
WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs
Hongbo Chen∗

Indiana University Bloomington
Yifan Zhang∗

Indiana University Bloomington
Samsung Research America

Xing Han∗

Independent Researcher

Huanyao Rong
Indiana University Bloomington

Yuheng Zhang
University of Electronic Science and

Technology of China

Tianhao Mao
Indiana University Bloomington

Hang Zhang
Indiana University Bloomington

XiaoFeng Wang
Indiana University Bloomington

Luyi Xing
Indiana University Bloomington

Xun Chen
Samsung Research America

ABSTRACT
Originating from semantic bugs, Entity-Inconsistency Bugs (EIBs)
involve misuse of syntactically valid yet incorrect program enti-
ties, such as variable identifiers and function names, which often
have security implications. Unlike straightforward syntactic vul-
nerabilities, EIBs are subtle and can remain undetected for years.
Traditional detection methods, such as static analysis and dynamic
testing, often fall short due to the versatile and context-dependent
nature of EIBs. However, with advancements in Large Language
Models (LLMs) like GPT-4, we believe LLM-powered automatic
EIB detection becomes increasingly feasible through these models’
semantics understanding abilities.

This research first undertakes a systematic measurement of
LLMs’ capabilities in detecting EIBs, revealing that GPT-4, while
promising, shows limited recall and precision that hinder its practi-
cal application. The primary problem lies in the model’s tendency
to focus on irrelevant code snippets devoid of EIBs. To address
this, we introduce a novel, cascaded EIB detection system named
WitheredLeaf, which leverages smaller, code-specific language
models to filter out most negative cases and mitigate the problem,
thereby significantly enhancing the overall precision and recall. We
evaluated WitheredLeaf on 154 Python and C GitHub repositories,
each with over 1,000 stars, identifying 123 new flaws, 45% of which
can be exploited to disrupt the program’s normal operations. Out
of 69 submitted fixes, 27 have been successfully merged.

1 INTRODUCTION
Entity-inconsistency bug. Among the program bugs with security
implications, the hardest ones to detect are logic flaws that are
closely related to a program’s functionalities and its context of
operations. Figure 1 shows an example, in which quote() at line
991 should take the argument params instead of query. The type
of flaws in the figure is characterized by misuses of the wrong
yet valid program entities – a leaf node in the program’s abstract
syntax tree such as a variable identifier, a function name, a control
string, etc., which we call Entity-Inconsistency Bug (EIB) in our
research. EIBs have been reported in prior studies as unique logic
flaws introduced by the human developer who mistakenly chooses
∗All three authors contributed equally to this research.

Prompt: Find bugs in this Python code snippet.
987 def quote˙url(url˙text):

988 (scheme , netloc , path , params , query , fragment)

= six.moves.urllib.parse.urlparse(url˙text)

989 # netloc˙quoted = quote(netloc)

990 path˙quoted = quote(path)

991 params˙quoted = quote(query)

992 query˙quoted = quote˙plus(query)

993 fragment˙quoted = quote(fragment)

994 url˙quoted = six.moves.urllib.parse.urlunparse ((

scheme , netloc , path˙quoted , params˙quoted ,

query˙quoted , fragment˙quoted))

995 return url˙quoted

Output by ChatGPT-4: The code snippet you provided has a couple of
issues that could be causing problems:
1. Incorrect usage of the quote function for params: In the code,
params quoted = quote(query). This line mistakenly passes the query
to the quote function instead of params. It should be params quoted =
quote(params).
2. Potential Misuse of quote vs. quote plus: Using quote plus for
the query is appropriate, but if any other component requires handling
spaces as +, then quote plus should be used accordingly. Conversely,
if spaces should be encoded as %20 in the query, then quote should be
used instead of quote plus
Another false alarm and a corrected code snippet are truncated.

Figure 1: An Example of ChatGPT detecting an existing bug.
The variable query in the red rectangular is buggy.

a different or even a random, meaningless string for a program
entity [54]. They often come with security implications, exposing
the program to such threats as denial of service, violation of control
and data flow integrity, etc. [29, 33], and have also been recorded
by the CVE database, e.g., CVE-2022-30780, CVE-2022-23574, CVE-
2020-8889, CVE-2020-10574, and CVE-2019-11463.

Like other logic flaws, EIBs are extremely hard to detect in an
automatic and scalable way. For the example in Figure 1, although
a human reviewer might be able to identify the out-of-place pair

1

ar
X

iv
:2

40
5.

01
66

8v
1

 [
cs

.C
R

]
 2

 M
ay

 2
02

4

https://orcid.org/0000-0001-9922-4351

Trovato and Tobin, et al.

(query and params quoted) from the context of the program (path
and path quoted, query and query quoted), the buggy code does
not carry any clear-cut patterns, as those for syntactic vulnerabil-
ities like use after a free, insecure API invocation, etc., making it
difficult for a traditional static analyzer to locate the flaws. While
dynamic testing (e.g., fuzzing) might detect some of such errors,
it tends to miss most of them due to its low code coverage. Ad-
ditionally, EIBs may not be effectively captured by the sanitizers
(e.g., AddressSanitizer [26]) indicating the existence of bugs (e.g.,
transform a silent memory corruption into an explicit crash) for
fuzzers (e.g., EIBs may cause only logical errors without memory
corruption). As evidence, the EIB shown in Figure 1 has remained
undetected for approximately seven years until January 2024 [18]
in a popular GitHub repository with 368 stars.
EIB detection with LLM. A key observation is that the human
reviewer can recognize the presence of an EIB thanks to her capa-
bility to “predict” the correct code entity (e.g., a variable name) at
a specific location, according to the context of the program (e.g.,
the correlations between the argument names and function names
from Line 990 and 992-993 in Figure 1). This capability to predict
most likely tokens to follow a sequence of tokens (i.e., the context)
has also been provided by language models, a Natural Language
Processing (NLP) technology. Particularly, with the recent advance
in Large Language Models (LLMs) such as ChatGPT, we believe
that LLM-powered automatic EIB detection becomes increasingly
feasible. So in our research, we performed the first study on the
LLM’s potential to automate the discovery of EIBs, focusing on
OpenAI’s GPT-4 [4]. Our study shows that indeed the LLM offers
powerful semantic analysis capabilities, promising to move us a
significant step closer to scalable identification of EIBs. On a dataset
of synthesized EIBs (§2.3), GPT-4 successfully captured 60% of them
with proper prompt engineering. Particularly, we found that when
running open-sourced LLMs such as Code Llama for an infilling
task [48] (that is, predicting missing tokens from a program), the
LLMs tend to produce tokens consistent with the valid program
entities and different ones when a true EIB is encountered (§2.4).
However, we found that GPT-4 alone is not ready for supporting a
comprehensive, highly scalable, and reasonably accurate EIB detec-
tion due to the following limitations.

First, it is widely known that LLMs have an inherent tendency
to generate inaccurate or fabricated information in their responses,
commonly referred to as “hallucination” [4], sometimes due to the
model being distracted to the code context unrelated to the targeted
flaws[52]. This weakness leads to a high false positive rate if we
directly apply LLMs like GPT-4 to EIB detection, especially on large
codebases with a large number of suspicious EIBs. For example,
in Figure 1, GPT-4 issues a false alarm on quote plus, probably
due to it being distracted by words like plus. In our measurement,
on a sampled dataset (with 66 functions randomly selected from
the GitHub projects modified after the cut-off date for the GPT-4
training [4]), GPT-4 reports EIBs for nearly half of the functions,
most of which turns out to be false positives.

Second, GPT-4 tends to miss many EIBs, incurring a high false
negative rate, in the presence of a large context window (that is,
a large token length) [4]. OpenAI has reported that the context
window size is a limitation to applying GPT-4 to cybersecurity [4].

A large context involves many program entities, most unrelated
to the EIB, which however distract GPT-4 away from those indeed
containing the flaws, as observed in the prior research [52]. Such
problems were also observed in our measurement study, rendering
it less practical to directly use GPT-4 for EIB detection.
Our solution. The key to addressing the limitations of GPT-4 is to
reduce the distraction of the model, focusing its attention on truly
suspicious entities. To identify the locations of these entities, our
idea is to leverage a language model’s capability to “fill in the blank”,
that is, predicting the vacated program entity through an infilling
task [48]. Note that this cannot be done directly using GPT-4: given
the large number of entities in a program, directly running the
infilling task through the LLM could incur an unbearable monetary
cost. So our solution is to utilize a set of lightweight, open-source
LLMs to first go through these tokens, identifying suspicious ones
before handing them over to GPT-4 for an in-depth analysis.

Specifically, this analysis pipeline, which we call WitheredLeaf
(§3), works as follows. Given the source code of a program, our
approach first performs a static analysis to identify all its entities,
including variable names and function names. WitheredLeaf uti-
lizes CodeBERT [25], an extremely lightweight language model,
to execute the first infilling run: for each occurrence of a given
entity, our approach removes it from the program location, runs
CodeBERT on the program to predict it, and records all failed pre-
dictions. In this way, our approach quickly excludes the bug-free
code fragments. The program locations related to the failed predic-
tions, which are considered to be suspicious, are further examined
by Code Llama [48], a larger, more capable yet slower model. The
output of the LLM, including all program locations involving the en-
tities inconsistent with the predictions made by both local models,
is uploaded to GPT-4 for an in-depth EIB analysis. WitheredLeaf
applies a novel prompt engineering technique to focus GPT-4’s
attention to these suspicious locations to reduce both false postives
and false negatives.

The design of WitheredLeaf strikes a balance between the ac-
curacy of an EIB detection and the cost of detection, both in terms
of execution time and monetary expense. Our evaluation shows
that WitheredLeaf achieves a coverage of 62.1% and a reasonable
precision of 23.57% (a significant improvement from less than 1% for
direct application of GPT-4). Running the approach on 80 Python
and 74 C repositories with over 1,000 stars on GitHub, we discovered
93 new bugs from the former and 30 new bugs from the latter.
Contributions. We summarize our contributions as follows.
• Understanding LLMs’ Capabilities in EIB Detection. We report the
first comprehensive measurement study on various LLMs’ capabili-
ties to detect EIBs, shedding light on their potentials and limitations
in performing this task.
• Design and implementation of WitheredLeaf. Based upon the
understanding from our measurement study, WitheredLeaf, a cas-
caded pipeline to overcome the limitations of LLMs, is developed,
turning out to be both effective and efficient on various codebases.
We plan to make WitheredLeaf publicly available.
• New flaws discovered and fixed. WitheredLeaf discovered 123
unknown EIBs, in Python and C Github repositories with more

2

WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs

than 1,000 stars, 45% of which can be exploited to disrupt the pro-
gram’s normal operations. We have submitted 69 pull requests to
the relevant developers, out of which 27 have already been merged.
• New EIB dataset. As a part of this work, we curated a compre-
hensive dataset for the EIBs from historical bug fixes, new bugs
discovered by WitheredLeaf, and our synthetic dataset. We will
release this dataset to facilitate future research in this direction.

