
Adversarial Attacks on Reinforcement Learning Agents for Command and Control

Ahaan Dabholkar1 James Z. Hare2 Mark Mittrick2 John Richardson2

Nicholas Waytowich2 Priya Narayanan2 Saurabh Bagchi1
1Purdue University 2DEVCOM Army Research Laboratory, USA

Abstract
Given the recent impact of Deep Reinforcement Learning
in training agents to win complex games like StarCraft and
DoTA (Defense Of The Ancients) – there has been a surge
in research for exploiting learning based techniques for pro-
fessional wargaming, battlefield simulation and modelling.
Real time strategy games and simulators have become a valu-
able resource for operational planning and military research.
However, recent work has shown that such learning based
approaches are highly susceptible to adversarial perturbations.
In this paper, we investigate the robustness of an agent trained
for a Command and Control task in an environment that is
controlled by an active adversary. The C2 agent is trained
on custom StarCraft II maps using the state of the art RL
algorithms – A3C and PPO. We empirically show that an
agent trained using these algorithms is highly susceptible to
noise injected by the adversary and investigate the effects
these perturbations have on the performance of the trained
agent. Our work highlights the urgent need to develop more
robust training algorithms especially for critical arenas like
the battlefield.

1 Introduction

Deep Reinforcement Learning (DRL) has been successfully
used to train agents in several tactical and real-time strat-
egy games such as StarCraft [1] and DoTA [2], which in-
volve complex planning and decision-making. These agents
have demonstrated proficiency in coming up with winning
strategies comparable to that of experienced human players
(AlphaStar [3], OpenAI Five [4]) through techniques like self–
play, imitation learning, etc. As a result, in recent years, there
has been mounting interest in the military research community
in applying these RL techniques to tasks such as operational
planning and command and control (C2). Simultaneously,
traditional game engines have been repurposed to facilitate
automated learning (pySC2 [5], SMAC [6, 7], pyDoTA [8])
and new ones developed for battlefield simulation [9–13], cre-
ating what are effectively digital wargames. The driving force

...

...
suboptimal action

Trained
C2 Agent

...

...

WIN

LOSS

Figure 1: Robustness Evaluation Methodology: The figure
shows the difference between a benign (top) and malicious
(bottom) environment at timestep t. Observations at t − 1
are input to a C2 agent that has been pretrained in a benign
environment. The agent samples a suboptimal action as a
result of the injected adversarial perturbations (orange) in the
input which eventually leads to a loss for the BlueForce.

behind this research has been to improve and augment strate-
gies used on the battlefields of the future, which are expected
to be more complex and unconventional, possibly beyond the
cognitive abilities of a human commander.

Recent works [14] have had considerable success in win-
ning simulated wargames using C2 agents that have been
trained through reinforcement learning techniques and syn-
thetic data. This has been possible partly due to the scalability
of RL training which has proved to be a massive advantage
for exploring and exploiting different strategies when faced
with difficult or complicated scenarios and only partial infor-
mation about the environment. However, these evaluations
are done in benign environments where information available
to the C2 agent is assumed to be uncorrupted. Realistically,
this is unlikely in battlefield situations as information there
may have inherent noise because of the mode of collection
(from sensors or other input source) or may be tampered with
by enemy forces. In this work, we evaluate the robustness of
such a trained agent when subject to potentially adversarial

1

ar
X

iv
:2

40
5.

01
69

3v
1

 [
cs

.C
R

]
 2

 M
ay

 2
02

4

inputs in the context of C2.
In order to do so, first, we use the StarCraft II Learning

Environment (SCLE [15]) to model conflict between two
teams, the BlueForce and the RedForce. The C2 agent directs
the BlueForce to win the battle by eliminating the RedForce
troops. Next, we assume the an attacker present in the en-
vironment tampers with the observations collected from the
battlefield before they are made available to the C2 agent.
The added perturbations termed adversarial perturbations
are constructed to be highly imperceptible to evade detection
while maximally subverting the C2 agent’s policy to some-
thing deleterious (Figure 1). We then evaluate the resulting
drop in performance of the agent on several metrics as well as
analyze the deviation in the course of action from a military
perspective.

Our key contributions are summarized as follows:

• We empirically show the vulnerability of the trained C2
agent to even small adversarial perturbations in the input
observations. Our studies quantify some expected trends and
bring out some non-obvious trends. For example, our studies
reveal that partially trained agents appear to be more resistant
to noise than fully trained agents.

• For generality, we evaluate the effectiveness of the attacks
on two different scenarios which correspond to the C2 agent’s
task to attack and defend respectively.

• We also evaluate agents trained using two state-of-the-art
RL algorithms, A3C and PPO, and comment on their robust-
ness to injected noise.

• We provide interpretability to the model’s outputs by pro-
filing the shift in action distributions predicted by the policy
network caused by the attacker’s perturbations.

Our evaluations demonstrate the susceptibility of vanilla RL
training to adversarial perturbations and the need for robust
training mechanisms and sophisticated detection and preven-
tion techniques especially for such critical scenarios.

The structure of the paper is as follows. First we provide
brief backgrounds on the use of RL for C2 followed by a
description of the StarCraft Environment and two custom
scenarios – TigerClaw and NTC in Section 2.1, which we
use for training our agent. In Section 4, we describe the state
and action space of our custom scenarios and the details of
the RL agent. Section 4.2 and Section 5 contain the attack
methodology and the evaluations respectively. Finally we
include a discussion on the need for utilizing adversarially
robust training techniques and directions for future work.

