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Abstract

Detecting and segmenting moving objects from a mov-
ing monocular camera is challenging in the presence of
unknown camera motion, diverse object motions and com-
plex scene structures. Most existing methods rely on a
single motion cue to perform motion segmentation, which
is usually insufficient when facing different complex envi-
ronments. While a few recent deep learning based meth-
ods are able to combine multiple motion cues to achieve
improved accuracy, they depend heavily on vast datasets
and extensive annotations, making them less adaptable to
new scenarios. To address these limitations, we propose a
novel monocular dense segmentation method that achieves
state-of-the-art motion segmentation results in a zero-shot
manner. The proposed method synergestically combines
the strengths of deep learning and geometric model fusion
methods by performing geometric model fusion on object
proposals. Experiments show that our method achieves
competitive results on several motion segmentation datasets
and even surpasses some state-of-the-art supervised meth-
ods on certain benchmarks, while not being trained on any
data. We also present an ablation study to show the effec-
tiveness of combining different geometric models together
for motion segmentation, highlighting the value of our geo-
metric model fusion strategy.

1. Introduction

Motion segmentation is a fundamental problem in com-
puter vision. It has an essential role in many applications
such as action recognition, autonomous navigation, object
tracking, and scene understanding in general. The objec-
tive of motion segmentation is to divide a video frame
into regions segmented by common motions. Motion seg-
mentation becomes particularly challenging when utiliz-
ing a single camera that is also moving, as this intro-
duces issues such as degenerate motions, motion paral-

lax, motion on the epipolar plane [18]. Existing motion
segmentation methods often fails when facing these chal-
lenges since they usually rely on only a single motion cue
[11, 16, 28, 35, 39, 43, 45, 49, 53], limiting their effective-
ness across the diverse tapestry of real-world environments.
While a few deep learning based methods are able to in-
corporate additional motion cues in an end-to-end manner,
their reliance on large annotated datasets and the need for
substantial computational resources for training limit their
adaptability and application in novel environments [19, 36].
When facing these challenges, existing methods usually fail
to detect the correct motion patterns and also fail to produce
coherent segmentation masks for the moving objects.

In order to overcome these limitations and achieve in-
the-wild monocular motion segmentation regardless of mo-
tion types and scene structures, it is necessary to have a ro-
bust and comprehensive motion model. We draw inspiration
from two branches of well studied motion segmentation ap-
proaches: and point trajectory based methods and optical
flow based methods. These two types of motion cues are
not only complementary in nature (long-term vs short-term
motion), but they can also be used to derive highly com-
plementary geometric motion models for different motion
types and scene structures. Point trajectory based meth-
ods, when analyzed using epipolar geometry, will fail if the
motion is mainly on the epipolar plane or degenerate (e.g.,
pure forward motion), but are robust to depth variations,
perspective effects and motion parallax. On the other hand,
optical flow based methods do not handle these challenges
well, but are robust to motions on the epipolar plane. We
propose to combine these two motion cues and monocular
depth information at the object level using multi-view spec-
tral clustering, to obtain a coherent and comprehensive mo-
tion representation of the scene. By doing so, we are able
to distinguish a variety of complex object motions (e.g., de-
generate motions, motion parallax and non-rigid motion),
even in complex scenes.

In addition to having a comprehensive geometric motion
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model for effectively analysis of object motions, it is also
essential to obtain accurate object proposals for tracking po-
tential moving objects throughout the video. This step is not
only fundamental for accurate assessment of object motion,
but also vital for generating precise and coherent segmen-
tation masks for moving objects. To accomplish this, we
leverage the strong zero-shot ability of the recent computer
vision foundation models to identify, segment and track any
potential moving objects throughout the video. We then cal-
culate pairwise motion affinity scores for every object pair
in the proposal, assessing how well each object-specific mo-
tion cue fits its corresponding geometric motion model. The
motion affinity scores are used to construct motion affinity
matrices, which can be fused by multi-view spectral clus-
tering techniques to obtain the final clustering of objects in
different motions

Figure 1. Motion segmentation results from the proposed method
using different motion cues on a scene with motion parallax and
degeneracy. Motion cues used: (a) point trajectory. (b) optical
flow. (c) optical flow + depth. (d) trajectory + optical flow + depth.
Using a single motion cue is insufficient to correctly segment out
the moving cyclist.

