviation approaches, such as graphCON [12] and G2-gating [11]. Recently, another theoretical
work [17] suggests that graph attention network (GAT) [18] also suffers from oversmoothing. The
first theory guides many constrain-based work and random edge dropping such as EGNN [15], edge-
drop [16] while the second work mostly serves dynamic-based models such as graphCON, G2-gating
[11].

Indeed, many works have been proposed to tackle oversmothing in GNNs, by using different types
of design principles. For example, energy based approaches aim to increase initial energy or keep
energy from exponential decay during propagation in GNNs. On the other hand, other methods
focus on decoupling topology propagation and feature transformation. The vast difference in their
design principles, combined with complicated graph topology and message passing mechanisms,
making it difficult to understand and even compare their difference in tackling the oversmoothing.
Very few survey papers exist to review methods tackling GNN oversmoothing challenges. A recent
survey [19] has compared several methods, and pointed out that some of the existing methods (such
as GCNII [20], GraphCon [12]) cannot increase their model performance with deep layers despite
the oversmoothing measure (i.e., Dirichlet energy) is preserved to be constant among layers, mainly
because of lacking expressive power. Therefore, existing survey [19] is mainly focused on reviewing
method drawback from the expressive power perspective.

To date, there is no literature focusing on summarizing and comparing different alleviation ap-
proaches. Collectively, there is a missing knowledge of main themes and categorization of exist-
ing methods in the field, which may help researchers understand design principles to tackle over-
smoothing. Individually, there is a lack of comparison of main stream approaches (e.g. strength and
weakness) to guide future research.

In this paper, we propose to unify existing methods to the same form and point out their potential
connection in tackling GNN oversmoothing. Our study not only provides a unified view, ATNPA to
summarize all methods using common math formulations, but also separate them into six groups, by
taking their unique designs into consideration. The survey outlines differences between methods in
each groups, explains their rationality, and addresses their limitations. Our review has a number of
math formulas, because reviewed papers are heavy in math formulations. To precisely summarize
and highlight their difference, we keep representative methods’ backbone formulas in the review for
a better understanding.

2 Problem Notation

A graph with n nodes is denoted by G(V, E, X), where V' = {v1,...,v,} is the vertex set with
[V| = n, E is the edge set, and X € R™*"™ is the node content matrix recording m dimensional
attributes for each node. For ease of representation, we use A € R™*" to denote adjacency matrix
of G, with A[¢, j] = 1 if an edge connects v; and v;, or 0 otherwise. Learning node embedding
(or feature representation) is essential for graph neural networks. Meanwhile, because embedding
learning is often carried out in a layer-by-layer fashion, we use H' € R™"*7 to denotes feature
embedding learned at the [*”* layer (where each node is denoted by an f dimensional latent features).
o(+) denotes a non-linearity activation function. In the following, we define operators commonly
used in GNN learning and will be using these operators in the later analysis.

Definition 1 (Feature encoders: £4(-) and Fy(-)). We use £y(-) to denote a content based feature
encoder, parameterized by learnable parameters 0, converting node attributes X into latent feature
space. This can be achieved by using simple multi-layer perceptron (MLP) or more sophisticated
learners, such as CNN or LSTM (for network having image or text as node content). Likewise,
Fy() denotes graph convolution operators which leverage both node content and network topology
to derive latent features. Because feature encoders typically work in a layer-wise manner, we use

following notations to denote their propagation between layers.
H' « A7 (X); ()
H' « Fy(H'1 A :H' =X)

Where Eq. (1) can be considered as a linear Graph Convolution as proposed by [21] and Eq. (2) is a
common graph convolution propagation.

Batch normalization has been proven to be an effective component in deep neural architectures in
many fields such as computer vision and natural language process. Inspired by the success of batch
normalization [22] and subspace theorem [14], normalization techniques have been proposed to
alleviate the oversmoothing in graph neural networks.

Definition 2 (Normalization operator: NT(-)). We use NT(-) to denote normalization techniques
in GNNs, where - input could be learnt embedding H only or combined with topology A for nor-
malization to accommodate graph structure. An example of NT(-) is the PairNorm method [23] as
follows where where H and H denote node embedding and its mean, s is a hyperparameter, n is the
number of nodes, and ||(+)||2 denote L2 norm.

sv/i(H — H)

NT(H) = THL 3)

Note that - input for NT(-) could be both X and A. While normalization techniques are different, the
principle behind is the same: to preserve Dirichlet energy (an important measure for oversmooth-
ing) [12] or to reduce the variance of the learned embeddings [24].

Definition 3 (Layer aggregator: LA(-)). We use LA(-) to denote layer-wise aggregations that ag-
gregate embeddings learnt from current and preceding layers. Examples of aggregation include
concatenate, max pooling, and LSTM-attention operations [25]. We use U to denote the input is a
union set of embeddings from all layers.

H' « a(U_, HY) “)
Definition 4 (Topology augmentation operator: Aug(-)). We use Aug(-) to denote topology aug-

mentation function using given input to generate an adjacency matrix A. For example Aug(H', X)
uses node attributes X and latent features at layer [to generate an adjacency matrix A.

A common choice of Aug(+) could be symmetric Laplacian, Laplacian, First-order Chebshev approx-
imation (akin to GCN) following traditional spectral graph theory. Other choices include different
random masking schemes such as random edge dropping [16] which is proven to be effective both
empirically [16] and theoretically [14], and learnable attention matrix that has the same structure as
A (examples include transformer architecture [26] and diffusivity in GRAND [27]).

2.1 Oversmoothing Definition

According to [14], oversmoothing is defined as features exponentially converging to a subspace that
is invariant to the propagation matrix A. Assume M € R™** k < n is a subspace invariant to A (or
A’s augmentation Aug(A)) i.e., for VQ € M, AQ € M as well. D;(H) is defined as the distance
between H and its closest element in M, i.e.,

Dy (H) = Jnf IH - Q% (5)

Oversmoothing indicates that Dy;(H') — 0 exponentially converges, w.r.t the increase of layer
value [.

Likewise, a node similarity measure p is defined with two axioms [19]. 3¢Vi € V such that V; = ¢
and pu(c) = 0; p(z +y) < w(x) + w(y), ie., u(-) satisfies triangle inequality. Then, oversmoothing
is defined below with u(H l) — 0 when [— oo, where C; and C are constants and 1 is the layer
number.