2 Background

2.1 RL for Command and Control (C2)
Mission success in military C2 requires disseminating control
actions to designated forces based on real-time Intelligence,

Surveillance, and Reconnaissance (ISR) information of the
operational environment, such as kinetic and non-kinetic (e.g.,
weather, political, economic, cultural) variables, and terrain
information. Before the battle begins, the commander and
their specialized staffing officers must develop a detailed mis-
sion plan encapsulated as a Course Of Action (COA). The
development of a COA requires a detailed analysis of the oper-
ational environment, predictions of the opposing force’s COA
(strategy), and wargaming to identify a friendly force COA
that is finely tuned to meet the mission requirements [16].
Typical military planning is solely based on the commander
and staffing officers, and their allocated time before the battle
dictates the number of possible COAs that can be consid-
ered. Additionally, each potential COA must be wargamed
and fine-tuned against a small set of opposing force COAs to
identify strengths and weakness. This can result in suboptimal
(heuristic-based) COA [17].

To circumvent this limitation, future military planning is
envisioned to incorporate an Artificial Intelligent (AI) com-
mander’s assistant that can generate and recommend COAs
to aid in the military planning process. Recent developments
in deep RL for strategy games provides a promising direction
to develop control policies for C2 [3]. The algorithms devel-
oped allow an AI agent to learn the best control policy that
optimizes a predefined reward function by playing millions
of simulated games through the exploration of many environ-
mental state and action pairs. To extend these formulations for
military C2 requires modeling, simulating, and wargaming
a large number of battles faster than real-time in a virtual
environment that emulates realistic combat characteristics.
Furthermore, the existing RL algorithms must be adapted
to handle a large number of heterogeneous actors, doctrine
based control strategies, complex state and action space, and
uncertain information.

Previous work on RL for C2 found that the StarCraft II
gaming engine, developed by Blizzard Entertainment [1], pro-
vides a simulation environment that can be militarized and
used for prototyping an AI commander’s assistant [14, 18].
The following subsections provide details of the StarCraft II
environment and the scenarios considered in this paper.

2.2 StarCraft II C2 Environment

StarCraft II is a multi-agent real-time strategy game devel-
oped by Blizzard Entertainment [1] that consists of multiple
players competing for influence and resources with the ulti-
mate goal of defeating the other players. As a collaboration
between Deepmind and Blizzard Entertainment, the StarCraft
II Learning Environment (SC2LE) Machine Learning API
was developed to allow researcher to study many difficult
challenges associated with RL [5]. For example, controlling
heterogeneous assets in a complex state and action space with
uncertainties. Furthermore, the StarCraft II Editor allows de-
velopers to construct custom scenarios, making it possible to

2

develop RL agents for C2.
Previous work extended this framework to militarize the

SC2LE and develop a C2 simulation and experimentation
capability that interfaces with deep RL algorithms via RL-
lib [18], an open-source industry-standard RL library [19].
The icons were re-skinned to portray standard military sym-
bology, new StarCraft II maps were designed to emulate real-
istic combat characteristics, such as environment terrain and
asset attributes (e.g., visibility, weapons, weapons ranges, and
damage), and a custom wrapper was designed to train RL
agents. For a detailed description of this framework, see [18].
In our work, we use this framework to develop baseline RL
agents for C2 and study the effects of adversarial attacks on
the learned policies in the following two scenarios.

2.2.1 Custom StarCraft II Scenarios

Figure 2: TigerClaw Scenario

Figure 3: TigerClaw: (Right) The geographical map of the
scenario and (Left) the correspondingly designed map in
StarCraft

TigerClaw: The TigerClaw melee map (Figure 3) is a high-
level recreation of the TigerClaw combat scenario (Figure 2)
developed using the StarCraft II map editor. The scenario was
developed by Army subject-matter experts (SMEs) at the Cap-
tain’s Career Course, Fort Moore, Georgia. The BlueForce is
an Armored Task Force (TF) which consists of combat armor

with M1A2 Abrams, mechanized infantry with Bradley Fight-
ing Vehicles (BFV), mortar, armored recon cavalry with BFV,
and combat aviation. The RedForce is a Battalion Tactical
Group (BTG) with attached artillery battery and consists of
mechanized infantry with BMP, mobile artillery, armored re-
con cavalry, combat aviation, anti-armor with anti-tank guided
missiles (ATGM), and combat infantry.

As seen in Figure 2, the BlueForce is a supporting effort
with a mission to cross a dry riverbed (Wadi) and defeat the
defending RedForce in preparation for a forward passage of
lines by the main effort. The terrain is challenging in this
scenario because there are only two viable wadi crossing
points (Figure 3).

Figure 4: NTC: (Right) The geographical map of the scenario
and (Left) the correspondingly designed map in StarCraft

National Training Center (NTC): The NTC map is a rep-
resentation of the Ft. Irwin and Bicycle Lake area as seen in
Figure 4. The Blue and RedForce units are the same as Tiger-
Claw, but there is also a capability to randomize the starting
forces. RedForce initially begins in the Bicycle Lake region,
while BlueForce is set up in defense of Fort Irwin. Thus the
RedForce will maneuver from the Bicycle Lake area and at-
tempt to destroy the BlueForce in the Ft. Irwin area. The goal
of this map was to investigate the impact of new terrain and to
determine if the BlueForce would adopt a defensive strategy.

In both SC2 maps, each side has been represented down
to the platoon echelon. The speed, attack range, and dam-
age attributes of SC2 units have been scaled to estimate the
capabilities of the relevant platforms in order to facilitate
reinforcement learning.

2.2.2 Reinforcement Learning Algorithms

Asynchronous Advantage Actor-Critic (A3C) [20]: A3C
is an asynchronous version of the Advantage Actor-Critic
(A2C) algorithm for RL that uses multiple agents to learn a
policy and an estimate of the value function in parallel. At
each timestep, the agent takes an action based on the current
policy and receives a reward while transitioning to a new
state. It then calculates the advantage function and updates its
local copies of the actor-critic networks. This process takes
place independently and asynchronously for each agent. A
central parameter server that stores the global parameters of

3

the networks is updated periodically by each agent and is
used to initialize the local parameters of the agents’ local
networks. The asynchronous nature of the updates leads to
more efficient exploration of the environment and reduces the
correlation between the updates leading to more stable and
efficient learning. Typically, the policy and value functions
are parameterized by a shared neural network with a softmax
output for the policy and a linear output for the value function.

