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Random Matrix Theory is a powerful tool in applied mathematics. Three canonical models of
random matrix distributions are the Gaussian Orthogonal, Unitary and Symplectic Ensembles. For
matrix ensembles defined on k-fold tensor products of identical vector spaces we motivate natural
generalizations of the Gaussian Ensemble family. We show how the k-fold invariant constraints are
satisfied in both disordered spin models and systems with gauge symmetries, specifically quantum
double models. We use Schur-Weyl duality to completely characterize the form of allowed prob-
ability distributions. The eigenvalue distribution of our proposed ensembles is computed exactly
using the Harish-Chandra integral method. For the 2-fold tensor product case, we show that the de-
rived distribution couples eigenvalue spectrum to entanglement spectrum. Guided by representation
theory, our work is a natural extension of the standard Gaussian random matrix ensembles.

I. INTRODUCTION

Random matrices were originally introduced by Eugene Wigner in the 1950s to study the spacing of energy levels
of heavy atomic nuclei [85]. Random matrices have long since outgrown nuclear physics and Wigner’s random matrix
ensembles have found uses in a diverse set of fields, from pure mathematics [10, 11, 21, 45, 69, 74] to the physics
of materials [5, 9, 14, 20, 26, 29, 35, 44, 63, 77]. Random matrices have found applications far removed from the
physical sciences: eigenvalue repulsion is displayed in bus waiting times [47], and random matrices play a role in
both financial modeling [13, 66] and network theory [27, 37, 48, 60, 81]. Symmetry serves as a guiding principle in
development of random matrix theory, and random matrix ensembles are almost completely characterized by what set
of symmetries they are invariant under. The Dyson ‘3-fold’ way [25] gives a classification of random matrix ensembles
with distributions invariant under unitary, orthogonal or symplectic conjugation. Similarly, [5] proposed the famous
‘10-fold’ way which characterizes random matrix ensembles under time-reversal, parity and charge conjugation. In
this note, we consider a natural generalization of [25] which considers random matrix ensembles invariant under local,
as opposed to global, symmetry transformations.

A. Random Matrix Theory in Pure Mathematics

Random matrix theory also serves as an important aspect of pure mathematics. Specifically, many of the formal
results of ‘universality’ are understood through the lens of random matrix theory [78]. The Wiengarten calculus is a
systemic computational method for evaluating integrals over the unitary group [17]. [82] shows how representation
theoretic methods can be used to evaluate integrals over unitary group to symmetric polynomials. In a similar manner,
[18, 19] considered a generalization of the Harish-Chandra integral formula to the tensor product case. The integrals
in [18, 19] are similar to those we consider in this note.

B. Random Matrix Theory in Quantum Information

Recently, there has been extensive theoretical work in quantum information theory studying random unitary evolu-
tion [16, 17, 32, 51, 59]. Randomly drawn unitary matrices have been used to model the evolution of generic quantum
systems. A recent breakthrough in the development of a theory of quantum chaos was the development of the entan-
glement membrane description [34, 90], which is an effective theory of quantum chaos. The entanglement tension has
been calculated for random unitary evolution [73, 90], as well as integrable models [67]. A very interesting research
direction is the holographic description of the entanglement membrane theory [3, 12, 58]. Much of the interest in
these random unitary evolutions has been spurred by the study of chaos in thermofield double state [1, 22, 72]. The
evolution of thermofield double states serves as a probe of quantum chaos [1, 72]. Thermofield double states also
serve as a dual theory to traversable wormhole [30, 31, 86]. Signatures of synthetic traversable wormholes have been
observed experimentally [39].
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Furthermore, gravitational models serve as dual theories for many natural random matrix models [76, 80]. Random
matrix theories can be formulated as (0+0)-dimensional field theories [89]. Field theory techniques in random matrix
theory have been utilized as a powerful tool for studying thermilization properties of quantum systems [40, 41].
Specifically, as first observed in [70] many random matrix models can be realized as theories dual to Jackiw–Teitelboim
gravity [41, 54, 80]. We comment on the diagrammatic rules for our proposed ensembles in Section VIII. Our results
describe a natural new class of non-interacting field theories for random matrix models.

II. SYMMETRY AND INVARIANCE IN RANDOM MATRIX THEORY

Random matrix ensembles are almost completely defined by the class of transforms they are invariant under.
Specifically, the Gaussian Ensembles are the unique non-commutative probability distribution with independent ma-
trix elements that is invariant under normal transformations [65]. For this reason, group theory plays a central role
in random matrix theory. The three canonical Gaussian ensembles, are characterized by their invariance of measure
under the orthogonal, sympletic and unitary groups [25]. Group and representation theoretic tools have similarly
been used to study random matrices. Many of the representation theoretic tools that we use to derive our results have
been previously applied to study quantum systems. Schur-Weyl methods have been used to understand thermody-
namic properties of quantum systems [87]. Similarly, the Harish-Chandra integral method was used to compute the
eigenvalue-eigenvalue correlations in a model of coupled random matrices [38]. By enforcing a set of natural isotropy
conditions, we derive a new class of random matrix ensembles that exhibit properties of local quantum systems. The
constraints we impose are less restrictive than the Gaussian Ensemble constraints, which allows for terms not allowed
in standard Gaussian ensembles. For this reason, our proposed ensembles exhibit features not seen in the Gaussian
ensemble family.

1. Random Matrices versus Real Quantum Systems

In many ways, the Gaussian ensembles are too ‘coarse’ to describe physical systems of interest in condensed matter,
as many of the features that we are interested in, such as approximate local integrals of motion, are not captured by
the Gaussian ensembles. Specifically, the GUE and GOE ensembles do not contain information about locality, and
do not capture low-energy properties observed in quantum systems. As an example of the discrepancy between GUE
and real quantum systems, the Berry conjecture [71, 75] essentially states that the high energy eigenfunctions behave
as if they were Gaussian random variables. This property is emphatically not observed in existing random matrix
models, where there are no correlations between eigenvalue and eigenvector structure. Specifically, the only terms
allowed under general unitary invariance depends only on sums powers of eigenvalues. In section VIII 1, we show that
our proposed ensembles allow for terms that directly couple entanglement related quantities to eigenvalues, forcing
large spectrum eigenvectors to have random coefficients.

FIG. 1: Left: Spectrum with Poisson Level Spacing. Center: Spectra with Wigner-Dyson Level-Spacing. Right: Spectra of
Disordered Heisenberg Model (See 10 for definition ). The Disordered Heisenberg model has a broken k-fold SO(3)-symmetry,
leading to approximate integrability in the low-energy sector of the spectrum. Note that the low-energy spectra of the disordered
Heisenberg model has much more regular eigenvalue spacing than the Wigner-Dyson distribution. This is because the Heisenberg
model has an approximate SO(d)-symmetry.
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Comparison of Assumptions in Random Unitary Matrix Models on W = VL ⊗ VR

Ensemble Name Elementwise Independence Invariant Transformation Subspace correlations

GUE(VL)⊗GUE(VR) Yes H → (UL⊗UR)H(UL⊗UR)
† Completely Independent

GUE(VL ⊗ VR) Yes H → UHU† Indepdendent

Special Case of Isomorphic Subspaces: VR
∼= VL

2-Fold GUE(VL ⊗ VR) No H → (V ⊗ V )H(V ⊗ V )† Non-Trivial

twisted 2-Fold GOE(VL⊗VR) No H → (V ⊗ V †)H(V ⊗ V †)† Non-Trivial

TABLE I: Comparison of properties of random matrix models defined on the W = VL ⊗ VR vector space. The matrices
U,UL, UR are unitary matrices. The unitary matrix U is defined on W = VL ⊗ VR. The unitary matrix UR is defined on the
vector space VR. The unitary matrix UL is defined on the vector space VL. In the special case where VL

∼= VR are isomorphic
vector spaces, there are additional natural ensembles based on invariance under the tensor product representation. The unitary
matrix V is defined on the VL

∼= VR vector space.

2. Random Matrices in Learning Theory

Outside of the physical sciences, the theory of random matrices has found extensive use within the statistical
learning community. Specifically, GOE ensembles arise naturally within the context of error distributions for a
variety of recovery problems. Random matrices have also found usage in deep learning as models for weight matrices
of deep neural networks [2, 24, 52, 79]. Random matrices have also been used to study the asymptotic risk of transfer
learning techniques [88].The spectra of Hessian matrices of deep neural networks are well described by the Gaussian
orthogonal ensemble [6]. There have been suggestions that genrelizability of neural networks can be diagnosed via
eigenvalue distributions of neural network weights [56, 83]. Advancements in network initialization to ensure non-
vanishing and non-exploding gradients come from the assumption that weights are initialized as random Gaussian
matrices [7, 8]. A interesting line of research parameterizes the output of a neural network as a contraction of tensors
living on a V ⊗k tensor product space [4]. In this work, we motivate and propose a new class of random matrices that
are generalizations of the Gaussian Ensemble models that are invariant under k-fold normal transformations. We
conjecture that these ensembles will find use in situations with inherent tensor product structures.

FIG. 2: Tensor Diagrammatic of Proposed Matrix Ensembles. Random matrix ensembles are almost completely defined by
the class of transforms they are invariant under. Top: The standard Gaussian Ensembles are invariant under generic change
of basis H → UHU†. Bottom: We can define new random matrix ensembles by requiring invariance under the local change of
basis H → U⊗kH(U⊗k)† (in this case k = 3 and local vector space dimension d = 3, so that U is a 3× 3 unitary matrix).
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III. TENSOR PRODUCT VECTOR SPACES

Let V be a vector space over R or C. In many linear algebra applications, we often work with a vector space W
that is composed of k-fold tensor products of the smaller vector space V such that

W = V ⊗k = V ⊗ V ⊗ ...⊗ V︸ ︷︷ ︸
k−times

where the dimension of the vector space V is d, dimV = d so that the dimension of W is dimW = dk. This situation
arises naturally in dealing with quantum mechanical systems of many identical particles.

A. Random Matrix Distributions on V ⊗k = V ⊗ V...⊗ V Vector Spaces

Let V be a vector space defined over the field R or C. Let W = V ⊗k. The standard Gaussian Ensembles ignore
the tensor product structure of the underlying vector space. In many ways, these ensembles violate the principle of
maximum entropy [43] as the information that W = V ⊗k = V ⊗ V ⊗ ...⊗ V is discarded. We would like to define a
new class of random matrix ensembles that respect the underlying structure of the W = V ⊗k vector space.
One option is to independently draw k random matrices from a Gaussian ensemble on V and form their tensor product.
This method is rather naive, as there are no correlations between matrices on different V subspaces. Another possible
approach to introduce a matrix ensemble with correlations between the different V subspaces would be to draw a
matrix H from a canonical distribution on V and form the k-fold tensor product H⊗k = H ⊗H ⊗ ...⊗H. However,
this proposed distribution is inadequate as the eigenvalue spectrum of H⊗k is just the k-fold spectrum of H ( and
other than this new k-fold degeneracy ) no new features arise that are not present in the standard Gaussian ensembles.
In this note, we propose a new class of random matrix distributions that naturally interpolates between these two
extremes: The distribution we propose is invariant under k-fold normal transformations of the form

∀U ∈ G, X → U⊗kX(U⊗k)† = (U ⊗ U ⊗ ...⊗ U)︸ ︷︷ ︸
k−times

X (U ⊗ U ⊗ ...⊗ U)†︸ ︷︷ ︸
k−times

(1)

where U⊗k = (U ⊗ U ⊗ ... ⊗ U) denotes the k-fold tensor product. The group G is chosen to be either the unitary
group U(d), the orthogonal group O(d) or the symplectic group Sp(d), although in principal G can be any group.
When G is unitary, orthogonal or sympletic, we will define H on Hermitian, symmetric or skew-symmetric matrices,
respectively.

The constraint 1 can alternatively be viewed as a non-commutative probability distribution that is invariant under
a local G degree of freedom (this is explained in more depth in VII ). Standard random matrix ensembles have no
concept of locality, but by restricting demanding that our ensemble be invariant under 1 instead of the standard unitary
conjugation, we can see the existence of gappless modes, as predicted by Goldstone’s theorem [33, 89]. Specifically,
invariance under 1 implies that a redefinition of each local Hilbert space in the same way leaves the matrix ensemble
density unchanged. This is explained in more depth with multiple concrete physical models in VII. We summarize
our contributions as follows:

• Inspired by recent work on free probability and random matrix theory, [41, 64], we propose a new class of random
matrix models that are invariant under k-fold normal transformation. We show that many physical models of
interest satisfy our desired properties.

