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Abstract Solar radiation pressure can have a substan-

tial long-term effect on the orbits of high area-to-mass

ratio spacecraft, such as solar sails. We present a study

of the coupling between radiation pressure and the grav-

itational perturbation due to polar flattening. Remov-

ing the short-period terms via perturbation theory yields

a time-dependent two-degree-of-freedom Hamiltonian,

depending on one physical and one dynamical parame-

ter. While the reduced model is non-integrable in gen-

eral, assuming coplanar orbits (i.e., both Spacecraft and

Sun on the equator) results in an integrable invari-

ant manifold. We discuss the qualitative features of the

coplanar dynamics, and find three regions of the param-

eters space characterized by different regimes of the re-

duced flow. For each regime, we identify the fixed points

and their character. The fixed points represent frozen

orbits, configurations for which the long-term pertur-

bations cancel out to the order of the theory. They are

advantageous from the point of view of station keeping,
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allowing the orbit to be maintained with minimal pro-

pellant consumption. We complement existing studies

of the coplanar dynamics with a more rigorous treat-

ment, deriving the generating function of the canoni-

cal transformation that underpins the use of averaged

equations. Furthermore, we obtain an analytical expres-

sion for the bifurcation lines that separate the regions

with different qualitative flow.

Keywords Hamiltonian dynamics, perturbation

theory, Lie transforms, bifurcation theory, solar

radiation pressure, oblateness perturbation

1 Introduction

The dynamics of natural and artificial bodies in the so-

lar system is dominated by the Keplerian attraction of

either the Sun or a different natural massive body. How-

ever, perturbations such as the non-sphericity of the

primary body, tidal effects, or solar radiation pressure,

may accumulate with time yielding notable changes

with respect to Keplerian dynamics. For objects with

high area-to-mass ratio, radiation pressure is an impor-

tant effect [72,75,71,8]. An example is the dust dynam-

ics in planetary rings [56,74]. Of special relevance for

space technology are solar sails, a potential means of

efficient spacecraft propulsion [60,32].

The impact of radiation pressure has been acknowl-

edged since the beginning of the space era. In particular,

it was identified as the cause of disagreement between

the predicted trajectory and the observed behavior of

Vanguard I1 [67] and, most notably, the Echo satellites2

1 nssdc.gsfc.nasa.gov/nmc/spacecraft/1958-002B; last ac-
cessed December 25, 2023

2 https://space.jpl.nasa.gov/msl/QuickLooks/echoQL; last ac-

cessed December 25, 2023
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[70,77,36,79]. This motivated theoretical research on

its effects over the long-term motion of spacecraft [66,

42,14,1]. In spite of the non-conservative character of

radiation pressure, it can be approximated with a dis-

turbing potential. Under this simplification, the prob-

lem may be approached with Hamiltonian dynamics,

which is particularly useful in the context of resonant

motion [66,39,7,24,35].

The long-term effects of radiation pressure in high

area-to-mass objects have been described analytically

with a surrogate integrable dynamics [62,63,20,61,10].

The coupling with oblateness alters significantly the

long-term dynamics [66,7,30,31,45,23]. This opens op-

portunities for the design of novel mission orbits [13],

including deorbiting strategies [29,59].

The characterization of the coupled effect of the

central-body oblateness and radiation pressure pertur-

bations is, to our knowledge, still incomplete. Even in

the simplest approach of the cannonball model [46] with

constant solar flux and negligible solar parallax [42],

which results in constant acceleration, the long-term

behavior is governed by a time-dependent, two-degree-

of-freedom system whose closed-form solution is not

known. Notwithstanding the lack of a general solution,

the dynamics of specific resonances have been discussed

in detail [2,29]. For the special case when the Sun lies

on the equatorial plane, the coplanar orbits become an

invariant manifold of the averaged problem. After trun-

cation of higher-order effects, the reduced Hamiltonian

depends on one physical and one dynamical parameter.

Then, the general characteristics of the reduced flow

can be studied in the plane of these parameters.

The standard analysis in literature starts directly

from the averaged equations of orbital evolution. Then,

the types of motion arising from different relative strengths

of the governing parameters are studied. We establish a

more formal framework for the problem with a complete

canonical perturbation approach. We build the generat-

ing function of the infinitesimal contact transformation

that removes the short-period terms from the original

Hamiltonian [73,25]. It provides the necessary theoret-

ical foundation for the averaging assumptions [3], and

enables the computation of higher-order solutions [6,44,

21,11,26,54,49]. Beyond the qualitative description of

the dynamics, the transformation between initial con-

ditions and corresponding averaged variables is needed

to initialize the constants of the perturbation theory.

Their accurate computation is critical for the correct

propagation of the long-term dynamics [9,57,78,5,50].