Proximal Policy Optimization (PPO) [21]: PPO is a pol-
icy gradient method that aims to improve the performance
and stability of trust-region [22] methods by introducing a
clipped surrogate objective function. This objective function
effectively restricts policy change to a small range thus re-
ducing the variability in training of the actor. During training,
the PPO algorithm iteratively updates the actor as well as
the action value function and state value function using the
temporal-difference (TD) method. Further, this objective func-
tion enables PPO to guarantee monotonic improvements in
the objective. This allows for faster convergence without strict
constraints leading to more accurate and stable performance
of the agent.

3 RL Environment

In this section we provide technical details of the RL environ-
ment used to train the C2 agent.

3.1 State and Action Space

The state space observed from the StarCraft II C2 environ-
ment consists of both a screen or visual representation and
a nonspatial representation. The screen representation is a
size 256×256 image of the the minimap that depicts the cur-
rent environmental state. The value of each pixel provides the
agent with an understanding of the BlueForce and RedForce
units’ positions along with terrain information. The nonspa-
tial representation consists of a vector of nonspatial features
of size 287 that encodes all of the game and unit information,
such as unit type, health, position, game scores etc.

The action space within the StarCraft II environment is
large since it is a combination of the following three compo-
nents: the number of units available to the commander, the
number of possible actions that each unit can execute, and
the (x,y) pixel location within the size 256× 256 minimap
where the action will be executed. To reduce the action space,
the StarCraft II C2 environment first restricts the number
of units by defining control groups, which lumps common
units together to reduce the overall number of units needed to
be controlled. In our custom scenarios, the control groups
are defined as – 1 BlueForce: “AVIATION", “MECH_INF",
“MORTAR", “SCOUT" and “TANK" 2 RedForce: “ANTI_ARMOR",
“ARTILLERY", “AVIATION", “INFANTRY" and “MECH_INF"

Within each control group, we restrict the possible actions
to be either “NO_OP" or “ATTACK(x,y)", where the function
of the former is to essentially do nothing, while the latter
moves the control group (i.e., all associated units) to a desired
(x,y) location and attacks any enemy within its firing range
along the way. Additionally, the number of (x,y) pixel loca-
tions is reduced by segmenting the minimap into nine disjoint
quadrants with locations defined as “LEFT", “CENTER",
and “RIGHT" for the x-axis, and “TOP", “CENTER", and
“BOTTOM" for the y-axis, where the exact pixel location is
the center of the quadrant.

3.1.1 Reward Structure

TigerClaw: The reward function for the TigerClaw map con-
sists of -

• Terrain Reward: +10 points for each BlueForce unit
crossing the Wadi (a dry river bed) and −10 points for retreat-
ing back.

• Attrition Reward: +10 points for destroying a RedForce
unit and −10 points if a BlueForce unit is destroyed.

The terrain reward is meant to reward an offensive strategy for
the BlueForce. It is meant to reinforce crossing of the Wadi
to initiate conflict with the RedForce in order to take over
desired locations. To drive this scenario, the RedForce has
been scripted to defend the desired locations.

NTC: The NTC map shares the same attrition reward function
as TigerClaw, but the terrain rewards are not included. That
is,

• Attrition Reward: +10 points for destroying a RedForce
unit and −10 points if a BlueForce unit is destroyed.

The lack of terrain reward is meant to encourage the Blue-
Force to defend and focus on maximizing RedForce losses.
To drive this scenario the RedForce has been scripted to seek
and destroy the BlueForce.

3.2 RL Agent Description
3.2.1 The Policy Network

The C2 agent in this paper uses the same policy network as
our previous work [14]. The network takes as inputs, three
kinds of observations and the control group

• screen - The screen representation discussed in Section 3.1
consisting of a vector of an image of size 256×256.

• nonspatial - The nonspatial representation discussed in
Section 3.1 consisting of a vector of size 287.

• action mask - The action mask is used to restrict the action
space to the allowed actions as described in Section 3.1.

4

Conv2D (conv1)

Conv2D (conv2)

Conv2D (conv3)

screen
 features

screen nonspatial
+

control group

FC (fc1)

nonspatial
features

FC (fcv) FC (fc2)

action logits

FC (fcx)

x logits

value

FC (fcy)

y logits

masked logits

action mask

Figure 5: C2 Policy Network: Compuational graph of the
policy network of our C2 agent. The inputs and outputs are
shown in blue and yellow respectively. Shaded rectangles
represent the concatenate operation. Conv2D and FC layers
are ReLU activated.

• control group - A one-hot encoding of the selected control
group (specified in Section 3.1) that will be the focus of ac-
tion prediction by the policy network. The encoding is then
concatenated to the nonspatial input vector. At each time
step, the control group is sequentially selected to identify
their next actions.

The output of the network is an approximation of the value
function and an 8 element vector arranged as (action-logits,
x-logits, y-logits). The action-logits is a 2 element vector that
determines the action. The x,y-logits are 3 dimensional en-
tries each with the logit values corresponding to the positions
(LEFT,CENTER,RIGHT) and (TOP,CENTER,BOTTOM)
on the map, respectively. This output vector is used to create
a probability distribution over the action space from which
the next action is sampled by the agent.

4 Adversarial Attacks on RL agents

Prior works on the robustness of RL training have focused on
evaluating the algorithms from a perspective of sensitivity to
environment dynamics [23, 24] or the ability to train adaptive
adversarial policies against them [25, 26]. In this work, we
focus on the former approach. A lot of previous research has
shown that neural network predictions are highly sensitive
to perturbations in their input space [27–29]. As DRL ap-
proaches typically rely on parameterizing policies with neural
networks, they suffer from the same vulnerabilities.