2 MEASUREMENT
In order to take the best advantage of LLMs for EIB detection, it
is crucial to first understand the performance of LLMs for this
specific task. In this section, we aim to comprehensively measure
the performance of different language models, which not only in-
cludes the powerful state-of-the-art GPT-4, but also other smaller
open-sourced models tailored for program code. We start with an
overview of different language models and show how they can be
utilized for EIB detection with a motivating example, then present
the detailed measurement of each model’s performance. We will
also discuss our findings and insights drawn from this study.

2.1 Language-Model based EIB Detection

Instruct Large Language Models. Represented by OpenAI’s GPT-
4 [4], these models are trained with enormous textual data crawled
from a wide range of sources, including program code, and fine-
tuned to follow the instructions in the prompt. Consequently, these
models can assist many different tasks (i.e., general-purpose). How-
ever, many such models are commercial and close-sourced (e.g.,
GPT-4), making the large-scale use and research expensive. More-
over, these models also suffer from the well-known “hallucination”
problem [4], leading to inaccurate responses.
Example of EIB Detection. As shown in Figure 1, upon receiving
the buggy code and the straightforward prompt, ChatGPT-4 can
promptly identify the EIB in its response. However, it is notable that
ChatGPT-4’s response also includes two false alarm EIB cases (e.g.,
that related to quote plus), despite the short length of the input
code. This suggests that directly applying GPT-4 on large codebases
for EIB detection could incur excessive false alarms, largely due to
the distraction problems [52].

Code-specific Language Models. Many language models have
been specifically trained for coding tasks (e.g., code generation and
completion) recently. These models share a similar transformer-
based model generating the probabilities of the tokens based on the
context. CodeBERT [25] is one early model trained as a bidirectional
encoder [20] and pre-trained on masked language modeling (MLM)
tasks, thus capable of code infilling (i.e., predict the code entity such
as a variable name at a certain location). More recent models like
Code Llama [48], StarCoder [35], Stable Code [44], and DeepSeek-
Coder [27], are unidirectional, decoder-only transformers, meaning
that they take sequential context and output the probabilities of
only “the next token” step by step. Nevertheless, benefiting from
the fill-in-the-middle (FIM) training method [10], these models are
also able to perform code-infilling tasks. Though not as powerful as
general-purpose LLMs, all aforementioned code language models
are open-source.

Example of EIB Detection. The code-infilling capability of the above
models can also support EIB detection. Specifically, we can compare
a specific code entity in the original code with a model’s “predicted”
entity at the same location (based on the context), if the two align,
then likely that code entity is correct, otherwise, an EIB may exist.
For instance, when we input the buggy code snippet in Figure 1
as a prompt into the Code Llama 7B [48] model, masking out the
query variable at line 911 and executing it to fill in a variable at the
same location, the model promptly suggested params as the output.
Such inconsistency successfully indicates the EIB.

Conclusion. We conclude that different language models, includ-
ing both smaller models dedicated for code and powerful general-
purpose models, are all capable of detecting EIB issues with different
methods. In the remainder of this section, we conduct an in-depth
and comprehensive measurement study to better understand the
capabilities of different language models.

2.2 Dataset Preparation
To our best knowledge, there is no available EIB dataset. We then cu-
rate a dataset ourselves, with data collected after the model’s knowl-
edge cut-off date to minimize memorization concerns. We gather
data from popular GitHub repositories (more than 1000 stars), to
ensure a high code quality. We specifically extract functions from
these repositories that have updates post the LLMs’ knowledge
cut-off date1. With these functions, we develop two datasets: (1)
𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 : includes functions of varying sizes measured in lines of
code (LOC), representing a broad spectrum of real-world code sce-
narios. (2)𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 : consists of functions intentionally modified
to include synthesized bugs, specifically through entity mutations.

To generate 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 , we implemented a process similar to
previous identifier mutation testing methodologies [47]. This pro-
cess begins with a comprehensive enumeration of all permissible
entities that could feasibly replace a specific entity within a given
code snippet. We then select pairs of entities for substitution based
on two main criteria: those with the minimal edit distance, to re-
flect subtle typographical errors a developer might inadvertently
make, and those with the smallest semantic discrepancy, to mirror
potential confusion a developer might encounter when differentiat-
ing between two similar-meaning entities. Although one function
could contain multiple such pairs satisfying the criteria, we always
only mutate one entity and thus only introduce one EIB at each
function. A subset of synthesized bugs in𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 is introduced
on functions in 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 .

2.3 GPT-4’s Performance on EIB Detection
To understand general-purpose LLMs’ EIB detection performance,
we choose GPT-4 as the test subject in our measurement due to its
superior performance [51, 52, 57] and comprehensive support for
JSON-formatted output by OpenAI’s API, which plays an important
role in automating bug detection tasks.

Prompt Design. Research indicates that in-context examples do
not significantly improve GPT-4’s accuracy in detecting vulnerabili-
ties [51]. Therefore, given the diversity of EIB patterns, we opted for
zero-shot prompts to avoid the influence of irrelevant examples [49].
1We use gpt-4-0125-preview with training data up to Dec. 2023.

3

Trovato and Tobin, et al.

Specifically, we leverage a template configuration approach to con-
struct a system prompt and multiple rounds of interactive prompts
to identify the EIB with associated information about the EIB, rep-
resented as a set of properties summarized in Table 1. Instead of
querying all properties (i.e., information) in a single prompt, our
template configuration enables us to distribute the queries for these
properties across different rounds in interactive sessions. This ap-
proach can enhance effectiveness: for example, some properties
allow GPT-4 to reflect about its previous results so that potential
false alarms can be filtered out (i.e., cross-examination). Based on
the properties required in each round, a prompt that queries these
properties can be automatically generated. We divide the properties
into two categories: (1) mandatory properties must occur in specific
rounds, and (2) selectable properties could occur in certain rounds
depending on the template configuration. Note that our multi-round
template design and the selection of various EIB-related properties
are based on multiple effective prompting techniques (e.g., Chain-of-
Thought, or CoT [56] and cross-examination [19]) to boost GPT-4’s
bug detection performance, also detailed in Table 1.

We showcase one example of template configuration in Figure 2,
which is very close to what we eventually adopt in WitheredLeaf.
The system prompt asks GPT-4 to act as a programming language
expert (i.e., persona adoption [41]) to help improve its performance.
In the first round, we ask GPT-4 to locate the potential buggy code
lines and provide explanations. The second round further cross-
validates and scrutinizes the identified potential EIBs to reduce
false alarms. We additionally incorporate three selectable proper-
ties in this round: self-evaluated categorization, fix proposal, and
merely fixable predicate. The former asks GPT-4 to classify the bug
for a better confirmation and understanding, the latter properties
prompt it to generate a bug fix (typically an identifier replacement
at the AST leaf node due to the nature of EIB), which serves as
a step in CoT that helps LLM determine if the bug can be merely
fixed and helps researchers develop bug patches. As shown in our
later measurement results, this well-rounded property combination
enhances GPT-4’s performance in EIB detection. Please refer to
Appendix §A for details of the prompt templates in Table 2.

Measurement Results. To understand the performance of differ-
ent prompt templates in terms of recall, specificity, and monetary
cost, we first configure a wide range of representative templates
featuring different numbers of prompt rounds and sets of selectable
properties. Measured templates are listed in Table 2, where the digits
represent the order of the prompt round and the alphabet abbrevia-
tion (see Table 1) stands for selectable properties involved in certain
rounds. For instance, the template in Figure 2 is denoted as 1/2FMCa.
Although each function in 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 contains only one known
EIB, GPT-4 is capable of identifying multiple EIBs within a single
function. For this reason, we employ two statistical approaches:
1) regarding each function as a single report (i.e., function-wise),
and 2) regarding each bug as a single report (i.e., bug-wise). We
then test all template configurations on subsets of 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑

and 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 . Due to a limited budget, we randomly sampled 66
functions from each of these datasets.

With a simple single-round vanilla template (labeled “1”), we note
a high FP rate on 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 and high FP number on 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ,

System: You’re a Python expert. Your job is to inspect if the code contains
any semantic bugs. Semantic bugs, also known as semantic inconsis-
tencies or logical errors, are a type of bug that occurs when the code
is syntactically correct but does not behave as intended or produces
incorrect results. These bugs arise from mismatches between the pro-
grammer’s intended logic and the actual implementation in the code,
where incorrect variable/method name usage or assignment can lead to
bugs or vulnerabilities in the program. Here are some requirements:

• Assume the code is syntactically correct, and input parameters
to the functions are well-formed and valid.

• Focus solely on detecting semantic bugs, and ignore other prob-
lems (e.g., undefined symbols).

• Output in valid JSON format.

Round 1 Properties: code line + explanation
Round 1 Prompt: {code} Output exact lines of semantic bugs and
concise explanations of the bugs.
Round 2 Properties: code line* + explanation* + fixed line +
merely fixable + category
Round 2 Prompt: Inspect these bugs, excluding 1. incorrect or unlikely
bugs; 2. bugs caused by undefined symbols; 3. non-semantic bugs. The
left bugs only break the intended functionality or lead to vulnerabilities.
Answer if the bugs can be fixed by merely changing a variable/method
name and fix them. Also, classify this bug into these categories using the
code and previous contexts: Security Vulnerability, Logic Bug, Enhance-
ment, Unexpected Behavior, Symbol Not Defined, Module Not Imported,
Bad Smell, Not a Bug, or Others. Note that the snippet is from popular
repositories and runs, so correct symbols not defined in the snippet are
defined at other places, which is not Logic Bug. If you assign Others
category, explicitly name the category.

Figure 2: A two-round prompt template with system prompt.

predominantly attributed to hallucination, as verified through se-
lective manual inspections. First, we want to understand the effec-
tiveness of different properties used as filters (see Table 1). We find
that the merely fixable property is effective in filtering out non-
EIB cases, which cannot be simply fixed by changing a single code
entity. This filtering increases the specificity by 25%-72%, at the cost
of a slight increase in FNs. Exclude candidates whose category
∉ {Logic Bug, Security Vulnerability, Unexpected behavior, Bad
Smell} also effectively increases the specificity. However, using
priority != high as a filtering criterion, although reducing FPs,
also leads to missing of TP cases, which is considered worse than
the category filter. This might be caused by GPT-4’s inadequate
grasp of the bug severity and consequences.