M(Hl) < 016702l (6)
The definition above is similar to the definition in [14] with u(-) defined as Dj; (). The second
definition is often used in diffusion-based system analysis such as [12] with p as the Dirichlet energy
of the system while the first definition is often used in GNN-backbone methods such as EGNN [15]
and DropEdge [16].

2.2 Oversmoothing Measures

A commonly used oversmoothing measure is Dirichlet energy which can be defined as:

1 n
eoe(H') =~ > > | H} - Hj[l3 @)

i=1 jEN (i)
Two examples of using this measure include (1) the coefficient selection of EGNN based on the lower
bound of epg (H'), and (2) G2-gating directly leveraging epg(H') to compute the coefficient for each
node and feature channels. We comment here that epg(H') can reflect the current convergence state
of the model but cannot accurately guide the model to learn correct local oversmoothing.

Another commonly used measure is Mean Average Distance (MAD) which is defined as:

H)'(H])
emap (H 7”2 (@)
;76%: L1 225 |
Note that MAD is closely related to cosine similarity and therefore only considers the direction

of the two embeddings and ignores their magnitude difference. Compared with Dirichlet energy
measure, caution on feature magnitude is needed when using the MAD measure.

2.3 Model Expressive Power

Model expressive power and oversmoothing have intrinsic connections. Under this assumption,
models with strong express power may be more resilient to oversmoothing. Therefore, enhancing
model expressive power seems to be also helpful for oversmoothing alleviation.

In the graph neural network domain, existing research on model expressive power is primarily fo-
cused on comparing GNNs’ separation ability with Weisfeiler-Lehman (WL) graph isomorphism
test [28]. Theoretical analysis for existing studies is built upon two important concepts: (1) multi-
set; or (2) permutation invariant injective aggregation function [29] [30]. For the former, the neigh-
bor set along with the center node is formed as a multi-set, on which the expressive power is then
defined accordingly. For the latter, aggregation function should be injective so that non-isomorphic
graphs can be mapped to unique embeddings and permutation invariant property guarantees that iso-
morphic graphs (which can be obtained by permutation group action) can be mapped to embeddings
belonging to the same equivalent class.

While graph isomorphism test focuses on graph-level classification, we can consider node-level
classification as a local subgraph differentiation test. For a graph G;, we use P(G;) to denote the
set of all graphs isomorphic to G;. For one L layer GNN Fy(-) : G — R, if two graphs Gy, G
expanded from two target nodes (i.e. each graph includes target node and its L hop neighbors) are
non-isomorphic, we can define an eypp score in Eq. (10) to quantify model expressive power over
node separation ability:

ehase(Gi) = sup [|Fo(Gi) — Fo(G)|}3 ©)
GeP(G;)

_[Fe(Gh) = Fe(Go)]I3
EMEP = (10
max(abase(Gl)a Ebase(GQ)) +e€
where € is a scalar ensuring that the denominator does not equal to zero, which happens when Fpy(-)
is permutation invariant.

Overall, Eq. (10) defines that for non-isomorphic graphs G; and G5, the larger the eygp score of
the model, the better its expressive power is in separating G; and G2. Meanwhile, because Fy(G1)
denotes embedding of graph G, oversmoothing would imply that Fy(G1) ~ Fy(G2), resulting in a
small epgp score for non-isomorphic graphs.

Assuming a model has an infinitely strong power of differentiating node up to L-hops away, it im-
plies that the model can avoid oversmoothing up to L-layers. This seems to suggest that oversmooth-
ing is a side effect brought by the model lacking expressive power in separating nodes (including
node and its local neighborhood). A recent study [31] provides a positive evidence towards this hy-
pothesis by showing that increasing the node expressive power through local structure aware GNN
can help alleviate oversmoothing issue.

Methods Category Energy (Rewiring) Energy (Nomalization) ~Energy (Coefficient) ~Energy (Initialization) D i Dynamics Dx

ResGCN [32] residual-based v v
APPNP [33] residual-based v v v
GCNII [20] residual-based v v
T GEN[34] "~~~ 77 x residual-/energy-based =~ " " T T T T T T T T T T T OT Voo oo
EGNN [15] residual-/energy-based ' v v
GroupNorm [35] residual-/energy-based v v
G2-gating [11] residual-/fenergy-/diffusion-based v v v
JKnet [25] dense-based v
DAGNN [36] dense-based v v
DCGCN [37] dense-based v
MixHop [38] dense-based v
"7 7 "DropEdge[16] ~ "7 random-maskbased” =~ "7 777 7 1728
DropConnect [39] random-mask based v v v
DropMessage [40] residual-/random-mask based v v v v
TT 7 TPaitNorm 23] 77777777 Tener
NodeNorm [24]
TTTTGRANDRT T T T T T v v
GraphCon [12] diffusion-based v
ACMP [41] diffusion-based ' v v '
Neural Sheaf Diffusion [42] diffusion-based v v
GraphT [26] transformer-based v v v
GraphiT [43] transformer-based v v v

Table 1: A summary of representative methods w.r.t their categorization and properties in tackling oversmooth-
ing.

3 ATNPA: A Unified View of Oversmoothing Alleviation

In this session, we first outline message propagation process commonly used in GNN learning (Sec
3.1), then summarize main themes to tackle oversmoothing (Sec 3.2), which help lay the foundation
for ATNPA, the unified view and categorization (Sec 3.3). Secs 3.4 and beyond review representative
methods in each category, including their key steps and relation to the ATNPA, as well as their
rationality in tackling the oversmoothing challenges.

3.1 GNN Message Propagation

Deep neural architectures typically require ability to preserve long-term information passing. To
achieve the goal, an inter-layer information delivery mechanism is used to regulate information pass-
ing process between layers. We briefly separate such processes into the following two subgroups.

3.1.1 Traditional Approaches: Residual vs. Dense Connections

Residual connection and dense connection are two common approaches to achieve inter-layer infor-
mation passing. Research has shown that such simple architectures can achieve long-term informa-
tion preservation, and therefore be beneficial to alleviate oversmoothing in general.

Residual Connection in message passing scheme can be defined in Eq. (11) where a, 3 can be
hyperparamter constant but can also be learned.