In the same spirit, seeking rigorous description of

the typologies of motion, we derive analytical expres-

sions for the fundamental lines of the parameters plane

that separate regions with different types of flow. This

gives a formal underpinning to the mechanisms control-

ling changes in the flow, both local—bifurcations of rel-

ative equilibria—and global—related to the evolution

of orbits that eventually become circular—. We demon-

strate a complete description of the reduced phase space

in terms of arithmetic operations only: the fundamental

lines are determined computing discriminants of poly-

nomial equations and applying Descartes’ rule of signs.

For each regime, we identify the fixed points and their

character. These points represent frozen orbits, configu-

rations where the long-term effects of radiation pressure

and oblateness cancel out to the order of the theory.

Therefore, while short-term perturbations (i.e., with a

periodicity of one orbit) persist, the secular drift of the

orbital elements vanishes. This has the potential to ex-

tend spacecraft operational life, allowing for long-term

station keeping with minimal propellant consumption.

Another original contribution is the derivation of

the averaged equations in vectorial form. It is free from

singularities and enhances the stability of numerical

integration [55,76]. Even though it introduces redun-

dancy in the averaged differential system, computa-

tional cost does not increase because the symmetry of

the equations allows for an efficient implementation.

The paper is organized as follows. After justifying

the simplifications that yield the approximate Hamil-

tonian in §2, the perturbation solution is approached

in §3, where the elimination of short-period terms pro-

vides a compact set of variation equations in vectorial

form that can be efficiently integrated semi-analytically.

Finally, the dynamics of the coplanar manifold are dis-

cussed in detail in §4. The Wolfram Mathematica soft-

ware provided assistance with mathematical manipula-

tions and plotting of results.

2 Perturbation model

Fig. 1 Vectors and distances used in the perturbation model.
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We focus on the case of a negligible mass object,

the “orbiter”, moving around an oblate central body,

the “planet”, at a distance where the tidal forces of

the Sun, which we assume to revolve with Keplerian

motion in its apparent orbit about the planet, are small

compared to both radiation pressure and the effect of

planetary oblateness. That is, r{d@ ! 1, where

r “
?
r ¨ r, (1)

d@ “
a

pr@ ´ rq ¨ pr@ ´ rq, (2)

and r and r@ denote the position vectors of the orbiter

and the Sun, respectively, measured from the center of

mass of the planet (see Fig. 1). In what follows, hats

over vectors will denote directions. In particular,

r̂ “
r

r
, r̂@ “

r@

r@

, (3)

with r@ “
?
r@ ¨ r@.

Note that, due to the assumption of Keplerian mo-

tion, the planet-Sun distance is given by the polar equa-

tion

r@ “
a@p1 ´ e2@q

1 ` e@ cos f@

, (4)

where the semimajor axis a@ and the eccentricity e@

of the solar orbit are constant. The computation of the

true anomaly f@ “ f@pt; a@, e@q requires the solution

of Kepler’s equation [16].

The contribution of the planet oblateness to the po-

tential is given by the second-degree zonal harmonic,

whose dimensionless coefficient is denoted J2:

VJ2 “
µ

r
J2

α2

r2
P2pr̂ ¨ k̂q, (5)

where µ is the gravitational parameter of the planet,

α its equatorial radius and k̂ is a unit vector in the

direction of the polar axis of the primary. Hereafter, we

represent a Legendre polynomial of degree i as Pi. In

particular,

P2 “ ´
1

2
`

3

2
pr̂ ¨ k̂q2. (6)

For a flat plate, the acceleration due to radiation

pressure is given by [64,65]

asrp “ ´ Pau
au2

d2@

A

m
pι̂@ ¨ n̂q

ˆ rp1 ´ γqι̂@ ` 2γpι̂@ ¨ n̂q n̂s , (7)

where au denotes the astronomical unit, Pau is the solar

radiation pressure at 1 au from the Sun, A{m is the

area-to-mass ratio of the object, n̂ is the normal to

the illuminated surface, ι̂@ “ pr@ ´ rq{d@ is the Sun

direction from the orbiter, and the index of reflection γ

lies in the interval p0, 1q. Recent measurements provide

the value Pau « 4.5 ¨ 10´6 N{m2 [41].

While radiation pressure is a non-conservative ef-

fect, the acceleration it produces can be derived from a

scalar function if we assume the plate is always facing

the Sun. That is, ι̂@ “ n̂, and

asrp “ ´Pau
au2

d2@

A

m
p1 ` γqι̂@. (8)

The radiation pressure acceleration can be recast as a

fraction of solar gravity:

asrp “ ´βµ@

r@ ´ r

d3@
, (9)

where

β “
Pau

µ@

au2
A

m
p1 ` γq, (10)

is the so-called lightness number, and µ@ denotes the

solar gravitational parameter [60]. Thus,

asrp “ ´∇rVsrp, (11)

with

Vsrp “ β
µ@

d@

. (12)

In our assumption both r{d@ and r{r@ are small.