On the other hand, we analyze the effect of additional prompting
rounds. Introducing the second round prompt increases the recall by
approximately 4% from 1FM to 1/2FM and specificity by 32%-46%,
demonstrating cross-examination can eliminate many FP cases
in EIB detection. Notably, adding the third prompt round turns
out to be less effective in both specificity, recall, and monetary
cost (i.e., extra rounds lead to more tokens). This can be attributed
to unnecessary cross-examination, as the ground truth bugs are
detected but filtered out. The root cause might be distraction [52],

4

WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs

Table 1: Mandatory and selectable requested properties in JSON-formatted tool calling.

Property Ab. Cat. Description Purpose Prompt Tec.
code line Co 1M. the exact line of code with semantic bug locating the bug /
explanation E 1M. a concise explanation of this bug reasoning about of the bug /
code line* Co* 23M. the original (unfixed) code line with semantic bug,

same as in previous round
locating the bug in follow-up rounds /

explanation* E* 23M. a concise explanation of this bug and your reasoning reasoning about of the bug in follow-up rounds /
merely fixable M 12S. the bug can be fixed by merely changing a vari-

able/method name to another one
filtering out bugs that does not occur on a single
AST node

Cross-exam.

fixed line F 12S. the line with the bug fixed CoT for merely fixable and helping fix CoT
category Ca 23S. the category of this bug; be cautious when answering

Security Vulnerability and Logic Bug
filtering out non-semantic bugs Cross-exam.

priority P 23S. the priority level of this bug: high/medium/low filtering out less interesting bugs Cross-exam.
Ab. represents the abbreviation of the property; Cat. represents the category of the property: in round X, it is mandatory (M.) or selectable (S.)

in which some irrelevant information in the first and second rounds
distracts the LLM. Thus, two-round prompting is enough.

Conclusion. Based on our measurement results, we draw two
major conclusions.
(1) Template Choice.We decide that the template denoted by 1/2FMCa
(detailed in Figure 2) has the best overall performance, which is
eventually adopted by WitheredLeaf with suspicious lines high-
lighted. We elaborate on the details of the highlighting mechanism
in §3.4
(2) Limitations of GPT-4 on EIB Detection. From our study, GPT-4
shows some potential in EIB detection, however, its performance
is still far from practical. A significant portion of the EIBs (26 out
of 66) is missed even by the most performant “1/2FMCa” template.
Moreover, EIBs in real-world code can be much rarer than EIBs in
𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 . Demonstrated via specificity evaluated on 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ,
19 out of 66 FP reports remain after filtering, resulting in a high
false positive rate if we naively let GPT-4 scan the whole codebase.

2.4 Code Language Models on EIB Detection
As explained in §2.1, the code infilling capability of smaller code
language models can also be utilized for EIB detection (e.g., dis-
crepancies between “predicted” and actual code entities indicate
potential EIBs). In this part, we measure various code language mod-
els’ EIB detection performance. Although general-purpose LLMs
like GPT-4 are also capable of code infilling, the associated mon-
etary cost could be very high for large codebases. For example,
infilling every entity for a function of 40 LOC costs roughly $2.1 for
GPT-4, and the cost increases quadratically with code size. We thus
focus on open-source code language models in this measurement.

Hardware and Parameters. We conduct the experiments on a
Linux server with two AMD EPYC 9124 CPUs and one NVIDIA
H100 GPU, with the temperature set to 0 for all models. Among our
tested models, CodeBERT operates on the CPU, while the others
utilize the GPU.

Consistency and Efficiency of Code Infilling. Code infilling is
the backbone capability of code language models enabling them
to detect EIBs, we thus first measure this basic ability of various
code models. At a high level, we mask each variable and method
call name entity, one at a time, in the code from 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 and

then let various code models fill in the “blank spaces”, gauging
whether they can correctly “recover” the masked code entities
(i.e., consistency) and how fast the infilling can be performed (i.e.,
efficiency). To explore the impact of context length (e.g., the amount
of code surrounding the “blank space” available to code models)
on code infilling performance, our measurement tests 6 different
buckets of context lengths (listed in Table 3).

Our results are detailed in Table 3. Overall, open-source code
models consistently fill in the correct code entities in more than
80% cases, with Deepseek-Coder 1.3B and CodeBERT being excep-
tions. Regarding the efficiency, most models take longer to process
extended contexts, except for CodeBERT, as its token limitation is
512 and the input is truncated. For the impact of context length
on consistency, in general, we only observe a marginal influence
for most models. However, for Code Llama and Stablecode, mini-
mal context (0-20 LOC) results in consistency deterioration. Upon
further analysis, we find these models struggle to generate con-
sistent tokens when the masked original tokens appear only once
in the context - a situation more prevalent with smaller contexts.
We also note a slight decline in consistency in context length of
40-80 LOC. Longer functions might provide more context or redun-
dancy, helping the model to better understand the overall purpose
and functionality of the code. In contrast, mid-length functions
might provide insufficient context for the model to accurately infer
the missing information, while shorter functions might be simple
enough that each line carries more predictive weight. Importantly,
Code Llama 13B encounters memory limitations for large context
lengths of 320-640 LOC, suggesting that models with over 13B pa-
rameters may not be suitable for single GPU setups on extensive
contexts - the higher hardware requirement makes it more difficult
to deploy.

Recall of Code Infilling. Models with over 2 billion parameters
display a promising capability to generate consistent tokens accord-
ing to our previous measurement (Table 3). We then proceed to
test their capability of recalling known EIBs, following the method
explained in §2.1. For this purpose, we use a randomly selected
subset of 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 , which includes 1,383 artificially introduced
EIBs in the functions contained in 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 . Specifically, we let
the code models to infilling: (1) the locations of the buggy code
entities, seeing whether there are any discrepancies (e.g., indicating
EIBs), and (2) the other locations on the same line as the buggy

5

Trovato and Tobin, et al.

Table 2: Bug detection on GPT-4 with different prompt templates.

Ground Truth Synthesized Dataset; Contains One Bug Sampled Dataset

Template Function-wise Bug-wise Total Cost Function-wise Bug-wise Total CostTP F. FN U. FN Rec. TP FP FN TN FP TN Spe. FP TN Spe.
1 38 0 28 57.6 43 228 0 0 1.33$ 66 0 0.0 323 0 0.0 1.43$
1FM 37 1 28 56.1 37 47 3 62 1.28$ 64 2 3.0 143 49 25.5 1.41$
1/2FM 40 2 24 60.6 42 38 9 177 3.24$ 45 21 31.8 91 234 72.0 3.80$
1/2FM/3P 18 22 26 27.3 18 14 34 206 5.38$ 28 38 57.6 50 276 84.7 6.11$
1/2FM/3Ca 22 16 28 33.3 24 25 35 219 5.47$ 31 35 53.0 54 302 84.8 6.47$
1/2FMCa 39 1 26 59.1 43 18 3 183 3.23$ 19 47 71.2 40 268 87.0 3.77$
1/2FMCa w/ HL 55 9 2 83.3 58 11 14 116 3.11$ 32 34 51.5 47 195 80.6 3.36$

TP = True Positives; TN = True Negative; FP = False Positives; FN = False Negatives; F.FN = Filtered FN; U.FN = Unfound FN; Rec. = Recall Percentage; Spe. =
Specificity Percentage. We set the temperature parameter to 0 in this experiment. We assume all functions are free of EIB in the sampled dataset, as the

density of EIB is very low in real-world code. The abbreviations used in the templates can be found in Table 1. The setting 1/2FMCa w/ HL is used in
WitheredLeaf, highlighting the line of EIB with other three randomly selected lines in the code (detailed in §3.4).

Table 3: Language models’ infilling consistency on the sampled dataset of various context lengths.

Models Size 0-20 LOC 20-40 LOC 40-80 LOC 80-160 LOC 160-320 LOC 320-640 LOC Avg. Cons.Cons. Speed Cons. Speed Cons. Speed Cons. Speed Cons. Speed Cons. Speed
Code Llama 7B 83.4 243 88.0 431 83.7 647 87.4 1362 85.6 1689 86.0 6236 85.7
Code Llama 13B 85.2 360 92.1 685 87.6 966 88.5 1710 86.7 2750 OOM 88.2
Deepseek 1.3B 56.7 311 42.6 341 36.8 333 61.2 333 65.8 506 74.8 2066 56.3
Deepseek 6.7B 83.8 214 88.0 332 76.9 524 84.9 896 80.5 1550 76.3 2736 81.8
Stablecode 3B 83.9 148 88.6 127 81.6 176 86.5 168 84.3 216 83.9 530 84.8
CodeBERT 125M 31.1 202 31.2 242 23.2 216 23.1 207 24.4 202 17.0 261 25.0
Consistency is abbreviated as Cons., and written in percentage. Speed represents the average generation speed for each identifier in milliseconds. 100

functions are sampled for LOC sizes of 0-20, 20-40, and 40-80 LOC with 1703, 4713, and 9278 infilling tasks, respectively; 50 functions for 80-160 LOC with
7499 FIM tasks; 20 functions for 160-320 LOC with 5287 FIM tasks; 10 functions for 320-640 LOC with 7319 FIM tasks.

Table 4: Lanugage models’ infilling recall and consistency on
the synthesized dataset.

Model Size Recall on EIB Cons. of Others
Code Llama 7B 99.0 79.3
Code Llama 13B 99.4 81.4
Deepseek 1.3B 97.8 46.4
Deepseek 6.7B 99.0 76.3
Stablecode 3B 98.8 78.3
CodeBERT 125M 90.0 34.0

location, to assess the impact of EIB on code infilling for nearby
code locations. Our measurement results are depicted in Table 4,
as seen, nearly all models, except CodeBERT, demonstrate a high
recall for known EIBs, suggesting the feasibility of utilizing code
models to hunt for EIBs.

For nearby code locations on the same line of the EIB sites,
interestingly, we observe 6%-7% drops in the consistency (the “Cons.
of Others” column in Table 4) of infilling tasks for all models except
CodeBERT. This phenomenon indicates that EIB can “interfere” with
the infilling task, which has been utilized to enhance the robustness
of EIB detection, as discrepancies are observable not only at the
exact locations of the bugs but also in nearby areas. The related
design details are presented in §3.4. A potential explanation for this
phenomenon is that EIBs increase the perplexity, leading to larger
uncertainty in token prediction [55].