H' « Fy(H'"" Y A) + aH'"' + gH! (11)

Dense connection is defined in Eq. (12). Being dense, it implies that embeddings at the current
layer H'! aggregate information from all preceding layers, including [— 1,1 — 2, ... and so on.

H' « 1a(UL_ HY): H'=re(H'™, A) (12)

From model expressive power perspective, because dense connection can be considered as a linear
version of residual connection, residual connection is more expressive in general.

3.1.2 Complex Approaches: Dynamics and Recurrence Relation

Recently, diffusion-based approaches are proposed to first model the entire graph learning process
as a continuous time process (second order partial differential equation PDE or ordinary differential
equation ODE) and then use different methods to discretize continuous system, leading to a nuanced
recurrence relation different from traditional GNN schemes.

A general graph diffusion system (assuming a static graph) can be defined in Eq. (13), where
is the learned node embedding and [is the layer number from the model’s perspective or iteration
number from the solver’s perspective. H' and H" stand for the changing rate of H (first derivative)
and changing rate of H’ (second derivative), respectively. A time ¢ variable acting as a continuous
feature propagation corresponds to GNN feature propagation with layer [increases.

H" + Fo(H,H' H", A1) (13)

Discretizing Eq. (13) with different discretization schemes induces a recurrence relation similar
to residual-based or dense-based connection but with a more complex structure. An example of
discretization could be

(HY = (H')Y+B(o(Fo(4, H'))
—yH'! —a(HT)) (14)
H' « H 14 pHY (15)
The principle behind the diffusion-based system is that energy preserved in the physics system while

the system evolving can fit into Dirichlet energy measure and a discretization method therefore keeps
Dirichlet energy from exponential decay and alleviates oversmoothing accordingly.

Definition 5 (Message propagation operator: Update(-)). We use Update(-) to denote an ab-
straction of the message propagation process in GNN learning, such as residual connection, dense
connection, different recurrence relation, and implicit Euler discretization [27], etc.

3.2 Themes to Tackle Oversmoothing

To tackle oversmoothing, different design principles have been proposed. The themes behind these
approaches are largely driven by modeling iterative GNN learning as energy regularization or as
continuous system process. Here, the concept of energy can correspond to any oversmoothing mea-
sure or distance metric and we will refer to it as Dirichlet energy for simplicity and consistency
unless otherwise specified. We summarize main themes behind existing GNN oversmoothing ap-
proaches into following three types. Table 1 lists representative methods and corresponding type of
approaches employed to tackle oversmoothing.

3.2.1 Energy Regularization

Initial Energy Regularization: As defined in Sec 2.1, oversmoothing implies that the whole sys-
tem energy is exponentially decayed to zero. Random-mask based methods provide a simple solu-
tion to alleviate the oversmoothing issue with GNN-backbone. The analysis [14] has shown that
with a relatively less dense graph, GCN is less likely to suffer information loss (i.e., oversmoothing).
Therefore, DropEdge [16] randomly reducing the density of the graph in the beginning naturally al-
leviates oversmoothing. Similarly, EGNN uses orthogonal weight initialization [15] to ensure each
layer’s initial energy is upper bounded at the starting point of training. Both methods are consistent
with the analysis [14] that energy is related to both propagation matrix aug(A) and learnable weight
wW.

Energy Decay Regularization: Armed with the measure of oversmoothing (Dirichlet energy), ex-
isting methods optimize the structure (e.g., GraphCon [12]), coefficient(e.g., G2-gating [11]), and
learned features (e.g., PairNorm [23]) to control the energy of the generated embeddings from de-
caying exponentially with the layer increases. Such designs provide a theoretical assurance for
embeddings to not become oversmooth. However, simply maintaining embedding energy from ex-
ponential decay does not necessarily result in a model with good performance. A recent study [19]
shows that although G2-gating, GCNII, and GraphCon have similar ability in maintaining embed-
ding energy, as the layer increases, G2-gating enhances its model expressive power (through learned
coefficients), resulting in better performance than GCNII and GraphCon. Empirical studies and
theoretical analysis are needed to deepen the understanding of a model’s capability in maintaining
energy vs. expressive power.

3.2.2 Dynamics System Modeling

Instead of regulating the energy decay using normalization or other approaches, an alternative solu-
tion is to model the process as a discretized dynamic system with explicit control on how system
evolves and avoid the fixed point convergence exponentially. Accordingly, physics-inspired con-
tinuous systems have been leveraged as a starting point for constructing the new family of graph
learning structures. The continuous systems equipped with Dirichlet energy are augmented with
non-linearity and discretized with different discretization schemes, resulting in complex recurrence
relations different from traditional residual and dense-based methods [12]. Different dynamic sys-
tems provide rich properties inheriting from their continuous form analysis that traditional GNN do
not have.

3.2.3 Propagation and Transformation Decoupling

Oversmoothing is essentially tied to the feature propagation through network topology. Another
way of avoid oversmoothing is to decouple the feature learning from feature propagation. Such
decoupling can be achieved through two paths: (1) positional-encoding and (2) simple stacking.
Positional-encoding-based methods are mostly graph transformers where graph structure informa-
tion is encoded first and then concatenated with features to feed into the transformer structure. We
comment here that this type of method treats the structure as plain feature information and therefore
does not involve propagation operation that causes oversmoothing. Therefore, we will not discuss
this type of method in detail in this survey. The simple stacking-based method, like SGC [21] and
DAGNN [36]), first applies feature transformation without the adjacency matrix being involved and
then applies the power of the adjacency matrix to encoded features. The final learned embedding
can be summarized into a kernel or diffusion-based adjacency matrix that convolutes with encoded
features.

3.3 ATNPA: Unified View and Categorization

The three themes to tackle oversmoothing differ significantly in their principles, and such difference
is even more profound in respective methods’ implementation. To delve into the analysis of these
seemly different approaches, a unified view ATNPA with five major steps (Augmentation, Transfor-
mation, Normalization, Propagation, and Aggregation) is proposed to help review and understand
how different approaches address the oversmoothing.

Augmentation: A+ Aug(X, A) (16)
Transformation: H! « ro(H'", A) (17)
Normalization: H! « NT(H!) (18)
Propagation: H' « NT(Update(H!, H'™' H')) (19)
Aggregation: H' « 1a(Ul_, HY) (20)

The ATNPA unified view, defined from Eq. (16) to Eq. (20), outlines an abstract-level framework
majority GNN methods follow, with all operators being defined in previous sections. In the fol-
lowing, we categorize all methods into six categorizes, and review each category in details in the
succeeding subsections.