Therefore, the inverse of the distance d@ can be written

as a series expansion in Legendre polynomials:

r@

d@

“
1

a

1 ´ 2pr{r@qr̂@ ¨ r̂ ` pr{r@q2

“ 1 `
r

r@

r̂@ ¨ r̂ `
ÿ

iě2

ri

ri@
Pipr̂@ ¨ r̂q. (13)

The constant term in the expression above does not

contribute to the satellite dynamics and can be ignored.

Neglecting terms Opr2{r2@q and higher, we obtain the

“potential”

Vsrp “ Fsrpr̂@ ¨ r, (14)

in which
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Fsrp “ β
µ@

r2@
“ Pau

au2

r2@

A

m
p1 ` γq ą 0. (15)

Neglecting the eccentricity of the orbit of the Sun,

r@ “ a@ and the true anomaly of the Sun is replaced

by its longitude:

λ@ “ n@t, (16)

where n@ is the mean motion of the Sun. Therefore, the

magnitude of the acceleration Fsrp becomes constant.

3 Hamiltonian approach

The perturbed Keplerian motion under the disturbing

forces described by Eqs. (5) and (14) admits a Hamilto-

nian formulation. The Hamiltonian must be written in

terms of a set of canonical variables. A common choice

for Keplerian motion is Delaunay variables pℓ, g, h, L,G,Hq.

They are usually described in terms of the standard set

of Keplerian elements: semimajor axis, eccentricity, in-

clination, longitude of the ascending node, argument of

the periapsis, and mean anomaly pa, e, I,Ω, ω,Mq.

ℓ “ M,

g “ ω,

h “ Ω,

L “
?
µa,

G “ Lη,

H “ G cos I,

(17)

where η “
?
1 ´ e2.

Thus, we have a time-dependent, three-degree-of-

freedom Hamiltonian

H “ Hpℓ, g, h, L,G,H, tq ” HKepler ` VJ2
` Vsrp, (18)

where

HKepler “ ´
µ2

2L2
“ ´

1

2
nL, (19)

is the term corresponding to the restricted two-body

problem, and n “
a

µ{a3 “ µ2{L3 is the orbiter’s mean

motion. The explicit appearance of time in the Hamil-

tonian (18) originates from the longitude of the Sun in

Eq. (14). Time is conveniently eliminated in a rotating

frame, with angular velocity n@, in which the first axis

is aligned with the Earth-Sun direction.

In the rotating frame the definition of the Delaunay

elements is unchanged except for h “ Ω ´ λ@. To pre-

serve the Hamiltonian character of the rotating frame

formulation, we must include the Coriolis term

HCoriolis “ ´n@k̂@ ¨ G, (20)

where k̂@ is the direction of the pole of the solar orbit,

and

G “ r ˆ
dr

dt
(21)

is the specific angular momentum of the orbiter. The

latter is given by G “ Gĥ, with ĥ the unit vector in

the direction of G. Therefore, the Hamiltonian (18) be-

comes K “ H ` HCoriolis, expressed as

K “ ´
1

2
nL ´ n@Gk̂@ ¨ ĥ

`
1

2

µ

r
J2

α2

r2
“

3pr̂ ¨ k̂q2 ´ 1
‰

` Fsrpr̂@ ¨ r (22)

in vectorial form.

Assuming the effects of VJ2
, Vsrp, and HCoriolis are

small compared to HKepler in Eq. (19), say Opϵq, K
is a perturbation Hamiltonian. Its relevant dynamical

features become apparent after filtering the highest fre-

quencies of the motion introduced by the disturbing

terms.

3.1 Short-period elimination

The elimination of the high frequencies is routinely ap-

proached with the help of perturbation methods [68,37,

22]. In our case, we apply canonical perturbation the-

ory [73,25]. More precisely, we rely on the Hamiltonian

version of the method of Lie transforms [34,17,38,33]

due to its generality and versatility. It can be applied to

different kinds of perturbation problems [18,69,49,53],

not limited to the standard case of perturbed harmonic

oscillators [28,27,58,48].