Conclusion. We highlight major conclusions from our study:
(1) Effective True Negative Filtering. As mentioned, if the code mod-
els’ predicted code entity is consistent with the original one, we
deem the non-existence of EIBs for that entity. The high consistency
(higher than 80%) on the basically EIB-free 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 of various
code models (Table 3) thus suggests that they can effectively fil-
ter out more than 80% EIB-free code entities (i.e., True Negatives).
Moreover, this filtering only introduces very few false negatives - as
shown in Table 4, the vast majority (e.g., at least 97.8% for all models
except CodeBERT) of true EIB cases will still trigger inconsistencies.
These results highlight the values of code models as effective true
negative filters.
(2) Limitations of Code Models on EIB Detection. Despite that code
models can filter out a large number of true negatives, the filtered
results could still contain lots of false alarms. For instance, there are
10% - 20% inconsistencies (e.g., suspicious EIBs) in Table 3, but the
real EIBs might only take less than 1%, yielding a high false positive
rate. The primary reason is that code models’ token generation is
largely uncontrolled, as they are not exclusively trained to generate
specific entities in the FIM task. Instead, they inconsistently produce
characters like pound signs (to start a Python comment), spaces,
and parentheses, even when asked to infill a variable name. These
issues make it difficult to detect EIBs solely relying on code models.

6

WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs

Figure 3: Pipeline of WitheredLeaf.

3 DESIGN AND IMPLEMENTATION
Inspired by our measurement in §2, we present WitheredLeaf, an
automatic system to effectively and efficiently detect EIBs in various
codebases. In this section, we detail its design and implementation.

3.1 Overview
Our measurement study (§2) reveals that, though both general-
purpose LLMs (e.g., GPT-4) and smaller code language models show
some potentials in EIB detection, each of them has its own weak-
nesses. Fortunately, these weaknesses can be largely mitigated with
the synergy of different models. For example, the high expenses and
false positive rate of GPT-4 can be alleviated if we use a smaller and
cheaper model to filter out most EIB-free code locations in advance
and provide precise locations of suspicious EIBs. Similarly, the ex-
cessive inconsistencies identified by code language models can
also be further verified by the powerful GPT-4. Based on this core
idea, WitheredLeaf employs a cascaded approach that integrates
different models in a pipeline to achieve an optimal result.

WitheredLeaf’s Pipeline. We depict WitheredLeaf’s pipeline in
Figure 3. Initially, the code undergoes processing by a static analyzer
to compile a comprehensive list of all code entities subject to EIB de-
tection. Then, WitheredLeaf transforms this list into code-infilling
tasks, undertaken by locally deployed small models. These models
sequentially filter out most EIB-free code locations. WitheredLeaf
then automatically prompts GPT-4 to investigate and verify the
remaining suspicious EIB sites. GPT-4’s responses will undergo a
secondary filtration process and then be compiled into bug reports
for further manual inspection.

This cascaded design eliminates most true negative cases while
keeping most true positive cases (as discussed in §2), thereby pre-
venting GPT-4 from being overwhelmed and significantly reducing
the false positive rate (§3.2). For local models, we develop schemes
to control token generation (§3.3), which enhances WitheredLeaf
’s specificity and true negative filtering. Finally, WitheredLeaf pre-
cisely identifies suspicious EIB locations (with the help of code
models) and feeds them to GPT-4, which compels GPT-4 to thor-
oughly reason about suspicious code lines (i.e., highlight), thereby
reducing the false negative rate (§3.4).

3.2 Cascaded Detection
As indicated by the measurement results in §2, achieving high
coverage, precision, and speed simultaneously is challenging. Our
basic idea is to integrate different models in a cascaded design
to achieve a desirable tradeoff of the aforementioned aspects, the

problem then becomes which exact models we should choose for
each pipeline stage. We reason about our choices in this section.

Problem Formalization. We assume the pipeline has 𝑖 stages,
each of which is equipped with a language model. We use 𝑝𝑖 to
denote the true negative rate (i.e., specificity) of the model at stage
𝑖 , 𝑞𝑖 the true positive rate (i.e., recall), and 𝑡𝑖 the throughput (i.e.,
execution speed). Let 𝑁𝑖 represent the number of potential EIB
cases that need to be processed at stage 𝑖 , and 𝜖𝑖 represents the
ratio of the number of actual EIB instances relative to 𝑁𝑖 . We can
derive the number of true/false positives/negatives at each stage:

𝑁𝑇𝑁,𝑖 = 𝑁𝑖𝑝𝑖 (1 − 𝜖𝑖) 𝑁𝑇𝑃,𝑖 = 𝑁𝑖𝑞𝑖𝜖𝑖

𝑁𝐹𝑃,𝑖 = 𝑁𝑖 (1 − 𝑝𝑖) (1 − 𝜖𝑖) 𝑁𝐹𝑁,𝑖 = 𝑁𝑖 (1 − 𝑞𝑖)𝜖𝑖
After stage 𝑖 , true negatives 𝑁𝑇𝑁,𝑖 are correctly filtered out,

while false negatives 𝑁𝐹𝑁,𝑖 incorrectly. True and false positives
are escalated to the next stage (𝑁𝑖+1 = 𝑁𝑇𝑃,𝑖 + 𝑁𝐹𝑃,𝑖). We can
then define the maximum number of missed bugs 𝑀 of the entire
pipeline and the total execution time𝑇 (assuming 𝑛 stages in total):

𝑀 =

𝑛∑︁
𝑖=0

𝑁𝑖 (1 − 𝑞𝑖)𝜖𝑖 𝑇 =

𝑛∑︁
𝑖=0

𝑁𝑖𝑡𝑖

Additionally, the true positive proportion of stage 𝑖 + 1 can also
be derived from metrics of the previous stage 𝑖:

𝜖𝑖+1 =
𝑁𝑇𝑃,𝑖

𝑁𝑇𝑃,𝑖 + 𝑁𝐹𝑃,𝑖
=

𝑞𝑖𝜖𝑖

1 − 𝑝𝑖 − 𝜖𝑖 + (𝑝𝑖 + 𝑞𝑖)𝜖𝑖
For an 𝑛-stage pipeline, the aggregated precision of all models

before the final stage is then 𝜖𝑛 . For the final stage 𝑛, WitheredLeaf
adopts powerful state-of-the-art GPT-4, which will process 𝑁𝑛 EIB
candidates, with the specificity and recall as 𝑝𝑛 and 𝑞𝑛 , respectively.

Next, we formulate the total cost of the detection pipeline, which
includes the cost of computing resources 𝐶𝑐𝑜𝑚𝑝 per time unit, the
cost per API invocation 𝐶𝑎𝑝𝑖 of commercial LLMs like GPT-4, and
the penalties associated with missed bugs 𝐶𝑚𝑖𝑠𝑠 (e.g., missed vul-
nerabilities can cause significant financial loss) and false alarms
𝐶𝑐ℎ𝑒𝑐𝑘 (e.g., extra manual reviewing efforts):

𝐶 = 𝐶𝑎𝑝𝑖𝑁𝑛 +𝐶𝑐𝑜𝑚𝑝𝑇 +𝐶𝑚𝑖𝑠𝑠𝑀
′ +𝐶𝑐ℎ𝑒𝑐𝑘𝑁 ′𝐹𝑃

Here, 𝑀′ represents the final count of missed bugs, and 𝑁 ′
𝐹𝑃

denotes the final count of false positive cases for the entire pipeline.
While the values of 𝐶𝑎𝑝𝑖 and 𝐶𝑐𝑜𝑚𝑝 can be obtained from service
providers,𝐶𝑚𝑖𝑠𝑠 and𝐶𝑐ℎ𝑒𝑐𝑘 are user-configurable variables, depend-
ing on different needs and priorities. Given this cost formalization,
the model selection problem for pipeline stages can be transformed
to an optimization problem aiming to minimize the total cost.

WitheredLeaf’s Model Selection. As an experimental project,
we weigh more on the bug coverage (i.e., fewer false negatives),
so we would set a higher 𝐶𝑚𝑖𝑠𝑠 and put a focus on reducing 𝑀′.
As indicated by the formula of 𝑀 , it increases as more pipeline
stages are added. In other words, additional pipeline stages can
enhance the precision, but at the cost of more missed bugs and
longer execution time. For example, assuming 𝜖0 = 0.002, 𝑝𝑖 = 0.8
and 𝑞𝑖 = 0.9, maximally 9.9% of EIBs evades after the first local LLM,

7

Trovato and Tobin, et al.

18.9% evades after the second, 27.1% after the third, while reaching
to 34.4% with the introduction of the fourth stage. Therefore, to
maximize WitheredLeaf’s capability to capture EIBs, we fix the
number of cascaded local models to two, with one GPT-4 stage.

We expect roughly 20% precision on the final report, which
aligns with previous work on inconsistency bug detection [7] and is
acceptable by developer community [8]. However, calculating with
the metrics measured previously in §2, such a goal is not practical
without improvements on the specificity of current models. To
address this problem, we develop techniques to control the token
generation of code langauge models and subsequently improve their
specificity, with neglectable loss of recall (§3.3). Finally, considering
the execution time and above metrics, we select CodeBERT, as
the first local model to pre-filter negative EIBs and Code Llama
7B as the second local model. More details on their metrics and
calculations are presented in §4.1.

3.3 Controlled Token Generation
As measured in §2.4, local LLMs are not generating tokens in a
controlled manner, leading to a large number of inconsistencies
in infilling tasks for non-EIB entities. The major causes of such
inconsistencies are different for different models. Specifically, the
encoder-based model (i.e., CodeBERT) is unaware of the actual
length of the entity in infilling, while decoder-only models (e.g.,
Code Llama) are unaware of what kind of entity should be gener-
ated. The high-level idea is to inspect the probabilities of generated
tokens, and we propose two algorithms for these models.

Static Analysis for Infilling Task Preparation. An initial step
involved the construction of input infilling tasks to the models. Each
infilling task is constituted by an altered function from the code
snippet for detection, in which one of the entities in the function
is replaced by a designated token indicating the infilling position.
Such entities are derived from abstract syntax trees (AST) leaf nodes.
Associated information, such as substituted original tokens and the
entity type, will be used to guide token generation.

A function may contain a number of entities, introducing un-
necessary overhead to subsequent tasks. In order to expedite the
detection process without detriment to precision, certain heuristic
approaches were employed. Currently, WitheredLeaf targets EIBs
on variable and function names. To exclude entities with a minimal
likelihood of containing bugs, it skips: 1) function names in their
declarations; 2) declarations of variables, including formal argu-
ments; and 3) imported library names (e.g., torch in Python). These
entities typically cannot incur EIBs, as related errors are mostly
caught in compilers or interpreters.

CodeBERT. By design, the CodeBERT model aims to generate a
fixed number of tokens in the code. An entity name usually contains
more than one token. For example, ”params quoted” contains four
tokens: params, , qu, and oted. By evaluating the 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 , we
find a feasible search range that can cover 91.2% cases.