Our method was evaluated on three benchmarks:
DAVIS-Moving, YTVOS-Moving [11], and an extended
version of the KT3DMoSeg dataset we proposed. Our
method achieves competitive results on all benchmarks and
even surpasses the state-of-the-art supervised method on
DAVIS-Moving.

2. Related Work
Research on monocular motion segmentation has been

ongoing for several decades, leading to varying interpreta-
tions of the problem among different studies. Commonly,
it is defined as the process of dividing a video frame into
regions that share similar motions. Alternatively, many
studies also approach motion segmentation as the task of
clustering predefined feature point trajectories across two
or more video frames based on their distinct motions. In
this paper, we focus on performing motion segmentation di-
rectly from input video frames, with the goal of segmenting
entire moving objects, including those exhibiting multiple
rigid motions. This approach aims at attaining a high-level
understanding of the scene.

Monocular motion segmentation can be broadly divided
into three distinct categories, each defined by the type of
motion cues utilized. The first group consists of optical flow
based methods, which rely on optical flow as their primary
source of motion information [3–5, 11, 33, 35, 39, 43, 45,
46, 49, 52]. The second group includes the feature point
trajectory based methods, which rely exclusively on motion
information derived from manually corrected feature point
trajectories throughout the video [1, 7, 12, 13, 23, 24, 30,
37, 55]. The last category comprises fusion-based methods,
which combine multiple types of motion cues as well as
appearance cues, to enhance the segmentation results [19,
22, 36].

2.1. Optical Flow Based Methods

Optical flow based methods can be further categorized
into traditional and deep learning based methods. Tradi-
tional methods [3, 39, 45, 52] rely on optical flow masks in-
put, and produce a pixel-wise segmentation mask indicating
different motion groups. These methods usually adopt iter-
ative optimization approaches or statistical inference tech-
niques to estimate the motion models and motion regions
simultaneously. In contrast, numerous deep learning based
methods [6, 8, 14, 35, 43] use a CNN encoder to extract mo-
tion cues from optical flow and uses a decoder to produce
the final segmentation. More advanced deep learning mod-
els use two CNN encoders – one to extract motion informa-
tion from optical flow and the other one to extract appear-
ance features directly from the video frame – to enhance the
segmentation performance. However, deep learning meth-
ods often require a large amount of training data and do not
generalize well to novel scenes.

In general, optical flow based methods perform well on
scenes without strong depth variations or motion parallax.
However, if the scene contains these elements (e.g. road
scenes), these methods will fail to distinguish if a part of
the image is moving independently or is just at a different
depth from its surroundings, because the motion flow vec-
tors projected to a 2D image from the 3D space are deter-
mined by both the depth and the screw motion of the object
[34]. Additionally, strong brightness changes in the video
will also adversely affect the performance of optical flow
based methods since optical flow calculation is based on
the brightness constancy constraint, which will be violated
under strong brightness change.

2.2. Point Trajectory Based Methods

In contrast to the other two categories, point trajectory
based methods produce clusters of key points that represent
various motion patterns, rather than providing full dense
segmentations. These techniques can be further divided
into two-frame and multi-frame methods. Two frame meth-
ods [2, 12, 24] usually determine motion parameters by



solving an iterative energy minimization problem of find-
ing a certain number of geometric models (e.g., fundamen-
tal matrices) on a set of matched feature points, to mini-
mize an energy function that evaluates the quality of the
overall clustering of correspondences. Multi-frame based
methods, on the other hand, usually analyze manually ad-
justed trajectory points from a dense optical flow tracker
and often employ spectral clustering on affinity matrices.
These matrices are generated through geometric model fit-
ting [1, 20, 21, 30, 55], subspace fitting [13, 44, 48, 50],
or pairwise motion affinities derived from spatio-temporal
motion cues and appearance cues [7, 37].