• Using Schur-Weyl duality, we give a complete characterization of matrix models which satisfy our desiderata.
We show that under a reasonable set of assumptions, our construction is unique.

• Using a generalization of the Harish-Chandra method, we derive the eigenvalue distribution of our proposed
ensembles. We compare the derived eigenvalue distribution with the standard Wigner-Dyson statistics [57] and
the (α, β)-ensembles [5].

IV. MATRIX INVARIANT THEORY

We will be interested in characterizing random matrix distributions that are invariant under the k-fold normal
transformation 1 for the unitary, orthogonal and symplectic groups. For the standard k = 1 case, a theorem of Weyl
gives a complete characterization of matrix valued functions invariant under matrix conjugation,



5

Theorem 1 ( Invariant Matrix Polynomials [84] ). All the invariants of an (d× d)-matrix H under the non-singular
similarity transformation of U ,

∀U ∈ GL(d), H → H ′ = UHU−1 (2)

can be expressed as functions of the traces of the first d-powers of the matrix H.

This theorem gives characterization of matrix invariant quantities under GL(d) transformation. Matrix invariants of
subgroups of GL(d) can be computed via the Chevalley restriction theorem [36, 84].

Theorem 2 ( Chevalley Restriction Theorem (cite) ). Let G be a compact Lie group. Let W (G) ⊆ G be the Weyl
group of G. Let g be the Lie algebra of G. Let h be a Cartan subalgebra of g. Then, there is an isomorphism of
invariants

C[g]G ∼= C[h]W (G) (3)

so that the space invariant group algebra elements of G is isomorphic to the space of invariant group algebra elements
of the Weyl group W (G).

The Chevalley theorem 2 allows for calculation of G-invariants in terms of W (G)-invariants. Because the Weyl group
W (G) is abelian, this is a much simpler calculation.

A. Characterization Theorems

Theorems 1 and 2 restricts the form of allowed random matrix distributions invariant under unitary transformation.
When the assumption of element-wise independence is made, the probability distribution takes the form

Wigner Distribution: Pr[H]dH ∝ exp(−λTr[H2])dH

for some λ > 0. A result from [65] states that the Wigner distribution is the unique distribution with element-wise
independence that is invariant under unitary change of basis.

Theorem 3 ( Uniqueness of Wigner Distribution [65] ). Let P (H)dH be a probability measure on random
Hermitian/Symmetric/Skew-Symmetric matrices. Suppose that the measure satisfies the two properties:
I.The probability measure is invariant under the unitary/orthogonal/symplectic change of basis,

H ′ = UHU†, P (H ′)dH ′ = P (H)dH

so that the measure is invariant under conjugation by all unitary/orthogonal/symplectic matrices U .
II. The matrix elements Hij = H̄ji/Hij = Hji/Hij = −Hji are statistically independent and Gaussian distributed.
If both properties I-II are satisfied then the P (H)dH is the Gaussian Unitary/Orthogonal/symplectic Ensemble.

We would like a result that generalizes 3 to the weaker constraint 1. We prove a analogy of theorem 1 for k-fold tensor
spaces,

Theorem 4 ( k-Fold Invariant Matrix Polynomials ). For each permutation σ ∈ Sk, define the permutation operators

Ŝσ as the operator that has action

Ŝσ|i1, i2, ..., ik⟩ = |iσ(1), iσ(2), ..., iσ(k)⟩

Then, all the invariants of an (dk × dk)-matrix H under the non-singular k-fold similarity transformation of U ,

∀U ∈ GL(d), H → H ′ = U⊗kH(U⊗k)−1 (4)

can be expressed as functions of the traces of the first d-powers of the set of matrices {Hσ = SσHS
†
σ | σ ∈ Sn}.

This result is derived via the Schur-Weyl lemma, which is a generalization of 1 to tensor products of non-singular
matrices.

Theorem 5 (Schur-Weyl Lemma [68] ). Let X be a matrix that commutes with the tensor product of k-fold tensor
products of non-singular matrices,

∀U ∈ GL(d), U⊗kX = XU⊗k

then, the matrix X can be written as a linear sum of permutation operators X =
∑

σ∈Sk
cσŜσ

The coefficients cσ in the expansion of X can be computed in terms of the form Tr[ŜσX] [64] (see also C for a review
of Schur-Weyl duality ).
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V. k-FOLD GAUSSIAN ENSEMBLES

The goal of this section is to establish a desiderata that we would like our proposed models to have. We define the
k-Fold Gaussian Ensemble as the matrix distribution satisfying the following four properties:

• Property I: Invariance of Measure under k-fold Conjugation

• Property II: Gaussian Distribution of Matrix Elements

• Property III: Subspace Homogeneity

Property I: Invariance of Measure under k-fold Conjugation

Let G be either the unitary, orthogonal or symplectic group. Let P (H)dH be a probability distribution on Hermitian
matrices. Consider the k-fold normal transformation,

∀U ∈ G, H → H ′ = U⊗kH(U⊗k)†

Under this transformation, the probability density satisfies,

P (H)dH = P (H ′)dH ′

So that the probability measure is invariant under k-fold normal transformation. In VII, we give examples of models
that satisfy this condition.

Property II: Gaussian Distribution of Matrix Elements

Let Hij with i ≤ j be the independent matrix elements of the Hermitian matrix H = H†. Let H⃗ = vec(H) be the
vectorization of each independent matrix element of H. Then, the probability density can be written as a multivariate
Gaussian distribution,

P (H)dH ∝ exp(−1

2
H⃗†∆H⃗)

∏
i≤j

dHij

where the matrix ∆ is Hermitian ∆ = ∆† and positive definite ∆ ≻ 0. For notational convenience we have suppressed
the tensor product indices i = i1i2...ik and j = j1j2...jk so that∏

i≤j

dHij =
∏

i1≤j1

∏
i2≤j2

...
∏

ik≤jk

dHi1i2...ikj1j2...jk

Property III: Subspace Homogeneity

We demand that the distribution is invariant under permutation of subspaces. Specifically, each tensor product
subspace should be identical. Under a permutation of subspaces,

∀σ ∈ Sk, H → H ′ = SσHS
†
σ (5)

we require that the probability density is invariant P (H)dH = P (H ′)dH ′. This constraint places a additional
restriction on the allowed form of the probability density. The standard Gaussian ensembles satisfy this property.
This property was noted in [87], which noted that although observable quantities need to be permutation invariant,
it is possible that underlying states have emergent exotic symmetry.
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1. Alternate Swap Constraints?

For the unitary and sympletic ensembles, there is an alternative natural constraint to 5. Let Sign : Sk → ±1 be
the sign representation of the symmetric group of order k.

∀σ ∈ Sk, H → Sign(σ)SσHS
†
σ (6)

where the distribution is odd under permutation of two subspaces. Bosonic and fermionic statistics correspond to the
trivial and sign representations of Sn and 5 and 6 can be thought of as bosonic and fermionic exchanges, respectively.
As an aside, it may be possible to generalize 5 and 6 to include non-abelian statistics, using higher dimensional
representations of Sn. Usually topological quantum computing models are formulated in terms of unitary evolutions.
For this reason, it makes more sense to formulate alternative statistics using Dyson’s circular ensembles [25, 57]
although we will leave this direction for future work.

2. Interpretation of Desiderata

We comment on the interpretation of properties I-IV. Property V is the natural generalization of the standard
change of basis invariance property, which is motivated in section I. Property V demands that individual matrix
elements are a (possibly correlated) Gaussian distribution. V requires that the probability density is independent of
the labeling of the tensor product subspaces.

A. Characterization Theorem

We give a characterization of random matrix distributions that satisfy our desired properties. We state theorem 6,
which we derive in the next section.

Theorem 6 ( Characterization of k-fold Gaussian Ensembles ). Let G be the unitary/orthogonal group/symplectic.
All matrix probability distributions satisfying properties I-IV can be written uniquely in the form

P (H)dH ∝ exp(−1

2
H⃗†∆H⃗)dH (7)

where the matrix ∆ takes the form

∆ = U [
⊕
µµ′

⊕
s∈±

Mµµ′s ⊗ 1dµ
⊗ 1d′

µ′
]U† (8)

where U is a fixed unitary/orthogonal/skew-orthogonal matrix and Mµµ′s are positive definite
Hermitian/symmetric/skew-symmetric random matrices of dimension Cµµ′s × Cµµ′s where Cµµ′s is completely
determined by representation theory of the group G. dµ = dimVµ and d′µ′ = dimµ′ are the dimensions of the
irreducible G and Sk representations, respectively.

Probability densities of the form 7 are Gaussian distributed and the all moments can be computed exactly. Specifically,

let J⃗ = Vec(J). The generating function

Z(J⃗) =

∫
dH exp(−1

2
H⃗†∆H⃗ + J⃗†H⃗)

has closed form solution given by

Z(J) =

∫
dH exp(−1

2
H⃗†∆H⃗ + J⃗†H⃗) =

(2π)
dk
2

det(∆)
1
2

exp(
1

2
J⃗†(∆)−1J⃗)

The generating function Z(J) specifies all correlation functions of the theory. When interaction terms are added,

Z(J) is used to derive the Feynman rules. If we change basis to J⃗ ′ = UJ⃗ then we have that

Z(J⃗ ′) =
(2π)

dk
2∏

µµ′s det(Mµµ′s)
1
2

exp(
1

2
(J⃗ ′)†[

⊕
µµ′s

M−1
µµ′s ⊗ 1dµ

⊗ 1d′
µ′
]J⃗ ′)
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So that the generating function of J⃗ ′ breaks down into a product

Z(J⃗ ′) =
∏
µ∈Ĝ

∏
µ′∈Ŝk

∏
s∈±

Zµµ′s(J⃗
′
µµ′s)

where J⃗ ′ =
⊕

µµ′s J⃗
′
µµ′s decomposes into a direct sum of independent random variables. The generating function for

J⃗ ′
µµ′s is given by

Zµµ′s(J⃗
′
µµ′s) =

1

det(Mµµ′s)
1
2

exp(
1

2
(J⃗ ′

µµ′s)
†[M−1

µµ′s ⊗ 1dµ
⊗ 1d′

µ′
]J⃗ ′

µµ′s)

Partition functions thus factorize into sectors labeled by irreducible representations of the unitary group U(d). When
k = 1, this result reduces to the partition function of the standard Gaussian unitary ensemble.

1. Invariance of Measure Under k-Fold Normal Transformation

To begin, consider property I and property II. Under a k-fold normal transformation, we show that the measure
dH is invariant. Specifically, let

H ′ = U⊗kH(U⊗k)†

The matrix U⊗k is a tensor product of unitary matrices and is itself unitary. Using a result of [57], the Jacobin of the
transformation of any unitary conjugation is the identity, so dH ′ = dH. Similarly, under a permutation H → SσHS

†
σ

the measure is unchained as

dH =
∏
i≤j

dHij →
∏
i≤j

dH ′
σ(i)σ(j) =

∏
i≤j

dHij = dH ′

is just a re-ordering of indices and keeps the measure dH invariant.