4.1 Adversarial Attacks on Image Classifiers
An adversarial perturbation is a small perturbation that is
added to a benign input to fool a trained network into pre-

dicting an incorrect output. Typically the perturbation is con-
strained to be small enough to avoid detection. For example,
in the case of image classifiers, the ideal adversarial pertur-
bations in pixel space would be imperceptible to a human
observer but would cause the neural network classifier to pre-
dict an incorrect class with high confidence. Formally, for
a trained classifier f (w; .) and an input image x, computing
an adversarial sample x′ = x+σ involves computing σ such
that f (w,x′) ̸= f (w,x) while minimizing d(x′,x), where d is
a distance metric such as Euclidean distance.

4.1.1 Fast Gradient Sign Method (FGSM) [28]

FGSM provides an efficient method for generating adversarial
samples given whitebox access to the model. Given a trained
classifier model f (w; .), a first order attacker can generate
adversarial perturbations for the benign sample x by first
computing the gradient of the classifier loss (L) with respect
to the input. The weighted perturbation when added to x,
creates the adversarial sample x′.

x′ = x+ ε · sgn(∇xL(f (w;x),yt))

where yt is the ground truth label of the sample x and ε is
the perturbation budget that controls the amount of distor-
tion to the original sample. In the case of FGSM, it bounds
the l∞ norm of the perturbation added to the original image.
Intuitively, the attack moves the sample x in the direction
of ∇xL(f (w;x),yt) which maximizes the classifier loss L. In
this work, we prefer FGSM to more powerful attacks such as
PGD [29] and C&W [27] because of its lower computational
cost, which leads to a more efficient attack.

4.2 Inference Time Attacks on Policies
Inference time attacks are used against pre-trained agents
which are deployed in the wild. The goal of the attack is
to induce the trained policy network into predicting a sub-
optimal action distribution by surreptitiously perturbing the
input observations. This inevitably leads to the agent losing
its expected reward.

In the wild, such an attack could be realized as a cyber-
attack where sensors collecting data from the battlefield could
be compromised and transmit corrupted data. A high level
overview of the attack is presented in Figure 1.

4.2.1 Threat Model

First we assume a C2 agent that has been trained in a be-
nign environment and has learned an optimum policy. This
agent is subsequently deployed in an unsafe setting to direct
BlueForce troops in a battle against the RedForce. Next, we
consider an attacker that has the ability to intercept and mod-
ify observations coming from the environment before they are
received by the C2 agent to select the next actions. Through

5

(a) PPO/TigerClaw: Episode Re-
wards over 100 episodes

(b) PPO/TigerClaw: Reward trend
w.r.t perturbation budget (ε).

(c) PPO/NTC: Episode Rewards
over 100 episodes

(d) PPO/NTC: Reward trend w.r.t
perturbation budget (ε).

Figure 6: Inference time attack on an agent in the TigerClaw (a),(b) and NTC (c),(d) scenario trained using PPO.

(a) A3C/TigerClaw: Episode Re-
wards over 100 episodes

(b) A3C/TigerClaw: Reward trend
w.r.t perturbation budget (ε).

(c) A3C/NTC: Episode Rewards
over 100 episodes

(d) A3C/NTC: Reward trend w.r.t
perturbation budget (ε).

Figure 7: Inference time attack on an agent in the TigerClaw (a),(b) and NTC (c),(d) scenario trained using A3C.

such modifications, the attacker hopes to influence the agent
to sample an incorrect action that leads to a low reward for the
BlueForce. To generate such input perturbations efficiently,
we also assume that the attacker has white-box access to the
policy network used by the C2 agent.

4.2.2 Attack Methodology

We use FGSM as a basis for generating perturbations at infer-
ence time and use the modification presented in [23] to target
policies instead of classifiers. Unlike supervised learning, we
do not know the “ground truth" action at any given timestep
in RL and we assume that the action predicted by the policy
network with the highest likelihood is optimal.

It should be noted that since the output of our policy net-
work has three different components (action logits, x-logits,
y-logits), ideally the ground truth vector should be computed
for each component separately. With this in mind we con-
struct the ground truth vector with a degenerate distribution.
That is, for an input observation x, for each component of
the output, we take the element with the highest value in the
vector y = [y(1),y(2),y(3)] = f (w;x) and assign weight 1 to
it’s logit value and 0’s everywhere else. In other words,

y′(j)
i =

{
1, if y(j)

i = max(y(j))
0, otherwise

where yi is the ith element of vector y.

However, we find that treating the components as a single
unit and calculating the degenerate distribution on the en-
tire output is more efficient while making for an effective at-
tack. After making this relaxation, the malicious perturbation
is then calculated for x using the gradient ∇xL(f (w;x),y′),
where L is the cross-entropy (CE) loss function. We use this
technique to craft perturbations for two of the three input
components namely – the screen and nonspatial components.
We do not perturb the action mask as it is simply used to
mask out invalid actions predicted by the network. As a result,
perturbing this component does not conform to any realistic
setting.

5 Evaluations

5.1 Experimental Setup

Our experiments were conducted on a cluster node with two
AMD Epyc 7763 “Milan" CPUs 128 cores with 256GBs
of main memory. We used the SC2 framework described
in Section 2.2 to train our RL agents. Each training run
was performed using 90 workers, each occupying a single
core (90 parallel instances of the game) and consumed about
170GBs of memory. The PPO and A3C agents were trained
for 5K/25K iterations respectively corresponding to around
40M/100M timesteps or 134K/376K episodes respectively.
The rollouts were visualized using a custom pygame interface.

6

5.2 Evaluation of Inference Time Attacks on
Agent Reward

For evaluating effectiveness of inference time attacks, first we
train our C2 agent in a benign environment until it learns a
policy that consistently achieves a high reward on the given
scenario. The trend of the attained reward when the agent is
deployed in the presence of an attacker is then studied over
the course of a 100 episodes or rollouts.