Given the entity’s potential token lengths range, we can use
CodeBERT to check the consistency of the original tokens, as shown
in the Algorithm 1. For each possible token length, CodeBERT will
generate an entity candidate and its corresponding score. Since
CodeBERT serves as the pre-filter, it is crucial to minimize the

Algorithm 1: CodeBERT-based Consistency Check
Input: maskedCode, originalTokens, searchRange, tokenThreshold,

consistencyThreshold
Output: consistencyFlag
Initialize candidateScores as empty map ;
originalLength← originalTokens.tokensLength;
tokensLengthsRange← lengthRange(originalLength, searchRange);
foreach tokensLength in tokensLengthsRange do

entity, score← CodeBERTPredict(maskedCode, tokensLength) ;
/* entity.tokensLength equals to tokensLength */

if score <tokenThreshold then
skip to the next iteration;

candidateScores[entity]← score ;

if originalTokens in candidateScores then
foreach entity, score in candidateScores do

if score > consistencyThreshold and entity ≠ originalTokens
then

return False;
return True;

return False;

false negative rate. Therefore, we select a 𝑡𝑜𝑘𝑒𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ; if the
returned entity candidate’s score falls below this threshold, we skip
this token length and proceed to the next iteration. In the end, if
all of the possible context lengths are skipped, we consider it as
unpredictable for CodeBERT and escalate it to the next component.
For the inconsistency check, if the original entity name is the only
entity name generated by CodeBERT, we consider this as semantic
consistency, and will not escalate any report to the next component.
If there are multiple entity names in the candidates list and the
original entity name is included, we check the score of each candi-
date. Only if no candidate other than the original entity name has a
confidence score higher than consistencyThreshold, we consider this
as semantic consistency. Besides, if the original entity name does
not occur in the entity candidates list, we consider this as semantic
inconsistency.

Decoder-only Models. Token generation for decoder-only models
like Code Llama is different from CodeBERT, as these models are
not aware of the number of tokens to generate, and the generation
stops till it generates a special end-of-sequence token. Intuitively,
one way to enhance the specificity is to inspect the probabilities
of generated tokens and regard a negative case if the original to-
kens are highly probable, if not the most probable. However, these
models generate tokens sequentially, conditioned on the previous
generation step, which renders inspection of the probabilities of a
token meaningless if the model has already generated tokens in-
consistent with the original ones. Thus, if the first generated token
is “invalid”, the whole generation process will follow this invalid
direction. For example, when a variable name is masked at the be-
ginning of the function body, the model usually begins to generate
a documentation string of the function (i.e.,, the token ”””), leading
subsequent generation following a documentation string rather
than the variable name.

Therefore, WitheredLeaf needs to harness the generation, en-
suring the generated tokens constitute a syntactically valid entity.
For example, variable names in Python can only contain capital

8

WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs

Algorithm 2: Consistency Check for Decoder-only Models
Input: maskedCode, originalTokens, probThresh, rankThresh,
Output: consistencyFlag
rankSum← 0;
generatedTokens, leftTokens← [], originalTokens;
while leftTokens.length >0 do

nextTokenProbList← top k(CodeLlamaPredict(maskedCode,
generatedTokens));

foreach token, prob in nextTokenProbList do
if validateToken(token) then

if leftTokens.startswith(token) then
leftTokens.remove(token)
generatedTokens.append(Token)
break to generate the next token;

else
if prob >probThresh then

return False;
rankSum← rankSum + 1;

else
continue to the next iteration;

if rankSum >rankThresh then
return False;

return True;

and lower English letters, underscore, and non-beginning digits.
The high-level idea of our approach is to select the tokens guided
by the original tokens, and inspect the probabilities to judge the
consistency. The detailed algorithm is demonstrated in Algorithm 2.

WitheredLeaf generates tokens one by one, and fixes the token
from the original tokens before generating the next one to ensure
the generation strictly follows the original tokens. It inspects the
probabilities of the generated token candidates in each generation
step. For each generated token, WitheredLeaf first checks if the
token is syntactically valid via validateToken(). Then, if the leftTokens
starts with the generated token, meaning the generation follows the
original tokens, it updates the variable and continues to generate
the next token. Otherwise, the generated token is penalized for
not being consistent with the original ones. In a case where the
probability prob is greater than a threshold 𝑝𝑟𝑜𝑏𝑇ℎ𝑟𝑒𝑠ℎ, meaning
that there is another more probably valid token different from the
original tokens, the check directly returns False. It adds rankSum to
1, penalizing original tokens not being the most probable generated
token. By comparing rankSum with a threshold rankThresh, the
algorithm determines the consistency. Unlike CodeBERT, which is
operated to lower the false negative rate, Code Llama is used as a
post-filter and it is optimized to reduce false positive rate. Therefore,
the thresholds are tuned to return Ture in more cases.

3.4 Inconsistent Position Highlighting
As measured in §2.3, GPT-4 can produce a number of false nega-
tives, especially in a longer context. A previous study also notice
the pattern and attributed it to distraction in long context [52].
Thus, we design a prompt engineering technique, forcing GPT-4 to
attend back on suspicious positions. Such positions are collected
from the inconsistent positions determined by local models. In addi-
tion to the existing prompt, WitheredLeaf instructs GPT-4: “Also,
pay additional attention to these lines: {suspicious lines}”. The

whole line, rather than the suspicious entity, is highlighted since
the observation in §2.4 indicates the consistency of the infilling
task conducted on the same line is negatively affected. Thus, the
inconsistency detected may imply an EIB at another entity located
on the same line.

3.5 Implementation
WitheredLeaf relies on tree-sitter [3] to parse the source code,
since it supports multiple programming languages.

CodeBERT2. CodeBERT is employed as a pre-filter in WitheredLeaf
due to its rapid processing and compact size, allowing it to run on
the CPU concurrently with other components utilizing the GPU
and enhancing overall system efficiency. One limitation is its max
token length is 512, so the masked code is truncated to fit into this
limitation. Since CodeBERT fill each masked token independently,
in CodeBERTPredict, we concatenates tokens in each token position
to generate the predicted entity name. Every confidence score is
a float number ranging from zero to one. The generated concate-
nated entity name’s score is the product of the scores of each token.
For the parameter selection, after evaluating the 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 , we
selected searchRange, tokenThreshold and consistencyThreshold that
effectively achieve a high recall rate, while maintaining a reasonably
low false positive rate (see Table 5).

StableCode. StableCode is employed as an alternative pre-filter
local model. It was released after our experiment with CodeBERT
on Python code was finished, so we used it experimentally on C.

Code Llama. Code Llama is employed as the post-filter local model.
Code Llama 7B base model is selected owing to its better perfor-
mance and stability, as the 13B model occasionally results in out-of-
memory errors. Although Meta provides 34B and 70B models, they
are not shipped with FIM capability. We implement Algorithm 2
using PyTorch library [9]. We selected rankThresh and probThresh
based on the evaluation of 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 to achieve high specificity,
with a minor increase of false negative rate (see §4.1).

GPT-4. GPT-4 is used as the state-of-the-art LLM to detect EIBs fol-
lowing the prompts. We use the prompt template shown in Figure 2
with suspicious line highlighted. New models such as Claude 3 and
Llama 3 have been recently released, claiming to be new state-of-
the-art. However, their APIs currently only offer limited support
to JSON output, which can hardly be integrated into an automated
detection pipeline. We leave the measurement and integration of
these models as future work.

4 EVALUATION
In this section, we first conduct controlled experiments on our pre-
pared datasets (§2.2). This is to (1) evaluate the effectiveness of indi-
vidual components in our design, and (2) compare WitheredLeaf
with existing detectors. After that, we evaluate WitheredLeaf on
real-world code repositories and demonstrate its ability to discover
new bugs. The experiments are conducted on a Ubuntu 22.4 Linux
server with two AMD EPYC 9124 CPUs, one NVIDIA H100 GPU,
and 384GB memory.

2We employ CodeBERT (MLM) on to verify consistency.
9

Trovato and Tobin, et al.

4.1 Controlled Experiments
4.1.1 Individual Components. First, to access the effectiveness of
our design, we evaluate the performance of individual components
in the pipeline. Similar to the experiments in §2.4 with𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 and
𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 , we assess the recall and consistency of code models,
but with controlled token generation algorithms as detailed in §3.3.
The evaluation also helps us to establish the algorithm parameters,
which will be used in real-world EIB detection tasks in §4.2.

CodeBERT. We explored various configurations of the parame-
ters searchRange, tokenThreshold and consistencyThreshold in Algo-
rithm 1 to evaluate CodeBERT’s performance, as shown in Table 5.
A higher searchRange enhances recall but increases the running
time. Similarly, tokenThreshold is positively correlated with recall;
however, higher values significantly decrease the consistency rate.
Conversely, consistencyThreshold is inversely proportional to recall
and directly affects the consistency rate. Considering the computa-
tional costs, and the recall, we selected 2 as the searchRange and
0.8 as consistencyThreshold to optimally balance recall with a sat-
isfactory consistency rate. Additionally, we fixed the searchRange
and consistencyThreshold to evaluates tokenThreshold as shown in
Table 6, and finally, we selected 0.1 as the tokenThreshold.

Code Llama. To evaluate the effectiveness of controlled token
generation proposed in Algorithm 2, we test the infilling task with
different threshold parameters on Code Llama 7B model. The scores
are presented in Table 7 in percentage. Our algorithm can roughly
enhance the consistency by 5%, with the cost of 9% reduction on
recall. This is expected, as tuning towards enhancing consistency
results in reduced recall. We believe this is a worthy tradeoff, as
EIBs are very rare in real-world code - a higher consistency will
help eliminate more true negative cases and improve the overall
precision. Therefore, we select the parameters of probThresh = 0.90
and rankThresh = 3.

GPT-4. For the additional prompt template highlighting suspicious
bugs, the experiment is identical to §2.3, and the results are listed
in Table 2 along with the measurement results. In the template, the
ground truth EIB line, with three additional randomly selected lines
are highlighted in the prompt. This mechanism significantly en-
hances the number of EIBs being detected by 24% on 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑

compared to the best prompt template without highlighting, suc-
cessfully reducing the FNs potentially caused by distraction. How-
ever, such a mechanism is not perfect, as it can incur more FPs (by
20% function-wise and by 7% bug-wise) if the line with EIB is not
properly highlighted, as accessed on 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 . We believe this is
a worthy tradeoff, as the density of EIBs reaches a high level at
this stage. Also, please note that highlighting is only made possible
with the local models.

4.1.2 Whole System. To assess the performance of our bug detec-
tion system in a controlled setting, we evaluate it on our synthesized
dataset, 𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒 and sampled dataset, 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 . The purpose
of this evaluation is to measure our system’s ability to detect these
artificially generated bugs, which resemble real-world bugs caused
by incorrect identifier usage. Therefore, we can access the recall
and specificity of our system.