2. Schur-Weyl Constraints on the Precision Matrix

The joint requirements of k-fold invariance and subspace homogeneity place significant constraints on the allowed
form of the covariance matrix ∆. Specifically, the precision matrix ∆ is required to satisfy the constraint

∀U ∈ G, ∀σ ∈ Sk, [U⊗2k,∆] = 0 = [Ŝσ ⊗ Ŝσ,∆]

Note that the G action and the Sk permutation action commute,

∀U ∈ G, ∀σ ∈ Sk, [U⊗2k, Ŝσ ⊗ Ŝσ] = 0

We can thus define the combined G× Sk group action on the space wi1i2...ikj1j2...j2k ∈W = V ⊗2k as

∀U ∈ G, ∀σ ∈ Sk, Πk(U, σ)wi1i2...ikj1j2...j2k = Uiσ(1)i
′
1
Uiσ(2)i

′
2
...Uiσ(k)i

′
k
Ujσ(1)j

′
1
Ujσ(2)j

′
2
...Ujσ(k)j

′
k
wi′1i

′
2...i

′
kj

′
1j

′
2...j

′
2k

There is also a Z2-action from swapping the V ⊗k subspaces. Specifically, define the T̂ operator

∀wi1i2...ikj1j2...j2k ∈W = V ⊗2k, T̂wi1i2...ikj1j2...jk = wj1j2...jki1i2...ik

The operator T̂ 2 = I is idempotent and so the set of operators {I, T̂} forms a representation of the group Z2. Note

that T̂ commutes with both the permutation and k-fold G action. Specifically,

∀U ∈ G, ∀σ ∈ Sk, [U⊗2k, T̂ ] = 0 = [Ŝσ ⊗ Ŝσ, T̂ ]

Furthermore, the matrix ∆ satisfies [T̂ ,∆] = 0. Thus, (Πk, V ⊗2k) is well defined and forms a representation of
G× Sk × Z2. This is illustrated pictorially in the commutative diagram VA2.
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V ⊗2k V ⊗2k

V ⊗2k V ⊗2k

V ⊗2k V ⊗2k

V ⊗2k V ⊗2k

T̂

Ŝσ⊗Ŝσ

U⊗2k

U⊗2k

Ŝσ⊗Ŝσ

T̂

U⊗2kT̂

Ŝσ⊗Ŝσ Ŝσ⊗Ŝσ

T̂

U⊗2k

FIG. 3: A ‘cube’-type commutative diagram for the G × Sk × Z2 representation. The action (Πk, V ⊗2k) is well defined and
forms a representation of G × Sk × Z2 only because the G action, the tensor permutation action Sk and the Z2 cyclic action
are mutually commutative: [U⊗2k, Ŝσ ⊗ Ŝσ] = [U⊗2k, T̂ ] = [Ŝσ ⊗ Ŝσ, T̂ ] = 0. The observation that [U⊗k, Ŝσ] = 0 is used in
the Schur-Weyl duality to show that k-fold tensor products of the fundamental representation of G are also representations of
G× Sk.

Thus, (Πk, V ⊗2k) forms a representation of the group G× Sk × Z2. The covariance matrix ∆ satisfies the constraint

∀g ∈ (G× Sk × Z2), Πk(g)∆ = ∆Πk(g)

and so, the matrix ∆ is an element of the endomorphism space of G× Sk × Z2. We can completely parameterize the
endopmorphism space using Schur-Weyl duality. Specifically, the tensor product representation will decompose into
irriducible representations of G× Sk × Z2 as

V ⊗2k ∼=
⊕
τ∈Ĝ

⊕
λ⊢k

⊕
s∈±

mk
τλs(τ, Vτ )⊗ (λ, Vλ)⊗ (s, Vs)

where the integers mk
τλs count the number of irreducible copies of (τ, Vτ ) ⊗ (λ, Vλ) ⊗ (s, Vs) in the representation

(Πk, V ⊗2k). The dimension of the endomorphism space is then given by

dimHomG×Sk×Z2
[(Πk, V ⊗k), (Πk, V ⊗k)] =

∑
τ∈Ĝ

∑
λ⊢n

∑
s∈±

(mk
τλs)

2

Furthermore, using the extended Schur lemma B1, elements of the endomorpism space are block diagonal

Φ ∈ HomG×Sk×Z2
[(Πk, V ⊗2k), (Πk, V ⊗2k)] =⇒ Φ = U(k,d)[

⊕
ρ∈Ĝ

⊕
λ⊢n

⊕
s∈±

Mk
τλs ⊗ Idτ

⊗ Id′
λ
]U†

(k,d)

where theMk
τλs is a (m

k
τλs×mk

τλs)-dimensional Hermitian matrix and the unitary matrix U(k,d) is fixed and completely

determined. The structure of elements of the endomorphism space HomG×Sk×Z2
[(Πk, V ⊗k), (Πk, V ⊗k)] is discussed

in the appendix C.

B. Unitary Case

We consider the case where G = U(d) is the unitary group of dimension d. The derivations for the orthogonal and
symplectic groups are similar and will be presented in the appendix. A famous result of Weyl in classical group theory
[84] states that the k-fold tensor product of the defining representation of the unitary group decomposes as

(Cd)⊗k ∼=
⊕

λ⊢(k,d)

Vλ ⊗ λ
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where (k, d) denotes all integer partitions of k with less than d summands. Using this decomposition, the representation
(Πk, V ⊗2k) is isomorphic to the tensor product representation

(Πk, V ⊗2k) ∼= [
⊕

λ⊢(k,d)

Vλ ⊗ λ]⊗ [
⊕

λ′⊢(k,d)

Vλ′ ⊗ λ′] =
⊕

λ,λ′⊢(k,d)

[Vλ ⊗ Vλ′ ]⊗ [λ⊗ λ′]

The tensor product rules for the unitary group are simple. Let λ ⊢ k and λ′ ⊢ k′. We then have that

Vλ ⊗ Vλ′ =
⊕

µ⊢(k+k′)

Bµ
λλ′Vµ

where Bµ
λλ′ are the branching rules of the irreducible µ ∈ Ŝk+k′ under the group restriction Sk+k′ → Sk ×Sk′ . Let us

also define the tensor product rules of the Sk irreducible representations. Let λ ⊢ k, λ′ ⊢ k. Then

λ⊗ λ′ =
⊕
µ⊢k

cµλλ′µ

where cµλλ′ are called Littlewood-Richardson coefficients. The Littlewood–Richardson coefficients can either be looked
up or computed diagrammatically using the Littlewood–Richardson method [42]. Using the tensor product rules for
unitary irreducible representations and representations of the symmetric group, we have that

(Πk, V ⊗2k) ∼=
⊕
µ⊢k

⊕
µ′⊢k

⊕
s∈±

Ck
µµ′s[Vµ ⊗ µ′ ⊗ s]

Where we have defined the set of integers,

Ck
µµ′s =

∑
λ⊢(k,d)

∑
λ′⊢(k,d)

Bµ
λλ′c

µ′

λλ′

Thus, for each k, there exists a fixed unitary matrix U(k,d) such that

(Πk, V ⊗2k) = U(k,d)[
⊕
µ

⊕
µ′

⊕
s∈±

Cks
µµ′(Vµ ⊗ µ′ ⊗ s)]U†

(k,d)

Again using Schur’s lemma, the matrix ∆ can always be written as

∆ = U(k,d)[
⊕
µµ′

⊕
s∈±

Mk
µµ′s ⊗ Idµdµ′ ]U

†
(k,d)

whereMk
µµ′s is a C

k
µµ′s×Ck

µµ′s matrix. Note that the requirement that ∆† = ∆ requires that the matrices (Mk
µµ′s)

† =

Mk
µµ′s are Hermitian. Lastly, the matrix ∆ ≻ 0 is positive definite if and only if each of the matrices Mk

µµ′s ≻ 0 are

positive definite. The total number of free parameters in the matrix ∆ is given by
∑

µµ′
∑

s∈±(C
k
µµ′s)

2. To summarize
we have the following theorem,

C. Main Theorem: Unitary Case

Theorem 7 ( Characterization of k-Fold Unitary Endomorpisms ). Let Φ be a (d2k×d2k) positive definite Hermitian
matrix. Suppose that

∀U ∈ U(d), ∀σ ∈ Sk, [U⊗2k,Φ] = [Ŝσ ⊗ Ŝσ,Φ] = [T̂ ,Φ] = 0

Then the matrix Φ is completely and uniquely specified by a set of positive definite Hermitian matrices Mµµ′s =
(Mµµ′s)

† ≻ 0. Each Mµµ′s matrix is labeled by the integer partitions µ, µ′ and a sign s ∈ ±. There exists a fixed
unitary matrix U ∈ U(d2k) such that

Φ = U [
⊕
µ,µ′

⊕
s∈±

Mµµ′s ⊗ Idµ
⊗ Id′

µ′
]U†
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where dµ = dimVµ is the dimension of the µ irreducible of U(d) and d′λ = dimλ is the dimension of the λ irreducible
of Sk. Now, the fact that Mµµ′s = (Mµµ′s)

† ≻ 0 implies that we may write the diagnolization of Mµµs as

Mµµs =

Cµµ′s∑
q=1

Λq
µµ′s|ϕ

q
µµ′s⟩⟨ϕ

q
µµ′s|

where the eigenvalues Λq
µµ′s > 0 and the Cµµ′s-dimensional vectors |ϕqµµ′s⟩ are orthonormal with

∀q, q′ ∈ {1, 2, ..., Cµµ′s}, ⟨ϕq
′

µµ′s|ϕ
q
µµ′s⟩ = δqq

′

VI. BIPARTITE UNITARY ENSEMBLE

We consider the k = 2 case. The bipartite case is of great importance. To begin, let us calculate the all important

coefficients C
(2)
µµ′ . Assuming that d > 1, we have that

µ ⊢ 4, µ′ ⊢ 2, C
(2)
µµ′ =

∑
λ⊢2

∑
λ′⊢2

Bµ
λλc

λλ′

µ′

The non-zero Littlewood-Richard coefficients for S2
∼= Z2 are easy to compute,

c++
+ = 1, c+−

− = 1, c−−
+ = 1

and the non-zero branching rules for S4 → S2 × S2 are computed in H 4,

B++
(4) = 1 B−−

(1,1,1,1) = 1, B++
(2,2) = B−−

(2,2) = 1

B++
(2,1,1) = B+−

(2,1,1) = B−+
(2,1,1) = 1, B−−

(3,1) = B+−
(3,1) = B−+

(3,1) = 1

Thus, the dimensions of the matrices appearing in the covariance matrix are given by

C
(2)
(4)+ = 1, C

(2)
(1,1,1,1),+ = 1, C

(2)
(2,2),+ = C

(2)
(2,1,1),+ = 1

C
(2)
(2,1,1),− = 2, C

(2)
(3,1),+ = 1, C

(2)
(3,1),− = 2

The endomorpism space is then isomorphic to,

HomU(d)×S2
[(Π2, (Cd)⊗4)] ∼= λ1 ⊕ λ2 ⊕ Λ1 ⊕ λ3 ⊕ Λ2 ⊕ Λ4 ⊕ Λ3

where λi are numbers and Λi are 2× 2 matrices. The dimension of the endomorpism space is then given by,

dimHomU(d)×S2×Z2
[(Π2, (Cd)⊗4)] = 4 · 12 + 3 · 22 = 16

and the endomorpism space has 16 free parameters, independent of the dimension d. When we enforce positively of
the convarince matrix ∆ ≻ 0, we have that

λ1, λ2, λ3, λ4 ≥ 0

Λ1 = ΛT
1 ≻ 0,Λ2 = ΛT

2 ≻ 0,Λ3 = ΛT
3 ≻ 0

Thus the total number of real free parameters is 4 + 3 · 3 = 13. Thus, the most general unitary random matrix
ensemble that is two-fold unitary U(d)⊗2 invariant has 13 free parameters, independent of the dimension d.

VII. PHYSICAL MODELS

In order to motivate our proposed distributions, we consider a set of physical models that exhibit invariance of
measure under k-fold normal transformation but not invariance under conjugation by generic unitary matrix. The
k-fold invariance is intimately related to the existence of gapless modes.
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A. k-Fold Spin Models

We show that the property of k-fold invariance arises quite naturally in disordered Heisenberg models. In the
noiseless limit, the Heisenberg model of interacting spins has an exact continuous symmetry and is thus k-fold
invariant. When noise is added, this symmetry is broken. However, if the noise is isotropic, the family of random
matrices will still be k-fold invariant. These examples also illustrate the fact that k-fold invariance is related to
breaking of symmetry with isotropic noise.

1. k-Fold Unitary Invariance

Consider the standard SU(2) spin operators S = (Sx, Sy, Sz) satisfying the commutation relation

[Ŝα, Ŝβ ] = iϵαβγ Ŝγ (9)

and transforming in the 1
2 -irreducible representation of SU(2). We are always free to redefine the coordinate system

for each spin. Specifically, the change of basis Si → USiU†, where U is any unitary matrix, preserves the commutation
relations 9. Now, let G = (V,E) be a graph. Let n̂i ∈ R3 be a set of random vectors that are drawn with uniform
angular distribution in R3. As an example, one could consider a Gaussian density for the n̂i,

Pr[n̂]dn̂ ∝ exp(
−1

2
||n̂||22)dn̂

Because the magnetic field is drawn isotropically in R3, the vector valued random variable n̂i satisfies,

∀U ∈ SU(2), n̂i · UŜiU
† = n̂i · Ŝi

Now, consider the disordered Heisenberg model defined on the graph G,

H =
∑
ij∈E

JijŜi · Ŝj +
∑
i∈V

n̂i · Ŝi (10)

where Jij are some fixed constants which measures the coupling along the ij-th edge. The Hamiltonians in 10 are
matrix valued random variables drawn from a probability distribution since each n̂i is a random variable.