Thus, we remove short-period terms by means of a

canonical transformation

Tϵ : pℓ, g, h, L,G,H; ϵq ÞÑ pℓ1, g1, h1, L1, G1, H 1q (23)

to prime (mean) variables, such that

Tϵ ˝ K “ K1p´, g1, h1, L1, G1, H 1q ` Opϵ2q. (24)

The transformation converting K into

K1 “ xKyℓp´, g1, h1, L1, G1, H 1q, (25)
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can be derived from the generating function

W “
1

n

ż

pK ´ xKyℓqdℓ ` Opϵ2q. (26)

More precisely, for any function of the Delaunay origi-

nal variables ξ “ ξpℓ, g, h, L,G,Hq, we can compute its

transformation in terms of the prime variables Tϵ ˝ ξ “

ξ1pℓ1, g1, h1, L1, G1, H 1q from

ξ “ ξ1 ` tξ,Wu. (27)

The Poisson bracket encompassing the short-period cor-

rections must be written in prime variables for direct

corrections (27). Conversely, ξ1 is written in terms of

the original variables using the inverse transformation

ξ1 “ ξ ´ tξ,Wu, (28)

where the Poisson bracket is evaluated in the original,

non-primed variables. Obviously, this transformation is

also applicable when ξ is one of the Delaunay variables.

Extensive details on the perturbation approach can be

found in the original references [34,17], or in modern

textbooks such as [4,51].

The short-period terms of Eq. (22) are revealed pro-

jecting the position vector r in the apsidal frame pê, b̂, ĥq,

where ê “ e{e is the direction of the eccentricity vector

e “
1

µ

dr

dt
ˆ G ´ r̂, (29)

and b̂ “ ĥ ˆ ê. Thus,

r “ êpr ¨ êq ` b̂pr ¨ b̂q. (30)

Using standard relations of the ellipse:

r “
`

ê cos f ` b̂ sin f
˘

r

“
“

êpcosu ´ eq ` b̂η sinu
‰

a, (31)

where f and u denote the true and eccentric anomalies,

and

r “
aη2

1 ` e cos f
, (32)

from the conic equation.

In a preliminary step, the Hamiltonian (22) is writ-

ten as

K “ ´
1

2
nL ´ n@Lηk̂@ ¨ ĥ `

1

3
n˚L

a2

r2
1

η2
Ψpfq

`
2

3
nsrpL

“

pê ¨ r̂@qpcosu ´ eq ` pb̂ ¨ r̂@qη sinu
‰

, (33)

where µ “ n2a3, n “ L{a2, G “ Lη, and

n˚ “
3

2
nJ2

α2

a2
, (34)

nsrp “
3

2

Fsrp

na
, (35)

Ψ ”
“

3pr̂ ¨ k̂q2 ´ 1
‰

p1 ` e cos fq. (36)

It can be shown that

Ψ “
3

2
pb̂ ¨ k̂qpê ¨ k̂qpe sin f ` 2 sin 2f ` e sin 3fq

´
3

4
rpb̂ ¨ k̂q2 ´ pê ¨ k̂q2spe cos 3f ` 2 cos 2fq

`
1

4
r3pb̂ ¨ k̂q2 ` 9pê ¨ k̂q2 ´ 4se cos f

`
1

2
r3pb̂ ¨ k̂q2 ` 3pê ¨ k̂q2 ´ 2s. (37)

The average of the Hamiltonian (33) over the mean

anomaly is obtained in closed form using the basic dif-

ferential relations of Keplerian motion

dℓ “
r

a
du “

´ r

a

¯2 1

η
df. (38)

Substituting the expressions r{a “ 1´e cosu and r{a “

η2{p1 ` e cos fq, we obtain

xKyℓ “ ´
L

2
n ´ n@Lηk̂@ ¨ ĥ ´ Lnsrpr̂@ ¨ e

`
L

6η3
n˚

“

3pb̂ ¨ k̂q2 ` 3pê ¨ k̂q2 ´ 2
‰

. (39)

The generating function of the short-period elimi-

nation is computed from Eq. (26):

W “
L

12η3
n˚

n

!

“

6pb̂ ¨ k̂q2 ` 6pê ¨ k̂q2 ´ 4
‰

pf ´ ℓq

`
“

3pb̂ ¨ k̂q2 ` 9pê ¨ k̂q2 ´ 4
‰

e sin f

´
“

pb̂ ¨ k̂q2 ´ pê ¨ k̂q2
‰

pe sin 3f ` 3 sin 2fq

` 2pb̂ ¨ k̂qpê ¨ k̂qp3e cos f ` 3 cos 2f ` e cos 3fq

)

`
nsrp

n

L

6

!

“

2
`

2 ´ e2
˘

sinu ´ e sin 2u
‰

ê ¨ r̂@

´ η p4 cosu ´ e cos 2uq b̂ ¨ r̂@

)

` C, (40)
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where C ” Cp´, g, h, L,G,Hq is an arbitrary function

arising from the quadrature in Eq. (26). While any

choice of C would be valid from the point of view of

the perturbation approach, it is common practice to

select a W that only includes short-period terms. That

is, xWyℓ “ 0, in which case we determine C “ xC ´Wyℓ

form Eq. (40). Using known primitives from the litera-

ture [43,40], we obtain

C “
L

6

n˚

n

e2

η3
1 ` 2η

p1 ` ηq2
pb̂ ¨ k̂qpê ¨ k̂q ´

nsrp

n

L

3
eηb̂ ¨ r̂@.