For a comprehensive evaluation, we consider two scenar-
ios or tasks – 1 TigerClaw (Attacking BlueForce) and 2
NTC (Defending BlueForce). We also consider two different
state-of-the-art training algorithms, A3C and PPO. In both
scenarios the C2 agent controls the movements of the Blue-
Force while the RedForce follows a fixed policy. A detailed
description of these scenarios was given in Section 2.2.

To further analyze and understand the shift in agent strategy
we use several quantitative metrics as well as observe multiple
rollouts. Our insights are presented below.

5.2.1 Vulnerability to Adversarial Perturbations

Figures 6 and 7 show the resulting reward trends for an agent
trained using PPO and A3C, respectively. We present box-
plot statistics aggregated over 100 episodes, for the rewards
attained by the agent under attack with different perturbation
levels in Figures 6b and 6d (PPO) and Figures 7b and 7d
(A3C). ε = 0.0 corresponds to the benign case when no per-
turbations are made. In most cases, we observe a steep de-
crease in the median reward even for minute perturbations
(ε = 0.05,0.08). Increasing ε also shows diminishing returns
for attack effectiveness.

To maintain the secrecy of the attack, the perturbation bud-
get needs to be small enough to be imperceptible to a human
auditor, especially for the screen component of the input. Fig-
ure 8 shows a visual comparison of perturbations of the screen
component at different levels. From our evaluations we ob-
serve that ε = 0.1 is optimal in lowering the reward while
keeping perturbations to a minimum.

Figure 8: Visualizing perturbations of the screen component
at different ε levels in the TigerClaw scenario. Higher ε levels
result in a greater amount of noise.

Figure 9 provides explainability into the utility of the attack
by showing how it changes the actions taken by the agent.
We first plot the action distribution predicted by the policy
network on benign observations collected at certain timesteps
during a PPO/TigerClaw rollout. These are shown in Fig-
ure 9a, 9c, and 9e, respectively. We then compare it to the

distribution predicted by the same policy network after mali-
ciously perturbing the observations with our attack for ε = 0.1
in Figures 9b, 9d, and 9f, respectively. The probabilities are
plotted on a log scale. As can be observed the actions with the
highest likelihood shift from (1,1,2)→ (1,2,1),(1,1,2)→
(0,2,1) & (0,0,0)→ (1,2,1) at timestep 10, 21, and 100.

timestep = 10

(a) Predicted Action:
ATTACK(CENTER,BOTTOM)

(b) Predicted Action:
ATTACK(RIGHT,CENTER)

timestep = 21

(c) Predicted Action:
ATTACK(CENTER,BOTTOM)

(d) Predicted Action:
NO_OP

timestep = 100

(e) Predicted Action:
NO_OP

(f) Predicted Action:
ATTACK(RIGHT,CENTER)

Figure 9: Shift in the action distributions predicted by the
policy network at different timesteps during a PPO/TigerClaw
rollout. (Left) Action distribution on benign observations.
(Right) Action distribution predicted by network after per-
turbing observation with ε = 0.1. Each caption represents the
action sampled with highest likelihood.

5.2.2 Analyzing Agent Behavior under Attack

We observe a definite change in the strategy used by the
C2 agent under an attacker’s influence. Over a number of
rollouts in either scenario, we frequently observe artifacts
like erratic troop movements where the BlueForce troops
keep oscillating about a single position for certain number of
timesteps, straying off course of the aviation units which are
crucial for winning the TigerClaw scenario, etc. Similarly in
the NTC scenario, the attacks cause the BlueForce to retreat
towards the bottom of the map, away from the advancing
RedForce as opposed to following the original strategy – to

7

Figure 10: Sampled actions of a PPO agent over 5 TigerClaw
rollouts. We can observe a shift in the distribution in the
presence of an attacker.

aggressively pursue and eliminate the RedForce units.
To better understand this shift in behavior, we compare

actions taken by the agent in a benign environment to those
taken by the same agent when an adversary is present. That is,
at each timestep we compute the actions that would be taken
by the agent if the observations were maliciously modified
and compare these “subverted actions" to the actions that are
actually taken by the agent at that timestep. We do so by per-
turbing the observations using our attack (with ε = 0.1) and
using the agent to predict the next action. The normalized ac-
tion frequencies are plotted in Figure 10 for a PPO/TigerClaw
agent over 5 episodes. A clear difference is observed in the ac-
tions taken in the two cases. Actions (0,2,1),(1,1,1),(1,2,1)
are sampled frequently when perturbed observations are pre-
sented to the agent. These actions misdirect the BlueForce as
they target areas on the map that do not contain any RedForce
troops.

Figure 11: Actions taken by the BlueForce during a TigerClaw
rollout in a benign setting compared to those taken in the
presence of an inference time (FGSM) attacker.

In order to examine the BlueForce movements more thor-
oughly, we select one episode and for each timestep plot the
subverted actions and the actual actions taken (Figure 11)
by the agent. A rollout in a benign environment sees the
BlueForce enter conflict and destroy most of the RedForce
troops in the first 100 timesteps. This corresponds to the
actions (1,1,2),(1,1,1),(1,1,0) which are taken frequently
within the first 50 timesteps. The (0,1,1) actions correspond
to NO_OPs that are taken after exiting conflict when most of
the RedForce are killed. In the presence of an attacker, how-

ever, in the first 50 timesteps the perturbations cause the C2
agent to sample actions like (1,2,1) with high frequency. As a
result, the BlueForce are misdirected and end up being killed
by the RedForce.

(a) Casualty Comparison (b) BlueForce Partial Win %

(c) BlueForce Health Left (d) RedForce Health Left

Figure 12: Comparing the impact of inference time attack on
additional game metrics for a PPO agent in TigerClaw. The
results are aggregated over 100 rollouts.