With zero external magnetic fields n̂i = 0, the Heisenberg model has a local SU(2) degree of freedom due to the
fact that a rotation of each spin operator by the same amount does not change the energy. Because the noise n̂i is
drawn isotropically, this transformation holds at the level of random variables. Now, consider the transformation that
redefines the local Hilbert space by the same unitary matrix

Ŝi → UŜiU
†

under this transformation,

H → H ′ =
∑
ij∈E

JijU(Ŝi · Ŝj)U
†

Using the relation UU† = 1 = U†U and the fact that unitary matrices on different tensor product subspaces commute,
we can rewrite this expression as,

H ′ =
∑
ij∈E

JijU(Ŝi · Ŝj)U
† =

∑
ij∈E

Jij(U
⊗k)(Ŝi · Ŝj)(U

⊗k)† = (U⊗k)[
∑
ij∈E

Jij(Ŝi · Ŝj)](U
⊗k)† = (U⊗k)H(U⊗k)†

Thus, under the k-fold normal transformation, the probability density satisfies P (H)dH = P (H ′)dH ′. It should be
noted that this probability distribution is not invariant under the more general transformation H → V HV † where
V ∈ U(dk) is a arbitrary unitary matrix.
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2. k-Fold Gaussian Orthogonal Models

Quantum mechanical systems that are time reversal invariant can be represented with symmetric Hamiltonian [50].
We give an example of a natural disordered Hamiltonian that is invariant under k-fold Orthogonal transformation.
Consider the SO(3) spin operators S = (Sx, Sy, Sz) satisfying the commutation relation

[Ŝα, Ŝβ ] = iϵαβγ Ŝγ (11)

Consider the ℓ = 1 representation ( i.e. the ℓ = 1 spin sector). Then, S = (Sx, Sy, Sz) are real 3 × 3 matrices. Let
Oij = OT

ji ∈ O(n) be a set of orthogonal matrices, for example drawn randomly from a Langevin distribution [55].
This is a natural model as the Langevin distribution is the maximum entropy distribution with fixed first moment on
O(d) [43, 55]. Suppose that the distribution of Oij is isotropic. Then,

∀R ∈ O(3), ROijR
T = Oij

must hold at the level of random variables as an isotropic distribution has no preferential basis. Consider a disordered
O(3) model of the form

Ĥ =
∑
ij

JijS⃗
T
i OijS⃗j

where the Jij ∈ R measure the alignment affinity between i-th and j-th spin and Jij are drawn randomly from some
distribution. In this model it is energetically favorable for the i-th and j-th spin vectors to form a relative angle of
Oij . In the noiseless case Oij = 13, the disordered O(3) model has a O(3) symmetry. Specifically, for any orthogonal

matrix O ∈ O(3) the transformation S⃗k → OS⃗kO
T preserves both the commutation relations 11 are preserved and

the Hamiltonian. Note that the addition of the random noise terms Oij break the O(3)-symmetry, but because of the
isotropy properties of Langevin distributions this relation still holds in the noisy case. We can write this model as

Ĥ =
∑
ij

JijS⃗
T
i OijS⃗j

Under the S⃗ → OS⃗OT symmetry transformation, we have that Ĥ is invariant under k-fold normal transformation by
an O(n) degree of freedom.

B. Quantum Double Fold Models

Another situation where k-fold invariance appears naturally is in gauge theories [49]. Quantum double fold models
[62] are a group theoretic generalization of the Kitaev toric code [46]. Specifically, for any finite group G, the quantum
double fold models describe interactions between local Hilbert spaces of size |G|. We show that quantum double fold
models satisfy the k-foldG-invariance property. This is intuitively obvious, as a change of gauge leaves the Hamiltonian
invariant.

1. Quantum Double Fold Models

We review the quantum double fold models [62]. Let G be a finite group. The quantum double fold models are
defined as the following: Let H be a vector space of orthogonal states

H = { |g⟩ | ∀g ∈ G }

with orthogonal inner product ⟨g|g′⟩ = δgg′ . Define the operators

T+
g |z⟩ = |gz⟩, T−

g |z⟩ = |zg−1⟩
P+
h |z⟩ = δh,z|h⟩, P−

h |z⟩ = δh−1,z|h−1⟩

so that (T+,H) and (T−,H) form a unitary representation of the group G. Consider the the Hilbert space ⊗k
i=1H

which consists of k copies of H. The vertex and plaquette operators are then defined on ⊗k
i=1H. The vertex and
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plaquette operators are given by

Vertex: A(v) =
∑
g∈G

Ag(v) =
∑
g∈G

T+
g T

+
g T

−
g T

−
g

Plaquette: B(p) =
∑

h1h2h3h4=1

P+
h1
P+
h2
P−
h3
P−
h4

The Hamiltonian is then defined as

H = −
∑
v

A(v)−
∑
p

B(p)

Now, note that the choice of labeling of basis in H is arbitrary. Specifically, we are always free to redefine |g⟩ → |ϕ(g)⟩
where ϕ is an automorphism of the group G. Let q ∈ G be a group element of G. Let us consider the relabeling
corresponding to left multiplication by a fixed element q ∈ G,

|g⟩ → T+
q |g⟩ = |qg⟩

Again, this is just a relabeling of the state space H, and should not change any physical quantities. Under this
transformation, we have that

T+
g → T+

q T
+
g T

+
q−1 = T+

qgq−1 , T−
g → T+

q T
−
g T

+
q−1 = T−

g

P+
g → T+

q P
+
g T

+
q−1 , P−

g → T+
q P

−
g T

+
q−1

Now, how do the vertex operators A(v) and plaquette B(p) operators transform? We have that

Vertex Transformation: A(v) →
∑
g∈G

T+
qgq−1T

+
qgq−1T

−
qgq−1T

−
qgq−1 =

∑
qgq−1∈G

T+
qgq−1T

+
qgq−1T

−
qgq−1T

−
qgq−1 = A(v)

relabeling this summation g → qgq−1, we see that A(v) → A(v) and the vertex operator is invariant. The plaquette
operator B(p) is similarly invariant. Under transformation |g⟩ → |qg⟩,

Plaquette Transformation: B(p) →
∑

h1h2h3h4=1

(P+
qh1q−1)(P

+
qh2q−1)(P

+
qh3q−1)(P

+
qh4q−1) =

∑
h1h2h3h4=1

P+
h1
P+
h2
P+
h3
P+
h4

= B(p)

relabeling the summation indices hi → qhiq
−1, the product h1h2h3h4 = 1 is unchanged as

h1h2h3h4 → (qh1q
−1)(qh2q

−1)(qh3q
−1)(qh4q

−1) = q h1h2h3h4︸ ︷︷ ︸
=1

q−1 = qq−1 = 1

we see that the plaquette operator B(p) is also invariant. Thus, under the relabeling |g⟩ → |qg⟩, both the vertex
operator and the plaquette operator are invariant

A(v) → A(v), B(p) → B(p)

and the double fold model Hamiltonian is invariant under global labeling. Thus, in the original basis the Hamiltonian
is invariant under k-fold G-transformation on the Hilbert space ⊗k

i=1H. Intuitively, this is obvious, as this relabeling
|g⟩ → |hg⟩ does not change the physics of the double fold model in any way.

2. Unitary Double Fold Model

The quantum double fold models with group G are k-fold G-invariant. We can generalize these models to the group
U(d). Analogous to the quantum double fold model, let us define the Hilbert spaces H to be vectorizations of U(d)
matrices transforming in the fundamental (i.e. d-dimensional) representation,

H = { |V ⟩ | |V ⟩ = Vec(V ), V ∈ U(d) }

The inner product between two states |V ⟩ ∈ H and |V ′⟩ ∈ H is defined as ⟨V |V ′⟩ = 1
dTr[V

†V ′]. We can then define
the operators

T̂+(U)|V ⟩ = |UV ⟩, T̂−(U)|V ⟩ = |V U−1⟩
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so that T̂± : U(d) → Hom[H,H]. These operators are both norm preserving and invertable and therefore unitary.
Let us define the operators acting on H⊗H as

T̂ij =

∫
U(d)

dU T̂+
i (U)⊗ T̂−

j (U) = EU [T̂
+
i (U)⊗ T̂−

j (U)]

where EU [ · ] denotes the expectation with respect to the Haar measure [84]. There is a closed form expression for

T̂ij derived in (ref appendix). The matrix elements of the operator T̂ij are given by,

⟨V1, V2|T̂ij |V ′
1 , V

′
2⟩ = α⟨V1|V ′

1⟩⟨V2|V ′
2⟩+ βd⟨V1|V ′

2⟩⟨V ′
1 |V2⟩

where α and β are some constants. We can then define the Hamiltonian

H =
∑
ij

T̂ij

Note that under the gauge transformation |V ⟩ → T̂+(U)|V ⟩ = |UV ⟩ the T̂ij terms are invariant. Specifically, we have
that

∀V ∈ U(d), [T̂+
i (V )⊗ T̂+

j (V )]T̂ij =

∫
U(d)

dU [T̂+
i (V )T̂+

i (U)⊗ T̂+
j (V )T̂−

j (U)] =

∫
U(d)

dU [T̂+
i (V U)⊗ T̂+

j (V )T̂−
j (U)]

Using the commutativity T̂+(U)T̂−(V ) = T̂−(U)T̂+(V ), we have that

V ∈ U(d), [T̂+
i (V )⊗ T̂−

j (V )]T̂ij = T̂ij [T̂
+
i (V )⊗ T̂−

j (V )]

Thus, the unitary double fold model has unitary k-fold invariance. Note that we can also define higher order terms,

T̂ijkl =

∫
U(d)

dU T̂+
i (U)⊗ T̂+

j (U)⊗ T̂−
k (U)⊗ T̂−

l (U)

which will again be k-fold invariant.

C. k-Fold Bosonic Models

Suppose that we have a physical system described by set of d single particle orbitals

S = Span{|ϕs⟩}ds=1

The choice of basis functions |ϕs⟩ is a choice of coordinate system on S. Specifically, we are always free to transform

the basis functions |ϕs⟩ →
∑d

s′=1 Uss′ |ϕs′⟩ where U is some unitary matrix. We wish to describe a set of theories that
depend only on the intrinsic geometry of the space S. Let G be a compact group, either Lie or finite. We will assume
that G has action on the space S so that (ρ,S) is a d-dimensional G representation. Furthermore, suppose that we
have k identical copies of S, so that the Hilbert space of our system is then described by

H = S ⊗ S ⊗ ...⊗ S︸ ︷︷ ︸
k−times

= S⊗k

We wish to describe theories that depend only on the relative geometries of each of the copies of S. This means that
under an identical change of basis in each of the S, the physics of our theory should not change. Using the second
quantization formalism [50], our system can be described by bosonic creation and annihilation operators carrying a
d-dimensional internal index s and a k-dimensional external index i,

[b̂i,s, b̂j,s′ ] = 0, [b̂i,s, b̂
†
j,s′ ] = δijδss′ , [b̂†i,s, b̂

†
j,s′ ] = 0

where the operator b̂†i,s(b̂
†
i,s) creates(destroys) a particle in the state |ϕs⟩ on the i-th copy of the space S. The Hilbert

space of this system is spanned by the states

|m(1),m(2), ...,m(k)⟩ ∝
k∏

i=1

(b̂†i1)
mi1(b̂†i2)

mi2 ...(b̂†id)
mid |vac⟩ =

k∏
i=1

d∏
j=1

(b̂†ij)
mij |vac⟩
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where each of the mi = mi1mi2...mid are tuples of d positive integers. Under a G transformation on S, the bosonic
operators transform as a representation of G,

∀g ∈ G, g · b̂i,s =
∑
s′

ρ(g)s,s′ b̂i,s′ , g · b̂†i,s =
∑
s′

ρ†(g)s,s′ b̂
†
i,s′

where (ρ,Cd) is some d-dimensional representation of the group G. Let us define the site number operators

n̂i =
∑
s

n̂i,s =
∑
s

b̂†i,sb̂i,s

so that the operator n̂i counts the total number of particles on site i. The site number operator is a physical quantity
and is invariant under G transformation with g · n̂i = n̂i. We would like to understand how states transform under
a relabeling of the bosonic operators. Let us consider symmetry action on states g · |m1m2...mk⟩. Consider the
transformation at the i-th site,

d∏
j=1

(b̂†ij)
mij →

d∏
j=1

(
∑
j′

ρ(g)jj′ b̂
†
ij′)

m
(i)
j =

∑
U(g)mi1mi2...mid,m′

i1m
′
i2...m

′
id

d∏
j=1

(b̂†ij)
m′

ij

Where U(g) has G action on states given by,

|mi1mi2...mid⟩ →
∑
m′

ij

U(g)mi1mi2...mid,m′
i1m

′
i2...m

′
id
|m′

i1m
′
i2...m

′
id⟩

so that (U,S⊗k) is a G-representation. Thus, under a G transformation, we have that states transform as