In 𝐷𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , WitheredLeaf reported 57 out of 100 functions
have EIBs, resulting in 43% specificity. In𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒 , WitheredLeaf
identified 41 bugs from the 66 samples. Moreover, our system
demonstrates superior monetary efficiency: 730K tokens are trans-
mitted in total, incurring a cost of 9.92$ on GPT-4 API.

Using the formulas in §3.2 and the metrics of recall and consis-
tency in bold in Table 5, Table 7, and Table 2, we could theoretically
estimate the metrics of the whole system. As consistency is a lower-
bound estimation of specificity, we derive the lower-bound recall
and precision as 67.8% and 14.5%, respectively, when assuming
𝜖0 = 0.002. Such theoretical values are on par with the experi-
mental results on our datasets and in real-world detection (§4.2).
Notably, when solely using GPT-4 as an EIB detector, the precision
is as low as 0.8%. Besides, WitheredLeaf can effectively amplify
the density of EIB by at least 70 times, making them detectable.

4.1.3 Comparison with Previous Work. Mansour et al. [45] intro-
duced DeepBugs, a machine learning-based approach to name-
based bug detection. While DeepBugs relies on an extensive dataset
to train its classifier model, it inherently fails to identify bug types
not present in the dataset. This limitation confines DeepBugs to
detect only the three types of name-based bugs detailed in their
paper. In a similar vein, Michael et al. [7] introduced FICS, a method
clustering AST of all functions in a repository and reporting the
outliers as potential bugs. As they noted, FICS eliminates all vari-
able names when processing the AST, which precludes its ability to
detect the EIB discussed in this paper. Moreover, their methodology
implies a basic assumption: to detect a bug, there must be at least
another “correct” function with a similar AST. Such an assumption
is a bit too strong, especially for small code repositories, as simi-
lar ASTs may not exist for most functions. Unlike these systems,
WitheredLeaf requires no training or fine-tuning.

The method presented by Baleegh et al. in [6] relates closely to
our study. They propose using LLM for bug detection by comparing
original code against code generated by ChatGPT. Our evaluation,
however, reveals two major concerns with this approach: 1) it fails
to detect a significant number of bugs and it generates a high rate
of false positives; and 2) it is much less economically viable com-
pared to ours. We experiment with subsets of datasets comprising
66 functions from 𝐷𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 , each with an EIB, and 100 func-
tions from 𝐷𝑆𝑎𝑚𝑝𝑙𝑒𝑑 . In this dataset, FLAG used approximately
12.33 million tokens, costing $246.89 in GPT-4 API. For benign
codes without bugs, FLAG erroneously highlighted 95 out of 100
samples, identifying totally 1751 lines as buggy out of 7062. For
the buggy functions, it successfully detected issues in 32 out of
66 cases, highlighting 2454 buggy lines out of 7531. In contrast,
our system demonstrates less false positive reports and superior
monetary efficiency as mentioned previously.

4.2 Real-world EIB Detection
To assess the effectiveness of WitheredLeaf on real-world code
repositories, we test it on Python and C repositories collected from
GitHub with more than 1000 starts that are actively maintained. The
summarized results are presented in Table 8. It’s worth mentioning
that our result exceeds our expectation of 20% precision on the
final report, which aligns with previous work on inconsistency bug
detection [7] and is acceptable by the developer community [8].

10

WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs

Table 5: Recall and consistency of CodeBERT with different threshold parameters in the infilling task.

consistencyThreshold searchRange=1 searchRange=2 searchRange=3 searchRange=4 searchRange=5
Recall Cons. Recall Cons. Recall Cons. Recall Cons. Recall Cons.

0.98 72.9 65.5 75.2 68.2 75.8 65.5 75.3 59.7 75.1 61.5
0.90 77.7 61.7 87.4 61.6 87.5 59.4 87.7 53.3 86.8 54.4
0.80 78.0 58.4 91.2 54.1 90.5 52.5 90.5 43.6 90.0 44.5
0.70 79.3 55.7 92.6 47.7 91.3 45.7 91.3 36.4 90.9 37.2
0.60 80.3 53.1 93.6 43.0 93.3 38.8 92.9 31.0 92.5 31.7

Avg. Time 506 640 689 933 1103
Avg. Time represents the average time in milliseconds spent to accomplish an infilling task on CPU.

Table 6: Recall and consistency of CodeBERT with different
tokenThreshold.

tokenThreshold Recall Cons.
0.1 91.2 54.1
0.2 92.3 40.6
0.3 94.1 35.8
0.4 94.6 32.6
0.5 95.0 32.0

Evaluated with the specified parameters of searchRange=2 and
consistencyThreshold=0.80.

Table 7: Recall and consistency of Code Llama 7B of different
threshold parameters in the infilling task.

probThresh rankThresh=1 rankThresh=2 rankThresh=3
Recall Cons. Recall Cons. Recall Cons.

0.98 92.7 89.0 88.4 90.8 85.8 91.8
0.90 94.6 88.6 91.1 90.1 89.2 91.0
0.80 95.7 88.2 93.1 89.5 91.5 90.2
0.70 96.4 87.7 95.2 88.9 93.9 89.6
0.60 97.3 87.1 96.4 88.1 95.4 88.8

Detecting EIBs on PythonRepositories. For Python repositories,
WitheredLeaf uses CodeBERT and Code Llama 7B as local models
to process code from 80 collected repositories. Initially, CodeBERT
deals with ˜80K infilling tasks, derived from static analysis. Then
we drop the consistent ones (˜48K) and tasks associated with very
long code snippets that are usually configuration or data files. After
this pre-filter, ˜21K infilling tasks are scheduled for Code Llama
7B (i.e., the post-filter), which finally discovers 2,679 inconsistency
entities. Escalating the functions containing these inconsistencies
to GPT-4 for EIB detection, we received 1,082 reports, of which
314 are left after filtering based on the properties mentioned in
§2.3. Three security experts spend about 10 hours in total to inspect
these reports. Finally, we confirm that 74 of them are true positive,
resulting in a precision of 23.57% on Python repositories.

We believe the detection cost is well acceptable, as it spends less
than 20 machine hours in total and less than 40$ for querying GPT-4
APIs. With a server cost of 52$3 , the total cost to find these EIBs is
less than 100$, which we believe economically efficient, especially
when considering the potential severe security consequences of the
vulnerabilities.

3A 1xH100 server costs 2.49$/hr on Lambda GPU cloud.

Detecting EIBs on C Repositories. We also conduct a experiment
on C repositories at a smaller scale, where the entities for infilling
tasks are generated according to an AST similarity strategy [11, 30]
following previous research [7]. With this approach, AST subtrees
with similar types and structures within a function were identi-
fied, and only entities from these corresponding AST subtrees were
analyzed. The pre-filter local model used for C repositories is Sta-
bleCode, as CodeBERT is not trained on C code.

We observe a enhanced precision of WitheredLeaf on C repos-
itories. This is because Code Llama performs significantly better
on C than Python, filtering out 97.1% consistent entities. A po-
tential explanation is that C language induces fewer defects than
Python [46], making the code more well-formed and entities pre-
dictable for Code Llama.Nevertheless, the inclusion of both Python
and C repositories in our real-world evaluation allows us to assess
the generalizability of WitheredLeaf across different programming
languages and projects, which is crucial for understanding its po-
tential adaptability and weaknesses in large-scale deployment.

Repository Exclusion. It is worth noting that we intentionally
exclude 10 repositories in this evaluation due to several reasons.
Some repositories, particularly those written in Python 2 using
outdated syntax and APIs, can deteriorate the performance of the
models. This is because the models are trained from the corpus
collected in recent years, resulting in a lack of training material
in Python 2. We also observe the consistency of infilling drops on
repositories related to AI, security, and system-level projects, such
as chat-langchain [1] and hosts [2]. For AI-related projects, the
technologies are evolving very fast, thus low consistency can be
attributed to a lack of up-to-date corpus. However, for security and
low-level system code, we think the low consistency is caused by
the unusual nature of their functionalities. For example, exploit
generation tools include insecure statements in their code, which
can be regarded as inconsistent by local models in infilling, or
reported to contain vulnerabilities by GPT-4. However, these tools
are meant to be “insecure”. We believe such weakness could be
solved by fine-tuning or more fine-grained prompt engineering,
which we leave as future work.

4.3 Study of the Discovered EIBs
WitheredLeaf has identified 123 previously unknown EIBs in real-
world codebases (§4.2). We submitted 69 pull requests to address
these bugs, of which 27 have already been confirmed and merged
by developers. The distribution of bugs across different categories

11

Trovato and Tobin, et al.

Table 8: Summary of real-world detection results.

Python Repos C Repos
Repositories 80 74
Submitted PR 55 14
Merged PR 26 1
Functionality Bugs 37 7
Security Bugs 8 3
Bad Smell 48 20
Pre-filter Execution Time 9.0 CPU Hrs 15.2 GPU Hrs
Post-filter Execution Time 20.9 GPU Hrs 17.1 GPU Hrs
Cost on GPT-4 API 39.96$ 16.21$
Infilling Tasks for Pre-filter 79,724 75,695
Inconsis. Entities after Pre-filter 31,284 25,214
Infilling Tasks for Post-filter 20,616 25,214
Inconsis. Entity after Post-filter 2,679 733
Reports from GPT-4 1,082 473
Reports after Filtering 314 77
Confirmed Reports 74 28
Precision (%) 23.57% 36.36%

is detailed in Table 8. The security bugs identified in Python repos-
itories can lead to denial-of-service (DoS) attacks, while those in
C repositories may cause memory corruption, potentially leading
to severe consequences such as privilege escalation. Remarkably,
our discovered EIBs impact prominent repositories. For example, a
director from wolfSSL [58] scheduled a meeting with us and men-
tioned that they were actively investigating the bugs we reported. In
the remainder of this section, we showcase some of our discovered
EIBs to further demonstrate WitheredLeaf’s capabilities.

Case Study. We present some of our found EIBs, with the corre-
sponding fixes (the code entity highlighted in red is replaced with
that in green). We demonstrate the consequences of these bugs
and analyze the potential cause of them.
Variable Misuse In the case Listing 1, the last branch of the switch
statement incorrectly returns the value of threadFrameStackSize,
which is the same as the previous branch. However, it should return
threadExceptionFlowSize. The sizes are used in buffer initializa-

tion and could be adjusted via the APIs provided in this library. This
bug can potentially lead to buffer overflow, causing more severe
security consequences. We suspect the developer forgot to correct
the variable name when copy and paste within the code.

1 switch (optionId) –

2 ...