This is also reflected in the casualty metrics of both teams in
Figure 12a. There are greater BlueForce casualties and a fewer
RedForce casualties in the presence of an ε = 0.1 attacker. To
get an idea of the impact of each unit on their respective team,
we look at the health remaining percentage of each control
group at the end of an episode. Figures 12c and 12d shows the
health statistics for the BlueForce and RedForce respectively,
aggregated over 100 episodes. We can see in Figure 12c that
the health remaining of the aviation units drops significantly
to 2% in the presence of an attacker. Rollouts show that these
units are critical to winning the TigerClaw scenario for the
BlueForce. On the other hand the RedForce aviation units
actually see an increase in remaining health (77%). Other
groups of the BlueForce also see a noticeable decrease in
their health metrics.

Similarly in the NTC scenario, the health remaining for the
RedForce increase greatly on attack (Figure 13d), while the
BlueForce health left only decreases marginally. Observing
multiple rollouts reveals the attacks cause the BlueForce units
to get misdirected and as a result, they do not get into conflict
with the RedForce. This is also supported by the casualty met-
rics for the two teams (Figure 13a) with the BlueForce only
having a slightly higher number of casualties when compared
to the benign case.

Finally, the attack causes a sharp drop in the number of
games that end with higher health levels for the BlueForce
than the RedForce (termed a partial win). This can be seen in
Figures 12b and 13b.

8

(a) Casualty Comparison (b) BlueForce Partial Win %

(c) BlueForce Health Left (d) RedForce Health Left

Figure 13: Comparing the impact of inference time attack on
additional game metrics for a PPO agent in NTC. The results
are aggregated over 100 rollouts.

5.2.3 Strength & Reliability of the Attack

For small perturbations, the attack is not very reliable as evi-
denced by the large dispersion in attained reward. High vari-
ance can be observed in Figures 6a, 6c, 7a, and 7c where we
plot the (EMA smoothed) episode reward over 100 episodes.
This can be explained partly by the stochastic nature of ac-
tion sampling and the reward structure associated with the
map. This dispersion is reduced when increasing ε, leading to
greater reliability but trading off the secrecy of the attack. A
surprising instance is that of an A3C/TigerClaw agent where
the attack remains ineffective even for larger perturbations.
We analyze this in more detail below.

Attacking the A3C/TigerClaw agent: As can be seen in
Figure 7b, the attack appears to fail on the C2 agent trained us-
ing A3C on the TigerClaw map. Even for large perturbations
(ε > 0.1), the attack fails to degrade the agent’s reward as
extensively as the other cases. Interestingly, we note that even
in a benign environment, the A3C/TigerClaw agent achieves
a significantly lower reward than the PPO/TigerClaw agent.

First, to rule out the training algorithm as a potential factor
and for a fair comparison, we partially train a PPO agent on
the TigerClaw scenario until it achieves a similar reward to
the A3C agent and study the rewards achieved by this agent
in the presence of an attacker.

Our observations are shown in Figure 14. In Figure 14a we
see that the partially trained PPO agent (PPO–partial) gets
similar rewards as the A3C agent over 100 rollouts. Notably,
its reward trend when attacked (Figure 14b) is comparable
to that of the A3C agent (Figure 7b). This empirically shows

(a) Episode rewards of the agent
under benign conditions.

(b) PPO-partial/TigerClaw: Re-
ward trend w.r.t ε

Figure 14: Comparing the effect of the inference time attack
on the A3C agent with the partially trained PPO agent (PPO-
partial). This agent was trained for 1M timesteps.

that the attack is largely unaffected by the training algorithm.
Coupled with the previous observation, we hypothesize that
the effectiveness of the attack is correlated to the quality of
the trained agent.

(a) A3C/TigerClaw (b) PPO-Partial/TigerClaw

Figure 15: Action distribution shifts over 5 episodes for
A3C/TigerClaw and PPO-Partial/TigerClaw

To test this hypothesis in greater detail we turn to the fre-
quencies of actions taken by both agents over multiple rollouts.
Similar to the analysis in previous sections, to visualize the
shift induced by the attack we plot the subverted and actual
(ε = 0.1) actions sampled over 5 episodes in Figure 15 for
both agents. Surprisingly, we observe an almost complete
overlap of the two action plots for the A3C agent (Figure 15a)
and only a marginal difference for the PPO-partial agent. This
indicates that the attack is in most cases incapable of flipping
the actions sampled by the agent.

As the malicious perturbations are constructed using a loss
gradient, we try to understand the loss landscape of the poorly
trained policy networks to explain the attack’s ineffectiveness.
To do so, we plot the loss value for 104 randomly sampled
points in the l∞-ball of ε radius around a fixed observation
Oc. The loss is computed as the component-wise sum of the
CE loss between the predicted action distribution on that ob-
servation and a fixed ground-truth action distribution. The
ground truth action distribution is computed corresponding
to the actual action taken by the agent on Oc (Section 4.2).
The CE loss is calculated for each output component (action

9

(a) PPO/TigerClaw Agent mean re-
ward comparison.

(b) PPO/NTC Agent mean reward
comparison.

(c) A3C/TigerClaw Agent mean
reward comparison.

(d) A3C/NTC Agent mean reward
comparison.

Figure 16: Component wise impact of the input on mean episode reward.

Figure 17: Loss Value plots for the agent policy networks.
The y axis represent the normalized frequencies (104 trials)
for the loss value on the x axis.

logit, x-value, y-value) and summed to get the final loss. Fig-
ure 17 shows the results for ε = 0.1 for both the A3C and
PPO-Partial agents when compared to the PPO/TigerClaw
agent as a baseline. Compared to the PPO agent, both the
A3C and PPO-Partial agent’s predictions are highly similar to
the ground truth as evidenced by the highly frequent ∼ 0 loss
value. This corresponds to a flatness in the prediction space
of both (A3C and PPO-Partial) policy networks where inputs
in neighbourhood result in the same prediction. Consequently
this leads to greater robustness to injected noise – benign and
adversarial as small perturbations are not enough to signifi-
cantly change the predicted action distributions. Investigating
the relation between this perceived robustness and the quality
of training is left as future work.