∀g ∈ G, ∀|Ψ⟩ ∈ H g · |Ψ⟩ → [U(g)⊗ U(g)⊗ ...⊗ U(g)]|Ψ⟩ = U(g)⊗k|Ψ⟩

Now, consider Hamiltonians with of the form

Ĥ =
∑
ij∈E

T ij
ss′ b̂

†
i,sb̂j,s′ (12)

where T ij
ss′ is a complex valued scalar random variable characterizing transition amplitudes. Note that this terms of

this form preserves site particle number as [n̂i, Ĥ] = 0. Now, under a uniform gauge transformation, we have that

g · Ĥ →
∑
ij∈E

b̂†i,tρ
†
ts(g)T

ij
ss′ρs′t′(g)b̂j,t′

Thus, if we require that the d× d random Hermitian matrix T ij = (T ij)† satisfies

∀g ∈ G, ρ(g)T ijρ(g)† = T ij =⇒ T ij ∈ HomG[ρ, ρ]

Then the Hamiltonian random variable Ĥ is invariant under the G transformation. We can similarly define interaction
terms

Hint =
∑
ijkl

∑
ss′tt′

Cijkl
ss′tt′ b̂

†
isb̂

†
js′ b̂ktb̂lt′

Then, under a G-transformation, we have that,

∀g ∈ G, g ·Hint =
∑
ijkl

∑
ss′tt′

Cijkl
ss′,tt′ρ

†
su(g)ρ

†
s′u′(g)ρtv(g)ρt′v′(g)b̂†iub̂

†
ju′ b̂kv b̂lv′

This term is G-invariant if and only if

∀g ∈ G, [ρ(g)⊗ ρ(g)]Cijkl = Cijkl[ρ(g)⊗ ρ(g)] =⇒ Cijkl ∈ HomG[ρ⊗ ρ, ρ⊗ ρ]

so that Cijkl is an endomorpism of the ρ ⊗ ρ representation. To summarize: let S = Span[{|Φi⟩}ni=1] describe a set

of single particle orbitals. Second quantized systems on H =
⊗k

i=1 S which depend only on the relative geometry of
each of the S spaces have Hamiltonian operators given by

Non-Interacting: Ĥ =
∑

b̂†isT
ij
ss′ b̂js′ with T

ij ∈ HomG[ρ, ρ]

Interacting: Ĥ =
∑

Cijkl
ss′tt′ b̂

†
isb̂

†
js′ b̂ktb̂lt′ with C

ijkl ∈ HomG[ρ⊗ ρ, ρ⊗ ρ]

Terms that do not preserve particle number satisfy similar constraints.
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1. Specific Example: Harmonic Oscillator

As a more specific example, let us consider a system of N -interacting three-dimensional harmonic oscillators.

The operators b̂i,0,0 are of degeneracy 1 and transforms in the trivial representation of SO(3). Similarly, the triple

b̂i,1,−, b̂i,1,0, b̂i,1,1 form the ℓ = 1 representation of SO(3). In general, operators can be written as b̂i,ℓk transforming
in the ℓ-representation of SO(3),

g · b̂i,ℓk =

ℓ∑
k=−ℓ

Dℓ(g)kk′ b̂i,ℓk′

where Dℓ are the Wigner D-matrices. The allowed SO(3)-invariant quadratic terms are then given by

Ĥ =

N∑
ij=1

∞∑
ℓ=0

zℓ,ij

ℓ∑
k=−ℓ

b̂†i,ℓk b̂j,ℓk

where zℓ,ij = z̄ℓ,ji ∈ C.

VIII. FIELD THEORY DESCRIPTION

The result in 6 gives a complete description of a set of natural matrix ensembles. By property II, the derived
probability distributions are Gaussian and all matrix element correlation functions can be computed using Isserlis’
theorem. The standard Gaussian Ensembles are equivalently described as non-interacting (0 + 0)-dimensional field
theories. From a field theory perspective, Gaussian matrix probability distributions are non-interacting theories, as
all correlation functions can be computed exactly. Specifically, in the k-fold matrix ensemble, any n-point correlation
of the form,

⟨Hi11i12...i1k︸ ︷︷ ︸
i1

j11j12...j1k︸ ︷︷ ︸
j1

Hi21i22...i2k︸ ︷︷ ︸
i2

j21j22...j2k︸ ︷︷ ︸
j2

...Hin1in2...ink︸ ︷︷ ︸
in

jn1jn2...jnk︸ ︷︷ ︸
jn

⟩ ∝
∫ ∏

i≤j

dHij Hi1j1Hi2j2 ...Hinjn exp(
−1

2
H⃗†∆H⃗)

can be computed exactly as all integrals are Gaussian. The diagrammatic rules are slightly more complicated than
a standard Gaussian field theory. This can be represented diagrammatically in Feynman diagrams. Unlike standard
Feynman diagrams, each ‘particle’ index carries k tensor indices.

1. Eigenvalue-Entanglement Interactions

One novel feature of the proposed k-fold ensembles is the existence of terms that couple entanglement spectra to
eigenvalue spectra. Let us illustrate this by considering the k = 2 bipartite case. To begin, consider a standard
quartic interaction term like Tr[Ĥ4] which depends only on the eigenvalue spectrum of the matrix Ĥ. Consider the

diagonilization of Ĥ,

Ĥ = ΨΛΨ† =
∑
m

ΛmΨmΨ†
m (13)

then, Tr[Ĥ4] = Tr[Λ4] =
∑

m Λ4
m which is completely independent of the form of the eigenvectors Ψ. Now, let Ŝ be

the swap operator on the vector space with Ŝ|ij⟩ = |ji⟩. Now, let

ĤS = ŜĤŜ†

Consider the quadratic interaction term

Tr[(ĤSĤ)†(ĤSĤ)] = Tr[Ĥ†
SĤSĤ

†Ĥ] = Tr[Ĥ2
SĤ

2]

this term is forbidden under U(d2) unitary invariance, but allowed under 2-fold U(d) unitary invariance. We can write

down the m-th Schmidt decomposition of the eigenvectors of Ĥ,

Ψm =
∑
n

λmn|ψL
mn, ψ

R
mn⟩
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where |ψL
mn, ψ

R
mn⟩ = |ψL

mn⟩⊗ |ψR
mn⟩ are the left and right Schmidt vectors and λmn ≥ 0 is the entanglement spectrum

of the m-th eigenvector of H. Now, inserting this expression into the diagonalization of H 13,

Ĥ2 =
∑
m

∑
nn′

Λ2
mλmnλmn′ |ψL

mn, ψ
R
mn⟩⟨ψL

mn′ , ψR
mn′ |

and for the swapped Ĥ,

Ĥ2
S =

∑
m

∑
nn′

Λ2
mλmnλmn′ |ψR

mn, ψ
L
mn⟩⟨ψR

mn′ , ψL
mn′ |

Then, we have that

Tr[Ĥ2
SĤ

2] =
∑
ij

∑
mm′nn′

Λ2
iΛ

2
jλinλin′λjmλjm′⟨ψR

jm, ψ
L
jm|ψL

in, ψ
R
in⟩⟨ψL

in′ , ψR
in′ |ψR

jm′ , ψL
jm′⟩

This is equivalent to,

Tr[Ĥ2
SĤ

2] =
∑
ij

∑
mm′nn′

Λ2
iΛ

2
jλinλin′λjmλjm′⟨ψR

jm|ψL
in⟩⟨ψL

jm|ψR
in⟩⟨ψL

in′ |ψR
jm′⟩⟨ψR

in′ |ψL
jm′⟩

For a phenomenological description of quantum states, this is highly desirable. Specifically, a variant of the Berry
conjecture [71] states that in a generic basis, large spectrum eigenvectors have coefficients that are drawn iid at
random from a complex Gaussian (then normalized). If the Berry conjecture is true, the overlap between left and
right Schmidt eigenvectors need to decay as

|⟨ψL
mk|ψR

m′k′⟩|2 ∼ O(
1

d
) (14)

should be small for large m >> 1 and m′ >> 1. The term Tr[Ĥ†
SĤSĤ

†Ĥ] suppresses matrices where this condition
14 does not hold.

IX. CONCLUSION

In this note, we have motivated a new class of random matrix models defined on k-fold tensor product spaces
W = V ⊗k = V ⊗ V ⊗ V ⊗ ... ⊗ V . We show that k-fold invariance emerges naturally in two physical settings VII.
Specifically, k-fold invariance is equivalent to the assumption that energy dependent only on the relative orientations of
different subsystems. Thus, k-fold invariance is found in many models that ‘on average’ have continuous symmetries.
This is common in physical models as although isotropic disorder breaks continuous symmetries, the average over
isotropic noise still retains this symmetry. The k-fold invariance assumption is also intimately related to the theory of
gauge fields. Specifically, we have show that the unitary double model, which is a generalization of the quantum double
model to the unitary group, satisfies the k-fold unitary invariance property. Using the Schur-Weyl decomposition,
we have given a complete characterization of matrix distributions that are invariant under k-fold conjugation by the
unitary, orthogonal and symplectic groups. The generalizations of the random matrix ensembles we have proposed
seem extremely well suited for modeling Hamiltonians of quantum mechanical systems of many identical particles
and may be of interest to both the quantum information and condensed matter community. Our work provides
a representation theoretic method to build random matrix ensembles that display properties not observed in the
standard Gaussian Ensembles.
Future Work: In this note, motivated a generalization of the standard random matrix ensembles. Specifically,

we argue that there is a natural generalization of the standard Gaussian matrix ensembles [25] to ensembles that
are invariant under k-fold local, as opposed to global, symmetry transformations. We only consider probability
distributions with elements drawn from a Gaussian distribution. We can study non-Gaussian correlations by via
diagrammatic methods. Ideally, we would like to perform a full renormalization group analysis of perturbations with
k-fold symmetry. Furthermore, we would like to study properties of such ensembles in the limit k → ∞. This is a
difficult problem, but techniques in free probability [28, 64] may allow for such asymptotic expansions.

Disorder plays a crucial role in the physics of materials. Properties that are observable in real physical systems
must be noise robust. For this reason, a full understanding of novel states of matter should requires random matrix
theory. By constructing a natural generalization of the Gaussian ensembles, we believe that our work is a first step in
developing random matrix models describing more exotic states of matter. We expect that the random matrix models
proposed in this note would benefit from understanding gravity dual theories, similar to [41].
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[19] Benôıt Collins, Razvan G. Gurau, and Luca Lionni. The tensor harish-chandra–itzykson–zuber integral i: Weingarten

calculus and a generalization of monotone hurwitz numbers. Journal of the European Mathematical Society, January
2023.

[20] Francis Comets, Giambattista Giacomin, and Rafael L. Greenblatt. Continuum limit of random matrix products in
statistical mechanics of disordered systems. Communications in Mathematical Physics, 369(1):171–219, may 2019.

[21] J. Brian Conrey, Jon P. Keating, Michael O. Rubinstein, and Nina C. Snaith. Random matrix theory and the fourier
coefficients of half-integral weight forms, 2006.