3 case InterpreterThreadFrameStackSize:

4 return s˙threadFrameStackSize;

5 case InterpreterThreadExceptionFlowSize:

6 return s threadFrameStackSize s threadExceptionFlowSize ;˝

Listing 1: Example of Variable Misuse

Error in Function Call This bug in Listing 2 is found in WolfSSL, a
security-sensitive repository. The sizeof method is used to deter-
mine the size (in bytes) of a data type or a variable. However, in this
case, sizeof method is invoked on xSize variable, which is already
declared as the size of freertos sockaddr - invoking sizeof on
it will result in an unexpected size, likely leading to an overflow or

underflow. After a deeper investigation, we find that the third size
parameter of the function FreeRTOS bind is not currently in use,
so this bug does not manifest security consequences at this point.
However, such a bug is like a time bomb, which will cause trouble
when the third parameter takes effect in the future. We think this
bug might be caused by naming confusion of the variable xSize.

1 socklen˙t xSize = sizeof(struct freertos˙sockaddr);

2 xSocket˙t xClientSocket = NULL;

3 struct freertos˙sockaddr xRemoteAddress;

4 ...

5 FreeRTOS˙bind(xClientSocket , &xRemoteAddress ,

sizeof(xSize) xSize);

Listing 2: Example of Error in Function Call

Denial of Service In the code snippet in Listing 3, if has aux is
False, aux will be a tuple object with zero length. Attempting to
access the last element of aux using an index of -1 will throw index
out of range exception, causing Denial of Service (DoS).

1 if has˙aux:

2 example , *aux = example

3 else:

4 aux = tuple()

5 rand˙state = random.Random(aux[-1] aux[-1] if aux else 0)

Listing 3: Example of DoS

5 RELATEDWORK

LLM’s Application On Software Security. Recent advancements
have made LLMs designed for coding widely accessible, either
through public API [12] or open-source sharing of code and mod-
els [25, 27, 48]. LLMs have demonstrated significant contributions
to areas like fuzzing [5, 21, 39, 59], code repair [22, 31, 32, 43, 60],
exploit generation [23], etc. Despite these developments, the appli-
cation of LLMs in bug detection, specifically entity inconsistency
bug (EIB), remains underexplored and largely experimental.

Semantic Bug Detection. Semantic bug detection is an active
research area with various methodologies addressing bugs that ex-
hibit both well-defined and ambiguous patterns. Li et al. pioneered
the application of LLMs to target Use Before Initialization bugs,
demonstrating LLMs’ potential to enhance conventional static anal-
ysis techniques [34]. Further advancements by researchers like Sun
et al. and Wei et al. have expanded LLM applications to address a
wider range of logic bugs, including API misuse [52, 53, 57]. Tradi-
tional methods such as static analysis and formal verification also
play significant roles in identifying and resolving semantic bugs
with fixed patterns [24, 28, 36, 37, 40]. Recently, Natural Language
Processing (NLP) has been leveraged to analyze documentation
and pinpoint potential semantic inconsistencies or discrepancies
between implementation and documentation [13–16, 42]. However,
these NLP-based approaches heavily rely on the quality of the
documentation, facing substantial challenges with ambiguous or
outdated materials prevalent in open-source environments.

FLAG [6] is a recent initiative that utilizes LLMs for bug detection
by masking every line of code and comparing the code line gen-
erated by ChatGPT with the original line. As we demonstrated in
§4.1.3, such methods exhibit limitations when applied to large-scale,
real-world analysis. Beyond LLM-based methods, other approaches

12

WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs

such as [7, 45] utilize learning based methods to pinpoint potential
bugs. However, these methods require specific code characteristics
or depend on ideal, comprehensive training datasets.

6 DISCUSSION

Limitations. Currently, decoder-only models like Code Llama
are limited to infilling at a single position each time. Although
WitheredLeaf can independently verify the consistency of each
entity, it may not detect EIBs associated with multiple positions in
the context.

Future work. Currently, we are using existing infilling models to
provide GPT-4 with highlights of potentially buggy lines. It may
be beneficial to fine-tune or train a model that exhibits improved
consistency and recall rates. Fine-tuned model demonstrates better
capability on auditing smart contracts [38]. Replaced Tokens Detec-
tion [17], although simple, fits our scenario with new model trained.
Researchers currently consider this task as a form of pretraining,
which enhances the model’s capability to comprehend semantics
more effectively.

As mentioned in §2.4, EIB can negatively affect the consistency
of infilling tasks on surrounding positions, which might be qualita-
tively explainable with a confidence measure [50]. Enhancing this
observation and proposing a method providing a security guarantee
to EIB detection is a direction for future investigation.

7 CONCLUSION
We conducted a systematic measurement study on LLMs’ capabili-
ties to detect EIBs and identified their strengths and weaknesses.
Based on the measurement results, we design WitheredLeaf, an
EIB detection pipeline based on LLMs. WitheredLeaf successfully
discovered 123 unknown bugs on Python and C code repositories,
demonstrating the effectiveness of our design and implementation.

ACKNOWLEDGMENTS
To Robert, for the bagels and explaining CMYK and color spaces.

REFERENCES
[1] 2024. langchain-ai/chat-langchain. https://github.com/langchain-ai/chat-

langchain Accessed: 2024-04-29.
[2] 2024. StevenBlack/hosts: Consolidating and extending hosts files from several

well-curated sources. Optionally pick extensions for porn, social media, and
other categories. https://github.com/StevenBlack/hosts Accessed: 2024-04-29.

[3] 2024. tree-sitter. https://github.com/tree-sitter/tree-sitter Accessed: 2024-04-29.
[4] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[5] Joshua Ackerman and George V. Cybenko. 2023. Large Language Models for
Fuzzing Parsers (Registered Report). Proceedings of the 2nd International Fuzzing
Workshop (2023).

[6] Baleegh Ahmad, Benjamin Tan, Ramesh Karri, and Hammond Pearce. 2023.
FLAG: Finding Line Anomalies (in code) with Generative AI. arXiv preprint
arXiv:2306.12643 (2023).

[7] Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan Williams, and Long Lu. 2021.
Finding bugs using your own code: detecting functionally-similar yet inconsistent
code. In 30th USENIX security symposium (USENIX Security 21). 2025–2040.

[8] Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. 2023. ”
False negative-that one is going to kill you.”-Understanding Industry Perspectives
of Static Analysis based Security Testing. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 19–19.

[9] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan,

Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej
Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason
Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias
Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet,
Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren
Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith
Chintala. 2024. PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation. In 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24). https://doi.org/10.1145/3620665.3640366

[10] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. 2022. Efficient training of language
models to fill in the middle. arXiv preprint arXiv:2207.14255 (2022).

[11] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. 1998. Clone detection using abstract syntax trees. In Proceedings.
International Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
368–377.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Ka-
plan, Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Pet-
roski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew M. Knight, Miles Brundage, Mira
Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCan-
dlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language
Models Trained on Code. ArXiv abs/2107.03374 (2021).

[13] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang, Xiaozhong
Liu, Haixu Tang, and Baoxu Liu. 2023. Sherlock on Specs: Building {LTE}
Conformance Tests through Automated Reasoning. In 32nd USENIX Security
Symposium (USENIX Security 23). 3529–3545.

[14] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang, Xiaozhong
Liu, Haixu Tang, and Dongfang Zhao. 2022. Seeing the forest for the trees:
Understanding security hazards in the {3GPP} ecosystem through intelligent
analysis on change requests. In 31st USENIX Security Symposium (USENIX Security
22). 17–34.

[15] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai Chen, and Wei
Zou. 2019. Devils in the guidance: predicting logic vulnerabilities in payment
syndication services through automated documentation analysis. In 28th USENIX
Security Symposium (USENIX Security 19). 747–764.

[16] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu, Chang Yue, Xiaozhong Liu,
Kai Chen, Haixu Tang, and Baoxu Liu. 2021. Bookworm game: Automatic
discovery of lte vulnerabilities through documentation analysis. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 1197–1214.

[17] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020.
Electra: Pre-training text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555 (2020).

[18] CloCkWeRX. 2024. Pull Request for Bug Fix in Rab-
bitVCS. https://github.com/rabbitvcs/rabbitvcs/pull/385/files#diff-
eca3c60057143346eea4a850ba4fb60752c8cb397ec380293af7e252c1677d0f.

[19] Roi Cohen, May Hamri, Mor Geva, and Amir Globerson. 2023. Lm vs lm: De-
tecting factual errors via cross examination. arXiv preprint arXiv:2305.13281
(2023).

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). 4171–4186.
https://doi.org/10.18653/v1/N19-1423

[21] Jueon Eom, Seyeon Jeong, and Taekyoung Kwon. 2024. CovRL: Fuzzing JavaScript
Engines with Coverage-Guided Reinforcement Learning for LLM-based Mutation.
ArXiv abs/2402.12222 (2024).

[22] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2022. Automated Repair of Programs from Large Language Models. 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE) (2022),
1469–1481.

[23] Richard Fang, Rohan Bindu, Akul Gupta, and Daniel Kang. 2024. LLM Agents
can Autonomously Exploit One-day Vulnerabilities.

[24] Ansgar Fehnker and Ralf Huuck. 2013. Model checking driven static analysis for
the real world: designing and tuning large scale bug detection. Innovations in
systems and software engineering 9, 1 (2013), 45–56.

[25] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. 1536–1547.

13

https://github.com/langchain-ai/chat-langchain
https://github.com/langchain-ai/chat-langchain
https://github.com/StevenBlack/hosts
https://github.com/tree-sitter/tree-sitter
https://doi.org/10.1145/3620665.3640366
https://github.com/rabbitvcs/rabbitvcs/pull/385/files#diff-eca3c60057143346eea4a850ba4fb60752c8cb397ec380293af7e252c1677d0f
https://github.com/rabbitvcs/rabbitvcs/pull/385/files#diff-eca3c60057143346eea4a850ba4fb60752c8cb397ec380293af7e252c1677d0f
https://doi.org/10.18653/v1/N19-1423

Trovato and Tobin, et al.

[26] Google. 2024. AddressSanitizer. https://github.com/google/sanitizers/wiki/
AddressSanitizer.

[27] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y Wu, YK Li, et al. 2024. DeepSeek-Coder: When the
Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196 (2024).

[28] Jian Huang, Michael Allen-Bond, and Xuechen Zhang. 2017. Pallas: Semantic-
aware checking for finding deep bugs in fast path. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 709–722.

[29] Sungjae Hwang and Sukyoung Ryu. 2020. Gap between theory and practice: An
empirical study of security patches in solidity. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 542–553.

[30] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 96–105.

[31] Ma Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and
Alexey Svyatkovskiy. 2023. InferFix: End-to-End Program Repair with LLMs.
Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (2023).