The efficacy of point trajectory based methods is heav-
ily influenced by the chosen motion model and the preci-
sion of point correspondences. There is not a single motion
model that can capture motion similarities across all types
of motions. In search of a better motion model, [1] uses tri-
focal tensor to analyze point trajectories. Trifocal tensor is
more robust to noises and is able to distinguish motions on
the epipolar plane, but it is harder to optimize and prone to
failure when the three cameras are close to being colinear
[18], which can often happen on road scenes. [26, 55] pro-
posed geometric model fusion techniques to combine differ-
ent geometric models, but they still fail to produce coherent
and consistent segmentations on complex scenes. More-
over, most existing methods depend on manually refined
point correspondences and struggle to effectively manage
outliers.

2.3. Fusion Based Methods

Recent research in motion segmentation have introduced
several innovative approaches that leverage a combination
of motion cues for improved motion segmentation accuracy.
Notably, [36] integrates optical flow masks and monoc-
ular depth maps through a fusion module in their neu-
ral network, facilitating end-to-end training. By adopting
a semi-supervised training strategy, this approach has set
new benchmarks in monocular dense motion segmentation
across various datasets. Another study [19] explored the im-
pact of utilizing different combinations of motion cues, such
as optical flow, depth map, and scene flow, on motion seg-
mentation performance, achieving state-of-the-art results on
the KITTI and DAVIS datasets. However, this approach
is fully supervised, which requires an extensive amount of
training data and computational power. Furthermore, its
ability to generalize across a wider range of benchmarks re-
mains unverified. In our earlier work [22], we introduced an
interpretable geometric model that merges optical flow with
monocular depth maps for zero-shot motion segmentation.
Despite these efforts, a noticeable performance gap persists
between our method and the state-of-the-art supervised or
semi-supervised techniques, showing the insufficiency of
relying solely on a single geometric model to achieve op-

timal results in motion segmentation.
Despite these recent research, no existing method has yet

to combine the two complementary and most commonly ex-
plored motion cues in motion segmentation: point trajectory
and optical flow. This paper seeks to fill this gap, demon-
strating how combining these motion cues with well-crafted
geometric motion models can lead to state-of-the-art zero-
shot monocular motion segmentation.

3. Methodology
We propose a zero-shot monocular motion segmenta-

tion approach that uses both object appearance information
and a combination of epipolar geometry and optical flow
based geometric motion models to perform in-the-wild mo-
tion segmentation without any assumptions of the motion or
the scene that may appear in the video.

Our segmentation pipeline begins by identifying ini-
tial segmentation of the background and common objects
within the scene through foundational models, followed by
continuous tracking of these objects across the video se-
quence. For every object in each frame, we gather a col-
lection of object-specific trajectory points, an optical flow
mask, and a monocular depth map. Subsequently, we con-
struct two distinct geometric motion models for each scene
object: one via fundamental matrix fitting using point tra-
jectories and the other via fitting optical flow and a depth
map to our proposed parametric equations. By fitting each
object’s motion models on every other object and analysing
the residuals of the model fitting, we are able to derive two
pairwise affinity scores between every pair of objects, from
which we can construct two motion affinity matrices for the
two types of motion models respectively. Lastly, we fuse the
two affinity matrices using co-regularized multi-view spec-
tral clustering to obtain the final segmentation. Figure 2
shows a diagram of the motion segmentation pipeline.

3.1. Generating Object Proposals

In order to identify all motions in a video sequence at
object level, we use the same method as proposed in [22] to
identify, segment and track each prominent object across the
video. This is accomplished by integrating foundation mod-
els for object recognition (RAM) [58], detection (Ground-
ing DINO model) [31], segmentation (SAM-HQ) [27], and
tracking (DeAOT) [57]. This video preprocessing pipeline
for automatic object proposal generation is inspired by and
improved upon Segment and Track Anything (SAMTrack)
[9]. Comparing to SAMTrack, our video preprocessing
module combines these foundation models to segment and
track objects automatically, bypassing the need for manual
text prompts by initiating our pipeline with the Recognize
Anything Model to automatically detect common objects
in the initial video frame. Our object proposal generation
pipeline involves: 1) Automatically identifying common