[22] William Cottrell, Ben Freivogel, Diego M. Hofman, and Sagar F. Lokhande. How to build the thermofield double state.
Journal of High Energy Physics, 2019(2), February 2019.
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Appendix A: Representation Theory

Let V be a vector space over the field C. A representation (ρ, V ) of a group G consists of V and a group homomor-
phism ρ : G→ Hom[V, V ]. By definition, the homomorphism ρ satisfies

∀g, g′ ∈ G, ∀v ∈ V, ρ(g)ρ(g′)v = ρ(gg′)v

Heuristically, a group can be thought of as the embedding of an group (which is an abstract mathematical object)
into a set of matrices. Two representation (ρ, V ) and (σ,W ) are said to be equivalent representations if there exists
a matrix Φ

∀g ∈ G, Φρ(g) = σ(g)Φ

The linear map Φ is said to be a G-intertwiner of the (ρ, V ) and (σ,W ) representations. The space of all G-intertwiners
is denoted as HomG[(ρ, V ), (σ,W )]. Specifically,

HomG[(ρ, V ), (σ,W )] = { Φ : V →W | ∀g ∈ G, Φρ(g) = σ(g)Φ, Φ is linear }

The sum of two G-intertwiners is again G-intertwiner and HomG[(ρ, V ), (σ,W )] forms a vector space over C. The
vector space of of G-intertwiners from a representation to itself is called the G endomorpism space of the representation
(ρ, V ),

EndG[(ρ, V )] = HomG[(ρ, V ), (ρ, V )]

which we will refer to as the endomorpism space of (ρ, V ). Much of classical group theory studies the structure of the
intertwiners of representations [15]. A representation (ρ, V ) is said to be a unitary representation if the vector space
V can be equipped with an inner product ⟨·, ·⟩ such that

∀g ∈ G, ∀v, w ∈ V, ⟨ρ(g)v, ρ(g)w⟩ = ⟨v, w⟩

The unitary theorem in representation theory [15] says that any representation of a compact group G is equivalent
to a unitary representation of G. A representation is said to be reducible if it breaks into a direct sum of smaller
representations. Specifically, a unitary representation ρ is reducible if there exists an unitary matrix U such that

∀g ∈ G, ρ(g) = U [

k⊕
i=1

σi(g)]U
†

where k ≥ 2 and σi are smaller representations of G. The set of all non-equivalent unitary representations of a group
G will be denoted as Ĝ. All representations of compact groups G can be decomposed into direct sums of irreducible
representations. Specifically, if (σ, V ) is a G-representation,

(σ, V ) = U [
⊕
ρ∈Ĝ

mρ
σ(ρ, Vρ)]U

†

where U is a unitary matrix and the integers mρ
σ denote the number of copies of the irreducible (ρ, Vρ) in the

representation (σ, V ).

Appendix B: Schur’s Lemma

Schur’s lemma is one of the fundamental results in representation theory [89]. Let G be a compact group. Let
(ρ, V ) and (σ,W ) be irreducible representations of G. Then, Schur’s lemma states the following: Let Φ : V → W be
an intertwiner of (ρ, V ) and (σ,W ). Then, Φ is either zero or the proportional to the identity map. In other words,

if ∀g ∈ G, Φρ(g) = σ(g)Φ =⇒

 Φ ∝ I if (ρ, V ) = (σ,W )

Φ = 0 if else
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Equivalently, if (ρ, V ) and (σ,W ) are irreducible representations, the space of intertwiners of representations satisfies

HomG[(ρ, V ), (σ,W )] ∼=

 C if (ρ, V ) = (σ,W )

0 if else

A corollary of Schur’s lemma is the following: Let (ρ, V ) be a irreducible representation of G. Let M ∈ Cdρ×dρ be a
matrix. Suppose that

∀g ∈ G, ρ(g)M =Mρ(g)

holds. Then, M is proportional to the identity matrix. The constant of proportionally can be determined by taking
traces. Specifically,

M =
Tr[M ]

dρ
Idρ

1. Extended Shur Lemma

Schur’s Lemma can be extended to reducible representations. Let (ρ, Vρ) and (σ, Vσ) be G representations which
decompose into irriducibles as

(ρ, Vρ) = U [
⊕
τ∈Ĝ

mρ
τ (τ,Wτ )]U

† (σ, Vσ) = V [
⊕
τ∈Ĝ

mσ
τ (τ,Wτ )]V

†

where U, V are fixed unitary matrices that diagonalize the ρ and σ representations, respectively. Then, the vector
space of intertwiners between (ρ, Vρ) and (σ, Vσ) has dimension

dimHomG[(ρ, Vρ), (σ, Vσ)] =
∑
τ∈Ĝ

mρ
τm

σ
τ

Furthermore, elements of the space HomG[(ρ, Vρ), (σ, Vσ)] have block structure. Specifically, any Φ ∈
HomG[(ρ, Vρ), (σ, Vσ)] can be parameterized in block diagonal form as

Φ = U [
⊕
τ∈Ĝ

Φτ ⊗ Idτ
]V †

and each block Φτ is a mρ
τ ×mσ

τ matrix written as

Φτ =


Φτ

11 Φτ
12 ... Φτ

1mσ
τ

Φτ
21 Φτ

22 ... Φτ
2mσ

τ

... ... ... ...

Φτ
mρ

τ1
Φτ

mρ
τ2

... Φτ
mρ

τmσ
τ


where each Φτ

ij ∈ C is a complex constant and dτ = dim(τ,Wτ ) is the dimension of the irreducible G-representation
(τ,Wτ ).

Appendix C: Schur-Weyl Duality

Schur-Weyl Duality is a powerful tool in the representation theory of compact groups [84]. In the literature there
is some ambiguity as to the actual definition of what Schur-Weyl duality entails. Schur-Weyl Duality is sometimes
referred to as the decomposition of the tensor products classical Lie groups. However, Schur-Weyl is actually a more
general idea that can be used to decompose any k-fold tensor product of a representation of a compact group. Let
G be a compact group. Let (ρ, Vρ) be any representation of G. Consider the k-fold tensor product representation,
(ρ⊗k, V ⊗k

ρ ). This representation also forms a representation of the symmetric group of order k, as

∀σ ∈ Sk, ∀g ∈ G, Sσ [ρ(g)⊗ ρ(g)⊗ ...⊗ ρ(g)]︸ ︷︷ ︸
k−times

= [ρ(g)⊗ ρ(g)⊗ ...⊗ ρ(g)]︸ ︷︷ ︸
k−times

Sσ

so that the G action and Sk action are commutative.
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V ⊗k
ρ V ⊗k

ρ

V ⊗k
ρ V ⊗k

ρ

ρ⊗k(g)

Ŝσ Ŝσ

ρ⊗k(g)

FIG. 4: ‘Square’-type commutative diagram for Schur-Weyl duality. The key observation in Schur-Weyl duality is that the
k-fold tensor product action and the tensor permutation representation are commutative. This allows for definition of G× Sk

action on the vector space V ⊗k
ρ . Because of this, (Πk

ρ, V
⊗k
ρ ) forms a representation of the group G× Sk.

Let us define the action Πk
ρ on the vector space V ⊗k

ρ as the following

∀g ∈ G, ∀σ ∈ Sk, ∀wi1i2...ik ∈ V ⊗k
ρ , Πk

ρ(g, σ)wi1i2...ik =

d∑
j1=1

d∑
j2=1

...

d∑
jk=1

ρ(g)iσ(1)j1ρ(g)iσ(2)j2 ...ρ(g)iσ(k)jkwj1j2...jk

Note that this action is well defined and can be performed by matrix multiplication followed by permutation or
permutation followed by matrix multiplication. For this reason, (Πk

ρ, V
⊗k) is a well defined representation of the group

G× Sk. The representation (Πk
ρ, V

⊗k
ρ ) is in general not reducible and will decompose into irreducible representations

of G×Sk. Irreducible representations of G×Sk are tensor products of irreducible representations of G and irreducible
representations of Sk. Thus, we have the following decomposition,

(Πk
ρ, V

⊗k
ρ ) ∼=

⊕
τ∈Ĝ

⊕
λ⊢k

mkτλ
ρ (τ, Vτ )⊗ (λ, Vλ)

where mkτλ
ρ are integers counting the number of copies of the (τ, Vτ ) ⊗ (λ, Vλ) irreducible in (Πk

ρ, V
⊗k
ρ ). Thus, the

tensor product space decomposes into vector subspaces that are characterized by their transformation properties based
on G action and tensor index permutations.

1. Unitary Schur-Weyl Duality

Let us apply the more general Schur-Weyl formalism to the case of the unitary group U(d). Irreducible repre-
sentations of U(d) are countably infinite and are in one-to-one correspondence with integer partitions [84, 89]. Let
λ = (λ1, λ2, ..., λm) be a partition with λ1 ≥ λ2 ≥ ... ≥ λm. The irreducible representation of U(d) associated to the
partition λ will be denoted as (Uλ, Vλ). Let (U1,Cd) be the fundamental d-dimensional representation of U(d) defined
as the λ = (1) partition,

Ud = { U | U†U = Id = UU† }

Consider the k-fold tensor product decomposition,

(Cd)⊗k =
⊕

λ⊢(k,d)

Vλ ⊗ λ

where λ ⊢ (k, d) denotes partitions of the integer k with no more than d summands, i.e.

λ ⊢ (k, d) =⇒ λ = (λ1, λ2, ..., λm), s.t λ1 ≥ λ2 ≥ ... ≥ λm s.t.
∑

λi = k and m ≤ d

A celebrated theorem of Weyl [84] states that the representations (Uλ, Vλ) exhaust all representations of the d-
dimensional unitary group U(d).

a. Unitary Group Tensor Product Rules

For a complete discussion of diagrammatic methods for computing tensor products of irreducible representations of
the unitary group, please see [23]. We will be interested in tensor products of irreducible representations of U(d). Let
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λ and λ′ be two partitions. Let Vλ and Vλ′ be the corresponding irreducible representations of U(d). Then, consider
the tensor product

Vλ ⊗ Vλ′ ∼=
∞⊕

n=1

⊕
µ⊢n

mµ
λλ′Vµ

so that the index µ ranges over all integer partitions and mµ
λλ′ are integers that count the muplicity of the irreducible

representation Vµ in the tensor product Vλ ⊗ Vλ′ . Using Schur-Weyl Duality, we can derive an exact expression for
tensor product rules mµ

λλ′ of the unitary group in terms of the branching rules of the symmetric group. To begin,
consider the trivial relation

(Cd)⊗k ⊗ (Cd)⊗k′
= (Cd)⊗(k+k′)

for any integers k and k′. Then, using the vector space decomposition in the Schur-Weyl duality, we have an
isomorphism of vector spaces

[
⊕

λ⊢(k,d)

Vλ ⊗ λ]

︸ ︷︷ ︸
(Cd)k

⊗ [
⊕

λ′⊢(k′,d)

Vλ′ ⊗ λ′]

︸ ︷︷ ︸
(Cd)k′

∼= [
⊕

µ⊢(k+k′,d)

Vµ ⊗ µ]

︸ ︷︷ ︸
(Cd)k+k′

This is a representation of the group U(d) × Sk × Sk′ . Expanding out the tensor product of the left hand side, we
have that ⊕

λ⊢(k,d)

⊕
λ′⊢(k′,d)

[Vλ ⊗ Vλ′ ]⊗ (λ⊗ λ′) =
⊕
µ

⊕
λ⊢(k,d)

⊕
λ′⊢(k′,d)

mµ
λλ′Vµ ⊗ (λ⊗ λ′)

Now, consider the group restriction of the left side from Sk+k′ to the subgroup Sk × Sk′ ⊆ Sk+k′ . Let µ ⊢ (k+ k′) be
a irreducible representation of Sk+k′ . Under the group restriction

Res
Sk+k′

Sk×Sk′ [µ] =
⊕
λ⊢k

⊕
λ′⊢k′

Bλλ′

µ (λ⊗ λ′)

where Bλλ′

µ are the branching rules which count how many copies of the irreducible λ ⊗ λ′ are contained in the
restriction of µ. Branching rules for the symmetric group have been thoroughly studied [42]. Under group restriction
from Sk+k′ → Sk × Sk′ , the isomorphism of vector spaces becomes an isomorphism of group representations. Under
restriction ⊕

µ⊢(k+k′,d)

Vµ ⊗ µ→
⊕

µ⊢(k+k′,d)

⊕
τ⊢k

⊕
τ ′⊢k′

Bµ
ττ ′Vµ ⊗ [τ ⊗ τ ′]

Two representations are equivalent if and only if they have identical decomposition of irriducibles. This relation can
only hold if, for any λ ⊢ k and λ′ ⊢ k′ the relation

Vλ ⊗ Vλ′ =
⊕

µ⊢(k+k′)

Bµ
λλ′Vµ

holds. Thus, the tensor product of the λ and λ′ irreducibles of U(d) are completely determined by the branching rules
of irreducible representations of the symmetric group. Branching rules of the symmetric group have been thoroughly
studied in representation theory [42]. When k = k′ there is additional simplification due to exchange. Specifically,
consider the decomposition

(Cd)⊗k ⊗ (Cd)⊗k ∼= (Cd)⊗2k

The left hand side of this expression has a Z2-action. Specifically, define the operator Ŝ as swapping the left and right
copy of (Cd)⊗k.
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Appendix D: Lie Group Theory