The transformations from mean to osculating variables

and viceversa, given in Eqs. (27) and (28), are then

computed evaluating Poisson brackets.

Finally, original variables are replaced with mean

values in Eq. (39) to obtain the transformed Hamilto-

nian K1 (25). This requires evaluating the frequencies

n˚ and nsrp (Eqs. (34) and (35)) in prime variables. Af-

ter neglecting higher-order terms, ℓ1 becomes cyclic. In

consequence, L1, a “ apL1q, and the frequencies n˚ and

nsrp are integrals of the truncated Hamiltonian in the

new variables.

3.2 Long-term dynamics

The long-term dynamics can be studied after neglecting

the constant Keplerian term in Eq. (39):

K1 “ ´ L1n@ηk̂@ ¨ ĥ ´ L1nsrper̂@ ¨ ê

´
L1n˚

6η3
“

3pĥ ¨ k̂q2 ´ 1
‰

, (41)

where all terms are expressed using the prime Delaunay

variables, and we substituted the identity

pê ¨ k̂q2 ` pb̂ ¨ k̂q2 ` pĥ ¨ k̂q2 “ 1. (42)

The long-term dynamics are obtained from the nu-

merical integration of the Hamilton equations. Denot-

ing

η “ ηĥ “ G{L1, (43)

the flow of the Hamiltonian (41) can be written in di-

mensionless, non-canonical, symmetric form

dη

dt
“ n@η ˆ k̂@ ` nsrpe ˆ r̂@ `

n˚

η5
pη ¨ k̂qη ˆ k̂, (44)

de

dt
“ n@e ˆ k̂@ ` nsrpη ˆ r̂@ `

n˚

η5
pη ¨ k̂qe ˆ k̂

`
n˚

2η5

”

1 ´
5

η2
pη ¨ k̂q2

ı

e ˆ η. (45)

These differential equations are redundant due to the

orthogonality of e and η. The symmetric character of

the vectorial formulation allows for an efficient imple-

mentation in software, as reported in [55,76]. Retaining

only first-order effects, Eqs. (44)–(45) can be obtained

adding the first terms of the mean variations of the

gravitational potential to those of the problem with ra-

diation pressure only. See Eqs. (29)–(30) in [76] and

Eqs. (9.8)–(9.9) in [51].

The differential system Eqs. (44)–(45) approximates

the averaged dynamics when the three frequencies n@,

n˚, and nsrp are of comparable magnitude —as required

by the perturbation approach. Situations where this

assumption applies have been discussed in the litera-

ture. As an example, an object with area-to-mass ratio

A{m “ 408 cm2{gr describing an elliptical path with

a semimajor axis of 17800 km around the Earth has

n@ “ n˚{0.275 “ nsrp{0.295. See Table 2 of [45] where

C ” nsrp{n@ and W ” n˚{n@.

4 The coplanar manifold

While no closed-form integral of the Hamiltonian flow

(41) is available, there is a coplanar invariant manifold.

If we neglect the axial tilt of the planet, i.e. k̂ “ k̂@,

equatorial orbits do not experience changes in inclina-

tion. If the spacecraft starts in an equatorial orbit, the

variation of η given by Eq. (44) has the direction of

η, and the motion is constrained to the plane of the

equator.

We can study this particular invariant manifold by

setting k̂@ ¨ ĥ “ ĥ ¨ k̂ “ 1 and r̂@ ¨ ê “ cos θ in Eq. (41).

The polar angle θ formed by the directions of the Sun

and the orbit periapsis3 is the conjugate coordinate to

the specific angular momentum Θ “ G1. Then,

Kcoplanar “ ´L1

ˆ

n@η `
n˚

3η3
` nsrpe cos θ

˙

. (46)

Recall that η “ Θ{L1 from Eq. (17).

4.1 Equilibria

Note that the rates of change of θ and Θ

dθ

dt
“

BKcoplanar

BΘ
“

n˚

η4
´ n@ ` nsrp

η

e
cos θ, (47)

dΘ

dt
“ ´

BKcoplanar

Bθ
“ ´ nsrpL

1e sin θ, (48)

vanish when θ “ 0 or θ “ π, and

3 Some authors use the supplementary angle of θ.



7

pn˚ ´ n@η4qe ˘ nsrpη
5 “ 0, (49)

where the sign depends on the value of θ. Equation (49)

can be recast into

pn˚ ´ n@η4q2e2 ´ n2
srpη

10 “ 0, (50)

which is always valid and is a quintic polynomial in η2.