5.2.4 Component-wise Impact of Input on the Attack

In this section we analyze the impact of the screen and nonspa-
tial components on the effectiveness of the attack. To do so,
we perform the attack by restricting malicious perturbations
to only the screen or nonspatial components respectively. We
track the mean reward achieved by the C2 agent in each case
and compare them to the baseline attack which perturbs both
components. We record the rewards gained over 100 rollouts
and show the results in Figure 16.

Figures 16a, 16b, and 16d indicate that for smaller pertur-
bations levels (ε < 0.5), modifications to the screen compo-
nent are primarily responsible for a successful attack. Fur-
ther, we only see a minor degradation in the reward for small
nonspatial-only perturbations in both scenarios. On the other
hand, the drop in mean reward because of screen-only per-
turbations is similar to that in the baseline attack. Intuitively,
this skewed importance makes sense as the screen compo-
nent is a much larger input component (256×256 versus 287)
when compared to the nonspatial component. The screen com-
ponent further encodes important spatial information on the
terrain and location of troops that has a significant impact on
the policy network’s prediction.

We also note the anomalous trends in Figure 16c for the
A3C/TigerClaw agents. It appears that the nonspatial compo-
nent is more important to the policy network, however since
this agent is poorly trained, we cannot conclusively reason
about the resulting trends.

5.2.5 Adversarial Robustness of the Training Algorithm

To compare the robustness of an agent trained using PPO
to one trained using A3C we compare the trend followed
by the mean relative reward (Rr) defined as the ratio of the
mean reward obtained by an agent under attack (Ra) to the
mean reward earned in a benign environment (Rb). That is,
Rr = Ra/Rb. A larger value of Rr signifies more robustness.
Figure 18 presents the results of our comparisons. In both
cases, we see that the A3C agent seems to perform marginally
better than the PPO agent for small perturbations and worse
for higher perturbation levels. As in the previous section,
for a fair comparison we compare the partially trained PPO
agent (PPO-partial) with the A3C agent (Figure 18a) and see
a similar decreasing trend for Rr.

While we cannot conclusively comment on the robustness
of A3C vs PPO, the robustness of the PPO-partial agent com-
pared to a fully trained PPO agent makes for a compelling
argument. This has been explored in more detail in the preced-
ing section. It should be noted however that PPO does seem
to be functionally more performant than A3C as evidenced

10

(a) Relative Rewards of PPO vs
A3C on TigerClaw

(b) Relative Rewards of PPO vs
A3C on NTC

Figure 18: Comparison of Algorithm Robustness: Mean Rela-
tive Reward with respect to the perturbation budget

by the higher rewards in both scenarios.

6 Discussions and Future Work

In this work we have focused on evaluating the robustness of
RL agents used for C2 through the lens of an inference time
attacker. Our investigations supported by existing literature
reveal that even the latest RL training algorithms cannot be
trusted to train agents that can be reliably deployed in unsafe
environments. Our evaluations show that well-trained agents
are highly sensitive to even minute perturbations in their input
space and act suboptimally as a result. In an arena such as
the battlefield where observations received can be prone to
noise either benign or malicious, this raises serious questions
on the use of such agents.

This directly leads us to two avenues for future work. The
first is developing explainable and controllable approaches to
COA generation using RL training and developing robustness
mechanisms for RL agents that work both during inference
and training time. Such mechanisms can be a combination
of adversarial perturbation detection and prevention mecha-
nisms that can be deployed on top of pre-existing agents. The
second avenue for future work is existing training algorithms
can be augmented to train agents that are certifiably robust
to malicious noise. In this vein, adversarial training offers
a promising alternative to train robust agents. In this work,
while we present a preliminary study relating the flatness of
the loss landscape of the policy network to it’s apparent robust-
ness, further research is required to quantify the susceptibility
of a policy network to noise.

7 Conclusions

Our evaluations reveal the fragile nature of vanilla RL agents
trained for C2 when deployed in insecure environments where
even minute perturbations to the input introduced by a ma-
licious actor are sufficient to introduce a large variability in
the agent’s prediction. We analyze this susceptibility of a
C2 agent when commanding the BlueForce in two custom

scenarios and discuss the reasons behind such behavior and
the implications from a strategic perspective. Finally, we em-
phasize the need to develop robust training algorithms for
RL which would be critical for reliable mission planning on
battlefields of the future.

Funding

This material is based in part upon work supported by the
Army Research Lab (ARL) under Contract number W911NF-
2020-221. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

References

[1] Blizzard, “Starcraft ii.” [Online]. Available: https:
//starcraft2.blizzard.com

[2] Valve, “Dota 2.” [Online]. Available: https://www.dota2.
com/home

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Math-
ieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss,
I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou,
M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen,
V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine,
C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yo-
gatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul,
T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and
D. Silver, “Grandmaster level in StarCraft II using multi-
agent reinforcement learning,” Nature, 2019.

[4] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Cheung,
P. Dębiak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme,
C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki,
M. Petrov, H. P. d. O. Pinto, J. Raiman, T. Salimans,
J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with large scale deep
reinforcement learning,” 2019.

[5] google deepmind, “pysc2.” [Online]. Available: https:
//github.com/google-deepmind/pysc2

[6] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar,
N. Nardelli, T. G. J. Rudner, C.-M. Hung, P. H. S. Torr,
J. Foerster, and S. Whiteson, “The starcraft multi-agent
challenge,” 2019.