3.3.1 Categorization

Following the three major themes in Sec 3.2, we categorize existing alleviation methods based on
critical changes they made compared with the vanilla GNN scheme, and link them to the ATNPA
unified view framework.

Residual-based: Residual-based models explicitly add skip- or residual-connection to the
ATNPA’s Propagation step at Eq. (19). Examples include APPNP [33], ResGCN [32], GCNII, GEN
[34], EGNN, G2-gating, etc). Initial works, such as ResGCN, GCNII, are inspired by residual
connection in the computer vision field [44]. Later, EGNN and G2-gating focus on improving the
coefficient of each residual component under the principle of preserving Dirichlet energy among
layers.

Dense-based: Dense-based methods explicitly aggregate all layer embeddings into the final em-
beddings, which is reflected in ATNPA’s Aggregation step at Eq. (20). Examples include JKnet [25],
DCGCN [37], MixHop [38], Scattering GCN [45] and DAGNN [36].

Random-mask based: Random-mask based models randomly mask or drop edges/nodes of the
original graph, corresponding to changes in ATNPA’s Augmentation step at Eq. (16), and then use re-
sulted stochastic graph for propagation. Examples include DropEdge, Drop-connect [39], DropMes-
sage [40].

Energy-based: Energy-based models introduce normalization techniques that control Dirichlet
energy or feature variance of the learned embeddings to explicitly optimizing the measure of over-
smoothing and alleviate oversmoothing. This is reflected at ATNPA’s Normalization step at Eq. (18)

and Propagation step at Eq. (19). Examples include EGNN, PairNorm, NodeNorm [24], GroupNorm
[35], G2-gating.

Diffusion-based: Diffusion-based methods first model a continuous ODE or PDE related to graph
diffusion equation and then discretize the continuous equation with different discretization methods.
This leads to nuanced recurrence relation and possibly a combined propagation matrix learnt from
both features and topology, which corresponds to ATNPA’s Augmentation step at Eq. (16) and Prop-
agation step at Eq. (19). Examples include GraphCon, GRAND [27], ACMP [41], Neural Sheaf
Diffusion [42].

Transformer-based: Transformer-based methods integrate transformer structure into GNN back-
bones and leverage different combination or integration to allow models to learn both long-term
relation (from transformer capacity) and local relation (from GNN capacity). A recent study [46]
categorizes transformer-type models into three types: (1) Graph auxiliary Type (GA) such as Graph-
Trans [47] and GraphBert [48], (2) positional encoder type (PE) such as Graphormer [49], and (3)
improved attention matrix from graph (AT) such as GraphiT [43] and graphT [26]. Among the three
types, PE can be considered as a decoupling of feature and topology learning, and AT types mostly
resemble to GNN backbones to alleviate oversmoothing. As a result, these approaches are reflected
in ATNPA’s Augmentation and Transformation steps.

3.4 Residual-based Methods

Early example of residual-based deep GNN method is APPNP [33] and GCNII [20], which are
inspired from image field residual architecture [44]. APPNP can be summarized as (assuming fy as
a one-layer MLP):

A+ Bug(A): H' « o(XW) 21)
H' '+ (1—-a)AH'"' + aH"! (22)
GCNII can be summarized as:
A+ Bug(Ad): H' « o(AXW?) (23)
H' + o(A(aH"™" + (1 —a)H")(BI + (1 — B)W)) (24)
GEN is an extension of GCNII method and can be summarized as:
Hu_m&¢4+Hg;fﬁeS¢m%w%£%2 25)

where the regularization is inspired from batch normalization [22] and it empirically works very
well.

EGNN [15] uses a slightly more complex structure that includes both skip connection and residual
connection:

H' o((1 = emin) AH'™! + aH'™" + BH)W') (26)

where o+ 8 = Cpin and ¢y is a positive hyperparamter chosen to satify the lower bound of initial
Dirichlet energy. Its main motivation is to choose an appropriate c,,;, which is an lower bound
of initial Dirichlet energy to keep the Dirichlet energy in a controllable range during propagation.
Therefore, EGNN is an explicit energy preserving technique compared with implicit energy control
by diffusion-based methods.

Similar to EGNN, G2-gating uses simple residual GCN as a backbone with the form
H' « H"' 4 Fy(H'"!, A) 27)

G2-gating’s main contribution to oversmoothing lies on its controllable message dropping mecha-
nism similar to DropMessage method. G2-gating drops message after message aggregation while
DropMessage drop messages before message aggregation. Therefore G2-gating has a more control-
lable way to preserve Dirichlet energy. We will discuss G2-gating’s message dropping mechanism,
GEN and EGNN’s normalization technique and coefficient selection in the energy-based model in
details.

Discussion(Residual Connection): Note that all above methods fit into ATNPA’s unified view by
making changes to the Normalization (Eq. 18) and Propagation (Eq. 19) steps. In general, residual
based methods have been primarily focused on learning coefficients for each component (i.e., coef-
ficients for H!, H'=1, or Fy (H 1*1, A) etc.). Nevertheless, there is insufficient study and theoretical
analysis about the order of each residual components in terms of their position w.rt activation func-
tion o(+). To date, GEN is the only work that empirically validated that order they proposed works
better than GCNIL.

3.5 Dense-based Methods

Existing dense-based methods include JKnet, DAGNN, and DCGCN [37]. While Mixhop and Scat-
tering GCN do not explicitly show oversmoothing benefits, they have a similar structure as DCGCN
except that the aggregation is performed on fixed multi-hop embeddings instead of previous embed-
dings. JKnet provides different options over the final aggregation for layer embeddings. Here we
consider the concatenate version aligned with DAGNN. Final embeddings learnt from JKnet.,; can
be summarized as:

L
HY > ¢;H': H'+ o(AH''WH) & H' « X (28)
=1

where the aggregation stage is only applied to the final layer and with concatenation aggregation
followed by projection. This can be described as the summation of each layer embeddings with a
weight ¢; learned from the projection layer, as defined in Eq. (28). For DAGNN, final embeddings
can be summarized as (assuming one layer MLP in the beginning):

L
HY > ¢H': H'« AH'™' & H' + o(XW) (29)
1=1

It can be observed that the two dense-based methods share similar final aggregation scheme (i.e., fi-
nal embedding can be considered as a linear combination of layer embeddings). Yet, the embedding
learnt in the intermediate layers is different. JKnet,, still includes learnable parameters in the mid-
dle and keep non-linearity while DAGNN removes both parts. Without non-linearity and learnable
paramters, DAGNN essentially becomes a diffusion kernel based method similar to [50]. We can
see that both methods fit into ATNPA’s unified view in Transformation (Eq. 17) and Aggregation
(Eq. 20), which is the key component for dense connection based method.