Figure 2. Our Motion Segmentation Pipeline. Our method can be summarized to three main steps: 1) given a sequence of video frames,
we produce an object proposal by automatically detecting, segmenting and tracking common objects in the video. 2) we compute object-
specific point trajectories, optical flow and monocular depth maps for every frame. 3) we compute pairwise object motion similarity scores
using two motion models (one based on point trajectories and the other based on optical flow and depth map), and use them to construct two
motion affinity matrices. The two matrices are fused using multi-view spectral clustering to cluster objects into different motion groups.

objects in the video’s first frame using the Recognize Any-
thing Model; 2) Generating object bounding boxes with the
Grounding DINO model; 3) Producing instance segmenta-
tion masks for the initial frame via the SAM-HQ model,
applying non-max suppression to refine the results; 4) Em-
ploying the DeAOT tracker to track each object’s segmen-
tation mask throughout the video. To accommodate new
objects appearing mid-sequence, we segment the video into
sections of l frames, repeating the above process for each
section. The choice of l varies depending on the video’s dy-
namics and the frequency of new objects entering the scene.
Videos with higher dynamics and frequent entry of new ob-
jects mid-sequence are better suited to a reduced segment
length l.

3.2. Object-Specific Motion Cues

Once we have an object proposal for every frame of the
video, we will then obtain object-specific motion cues for
every object in the object proposal. We propose to use

point trajectories, optical flow and monocular depth map
automatically generated by off-the-shelf networks as mo-
tion cues, in order to model objects’ motions in two com-
plementary ways.

3.2.1 Object-Specific Point Trajectories

A set of sparse point trajectories is generated for ev-
ery object using PIPs [17]. PIPs is a state-of-the-art point
tracker which tracks individual pixels given their initial lo-
cations in a video frame. A mixture of Shi-Tomasi [25] and
K-Medoids [40] sampling method is used to obtain the ini-
tial pixels from each object as it showed good experimental
results from previous works in similar tasks [42]. These
tracked pixels can be used as object-specific feature points
to fit fundamental matrices for every object in frame pairs to
describe their motions. One limitation of PIPs is that does
not handle occlusion well if the tracked video is more than
8 frames. To overcome this issue, we check for every point



if it is inside its corresponding object’s mask area every 8
frames. If not, we remove that point and sample a new point
inside the object’s mask. We also remove any point that is
near the edge of the frame since the tracking accuracy of
PIPs drops significantly in this case.

3.2.2 Object-Specific Optical Flow and Depth Map

We also generate a dense optical flow mask and a monoc-
ular depth map for every frame, from which we can extract
object-specific optical flow vectors and depth maps. We use
a state-of-the-art optical flow estimator [47] to obtain opti-
cal flow, and a state-of-the-art monocular depth estimator,
DINOv2 [38], to extract the depth maps. We use monoc-
ular depth estimation to estimate the scene depth from a
single frame since our goal is to perform motion segmen-
tation from a moving monocular camera. DINOv2 outputs
a relative depth map, which is sufficient for our application.
Our experiment shows improved results when both optical
flow and depth map are used to compute the motion model,
comparing to only optical flow. We show how a depth map
can be used to improve the motion model based solely on
optical flow in the next section.
3.3. Geometric Motion Model Fitting

After obtaining object-specific point trajectories, optical
flow vectors and depth maps, for each frame pair, we com-
pute two geometric motion models of each object based on
epipolar geometry and optical flow respectively, to model
its motion throughout the video. To compute the epipolar
geometry based motion models using point trajectories, we
compute a fundamental matrix of each object between ev-
ery f frames by solving p′TFp = 0 using the eight-point
algorithm with RANSAC [15], where p and p′ are the nor-
malized 2D homogeneous coordinates of the same tracked
point in the two frames. If a degenerate case is encountered
for the fundamental matrix, we do not use it.