[32] Harshit Joshi, José Pablo Cambronero, Sumit Gulwani, Vu Le, Ivan Radicek, and
Gust Verbruggen. 2022. Repair Is Nearly Generation: Multilingual Program
Repair with LLMs. In AAAI Conference on Artificial Intelligence.

[33] Fatemeh Khoshnoud, Ali Rezaei Nasab, Zahra Toudeji, and Ashkan Sami. 2022.
Which bugs are missed in code reviews: An empirical study on SmartSHARK
dataset. In Proceedings of the 19th International Conference on Mining Software
Repositories. 137–141.

[34] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing Static
Analysis for Practical Bug Detection: An LLM-Integrated Approach. Proceedings
of the ACM on Programming Languages (PACMPL), Issue OOPSLA (2024).

[35] Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, LI Jia, Jenny Chim, Qian Liu, et al. 2023. Star-
Coder: may the source be with you! Transactions on Machine Learning Research
(2023).

[36] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John CS Lui. 2021. MirChecker:
detecting bugs in Rust programs via static analysis. In Proceedings of the 2021
ACM SIGSAC conference on computer and communications security. 2183–2196.

[37] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar:
Fixing semantic bugs with fix patterns of static analysis violations. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 1–12.

[38] Wei Ma, Daoyuan Wu, Yuqiang Sun, Tianwen Wang, Shangqing Liu, Jian
Zhang, Yue Xue, and Yang Liu. 2024. Combining Fine-Tuning and LLM-based
Agents for Intuitive Smart Contract Auditing with Justifications. arXiv preprint
arXiv:2403.16073 (2024).

[39] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large Language Model guided Protocol Fuzzing. Proceedings 2024 Network and
Distributed System Security Symposium (2024).

[40] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 772–781.

[41] OpenAI. 2024. Prompt engineering - OpenAI API. https://platform.openai.com/
docs/guides/prompt-engineering.

[42] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Raymond J Mooney.
2021. Deep just-in-time inconsistency detection between comments and source
code. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
427–435.

[43] Hammond A. Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Bren-
dan Dolan-Gavitt. 2021. Examining Zero-Shot Vulnerability Repair with Large
Language Models. 2023 IEEE Symposium on Security and Privacy (SP) (2021),
2339–2356.

[44] Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James
Baicoianu, Ashish Datta, Maksym Zhuravinskyi, Dakota Mahan, Marco Bel-
lagente, Carlos Riquelme, et al. 2024. Stable Code Technical Report. arXiv
preprint arXiv:2404.01226 (2024).

[45] Michael Pradel and Koushik Sen. 2018. Deepbugs: A learning approach to name-
based bug detection. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–25.

[46] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering. 155–165.

[47] Cedric Richter and Heike Wehrheim. 2022. Learning realistic mutations: Bug
creation for neural bug detectors. In 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 162–173.

[48] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[49] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H
Chi, Nathanael Schärli, and Denny Zhou. 2023. Large language models can be
easily distracted by irrelevant context. In International Conference on Machine
Learning. PMLR, 31210–31227.

[50] Claudio Spiess, David Gros, Kunal Suresh Pai, Michael Pradel, Md Rafiqul Islam
Rabin, Susmit Jha, Prem Devanbu, and Toufique Ahmed. 2024. Quality and Trust
in LLM-generated Code. arXiv preprint arXiv:2402.02047 (2024).

[51] Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida
Alam, Earl T Barr, and Wei Le. 2024. A Comprehensive Study of the Capabil-
ities of Large Language Models for Vulnerability Detection. arXiv preprint
arXiv:2403.17218 (2024).

[52] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Wei Ma, Lyuye Zhang, Miaolei Shi,
and Yang Liu. 2024. LLM4Vuln: A Unified Evaluation Framework for Decoupling
and Enhancing LLMs’ Vulnerability Reasoning. arXiv preprint arXiv:2401.16185
(2024).

[53] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei
Xie, and Yang Liu. 2024. Gptscan: Detecting logic vulnerabilities in smart con-
tracts by combining gpt with program analysis. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1–13.

[54] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical software
engineering 19 (2014), 1665–1705.

[55] Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. 2024. The Science of Detecting
LLM-Generated Text. Commun. ACM 67, 4 (2024), 50–59.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[57] Moshi Wei, Nima Shiri Harzevili, YueKai Huang, Jinqiu Yang, Junjie Wang,
and Song Wang. 2024. Demystifying and Detecting Misuses of Deep Learning
APIs. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. 1–12.

[58] wolfSSL Inc. 2024. wolfSSL. https://github.com/wolfSSL/wolfssl Accessed:
2024-04-29.

[59] Chun Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang.
2023. Fuzz4All: Universal Fuzzing with Large Language Models. Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering (2023).

[60] Chun Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated Program Re-
pair in the Era of Large Pre-trained Language Models. 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE) (2023), 1482–1494.

A PROMPT TEMPLATES

Round 1 Properties: code line + explanation
Round 1 Prompt: {code} Output exact lines of semantic bugs and
concise explanations of the bugs.

Figure 4: Prompt template 1.

Round 1 Properties: code line + explanation + fixed line +
merely fixable
Round 1 Prompt: {code} Output exact lines of semantic bugs, concise
explanations of the bugs, the fixed line of the bugs, and if the bugs can
be fixed by merely changing a variable/method name.

Figure 5: Prompt template 1FM.

14

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://github.com/wolfSSL/wolfssl

WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs

Round 1 Properties: code line + explanation
Round 1 Prompt: {code} Output exact lines of semantic bugs, concise
explanations of the bugs, the fixed line of the bugs, and if the bugs can
be fixed by merely changing a variable/method name.
Round 2 Properties: code line* + explanation* + fixed line +
merely fixable
Round 2 Prompt: Inspect these bugs, excluding 1. incorrect or unlikely
bugs; 2. bugs caused by undefined symbols; 3. non-semantic bugs. The
left bugs only break the intended functionality or lead to vulnerabilities.
Answer if the bugs can be fixed by merely changing a variable/method
name and fix them.

Figure 6: Prompt template 1/2FM.

Round 1 Properties: code line + explanation
Round 1 Prompt: {code} Output exact lines of semantic bugs, concise
explanations of the bugs, the fixed line of the bugs, and if the bugs can
be fixed by merely changing a variable/method name.
Round 2 Properties: code line* + explanation* + fixed line +
merely fixable
Round 2 Prompt: Inspect these bugs, excluding 1. incorrect or unlikely
bugs; 2. bugs caused by undefined symbols; 3. non-semantic bugs. The
left bugs only break the intended functionality or lead to vulnerabilities.
Answer if the bugs can be fixed by merely changing a variable/method
name and fix them.
Round 3 Properties: code line* + explanation* + priority
Round 3 Prompt: Now, Evaluate the priority of detected bugs in previ-
ous round. Assign higher priority for logic bugs, security vulnerabilities,
or unexpected functionality, and lower priority for bad coding styles
(bad smells).

Figure 7: Prompt template 1/2FM/3P.

Round 1 Properties: code line + explanation
Round 1 Prompt: {code} Output exact lines of semantic bugs, concise
explanations of the bugs, the fixed line of the bugs, and if the bugs can
be fixed by merely changing a variable/method name.
Round 2 Properties: code line* + explanation* + fixed line +
merely fixable
Round 2 Prompt: Inspect these bugs, excluding 1. incorrect or unlikely
bugs; 2. bugs caused by undefined symbols; 3. non-semantic bugs. The
left bugs only break the intended functionality or lead to vulnerabilities.
Answer if the bugs can be fixed by merely changing a variable/method
name and fix them.
Round 3 Properties: code line* + explanation* + category
Round 3 Prompt: Now, classify this bug into these categories using the
code and previous contexts: Security Vulnerability, Logic Bug, Enhance-
ment, Unexpected Behavior, Symbol Not Defined, Module Not Imported,
Bad Smell, Not a Bug, or Others. If you assign others, explicitly specify
its category.

Figure 8: Prompt template 1/2FM/3Ca.

Round 1 Properties: code line + explanation
Round 1 Prompt: {code} Output exact lines of semantic bugs, concise
explanations of the bugs, the fixed line of the bugs, and if the bugs can
be fixed by merely changing a variable/method name.
Round 2 Properties: code line* + explanation* + fixed line +
merely fixable + category
Round 2 Prompt: Inspect these bugs, excluding 1. incorrect or unlikely
bugs; 2. bugs caused by undefined symbols; 3. non-semantic bugs. The
left bugs only break the intended functionality or lead to vulnerabilities.
Answer if the bugs can be fixed by merely changing a variable/method
name and fix them. Also, classify this bug into these categories using the
code and previous contexts: Security Vulnerability, Logic Bug, Enhance-
ment, Unexpected Behavior, Symbol Not Defined, Module Not Imported,
Bad Smell, Not a Bug, or Others. Note that the snippet is from popular
repositories and runs, so correct symbols not defined in the snippet are
defined at other places, which is not Logic Bug. If you assign Others
category, explicitly name the category.

Figure 9: Prompt template 1/2FMCa.

Round 1 Properties: code line + explanation
Round 1 Prompt: {code} Output exact lines of semantic bugs, concise
explanations of the bugs, the fixed line of the bugs, and if the bugs can
be fixed by merely changing a variable/method name.
Also, pay additional attention to these lines: {suspicious lines}
Round 2 Properties: code line* + explanation* + fixed line +
merely fixable + category
Round 2 Prompt: Inspect these bugs, excluding 1. incorrect or unlikely
bugs; 2. bugs caused by undefined symbols; 3. non-semantic bugs. The
left bugs only break the intended functionality or lead to vulnerabilities.
Answer if the bugs can be fixed by merely changing a variable/method
name and fix them. Also, classify this bug into these categories using the
code and previous contexts: Security Vulnerability, Logic Bug, Enhance-
ment, Unexpected Behavior, Symbol Not Defined, Module Not Imported,
Bad Smell, Not a Bug, or Others. Note that the snippet is from popular
repositories and runs, so correct symbols not defined in the snippet are
defined at other places, which is not Logic Bug. If you assign Others
category, explicitly name the category.

Figure 10: Prompt template 1/2FMCa w/ HL.

15

	Abstract
	1 Introduction
	2 Measurement
	2.1 Language-Model based EIB Detection
	2.2 Dataset Preparation
	2.3 GPT-4's Performance on EIB Detection
	2.4 Code Language Models on EIB Detection

	3 Design and Implementation
	3.1 Overview
	3.2 Cascaded Detection
	3.3 Controlled Token Generation
	3.4 Inconsistent Position Highlighting
	3.5 Implementation

	4 Evaluation
	4.1 Controlled Experiments
	4.2 Real-world EIB Detection
	4.3 Study of the Discovered EIBs

	5 Related Work
	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Prompt Templates