Instead of applying dense connection only to the final layer aggregation, DCGCN introduces layer
aggregation at every layer in a recurrence style:

H' « Fp(UZ1H', A) (30)

which is still a variant of ATNPA’s Aggregation (Eq. 20) with a slight difference in the order of
aggregation before convolution instead of after convolution.

Discussion(Dense Connection): We note that dense-connection can be considered as an extension
of residual connection with all previous embedding being used rather than only the initial embedding
or previous layer embedding. Both dense-based methods and residual-based methods can be treated
as attempts of positioning residual components at different locations. However, there is a lack of
theoretical analysis and empirical study comparing the two types of methods in general. It is easy
to observe that ignoring non-linearity, both methods can be explained in a Markov Random Walk
framework [21]. Nevertheless, we shall point out that non-linearity is an important component for
increasing model capacity and expressive power in terms of deep layers and therefore should not be
discarded in analysis.

3.6 Random-mask based Methods

Randomly dropping edges or nodes is commonly considered as an augmentation technique to avoid
overfitting. It has been shown that random edge dropping is also beneficial for oversmoothing alle-
viation [16], where the key step is to randomly generate the adjacency matrix with a subset of edges

from original edges and obtain the masked adjacency A by
A+ Bug(A): Aug(4) =Bern(p)®A 31)

where Bern(p) is a matrix filled with Bernoulli distribution elements and p controls the drop rate.
The motivation behind edge dropping is the subspace theorem [14] that indicates less connected
graph leading to slow convergence of oversmoothing state. The random-mask modification fits into
ATNPA’s Augmentation step (Eq. 16).

DropConnect generalizes DropEdge to edges of each feature channels instead of edges of all features.

Specifically, DropConnect create different random masked adjacency matrix A for each features
instead of one shared random masked adjacency matrix for all features.

Similar to DropConnect, DropMessage [40] has recently been proposed to unify different masking
methods including edge dropping, node dropping, and Dropout. Its key modification is:

H' « AH7'W . H'™' = H'=' © Bern(p) (32)

where Bern(p) is a feature matrix filled with Bernoulli distribution elements and p controls the

drop rate. Note that H'=1 becomes a random variable matrix and each time F llj_ !is accessed during
matrix production, it will be randomized.

Discussion(Dropping): DropEdge prefers a shared masked adjacency matrix throughout layers
instead of layer wise masking as empirically a layer-wise variant has the risk of overfitting and have
additional computation cost. Additionally, Dropout method is complementary to DropEdge and ap-
plying both of them is beneficial to the model performance [16]. DropMessage unified them together
and show theoretical that message dropping techniques increase Shannon Entropy of propagated
message compared with dropping edges, nodes or features alone, which alleviates oversmoothing.
Compared with DropEdge, DropConnect which change augmentation step in ATNPA’s unified view.
DropMessage can be considered as combining augmentation and normalization steps in ATNPA’s
unified view.

3.7 Energy-based Methods

Energy-based methods share common motivation of controlling generated embeddings in each layer
with constraints on either preserving Dirichlet energy or reducing feature variance. Examples of
preserving Dirichlet energy include EGNN, G2-gating, PairNorm, GroupNorm, while NodeNorm
reduce feature variance.

Compared with GCNII randomly searching coefficient «, for each residual component,
EGNN [15] explicitly limits the coefficient searching to satisfy the lower bound of the initial Dirich-
let energy and control the initialized Dirichlet energy by orthogonal weight initialization. However,
the coefficient is still a scalar shared for each node and feature channels and is determined by fine
tuning hyperparameters. G2-gating [11] provides a way of computing coefficients according to the
graph gradient, which is essentially the Dirichlet energy and uses the gating mechanism to control
features that tend to converge to stop updating and therefore avoid treating coefficient as hyperpa-
rameter. In addition, G2-gating generalizes scalar coefficient to a matrix coefficient in the shape of
embedding matrix, providing fine-grained energy control. Assuming that ideal embedding is that all
the nodes sharing the same labels converge to the same embedding (i.e., locally oversmooth) while
across labels, node embeddings should be different (i.e., large Dirichlet energy). The gating mech-
anism prevents node embeddings from converging globally but also limit the local oversmoothing.
Therefore, G2-gating method produces only sub-optimal solutions.

Unlike G2-gating and EGNN that have a residual-GNN backbone, PairNorm [23] normalizes the
feature matrix X directly according to Eq. (3) without requiring a residual component. The theoret-
ical analysis is based on SGC which ignores non-linearity. Similar to EGNN, PairNorm’s main idea
is to keep the underlying distance (such as total pairwise distance) the same, before vs. after the layer
propagation. Empirically, PairNorm alleviates oversmoothing issue but its peroformance does not
improve with layer increasing. The author suggests that PairNorm may not be beneficial to standard
dataset such as Cora and need a more nuanced setting (i.e., missing features), whereas other meth-
ods have shown performance gain in the standard dataset. A potential reason behind PairNorm’s
performance degradation, w.r.t layer increasing, is that the normalization used in PairNorm results
in less expressive power for models and therefore cannot perform well, as suggested by [19].

GroupNorm [35] uses a simple residual-GNN backbone similar to G2-gating. Unlike G2-gating
focusing on determining proper coefficients, GroupNorm normalizes the features by first assigning

10

nodes to groups (i.e., clustering) and then normalizes nodes within groups to push nodes within
clusters to locally oversmooth. Empirically, GroupNorm reports the results of miss features settings
to validate the performance gain, which shows similar problem as in PairNorm, suggesting that
normalization techniques seem to weaken the expressive power of the models with layers increasing
in general.