Replacing e2 “ 1 ´ η2 and expanding the factors gives

pñ2
srp`1qη10´η8´2ñ˚η

6`2ñ˚η
4`ñ2

˚η
2´ñ2

˚ “ 0, (51)

in which the radiation pressure parameter

ñsrp “
nsrp

n@

(52)

increases with the area-to-mass ratio. The oblateness

parameter

ñ˚ “
n˚

n@

(53)

decreases when the semi-major axis grows. From Descartes’

rule of signs, Eq. (51) has either 3 or 1 real roots, corre-

sponding to eccentricity values for which the periapsis

remains frozen. In general, the roots of Eq. (51) must

be computed numerically from given values of ñsrp and

ñ˚. However, because the resultant of the quintic poly-

nomial and its derivative with respect to η must vanish

for multiple roots, we succeeded in computing analyti-

cally the bifurcation line ñsrp “ ñsrppñ˚q that separates

the regions of the parameters plane admitting one or

three equilibria. We first compute the discriminant ∆

of Eq. (51):

∆ “1024
“

3125ñ˚ñ
4
srp ` 32ñ˚p8ñ2

˚ ´ 25ñ˚ ` 125qñ2
srp

` 256pñ˚ ´ 1q3
‰2
ñ16

˚ ñ8
srppñ2

srp ` 1q. (54)

Disregarding the degenerate cases ñ˚ “ 0 and ñsrp “

0, setting the discriminant to zero yields a biquadratic

polynomial in ñsrp, whose coefficients are polynomials

in ñ˚. Solving for ñsrp gives

ñsrp “
4

?
5

125
ñ˚

d

5 ´ ñ˚

ñ˚

„

´

4 `
5

ñ˚

¯
3
2

´
25

ñ˚

ȷ

´ 8. (55)

The bifurcation line given by Eq. (55) is represented

in the parameters plane ñ˚-ñsrp with a black curve in

Fig. 2. Below this line, there are always three equilibria

(shaded area of Fig. 2). Two of them merge at the bi-

furcation line and cease to exist above it (light area of

Fig. 2), where just one remains. We will show later that

this bifurcation line is of the saddle-node type. Because

the line only exists in the interval 0 ă ñ˚ ď 1, there is

only one fixed point when n˚ ą n@.

3 fixed

points

1 fixed point

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

oblateness parameter (ñ*)

S
R
P
pa
ra
m
et
er

(ñ
sr
p
)

Fig. 2 Regions of the parameters plane with different numbers
of fixed points (shaded and white areas) of the coplanar flow.

4.2 Changes of local nature of the reduced flow

For a given point pñ˚, ñsrpq of the parameters plane,

the reduced flow can be visualized without integrating

Eqs. (47)–(48) by plotting contours of the Hamiltonian

(scaled by L1n@) in eccentricity vector diagrams:

K1 “ ´η ´
ñ˚

3η3
´ ñsrpe cos θ. (56)

The reduced flow in the region above the bifurcation

line (light area of Fig. 2) is shown in Fig. 3 for decreas-

ing values of ñ˚ and a constant value ñsrp “ 3´1{2.

The latter has been chosen because it represents a typ-

ical case for moderate radiation pressure perturbations,

see [63]. For clarity, the phase plots are depicted in both

eccentricity vector representation pe cos θ, e sin θq and

cylindrical map form pθ, eq. Dotted contours in Fig. 3

correspond to the manifold

K1
0 “ ´1 ´

1

3
ñ˚, (57)

of orbits that become temporarily circular, obtained

making e “ 0, and hence η “ 1 in Eq. (56). The top

plots of Fig. 3 illustrated a situation far from the bi-

furcation. We observe an interior region of orbits where

the periapsis oscillates around the elliptic fixed point

with θ “ π, and an exterior region with rotating pe-

riapsis. They are separated by the dotted contour of

the K1
0 manifold. As shown in the middle section of

Fig. 3, the interior region of orbits with oscillating peri-

apsis becomes larger when approaching the bifurcation

line, while the flow bends towards the axis of abscissas.

When the saddle-node bifurcation occurs (bottom pane

of Fig. 3) a cusp appears on the symmetry axis.
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Fig. 3 Coplanar orbits for ñsrp “ 3´1{2 and ñ˚ “ 0.85 (top), 0.16 (center) and 0.11 (bottom). Dotted contours mark transitions

between rotation and oscillation of the eccentricity vector.

Below the bifurcation line (shaded area of Fig. 2)

we find two additional fixed points, one elliptic and one

hyperbolic, both with periapsis at θ “ 0. The energy

manifold K1
U of the hyperbolic fixed point plays a fun-

damental role in the qualitative changes experienced by

the flow. As shown in the top plots of Fig. 4, an addi-

tional region of orbits with oscillating periapsis exists

centered on the elliptic fixed point with θ “ 0. It is

bounded by the dashed contour corresponding to K1
U,

which splits the orbits with rotating periapsis in two

subsets: one between K1
0 and K1

U, and the other, which

is made of highly eccentric orbits, bounded by the ex-

terior branch of K1
U.