For the optical flow and depth based motion model, we
use the same motion model proposed in our earlier work
[22]. We refine the Longuet-Higgins and Pruzdny model
equation [32] to address rigid object motion, adapting it
to include depth information without needing exact pixel
depth, a common limitation in practice. Instead of relying
on the original model, which is impractical due to unknown
absolute pixel depth, we propose a linearized version incor-
porating relative depth from DINOv2, making it more ap-
plicable to real-world scenarios with varying depths. This
approach, while using both optical flow and depth data, sim-
plifies the motion model to the following linear equations:

u = a+ b
1

z
− c

x

z
− dy + ex2 − fxy

v = g + h
1

z
− c

y

z
− dx+ exy + fy2

(1)

This motion model aims to cluster different motions
rather than calculate exact screw motions, sidestepping
scale uncertainties and making it theoretically sound with-
out requiring specific camera intrinsics. For consistency
reasons, we still refer to this motion model as the ”opti-
cal flow motion model”, although it uses both optical flow
vectors and pixel depth maps.

3.4. Constructing Motion Affinity Matrices

After all fundamental matrices and optical flow motion
models are computed, each object will have a fundamental
matrix between every p frames and an optical flow motion
model between every two frames. By fitting every object’s
trajectory points, optical flow vectors and depth maps to ev-
ery other object’s fundamental matrix and optical flow mo-
tion model on the same frame pair, we can obtain the resid-
uals of every object to all other objects’ motion models re-
spectively. We use Sampson distance [18] as the residual
for the fundamental matrix and mean squared error for the
optical flow motion model. Assuming there are k objects
in the scene, for the i-th object at the m-th frame pair, we
obtain the following residual vectors under the fundamental
matrix and optical flow motion models:

rrro
m
i = [ro

m
i,1, ro

m
i,2, ..., ro

m
i,k],

rrrf
m
i = [rf

m
i,1, rf

m
i,2, ..., rf

m
i,k]

where ro
m
i,k is the mean residual for fitting the parametric

motion model of object i on the optical flow vectors of ob-
ject k between frames m and m + 1, and rf

m
i,k is the mean

Sampson error for fitting the fundamental matrix of object
i on the trajectory points of object k between frames m
and m + p. We construct two affinity matrices encapsu-
lating the pairwise motion affinities between each pair of
objects using a modified version of ordered residual ker-
nal (ORK) [10]. Specifically, for each object, we sort its
residual vectors in ascending order and define a threshold
to select the smallest t-th residual as inliers. We define
ccci = {0,max(t− ni, 0)}K as an inlier score vector, where
ni is the rank of object k in the residual vector of object
i, penalizing different inlier distributions between objects.
The pairwise motion affinity between objects i and j can
thus be computed as aaaij = ccc⊺i cccj , which denotes a weighted
co-occurrence score between two objects as inliers of all
motion models. Our proposed weighted ORK is robust to
outliers and makes the affinity matrix more adaptive to dif-
ferent scenes by reducing the need to set scene specific in-
lier thresholds.

3.5. Co-Regularized Multi-view Spectral Clustering

After constructing the affinity matrices, we normalize
them using row normalization [51] and adapt co-regularized



Figure 3. Qualitative results of different methods on DAVIS-Moving (row 1, 2), YTVOS-Moving (row 3, 4) and the extended KT3DMoSeg
(row 5, 6) datasets. MoSeg often mistakenly label static objects as dynamic when there is degenerate camera motion. RigidMask fails to
detect or coherently segment objects with non-rigid motions. Similarly, Raptor also has these problems, although to a lesser extent overall.
Our method, despite being zero-shot, performs well when facing these challenges.

multi-view spectral clustering [29] to fuse the two affinity
matrices together. With the number of motion groups in
the scene given as an input, we are able to obtain the fi-
nal clustering of moving objects. Co-regularized multi-view
spectral clustering uses an regularization term to encourage
consensus between different views and is shown to perform
well on fusing multiple geometric models for a consistent
representation of motion information [55].

4. Experiments
Our method is tested on three benchmarks: DAVIS-

Moving, YTVOS-Moving and the extended KT3DMoSeg.
We first briefly introduce these datasets, then show
both quantitative and qualitative comparisons between our
method and other state-of-the-art methods. Lastly, we
present an ablation study to compare the performance of
each individual motion models and the fused motion model.