Discussion(Normalization): We note that both normalization and coefficient computation ap-
proaches fit into ATNPA’s unified view in Normalization (Eq. 18) and Propagation (Eq. 19). Direct
normalization on features such as mean substraction and variance shifting empirically reduce model
capacity and expressive power while coefficients learning seem to be a more promising direction to
not only keep Dirichlet energy but also preserve model expressive power.

3.8 Diffusion-based Methods

Diffusion-based methods consider GNN learning as a continuous system and derive solutions by for-
mulating the system’s evolving as a model propagation process. In this context, the time component
t in continuous system corresponds to GNN based model’s layer concept. Different discretization
methods provide a complex family of methods indicated by a continuous system and most GNN
based backbone can be considered as an explicit Euler discretization (only considering the recur-
rence relation or the Update function in GNN framework) [27]. Examples of continuous systems
include GRAND, GraphCon, ACMP, Neural Sheaf Diffusion, and G2-gating (It was first reviewed
as GNN backbones, but is also related to the continuous system).

GRAND [27] leverages graph diffusion PDE equations as the continuous system and performs both
explicit and implicit Euler discretization. The diffusivity is modeled with an attention structure
(Eq. 33) related to node features and edges (Eq. 34):

Aug(X) « 0(%2(62)()) (33)
Aug(X,A) « (Aug(X)>e)0 A (34)

where o (-) is a non-linearity activation softmax function. K and () are learnable parameters, and dj,
is the hidden dimension for K which is used as normalization. ¢ is a threshold value to sparsify at-
tention matrix Aug(X) and ® denotes element-wise multiplication. Eq. (33) is the diffusion variant
and Eq. (34) is rewired variants for GRAND. With both discretization, the key component fits into
ATNPA’s unified view in Augmentation Eq. (16).

Similar to GRAND, ACMP [41] modifies the graph diffusion equation to a particle interaction sys-
tem. It generalizes GRAND’s Aug() in Eq. (34) by adding a negative constant to the attention weight
so that the attention could be negative. This allows the nodes to not only attract but also repulse each
other through learning. Additionally, to control the upper bound Dirichlet energy, a well-shaped
function (called double-well potential) is added as a regularization (equivalent to feature normaliza-
tion) to avoid infinite Dirichlet energy growth. It fits into ATNPA’s Augmentation and Normalization
steps, despite a very different origin (particle system interpretation).

GraphCon [12] leverages a graph dynamic system of non-linear ODEs:
Y' + Fy(A H,t) —vH — oY 35)
H «+Y (36)

where H’ is the first order derivative with respect to time ¢ (a default setting at physics) and Y’
is equivalent to H”. After discretization, ¢ is essentially equivalent to layer [in GNN backbones.
Following IMEX (implicit-explicit) time discretization [51], GraphCon obtains a new recurrence:

Y™ Y A()(o(Fp (A, HM L tm7 1))
—yH"t —ay™h 37)
H" « H" ' 4+ At)Y" (38)

where A(t) is the discretization step.

11

Discussion:(Continuous System) Diffusion systems above share a common point of establishing
a connection between the feature changing rate H' and the graph gradient } . ., hbor(i) |hi — hjl
which is Dirichlet energy for one node. A discretization of the system then provides a unique
complex recurrence relation that preserves established connections. The niche of diffusion-based
methods stem from the design that the system preserves Dirichlet energy (mitigates oversmoothing)
through the complex residual recurrence structure, avoiding fixed point convergence at exponen-
tial rate and small perturbation deviates the fixed point away in the GraphCon case. This makes
diffusion-based method unique, compared with other works that preserve energy through explicit
feature value control or coefficient control.

Neural Sheaf diffusion is an approach using cellular sheaf theory to model evolving of the features
at each layer and the geometry of the graph [42]. The augmentation to Sheaf Diffusion, similar to
GCN augmentation, constructs a continuous differential equation as:

(H') <+ —o(Augy(A, HYWIH'WY) (39)

where H* unlike common feature matrix with dimension n x d with d as hidden dimension, each
node feature is vertically stacked and H? is of dimension nd x 1. Augy(A, H?) also produces an
nd x nd matrix with n x n subblocks of dimension d x d. The discrete version of Eq. (39) becomes

(HY) «+ H'™ ' — o(auge(A, H=Hwitpt—twi 1) (40)

Discussion(Neural Sheaf Diffusion): We comment here that the extra nd dimensions provide
each feature channel with a possibly different propagation channel compared with the original set-
tings where the propagation channel binds to the node level. The idea behind is similar to G2-gating
where they also have a multi-rate coefficient matrix to control the update fine-grained to each fea-
ture of each node instead of each node. Another point about Sheaf Diffusion is that they use shared
weight among each block, i.e. W/ ~! can be decomposed as the Kronecker product of the Identity
matrix and a learnable Wl, with dimension d x d and therefore reduce the exponential number of
parameter increase, which in term indicates an assumption that one feature correlation is shared
among graph topology.

3.9 Transformer-based Methods

Transformer has shown superior performance in long-term relation learning [52]. GNN has been
proven to be effective on local relation learning and performance deteriorates when both global and
local relation exists (i.e., graphs with middle homophily scores [53]. Combining transformer and
GNN architecture has been used to capture both long and short-term relations and improve model
performance on heterophilous graphs. With the connection between heterophily and oversmoothing
[10], we consider transformer-based methods candidates for alleviating oversmoothing.

There are mainly three types of approaches according to the position of the two components, PE
(positional encoding), GA (graph auxiliary), and AT (attention matrix from graph). Admittedly,
many graph transformers simultaneously use several techniques. To understand the role each part
plays in the learning process, we will discuss each component individually and fit them into the
proposed framework. PE-type can be roughly considered as projecting certain graph properties to
feature space and then aggregating the projected graph features with node features. The aggregated
feature is then fed into the transformer block. A general form of PE for one transformer block is
therefore:

X ¢ Transformer(X,A): A« Aug(A) 41)

Discussion (PA): Unlike normal graph convolution, Transformer() can be considered as a
complex feature transformation, where X and A are not convoluted but are processed in a trans-
former style. Because it avoids convolution directly, it can considered as a decoupled feature and
topology learning. Theoretical analysis of model expressive power between transformer and graph
convolution is lacking in existing research and potential analysis is necessary to justify the learnabil-
ity of such structure.