[7] oxwhirl, “smacv2.” [Online]. Available: https://github.
com/oxwhirl/smacv2

[8] pydota2, “pydota2.” [Online]. Available: https://github.
com/pydota2/pydota2

11

https://starcraft2.blizzard.com
https://starcraft2.blizzard.com
https://www.dota2.com/home
https://www.dota2.com/home
https://github.com/google-deepmind/pysc2
https://github.com/google-deepmind/pysc2
https://github.com/oxwhirl/smacv2
https://github.com/oxwhirl/smacv2
https://github.com/pydota2/pydota2
https://github.com/pydota2/pydota2

[9] P. Narayanan, M. Vindiola, S. Park, A. Logie, N. Way-
towich, M. Mittrick, J. Richardson, D. Asher, and
A. Kott, “First-year report of arl directors strategic initia-
tive (fy20-23): artificial intelligence (ai) for command
and control (c2) of multi-domain operations (mdo),”
US Army Combat Capabilities Development Command,
Army Research Laboratory, 2021.

[10] S. J. Park, M. M. Vindiola, A. C. Logie, P. Narayanan,
and J. Davies, “Deep reinforcement learning to assist
command and control,” in Artificial Intelligence and
Machine Learning for Multi-Domain Operations Appli-
cations IV. SPIE, 2022.

[11] S. Soleyman and D. Khosla, “Multi-agent mission plan-
ning with reinforcement learning,” in AAAI Symposium
on the 2nd Workshop on Deep Models and Artificial
Intelligence for Defense Applications: Potentials, Theo-
ries, Practices, Tools, and Risks. AAAI, 2020.

[12] L. Zhang, J. Xu, D. Gold, J. Hagen, A. K. Kochhar, A. J.
Lohn, and O. A. Osoba, “Air dominance through ma-
chine learning,” Santa Monica, CA: RAND Corporation,
2020.

[13] A. Basak, E. G. Zaroukian, K. Corder, R. Fernandez,
C. D. Hsu, P. K. Sharma, N. R. Waytowich, and D. E.
Asher, “Utility of doctrine with multi-agent rl for mil-
itary engagements,” in Artificial Intelligence and Ma-
chine Learning for Multi-Domain Operations Applica-
tions IV. SPIE, 2022.

[14] N. Waytowich, J. Hare, V. G. Goecks, M. Mittrick,
J. Richardson, A. Basak, and D. E. Asher, “Learning
to guide multiple heterogeneous actors from a single
human demonstration via automatic curriculum learn-
ing in starcraft ii,” in Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications IV.
SPIE, 2022.

[15] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S.
Vezhnevets, M. Yeo, A. Makhzani, H. Küttler, J. Aga-
piou, J. Schrittwieser et al., “Starcraft ii: A new
challenge for reinforcement learning,” arXiv preprint
arXiv:1708.04782, 2017.

[16] J. J. Marr, The military decision making process: Making
better decisions versus making decisions better. School
of Advanced Military Studies, US Army Command and
General Staff College, 2001.

[17] W. A. Shoffner, The Military Decision Making Process:
Time for a Change. School of Advanced Military
Studies, US Army Command and General Staff College,
2000.

[18] V. G. Goecks, N. Waytowich, D. E. Asher, S. Jun Park,
M. Mittrick, J. Richardson, M. Vindiola, A. Logie,
M. Dennison, T. Trout et al., “On games and simulators
as a platform for development of artificial intelligence
for command and control,” The Journal of Defense Mod-
eling and Simulation, vol. 20, no. 4, 2023.

[19] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox,
K. Goldberg, J. Gonzalez, M. Jordan, and I. Stoica, “Rl-
lib: Abstractions for distributed reinforcement learn-
ing,” in International conference on machine learning.
PMLR, 2018.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lilli-
crap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asyn-
chronous methods for deep reinforcement learning,” in
International conference on machine learning. PMLR,
2016.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[22] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and
P. Moritz, “Trust region policy optimization,” in Interna-
tional conference on machine learning. PMLR, 2015.

[23] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and
P. Abbeel, “Adversarial attacks on neural network poli-
cies,” arXiv preprint arXiv:1702.02284, 2017.

[24] J. Sun, T. Zhang, X. Xie, L. Ma, Y. Zheng, K. Chen,
and Y. Liu, “Stealthy and efficient adversarial attacks
against deep reinforcement learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.

[25] X. Wu, W. Guo, H. Wei, and X. Xing, “Adversarial pol-
icy training against deep reinforcement learning,” in
30th USENIX Security Symposium (USENIX Security
21), 2021.

[26] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and
S. Russell, “Adversarial policies: Attacking deep rein-
forcement learning,” arXiv preprint arXiv:1905.10615,
2019.

[27] N. Carlini and D. Wagner, “Towards evaluating the ro-
bustness of neural networks,” in 2017 IEEE Symposium
on Security and Privacy (SP), 2017.

[28] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” arXiv preprint
arXiv:1412.6572, 2014.

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to
adversarial attacks,” in International Conference on
Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJzIBfZAb

12

https://openreview.net/forum?id=rJzIBfZAb

	Introduction
	Background
	RL for Command and Control (C2)
	StarCraft II C2 Environment
	Custom StarCraft II Scenarios
	Reinforcement Learning Algorithms

	RL Environment
	State and Action Space
	Reward Structure

	RL Agent Description
	The Policy Network

	Adversarial Attacks on RL agents
	Adversarial Attacks on Image Classifiers
	Fast Gradient Sign Method (FGSM) goodfellow2014explaining

	Inference Time Attacks on Policies
	Threat Model
	Attack Methodology

	Evaluations
	Experimental Setup
	Evaluation of Inference Time Attacks on Agent Reward
	Vulnerability to Adversarial Perturbations
	Analyzing Agent Behavior under Attack
	Strength & Reliability of the Attack
	Component-wise Impact of Input on the Attack
	Adversarial Robustness of the Training Algorithm

	Discussions and Future Work
	Conclusions