4.3 Global changes of the flow

There are points of the parameters plane where K1
0

may overlap to K1
U, as illustrated in the center section

of Fig. 4. When this occurs, the interior region of or-

bits with circulating periapsis surrounding the elliptic

fixed point with θ “ π collapses to the curve defined

by the interior branch of K1
U, ceasing to exist. Only

three regions with different flow remain: an exterior

area made of highly eccentric orbits with circulating

periapsis and two interior regions with the periapsis os-

cillating around an elliptic fixed point.

The critical condition K1
0 “ K1

U is expressed as a

function of η from Eqs. (56) and (57):
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Fig. 4 Coplanar orbits for ñsrp “ 3´1{2 and ñ˚ “ 0.05 (top), 0.015 (center), and 0.003 (bottom). Dashed contour is the energy

manifold of the hyperbolic fixed point, dotted lines ones separate regions with rotating and oscillating periapsis.

1 `
1

3
ñ˚ “ ñsrpe ` η `

1

3

ñ˚

η3
. (58)

Substituting e “
a

1 ´ η2 yields a polynomial equation

in η,

0 “ 9pñ2
srp ` 1qη7 ` p9ñ2

srp ´ 9 ´ 6ñ˚qη6 ` ñ2
˚η

5

` ñ2
˚η

4 ` ñ˚pñ˚ ` 6qη3 ´ ñ2
˚η

2 ´ ñ2
˚η ´ ñ2

˚, (59)

which may admit either one or three real roots accord-

ing to Descartes’ rule. In particular, only one real root

is possible if ñ˚ ď 3
2 pñ2

srp ´ 1q, the condition that en-

sures the coefficient of η6 in Eq. (59) is non-negative.

Therefore, the value of η that makes K1
U “ K1

0 must be

a common root of Eqs. (59) and (51). From the resul-

tant of the corresponding polynomials, we obtain the

critical line ñsrp “ ñsrppñ˚q in implicit form

0 “ 59049ñ8
srp ´ 243ñ6

srpp647ñ2
˚ ` 2538ñ˚ ` 972q

´ 2ñ4
srpp1603ñ4

˚ ´ 13500ñ3
˚ ` 49572ñ2

˚ ` 291600ñ˚

´ 177147q ` 6ñ2
srpp25ñ6

˚ ´ 205ñ5
˚ ´ 6604ñ4

˚

´ 35714ñ3
˚ ´ 140967ñ2

˚ ´ 274833ñ˚ ´ 39366q

´ 3pñ˚ ´ 1q3pñ˚ ` 3qpñ2
˚ ` 14ñ˚ ` 81q2. (60)

The solution ñsrp “ ñsrppñ˚q of Eq. (60) is represented

in Fig. 5 with a dashed curve.
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Fig. 5 Regions of the parameters plane of the coplanar flow with
different qualitative behavior.

After crossing the critical line a region of orbits with

rotating periapsis around the elliptic fixed point with

θ “ 0 develops between the manifolds K1
0 and K1

U (bot-

tom section of Fig. 4). This is in stark contrast with

the situation before the crossing (top pane of the figure)

where the orbits contained between these two manifolds

revolve around the θ “ π elliptic point. Thus, the line

defined by Eq. (60) marks a global transition in the

flow, as opposed to the local nature of the bifurcation

boundary given by Eq. (55).

4.4 The reduced flow on the sphere

In the graphics of the previous section, the behavior of

the highest eccentricity orbits is difficult to appreciate.

A sphere provides better visualization [47,19,15,12,48].

Introducing the variables

χ1 “ eη cos g, (61)

χ2 “ eη sin g, (62)

χ3 “ η2 ´
1

2
, (63)

the Hamiltonian (56) can be rewritten as

K1 “ ´η ´
ñ˚

3η3
´ ñsrp

χ1

η
. (64)

In Eq. (63), η can be expressed in terms of χ3: η “
b

1
2 ` χ3. The flow corresponds to the intersection of

the manifold K1pχ1,´, χ3q “ κ ă 0 (64) with the sphere

χ2
1 ` χ2

2 ` χ2
3 “

1

4
, (65)

of radius 1
2 . Circular orbits (e “ 0, η “ 1) lie on the

north pole of the sphere p0, 0, 1
2 q, whereas the orbits

with the maximum eccentricity (e Ñ 1, η Ñ 0) collapse

to the south pole p0, 0,´ 1
2 q.