Discussion (GA): As GA type stacks transformer block with graph convolution block, making it
hard to analyze and the concept of oversmoothing becomes vague in this case. Briefly speaking,

12

we can treat the transformer block as a complex feature Transformation or Normalization steps of
ATNPA. Then GA-type transformer can be treated as a common GNN framework with complex
normalization applied in the middle. Since the transformer does not ensure the energy of learned
node embeddings, the GA-based component will not necessarily help alleviate oversmoothing.

AT-type graph transformers, such as GraphT and GraphiT, have unique Aug(-) components, defined
in Eq. (42) for GraphT and Eq. (43) for GraphiT, which share a striking similarity to attention-based
diffusivity structures, such as GRAND and ACMP.

rug(X, A) a(% o A) 42)
Aug(X, A) « o (XQ)éfK)T k(A)) (43)

where o is the softmax nonlinear activation function, dy, is the hidden dimension of X, and x(A) €
R™*™ denotes a transformation of A, such as graph Laplacian.

Discussion (AT): The main difference between GraphT (Eq. 42) and GRAND (Eq. 34) is the loca-
tion of the non-linearity activation function o(-). The similarity between GRAND and transformer-
based methods comes from the diffusivity modeled as an attention structure in GRAND and the
diffusivity can fit into the Aug(-) Augmentation step in ATNPA. AT-type methods can be treated as
a graph rewiring approach. Since the rewired graph will be more sparse compared with the original
graph and the rewired process can be done in each layer, we can consider them as an extension of a
controllable masking mechanism aiming to increase the energy at each layer.

4 Conclusion

In this paper, we reviewed and analyzed existing GNN oversmoothing alleviation methods. We
argued that despite of dramatic differences in their design principles and math formulations, exist-
ing approaches share three common themes in their motivations to tackle oversmoothing, and such
commonality allows us to summarize them into six categories. To allow in-depth understanding and
analysis of all methods, we proposed ATNPA, which uses five steps to distill properties and archi-
tectures of existing methods and shows that existing oversmoothing alleviation methods are variants
by introducing changes to one or multiple steps of the ATNPA. Such a unified view allows a clear
understanding on how oversmoothing is alleviated for individual methods, strength and weakness
of each type of methods, and possible future study directions. We drew discussion and remarks on
representative methods, and observed that despite many methods focusing on constraining energy
of the learned embeddings, diffusion-based methods use a physics-inspired structure to keep energy,
while residual-based methods use a simple structure but focus on tuning coefficient or directly apply-
ing normalization to features to preserve energy. In addition, the modeling of network propagation
has evolved from a static topology to dynamically learn topology, or to seek respective adjacency
matrix for each feature instead of one shared topology for all features.

References

[1] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,” in
IEEE International Joint Conference on Neural Networks (IJCNN), vol. 2, pp. 729-734 vol. 2,
2005.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected
networks on graphs,” in International Conference on Learning Representations (ICLR), 2014.

[3] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs
with fast localized spectral filtering,” in 30th International Conference on Neural Information
Processing Systems (NIPS), 2016.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-

works,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

13

[5] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation learning: A survey,” IEEE
Transactions on Big Data, vol. 6, pp. 3-28, 2017.

[6] J. Zhu, R. A. Rossi, A. Rao, T. Mai, N. Lipka, N. K. Ahmed, and D. Koutra, “Graph neural net-
works with heterophily,” in Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI), 2021.

[7]1 Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional networks for semi-
supervised learning,” in Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-
ligence (AAAI), 2018.

[8] H. NT and T. Maehara, “Revisiting graph neural networks: All we have is low-pass filters,”
ArXiv, vol. abs/1905.09550, 2019.

[9] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and its practical implica-
tions,” in International Conference on Learning Representations (ICLR), 2021.

[10] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra, “Two sides of the same coin: Het-
erophily and oversmoothing in graph convolutional neural networks,” 2022 IEEE International
Conference on Data Mining (ICDM), pp. 1287-1292,2021.

[11] T. K. Rusch, B. P. Chamberlain, M. W. Mahoney, M. M. Bronstein, and S. Mishra, “Gradi-
ent gating for deep multi-rate learning on graphs,” in International Conference on Learning
Representations, 2023.

[12] T. K. Rusch, B. P. Chamberlain, J. R. Rowbottom, S. Mishra, and M. M. Bronstein, “Graph-
coupled oscillator networks,” in International Conference on Machine Learning, 2022.

[13] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view,” in Proceddings of
the 34th AAAI Conference on Artificial Intelligence (AAAI-20), 2019.

[14] K. Oono and T. Suzuki, “Graph neural networks exponentially lose expressive power for node
classification,” in International Conference on Learning Representations (ICLR), 2020.

[15] K. Zhou, X. Huang, D. Zha, R. Chen, L. Li, S.-H. Choi, and X. Hu, “Dirichlet energy con-
strained learning for deep graph neural networks,” Advances in neural information processing
systems, 2021.

[16] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional
networks on node classification,” in International Conference on Learning Representations,

2020.

[17] X. Wu, A. Ajorlou, Z. Wu, and A. Jadbabaie, “Demystifying oversmoothing in attention-based
graph neural networks,” in Proceedings of the 37th Conference on Neural Information Process-
ing Systems (NeurlPS), 2023.

[18] P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention
networks,” in International Conference on Learning Representations, 2018.

[19] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmoothing in graph neural
networks,” arXiv:2303.10993,2023.

[20] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional net-
works,” in Proceedings of the 37th International Conference on Machine Learning (H. D. III
and A. Singh, eds.), vol. 119 of Proceedings of Machine Learning Research, pp. 1725-1735,
PMLR, 13-18 Jul 2020.

[21] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph convolu-
tional networks,” in Proceedings of the 36th International Conference on Machine Learning
(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine Learning Re-
search, pp. 6861-6871, PMLR, 09-15 Jun 2019.

14

[22] S.Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing
internal covariate shift,” in Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, p. 448-456, IMLR.org, 2015.

[23] L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,” in International Confer-
ence on Learning Representations (ICLR), 2020.

[24] K. Zhou, Y. Dong, K. Wang, W. S. Lee, B. Hooi, H. Xu, and J. Feng, “Understanding and
resolving performance degradation in deep graph convolutional networks,” Proceedings of the
30th ACM International Conference on Information & Knowledge Management, 2020.