4.1. Datasets

DAVIS-Moving and YTVOS-Moving are both proposed
by [11] as datasets for generic instance motion detection

and segmentation. DAVIS-Moving and YTVOS-Moving
are subsets of the DAVIS 17 dataset [41] and the YTVOS
dataset [54], where all moving instances in the video se-
quence are labeled and no static objects are labeled. These
two recently proposed datasets are very challenging due to
their diverse object classes, occlusions and non-rigid mo-
tions.

In addition to these two datasets, we also evaluate our
method on an extended version of the KT3DMoSeg dataset.
The original KT3DMoSeg dataset [55] is designed to test
point trajectory based motion segmentation methods on
complex road scenes. It contains manually corrected point
trajectories on selected moving instances in road scenes
and includes significant degenerate motions and depth vari-
ation. In order to test the performance of our method in
such environments, we extend the KT3DMoSeg dataset by
adding a pixel-level segmentation mask to every moving in-
stance in the scene. We refer to this extended dataset as the
KT3DInsMoSeg dataset in the following sections.



Exp. Method Training
DAVIS-Moving YTVOS-Moving KT3DInsMoSeg

Pu Ru Fu Pu Ru Fu Pu Ru Fu

a MoSeg [11] Supervised 78.30 78.80 78.10 74.50 66.40 66.38 63.73 78.24 66.85

a Raptor [36] Supervised
Features

75.90 79.67 75.93 64.43 60.94 60.35 71.52 88.27 75.82

a RigidMask [56] 59.03 49.89 50.01 29.88 17.88 18.70 65.14 83.34 70.91

a EM [33] Unsupervised 58.42 83.48 64.24 44.52 40.33 37.12 42.85 58.71 44.03

a+b Ours (fused)

Zero-Shot
(no training)

78.27 81.58 79.40 64.12 61.10 60.62 72.93 71.02 71.89

b Ours (OC+depth) 71.53 75.66 73.18 63.54 58.94 56.06 48.04 61.54 49.26

b Ours (OC) 58.25 59.22 57.08 61.79 54.64 53.74 36.44 39.97 34.78

b Ours (trajs) 65.99 75.51 68.47 54.67 52.92 50.05 42.31 73.66 45.24

b Ours (base) 43.17 86.24 52.12 48.49 73.01 50.82 38.97 70.97 43.37

Table 1. Performance of our method and state-of-the-art motion segmentation methods (Exp. a) on the DAVIS-Moving, YTVOS-Moving
validation datasets and the KT3DInsMoSeg dataset, as well as ablation study results (Exp. b). The best result for each metric is in bold
and the second best result is in underscore. Our method overall performs the best on DAVIS-Moving and second best on both YTVOS and
KT3DInsMoSeg, despite not being trained on any data. Our method also significantly surpasses the state-of-the-art unsupervised motion
segmentation method [33].

4.2. Results and Discussion

Our method’s performance is evaluated using precision
(Pu), recall (Ru), and F-measure (Fu) proposed in [11]
which penalizes false positives. The F-measure combines
both precision and recall and indicates the method’s over-
all performance. Table 1 shows quantitative results of
our method and other state-of-the-art methods on the three
benchmarks. Despite no training, our approach excels on
the DAVIS-Moving dataset, outperforming fully-supervised
methods, ranks second on the YTVOS-Moving dataset,
closely surpassing Raptor [36], and secures a similar po-
sition on the KT3DInsMoSeg dataset, trailing only behind
Raptor. Our method also significantly surpasses EM [33],
which is the state-of-the-art unsupervised multi-label mo-
tion segmentation method.

We also qualitatively compare our method with these
methods and show the results in 3. Results indicate our
method’s superiority in identifying static and moving ob-
jects across various scenes, notably in complex scenarios
where other methods fail, such as in scenes with degen-
erate motions or complex object contours. Our technique
demonstrates robust performance across all datasets, show-
ing its effectiveness in accurately grouping motions and out-
performing existing methods in challenging conditions.