For a given energy κ, a trajectory on the sphere

is computed as a sequence of points. First, we choose

a value of χ3 in the interval s ´ 1
2 ,

1
2 s. Next, we solve

χ1 “ χ1pχ3;κq from Eq. (64) to obtain

χ1 “ ´
1

ñsrp

ˆ

η2 ` κη `
1

3

ñ˚

η2

˙

, (66)

where η ” ηpχ3q. Finally, we compute χ2 from Eq. (65):

χ2 “ ˘

ˆ

1

4
´ χ2

1 ´ χ2
3

˙
1
2

.

The case ñsrp “ 3´1{2, ñ˚ “ 0.05, previously presented

in the first row of Fig. 4, is shown in Fig. 6. It highlights

the circulation of highly elliptic orbits around the south

pole of the sphere.

Fig. 6 Different views of the reduced coplanar flow on the sphere

for ñsrp “ 3´1{2, ñ˚ “ 0.05, corresponding to the first row of

Fig. 4.

5 Conclusions

The long term behavior of a high area-to-mass ratio

object orbiting a planet may undergo important quali-

tative changes induced by the oblateness perturbation

of the central body. Moving beyond resonant cases, ex-

tensively discussed in the literature due to their interest

for astrodynamics applications, we focused on coplanar

orbits. Neglecting the axial tilt of the planet, the equa-

torial orbits of this kind of objects constitute an in-

variant manifold of the oblate-solar radiation pressure

problem, integrable up to higher-order effects. The in-

variance of the coplanar manifold is evidenced by the

vectorial formulation presented. The generality of the
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approach, based on the fundamental vectors defining

the apsidal frame, and free from singularities, may of-

fer advantages for semi-analytical integration.

Particular cases of the solution presented in this

contribution can be found in the literature. We gen-

eralised the treatment using a rigorous and formal ap-

proach. We derived the generating function of the trans-

formation for the averaging explicitly. We selected the

arbitrary function on which the mean-to-osculating trans-

formation depends to ensure the latter is purely peri-

odic. This is a prerequisite for extending the theory

to second order. We extended the existing literature

by thoroughly exploring the qualitative behavior of the

coplanar manifold in a two-parameter plane. One of the

parameters is related to the physical characteristics of

the orbiter, while the other is associated with the dy-

namical characteristics of the orbit. We computed ana-

lytically two critical boundaries delimiting three regions

with different qualitative flow. The characteristics of

the flow depend on the balance between the solar radi-

ation pressure and the oblateness perturbations. Local

changes to the flow appear in the form of bifurcations of

orbits with the periapsis frozen in the radiation pressure

direction. Global variations in the flow are possible. Or-

bits with rotating periapsis can switch from circling the

fixed point with periapsis towards the Sun, to revolving

around the opposite frozen orbit.
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Lemâıtre, pp. 151–180. Springer, Dordrecht (1984). DOI

10.1007/978-94-009-6487-7 14
21. Deprit, A., Rom, A.: The Main Problem of Artificial Satel-

lite Theory for Small and Moderate Eccentricities. Celestial
Mechanics 2(2), 166–206 (1970). DOI 10.1007/BF01229494

22. Di Nino, S., Luongo, A.: Nonlinear dynamics of a base-
isolated beam under turbulent wind flow. Nonlinear

Dynamics 107(2), 1529–1544 (2022). DOI 10.1007/

s11071-021-06412-4
23. Feng, J., Hou, X.Y.: Secular dynamics around small bodies

with solar radiation pressure. Communications in Nonlinear
Science and Numerical Simulations 76, 71–91 (2019). DOI

10.1016/j.cnsns.2019.02.011
24. Ferraz Mello, S.: Analytical Study of the Earth’s Shadowing

Effects on Satellite Orbits. Celestial Mechanics 5, 80–101

(1972). DOI 10.1007/BF01227825
25. Ferraz-Mello, S.: Canonical Perturbation Theories - Degener-

ate Systems and Resonance, Astrophysics and Space Science
Library, vol. 345. Springer, New York (2007)

26. Ferrer, S., Lara, M.: Integration of the Rotation of an Earth-
like Body as a Perturbed Spherical Rotor. The Astronomical

Journal 139(5), 1899–1908 (2010). DOI 10.1088/0004-6256/

139/5/1899
27. Ferrer, S., Lara, M., Palacián, J., Juan, J.F.S., Viartola, A.,
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74. Pokorný, P., Deutsch, A.N., Kuchner, M.J.: Mercury’s Cir-
cumsolar Dust Ring as an Imprint of a Recent Impact.

The Planetary Science Journal 4(2), 33 (2023). DOI

10.3847/PSJ/acb52e
75. Robertson, H.P.: Dynamical Effects of Radiation in the Solar

System. Monthly Notices of the Royal Astronomical Society
97, 423–437 (1937). DOI 10.1093/mnras/97.6.423
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