[25] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Representation learn-
ing on graphs with jumping knowledge networks,” in Proceedings of the 35th International
Conference on Machine Learning (J. Dy and A. Krause, eds.), vol. 80 of Proceedings of Ma-
chine Learning Research, pp. 5453-5462, PMLR, 10-15 Jul 2018.

[26] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks to graphs,” AAAI
Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

[27] B. P. Chamberlain, J. Rowbottom, M. 1. Gorinova, S. D. Webb, E. Rossi, and M. M. Bron-
stein, “GRAND: Graph neural diffusion,” in The Symbiosis of Deep Learning and Differential
Equations, 2021.

[28] A.Leman, “The reduction of a graph to canonical form and the algebra which appears therein,”
2018.

[29] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?,” in
International Conference on Learning Representations, 2019.

[30] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph isomorphism
testing and function approximation with gnns,” in Advances in Neural Information Processing
Systems (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
eds.), vol. 32, Curran Associates, Inc., 2019.

[31] A. Wijesinghe and Q. Wang, “A new perspective on "how graph neural networks go beyond
weisfeiler-lehman?”,” in International Conference on Learning Representations, 2022.

[32] G. Li, M. Miiller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go as deep as cnns?,” in
The IEEE International Conference on Computer Vision (ICCV), 2019.

[33] J. Klicpera, A. Bojchevski, and S. Giinnemann, “Predict then propagate: Graph neural net-
works meet personalized pagerank,” in International Conference on Learning Representations,
2018.

[34] G. Li, C. Xiong, A. K. Thabet, and B. Ghanem, “Deepergcn: All you need to train deeper
gens,” ArXiv, vol. abs/2006.07739, 2020.

[35] K. Zhou, X. Huang, Y. Li, D. Zha, R. Chen, and X. Hu, “Towards deeper graph neural net-
works with differentiable group normalization,” in Advances in neural information processing
systems, 2020.

[36] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM,
2020.

[37] Z. Guol, Y. Zhang, Z. Teng, and W. Lu, “Densely connected graph convolutional networks for
graph-to-sequence learning,” Transactions of the Association for Computational Linguistics,

vol. 7, pp. 297-312, 2019.

[38] S. Abu-El-Haija, B. Perozzi, A. Kapoor, H. Harutyunyan, N. Alipourfard, K. Lerman, G. V.
Steeg, and A. Galstyan, “Mixhop: Higher-order graph convolution architectures via sparsified
neighborhood mixing,” in International Conference on Machine Learning (ICML), 2019.

15

[39] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield, K. Narayanan, and
X. Qian, “Bayesian graph neural networks with adaptive connection sampling,” in Proceed-
ings of the 37th International Conference on Machine Learning (H. D. III and A. Singh, eds.),
vol. 119 of Proceedings of Machine Learning Research, pp. 4094-4104, PMLR, 13-18 Jul
2020.

[40] T. Fang, Z. Xiao, C. Wang, J. Xu, X. Yang, and Y. Yang, “Dropmessage: Unifying random
dropping for graph neural networks,” Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 37, p. 42674275, June 2023.

[41] Y. Wang, K. Yi, X. Liu, Y. G. Wang, and S. Jin, “ACMP: Allen-cahn message passing with
attractive and repulsive forces for graph neural networks,” in The Eleventh International Con-
ference on Learning Representations, 2023.

[42] C. Bodnar, F. D. Giovanni, B. P. Chamberlain, P. Lio, and M. M. Bronstein, “Neural sheaf
diffusion: A topological perspective on heterophily and oversmoothing in gnns,” in 36¢th Con-
ferenceon Neural Information Processing Systems (NeurIPS).,2022.

[43] G. Mialon, D. Chen, M. Selosse, and J. Mairal, “Graphit: Encoding graph structure in trans-
formers,” arXiv:2106.05667,2021.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2015.

[45] Y. Min, F. Wenke, and G. Wolf, “Scattering gcn: Overcoming oversmoothness in graph convo-
Iutional networks,” in Proceedings of the 34th Conference on Neural Information Processing
Systems (NeurlPS2020), 2020.

[46] E. Min, R. Chen, Y. Bian, T. Xu, K. Zhao, W. Huang, P. Zhao, J. Huang, S. Ananiadou,
and Y. Rong, “Transformer for graphs: An overview from architecture perspective,” ArXiv,
vol. abs/2202.08455, 2022.

[47] Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and 1. Stoica, “Representing long-
range context for graph neural networks with global attention,” in Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

[48] J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-bert: Only attention is needed for learning
graph representations,” arXiv preprint arXiv:2001.05140, 2020.

[49] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu, “Do transformers
really perform badly for graph representation?,” in Advances in Neural Information Processing
Systems (A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), 2021.

[50] J. Gasteiger, S. Weillenberger, and S. Glinnemann, “Diffusion improves graph learning,” in
Conference on Neural Information Processing Systems (NeurIPS), 2019.

[51] E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Prob-
lems, vol. 8. 01 1993.

[52] Y. Rong, Y. Bian, T. Xu, W. Xie, Y. Wei, W. Huang, and J. Huang, “Self-supervised graph
transformer on large-scale molecular data,” Advances in Neural Information Processing Sys-
tems, vol. 33, 2020.

[53] S. Luan, C. Hua, Q. Lu, J. Zhu, M. Zhao, S. Zhang, X.-W. Chang, and D. Precup,
“Is heterophily a real nightmare for graph neural networks to do node classification?,”
arXiv:2109.05641,2021.

16

	Introduction
	Problem Notation
	Oversmoothing Definition
	Oversmoothing Measures
	Model Expressive Power

	ATNPA: A Unified View of Oversmoothing Alleviation
	GNN Message Propagation
	Traditional Approaches: Residual vs. Dense Connections
	Complex Approaches: Dynamics and Recurrence Relation

	Themes to Tackle Oversmoothing
	Energy Regularization
	Dynamics System Modeling
	Propagation and Transformation Decoupling

	ATNPA: Unified View and Categorization
	Categorization

	Residual-based Methods
	Dense-based Methods
	Random-mask based Methods
	Energy-based Methods
	Diffusion-based Methods
	Transformer-based Methods

	Conclusion