Lie group theory is the study of continuous groups. We review some basic concepts of Lie group theory. A full
treatment of Lie group theory can be found in [23, 36, 84, 89]. A Lie group G is a group that is also a smooth manifold
with the requirement that, for all g, h ∈ G, the map g×h→ gh : G×G→ G is smooth and the map g → g−1 : G→ G
is smooth. A homeomorphism of Lie groups is a smooth map Φ : G→ H that satisfies the relation

∀g, g′ ∈ G, Φ(gg′) = Φ(g)Φ(g′)

Representations of Lie groups are defined in the same way as representations of finite groups. Let V be a vector space.
A representation of a Lie group is a Lie group homeomorpism ρ : G→ GL(V ) and a vector space V satisfying,

∀g ∈ G, ∀v ∈ V, ρ(gg′)v = ρ(g)ρ(g′)v

1. Lie Algebra

A Lie algebra g is a vector space equipped with a anti-symmteric two-form [·, ·] : g × g → g which satisfies the
Jacobi identity,

Jacobi: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

A homeomorphism of Lie algebras is a map ϕ : g → h that preserves the Lie bracket of g so that

∀X,Y ∈ g, ϕ([X,Y ]) = [ϕ(X), ϕ(Y )]

Let Xi be a basis of the Lie algebra g. The Lie algebra g is called semi-simple if there is no proper subset Ji of the
Xi such that the Ji are an idea of g under the Lie bracket operator [·, ·]. Let Xi be a basis of the Lie algebra g. The
structure constants fkij of g are defined as

[Xi, Xj ] =
∑
j

fkijXk

so that the constants fkij are the decomposition of the Lie bracket in the vector space g. Let V be a vector space. We
can similarly speak of a Lie algebra representation as a homeopmorpism σ : g → GL(V ) that preserves Lie bracket
structure

∀X,Y ∈ g, σ([X,Y ]) = [σ(X), σ(Y )]

If G is a connected group, the map exp : g → G, is defined as

∀X ∈ g, exp(itX) =

∞∑
n=0

(it)n

n!
Xn

The key property of exp is that the exponential map exp commutes with homeomorphism of algebra and group D1,
so that there is an isomerism between Lie algebra representations and Lie group representations.

g h

G H

dΦ|e

exp exp

Φ

FIG. 5: The exponential map: Let Φ : G → H be a homeomorpism of groups. Let dΦ|e : g → h be the derivative map
evaluated at the identity of G. Then, the above map is commutative.
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2. Adjoint Representation

The adjoint (sometime called the little adjoint) ad representation is a canonical representation of a Lie algebra. The
adjoint action is defined as

ad(X)Y = [X,Y ]

The adjoint action satisfies

[ad(X), ad(Y )] = ad([X,Y ])

which preserves the Lie bracket structure and is a valid Lie algebra representation. The adjoint action acts directly
on ĝ, and the dimension of the adjoint representation is the dimension of the vector space ĝ.

There is an analogous adjoint (sometimes called the big adjoint) Ad representation of the Lie group G on g. Consider
the conjugation map Φg : G→ G on the Lie group G given by

Φg(h) = ghg−1

the conjugation map is an Lie automorpism of G. The adjoint map Adg evaluated at g ∈ G is then the conjugation
map evaluated at the identity

∀g ∈ G, Adg = dΦg|e : Te(G) → Te(G)

so that for fixed g ∈ G, Adg : g → g. Thus, Adg : G→ aut(g). Let X ∈ g,

∀g ∈ G, AdgX =
d

dt
[g exp(tX)g−1]|t=0

Note that

∀g, g′ ∈ G, Adg ◦Adg′ = Adgg′

so that (Ad, g) is a Lie group representation of G with dimension equal to the vector space dimension of g. Let ⟨·, ·⟩
be an inner product on g. The inner product ⟨·, ·⟩ is said to be Ad-invariant if and only if,

∀g ∈ G, ∀x, y ∈ g, ⟨x, y⟩ = ⟨Adgx,Adgy⟩

3. Killing Form

The Killing form K is a symmetric bi-linear form on a Lie algebra g. Specifically, K is defined as

K(X,Y ) = Tr[ad(X)ad(Y )]

Using the cyclic properties of the trace,

K(X, [Z, Y ]) +K([Z,X], Y ) = 0 (D1)

The Killing form is essentially unique. It is (up to multiplication) the only inner product satisfying the property D1.
The Killing form can be written in terms of the structure constants fkij as

K(AiXi, B
jXj) =

∑
k

fkijf
k
jiA

iBj

So that as an element of g⋆ ⊗ g⋆ the Killing form is given by

K =
∑

km=1

fkimf
m
jke

i ⊗ ej

where g⋆ = span[ei]ri=1 is the dual space of g. Importantly, the Killing form is an Ad-invariant inner product,

∀g ∈ G, K(X,Y ) = K(AdgX,AdgY )
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a. Cartan Sub-Algebra

A Cartan sub-algebra h is a maximal commuting set of elements of g. A Cartan sub-algebra is closed under
commutation and satisfies

∀x, y ∈ h, [x, y] = 0

The dimensions of dim h = r is called the rank of g. Let {hi}ri=1 be a basis of h. The remaining elements of g will be
denoted as Eα where

∀h ∈ h, [hi, Eα] = αiEα

so that the Eα are eigenvectors of the hi operators. The vectors α = (α1, α2, ..., αr) are called roots. The operator
Eα is called the ladder operator associated to the root α. Let Φ denote all the roots of g. The Lie algebra g then
decomposes as a direct sum of the Cartan sub-algebra and the roots

g = h
⊕
α∈Φ

Eα

Root systems have a reflection symmetry. Specifically, if α is a root, then −α is also a root as

[hi, Eα] = αiEα =⇒ [hi, (Eα)†] = −αi(Eα)†

Using the Jacobi Identity, we have that

∀h ∈ h, [hi, [Eα, Eβ ]] = (α+ β)iEα+β

thus, the commutator of two roots satisfies

[Eα, Eβ ] = Nα,βE
α+β if α ̸= −β

[Eα, E−α] =

r∑
i=1

Ci(α)h
i

where Nα,β and Ci(α) are constants. The constant Ci(α) can be determined using the Jacobi relation. We have that

[hi, [Eα, E−α]] + [Eα, [E−α, hi]] + [E−α, [hi, Eα]] = 0

Using the definition of roots, we have that

[hi, [Eα, E−α]] + 2αi[Eα, E−α] = 0

Thus, [Eα, E−α] must be given by

[Eα, E−α] = C(α)

r∑
i=1

αihi

The root α(h) : h → C is the eigenvector of x in [h, ·]. Note that each root α : h → C can be viewed as an element of
the dual space h⋆ of h. An orientation on a root system α is a choice of roots Φ+ ⊂ Φ such that either α or −α is
contained in Φ+, but not both. If the Lie algebra g has an inner product, we can identify h⋆ with h. We can identify
the dual h⋆ with h via the canonical isomorphism J : h⋆ → h

J [x](y) = K(x, y)

where K(·, ·) is the Killing form on g. The Killing form induces a inner product on the root space. Let α and β be
roots. We can then define the inner product on roots

(α, β) = K(

r∑
i=1

αihi,

r∑
i=1

βihi) =

r∑
i=1

αiβi

The Killing form then defines a inner product in the dual space h⋆ via

(α, β) = K(α · h, β · h)
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4. Weights

A weight vector λ = (λ1, λ2, ..., λr) is a basis such that

∀hi, hi|λ⟩ = λi|λ⟩

Using the commutation relations [hi, Eα] = αiEα, we have that

hi[Eα|λ⟩] = (λi + αi)[Eα|λ⟩]
so that the operator Eα shifts the weight vector λ,

Eα|λ⟩ ∝ |λ+ α⟩
The operator Eα is said to terminate the weight vector λ is there exists an integer p ∈ Z such that

(Eα)p|λ⟩ = 0

For finite representations, all the root operators Eα must terminate each weight vector |λ⟩. Thus, we must have that

2(α, λ)

|α|2
∈ Z

This is called the Cartan relation. The Cartan relation forces the root and weight space to satisfy a set of natural
geometric relations, allowing for a complete classification of simple Lie algebras.

5. Structures of Root Systems

The rank of the Cartan sub-algebra h is in general much less than the dimension of the full Lie algebra g. Let
{βi}ri=1 be a basis of h⋆. Then, any root may be expanded as

∀α ∈ Φ, α =

r∑
i=1

niβi

where ni are integers. Roots with the first non-zero ni > 0 are called positive roots and denoted as Φ+. A simple
root is a root that cannot be written as the sum of two positive roots. The set of simple roots is denoted as ∆. There
are exactly r simple roots. For any two simple roots, we define the Cartan matrix

αi, αj ∈ ∆, Aij =
2⟨αi, αj⟩
|αj |2

To each root α ∈ Φ, we associate a dual root α∧, defined as

α∧ =
2α

|α|2

Using this definition, the Cartan matrix can be written as

Aij = ⟨αi, α
∧
j ⟩

a. Fundamental Weights

The fundamental weights are defined as the normalized coroots with

(ωi, α
∧
j ) = δij

Any weight vector can be expanded in the fundamental weight basis as

λ =

r∑
i=1

λiωi

where λi = (λ, α∧
i ) are called the Dynkin labels of λ. The Weyl vector ρ is defined as the sum of all fundamental

weights

ρ =

r∑
i=1

ωi
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6. Weyl Group

Consider the hyperplane defined by the equation

Hα = { h | ⟨α, h⟩ > 0 }

For any root α ∈ Φ, we can reflect around the hyperplane defined by Hα. The set of all reflections forms a group.
Which is called the Weyl group W . Specifically, for any two roots β and α, the Weyl reflection of β with respect to
α is given by

sαβ = β − (α∧, β)α

Because roots and weights live in the same space, the Weyl group also acts on weight vectors |λ⟩ via

sα|λ⟩ = |λ⟩ − (α∧, λ)|α⟩

The Weyl group action on both weights and roots is unitary,

Roots: ∀w ∈W, ∀α, α′ ∈ Φ (α, α′) = (wα,wα′)

Weights: ∀w ∈W, (λ, λ′) = (wλ,wλ′)

It will be useful to define the Fredenhall operator Dρ as

Dρ =
∏

α∈Φ+

(exp(α/2)− exp(−α/2))

using the definition of the Weyl group, this can be written in terms of the Weyl vector as

Dρ =
∑
w∈W

η(w) exp(wρ)

where η(w) :W → ±1 is the sign function of W .

7. Weyl Chamber

The action of the Weyl group W on the root space splits the root space into |W | isomorphic subspaces called
chambers. The Weyl chamber defined as

Wc = { λ | ∀w ∈W, ∀αi ∈ ∆ (wλ, αi) ≥ 0 }

The discriminant function δg(x) : h → C is defined as

∀x ∈ h, δg(x) =
∏

α∈Φ+

⟨α, x⟩

which is the products of the inner product of the Cartan elementx ∈ h with all positive roots.

8. Highest Weight Representations

A highest weight vector |λ⟩ is a weight that is decimated by each positive root,

∀α ∈ Φ+, Eα|λ⟩ = 0

There is a bijection between highest weight representations and irreducible Lie algebra representations. Specifically,
from a highest weight vector |λ⟩, we can form the descendent states

∀αi ∈ Φ+, E−α1E−α2 ...E−αm |λ⟩
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Descent states form representations of the Lie algebra g. The set of all descendent states of the highest weight vector
|λ⟩ is denoted as Lλ.