One primary limitation of the proposed method is its in-
ference speed. Despite being a zero-shot approach that re-
quires no training, the method integrates multiple computer
vision foundation models, as well as the neural networks
for feature point tracking and optical flow estimation. Con-

sequently, such integration significantly slows the method’s
processing speed, making it only suitable to be applied on
pre-recorded videos. Another limitation is the requirement
for a known ground truth number of motions in the scene to
achieve optimal results, inherent to the use of spectral clus-
tering. Although this issue can be mitigated by employing
various model selection methods [21, 51], such adjustments
typically result in a slight degradation of performance.

4.3. Ablation Study

We present both quantitative (Table 1, Exp. b) and quali-
tative (Figure. 4) comparisons between different individual
motions models and the fused motion model for their per-
formances on the three benchmarks.

We found that on both DAVIS-Moving and
KT3DInsMoSeg datasets, our model fusion technique
(fused) is able to significantly boost the Fu score comparing
to using only a single model, while on YTVOS-Moving,
the Fu score only had a relatively small increase. Upon
further inspection, we discovered this could be attributed to
some motion labels in the YTVOS-Moving dataset actually
being mostly static throughout the video sequence. Since
our method clusters moving objects purely using motion
cues, it groups these objects together with the background
as expected. Additionally, the YTVOS-Moving dataset also
contains videos with significant camera zooming, which
violates the geometric assumptions of both our motion
models. Our motion model fusion technique is able to
achieve better results than any single motion model on all
three datasets, showing its effectiveness.



Figure 4. Qualitative comparison of different motion models on different scenes. Pure optical flow based motion model (OC) suffers on
scenes with objects at varying depths. Combining optical flow with depth information (OC + Depth) only alleviates this problem to some
extent. Pure point trajectory based motion model (Trajs) suffers from motions near the epipolar plane and inaccurate trajectory estimation.
Motion model fusion solves these problem by combining the advantages of both motion models and outperforms any single model.

We also show the motion segmentation performance of
our pipeline under conditions where only partial motion
cues are used. Specifically, we present results obtained
from two different types motion affinity matrices, which are
computed using two different motion models: one solely
based on the optical flow motion model (OC), and another
that combines optical flow with monocular depth informa-
tion (OC + depth). The optical flow based motion model
is obtained from [33], which is a state-of-the-art unsuper-
vised method using only optical flow as input. The mo-
tion model combining optical flow and depth is proposed by
[22], which is a direct improvement on [33]. Results show
that the motion model based on a combination of optical
flow and depth (OC + depth) outperforms OC by a large
margin in all three metrics on both DAVIS-Moving and
KT3DInsMoSeg, while having similar results on YTVOS-
Moving.

Both Point trajectory based (trajs) and optical flow based
motion models perform poorly on the KT3DInsMoSeg
dataset, potentially due to significant motion degeneracy
(e.g., forward motion) and depth variations on road scenes.
Incorporating depth information in this case proves to be
an effective way to reduce motion ambiguity for the op-
tical flow based motion model, boosting its F-score from
34.78% to 49.26%. Fusing the combined (OC + depth) mo-
tion model with the epipolar geometry based point trajec-

tory motion model significantly enhances the performance
in this case.

5. Conclusion and Future Work
We propose the first zero-shot monocular motion seg-

mentation approach that achieves state-of-the-art perfor-
mance. Our method combines the advantages of both deep
learning and multiple geometric approaches, resulting in a
zero-shot motion segmentation approach that performs ge-
ometric motion model fusion on object proposals. We com-
pare the performances of the fused motion model and each
individual motion model, and observe a significant perfor-
mance improvement for the fused motion model, showing
the effectiveness of the proposed geometric motion model
fusion technique. Even though our method is zero-shot, ex-
periments show that our method is better than many state-
of-the-art methods and highly competitive with others.

Future research could pursue two promising directions:
First, the integration of additional motion models, such
as the trifocal tensor [18], may further improve the mo-
tion segmentation performance. Second, developing meth-
ods to effectively incorporate both types of motion affin-
ity measures into the loss function could enable end-to-end,
self-supervised training of a motion segmentation network,
potentially achieving substantial improvement in inference
speed.
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