The descendent states Lλ generate representation of the Lie algebra G. Specifically,

Cartan Subgroup: exp(

r∑
i=1

θih
i)|λ⟩ = exp(

r∑
i=1

θiλ
i)|λ′⟩

Lie Algebra: exp(tEα)|λ′⟩ ∈ Lλ

Thus, highest weight states generate representations of Lie groups. However, we have to keep track of both the
multiplicities of the states in Lλ and be able to generate a basis for Lλ. Define the formal exponential exp(µ) as a
placeholder, where for all weights λ and λ′,

exp(λ+ λ′) = exp(λ) exp(λ′)

exp(λ)(λ′) = exp((λ, λ′))

The character of the highest weight representation |λ⟩ is then defined as

χλ =
∑

λ′∈Lλ

Multλ[λ
′] exp(λ′)

where the integer Multλ[λ
′] counties the number of copies of the descendent state |λ′⟩ in the |λ⟩ highest weight

representation. In general, calculating the Lie algebra characters is difficult. However, it can be show that the
Freudenthal operator satisfies

Dρχλ = Dρ+λ

Thus, we have that

χλ =
Dρ+λ

Dρ
(D2)

This D2 is called the Weyl character formula. Using D2, the dimension of a highest weight representation |λ⟩ is given
by

dλ = dimλ =
∏

α∈Φ+

(ρ+ λ, α)

(ρ, α)

Appendix E: Harish-Chandra Integral Formula

The Harish-Chandra integrals were discovered by Harish-Chandra in his development of the theory of harmonic
analysis on semi-simple Lie groups. The HCIZ integrals [38] are a special case of the more general Harish-Chandra
formula. Let G be a semi-simple group. Let Ad : G→ Aut(g) be the adjoint operator on G. LetW be the Weyl group
of G. Let ⟨·, ·⟩ : g × g → C be any Ad-invariant inner product on g. Then, the Harish-Chandra formula evaluates
integrals of the form ∫

g∈G

dg exp(⟨Adg(x), y⟩)

in terms of summations over the the Weyl group W . Specifically,∫
g∈G

dg exp(⟨Adg(x), y⟩) =
1

Vol(W )

∑
w∈W

sign(w) exp(⟨w(x), y⟩)

where w(x) is the lattice vector of x on W and sign :W → ±1 is the sign function.
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Appendix F: Representation Theory of Unitary Group U(d)

The representation theory of the group U(d) was worked out in the early 1900s by Jacobi, Schur and Weyl, among
others. The representation theory of the group U(d) is especially elegant and is intimately related to the representation
theory of the symmetric group. The unitary group U(d) is both semi-simple and compact so the set of irreducible
representations of U(d) are countably infinite. Let λ = (λ1, λ2, ..., λm) be an integer partition with λ1 ≥ λ2 ≥ ... ≥ λm.
Characters of irreducible representations are given by

sλ(z1, z2, ..., zm) = χλ(z) : (C
×)m → C

where the sλ are called called Schur functions. Define the function

aλ1,λ2,...,λm(z1, z2, ..., zm) = det


zλ1+m−1
1 zλ1+m−1

2 ... zλ1+m−1
n

zλ2+m−2
1 zλ2+m−2

2 ... zλ2+m−2
n

... ... ... ...

zλn
1 zλn

2 ... zλn
n


The Schur function is the defined by

sλ(z1, z2, ..., zm) =
aλ(z1, z2, ..., zm)

∆(z1, z2, ..., zm)

where ∆(z) is the Vandermode determinant.

Appendix G: Unitary Quantum Double Calculation

The matrix elements of T̂ij are given by

⟨V1, V2|T̂ij |V ′
1 , V

′
2⟩ = EU [⟨V1, V2|UV ′

1 , V
′
2U

†⟩] = 1

d2
EU [Tr[V

†
1 UV

′
1 ]Tr[V

†
2 V

′
2U

†]]

We can evaluate this expression in closed form. Using the algebraic identity,

Tr[A]Tr[B] = Tr[A⊗B]

we can expand the product of traces as

Tr[V †
1 UV

′
1 ]Tr[V

†
2 V

′
2U

†] = Tr[V †
1 UV

′
1 ]Tr[V

†
2 V

′
2U

†] = Tr[V †
1 UV

′
1 ⊗ V †

2 V
′
2U

†]

where we have introduced an additional ‘copy’ of the Hilbert space. We then have that

EU [(V
′
1V

†
1 U)⊗ (V †

2 V
′
2U

†)] = (V ′
1V

†
1 ⊗ I)EU [U ⊗ U†](I ⊗ V †

2 V
′
2)

Now, note that

∀V ∈ U(d), [V ⊗ V †]EU [U ⊗ U†] = EU [U ⊗ U†][V ⊗ V †]

Thus, using a ‘twisted’ variant of Schur-Weyl duality C, we have that

EU [U ⊗ U†] = αId + βP̂

where P̂ is the swap and conjugate operator and α and β are constants. We then have that,

⟨V1, V2|T̂ij |V ′
1 , V

′
2⟩ = Tr[(V ′

1V
†
1 ⊗ I)[αId + βŜ](I ⊗ V †

2 V
′
2)] = αTr[V ′

1V
†
1 ⊗ V ′

2V
†
2 ] + βdTr[V ′

1V
†
2 V

′
2V

†
1 ]

Appendix H: Multi-Linear Algebra

We briefly review some multi-linear algebra concepts and operations on tensor product spaces. We specifically
discuss partial transpose and partial conjugation, which are some standard tools in quantum information theory [61].



33

1. Partial Trace

The partial trace is a standard tool in quantum information theory [61]. Let H = HA ⊗ HB be a Hilbert space
composed of the HA and HB Hilbert spaces. Let O be an operator defined on W . The partial trace of an operator
on the HA or HB subspace is then defined as

O(A) = TrB [O], O(B) = TrA[O]

respectively, where the matrix elements of the partially traced operators are defined as

O
(A)
ij =

dB∑
k=1

Oik,jk, O
(B)
ij =

dA∑
k=1

Oki,kj

An operator O is said to be separable if O = OA ⊗OB factorizes. Partial traces of separable operators satisfy

O(A) = TrB [O] = Tr[OB ]OA, O(B) = TrA[O] = Tr[OA]OB

A generic operator is not separable. However, via the operator-Schmidt decomposition.

Theorem 8 (Operator Schmidt-Decomposition). Let O be an operator defined on the V ⊗ V tensor product space.
The operator O can always be written as

O =

NO∑
ℓ=1

pℓAℓ ⊗Bℓ

where pℓ are positive real numbers and the operators Aℓ and Bℓ are orthogonal on the V subspaces,

Tr[A†
ℓAℓ′ ] = δℓℓ′ = Tr[B†

ℓBℓ′ ]

the integer NO (the rank of the matrix) counts the minimum number of tensor product operators needed to decompose
O. NO is called the Schmidt number of the operator O.

The partial trace operation satisfies a uniqueness property.

Theorem 9 ( Uniqueness of Partial Trace ). The partial trace is the unique linear map

TrB : L(A⊗B) → L(A) (H1)

that satisfies the property

∀HB ∈ L(B), ∀HA ∈ L(A), TrB [HA ⊗HB ] = Tr[HB ]HA

2. Tensor Permutation Operators and Symmetric Group Representations

Let W = V ⊗k be a vector space that is the k-fold tensor product of V . For each permutation σ ∈ Sk, we define
the operator Ŝσ with action on the tensor product basis via permutation

∀σ ∈ Sk, Ŝσ|i1i2...ik⟩ = |iσ(1)iσ(2)...iσ(k)⟩

The operators Ŝσ form a unitary reducible representation of the group Sn. Specifically, the permutation representation
will decompose as

(Ŝσ, V
⊗k) ∼=

⊕
λ⊢k

cλ(k,d)λ

with cλ(k,d) counting the muplicity of the irreducible λ representation in (Ŝσ, V
⊗k). The character of the (Ŝσ, V

⊗k)

representation is given by

χ(σ) = Tr[Ŝσ] = df(σ)

where f(σ) is the number of fixed points of the permutation σ. Thus,

cλ(k,d) =
∑
σ∈Sk

χλ(σ)d
f(σ)

where χλ(σ) : Sk → C is the character of the λ irreducible.
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Character Table of Irreducible Representations of S4

Character e,(size=1) (12),(size=6) (12)(34),(size=3) (123),(size=8) (1234),(size=6)

χ(4) 1 1 1 1 1

χ(1,1,1,1) 1 −1 1 −1 1

χ(2,2) 2 0 2 −1 0

χ(2,1,1) 3 1 −1 0 −1

χ(3,1) 3 −1 −1 0 1

TABLE II: Character Table of S4 for irreducible representations λ ⊢ 4.

a. N = 2 Case

For N = 2, S2
∼= Z2 is isomorphic to the cyclic group of order two. There are two permutation operators, 1 and Ŝ.

The operator Ŝ permutes tensor product indices with Ŝ|ij⟩ = |ji⟩. Note that

Ŝ2 = 1

Thus, Ŝ has eigenvalues ±1. All representations of S2 are one dimensional. There are two irreducible representations,
the trivial and sign representation. The tensor product space then decomposes as

V ⊗ V = [
d(d+ 1)

2
V+]

⊕
[
d(d− 1)

2
]V−

so that the tensor permutation space decomposes into d(d+1)
2 copies of the symmetric space and d(d−1)

2 copies of the
anti-symmetric space. The projection operators into the V+ and V− subspaces are given by

Ŝ+ =
1√
2
(1d×d + Ŝ) Ŝ− =

1√
2
(1d×d − Ŝ)

respectively. The projection operators are normalized to satisfy the relations Ŝ2
± = Ŝ±. Using Young diagrams, the

irreducible representations are representation as the partitions λ ⊢ 2, as shown in 6.

V+
∼= V(2)

∼= 1 2 , V− ∼= V(1,1)
∼=

1

2

FIG. 6: Irreducible Representations of S2 and corresponding Young Diagrams

3. Tensor Product Rules

The tensor product rules for the group S2 are trivial. Using characters, we have that

V+ ⊗ V+ = V+, V+ ⊗ V− = V−, V− ⊗ V− = V+

so that C++
+ = 1, C+−

− = C+−
− = 1, C−−

+ = 1 and all other tensor product multiplicities are zero.

4. Computing Branching and Induction Rules of S2 × S2 ⊆ S4

There are five irreducible representations of S4. The character table of irriducibles of S4. The group S4 has five
conjugacy classes.
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1 2 3 4 → 1 2 ⊗ 1 2 ,

1

2

3

4

→
1

2
⊗

1

2
,

1 2

3 4
→ ( 1 2 ⊗ 1 2 ) ⊕ (

1

2
⊗

1

2
)

1 2

3

4

→ ( 1 2 ⊗ 1 2 ) ⊕ ( 1 2 ⊗
1

2
) ⊕ (

1

2
⊗ 1 2 ),

1 2 3

4
→ (

1

2
⊗

1

2
) ⊕ (

1

2
⊗ 1 2 ) ⊕ ( 1 2 ⊗

1

2
)

FIG. 7: Under the group restriction operation of S4 to S2 × S2, The five irreducible representations λ ⊢ 4 of S4 decompose
into direct sums of tensor products of S2 irreducible representations.

Evaluated on the S2 × S2 subgroup, we have that

χ(4)[(e)(e)] = 1, χ(4)[(12)(e)] = 1, χ(4)[(e)(34)] = 1, χ(4)[(12)(34)] = 1

χ(1,1,1,1)[(e)(e)] = 1, χ(1,1,1,1)[(12)(e)] = −1, χ(1,1,1,1)[(e)(34)] = −1, χ(1,1,1,1)[(12)(34)] = 1

χ(2,2)[(e)(e)] = 2, χ(2,2)[(12)(e)] = 0, χ(2,2)[(e)(12)] = 0, χ(2,2)[(12)(12)] = 2

χ(2,1,1)[(e)(e)] = 3, χ(2,1,1)[(12)(e)] = 1, χ(2,1,1)[(e)(12)] = 1, χ(2,1,1)[(12)(12)] = −1,

χ(3,1)[(e)(e)] = 3, χ(3,1)[(12)(e)] = −1, χ(3,1)[(e)(12)] = −1, χ(3,1)[(12)(12)] = −1,

Upon restriction to the subgroup S2 × S2 we have the following decomposition of S4 irreducible representations,

V(4) → V+ ⊗ V+, V(1,1,1,1) → V− ⊗ V−, , V(2,2) → (V+ ⊗ V+)⊕ (V− ⊗ V−)

V(2,1,1) → (V+ ⊗ V+)⊕ (V+ ⊗ V−)⊕ (V− ⊗ V+), V(3,1) → (V− ⊗ V−)⊕ (V+ ⊗ V−)⊕ (V− ⊗ V+)

This is shown diagrammatically in 7. Thus, the only non-zero branching rules are given by

B++
(4) = 1, B−−

(1,1,1,1) = 1, B++
(2,2) = B−−

(2,2) = 1

B−−
(3,1) = B+−

(3,1) = B−+
(3,1) = 1, B++

(2,1,1,1) = B+−
(2,1,1) = B−+

(2,1,1) = 1
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[45] J. P. Keating. Random matrices and number theory. In Édouard Brézin, Vladimir Kazakov, Didina Serban, Paul Wieg-
mann, and Anton Zabrodin, editors, Applications of Random Matrices in Physics, pages 1–32, Dordrecht, 2006. Springer
Netherlands.

[46] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, January 2003.
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