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Abstract

Diabetic Retinopathy (DR), a prevalent complication in diabetes patients, can lead to vision impairment due to lesions formed on the

retina fundus images by ophthalmologists is not only time-intensive but also expensive. While classical transfer learning models

g retina. Detecting DR at an advanced stage often results in irreversible blindness. The traditional process of diagnosing DR through
)
(Q\

have been widely adopted for computer-aided detection of DR, their high maintenance costs can hinder their detection efficiency.
In contrast, Quantum Transfer Learning offers a more effective solution to this challenge. This approach is notably advantageous
(O because it operates on heuristic principles, making it highly optimized for the task. Our proposed methodology leverages this hybrid
quantum transfer learning technique to detect DR. To construct our model, we utilize the APTOS 2019 Blindness Detection dataset,
available on Kaggle. We employ the ResNet-18, ResNet34, ResNet50, ResNetl101, ResNet152 and Inception V3, pre-trained
classical neural networks, for the initial feature extraction. For the classification stage, we use a Variational Quantum Classifier.

| |

Our hybrid quantum model has shown remarkable results, achieving an accuracy of 97% for ResNet-18. This demonstrates that

quantum computing, when integrated with quantum machine learning, can perform tasks with a level of power and efficiency
unattainable by classical computers alone. By harnessing these advanced technologies, we can significantly improve the detection

= and diagnosis of Diabetic Retinopathy, potentially saving many from the risk of blindness.
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1. INTRODUCTION

Diabetes is a condition where there is insufficient insulin,
which raises blood glucose levels [1]]. Diabetes has an impact
’ on the kidneys, heart, nerves, and retina [1] [2]. A diabetic con-
L) dition known as diabetic retinopathy (DR) results in swelling
O and blood and fluid leakage from the retina’s blood vessels [3].
DR was expected to impact around 103.12 million adults world-
wide in 2020, with forecasts indicating an increase to 160.50
= million by 2045 [4]]. The global prevalence of DR among dia-
'>2 betics is approximately 22.27%, with varied stages such as pro-
liferative DR (6.96%) and diabetic macular edema (6.81%) [4]]
EB [S]. If DR is diagnosed early, it can be managed using avail-
able treatments. Regular eye fundus examination is necessary
because DR do not present any symptoms at early stages. Pro-
liferative and non-proliferative DR are the two primary types of
DR [6].

Artificial intelligence (Al)-based algorithms have currently
successfully diagnosed several medical conditions, including a
variety of retinal illnesses like DR [[7]. There is a problem with
the manual diagnosis of diabetic retinal disease (DR) based on
retinal pictures; it is a laborious procedure that lacks medical
specialists. Therefore, it is ideal to create an automated DR de-
tection system that could work with medical professionals’ help
in order to overcome the current obstacles [8]. Many efforts
have been made to automate the classification of DR images
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using deep learning to help ophthalmologists identify disease
early on. CNN is one of the most popular deep learning al-
gorithms since it has proven to be effective and successful in
image analysis [9]. CNNs are DL-based, futuristic models that
have led to numerous advances in automated object recognition
and classification. These deep learning-based methods have the
potential to extract useful characteristics for precise image clas-
sification. As a result, multi-path CNN was created to extract
DR features from retinal pictures, which could then be used in
machine learning to carry out DR classification [10].

As the first small-scale quantum computers have advanced,
quantum DL techniques are currently receiving a lot of atten-
tion. Scholars have developed a number of categorization mod-
els based on different quantum parametric circuits, in which
conventional data is identified as unique qubits [L1]. In many
applications, quantum computers have shown to be more reli-
able than conventional computers, particularly when sampling
complex probabilities. Therefore, it is common to inquire
whether this hierarchy makes use of learning models. A re-
sounding yes is widely taken to be true, yet there appears to
be little study being done in this area to produce unambigu-
ous representations of how to achieve this quantum merit. Ac-
cording to some claims, quantum-based techniques on classical
computers have the advantage of exposing effective solutions,
making picture classification a non-exception [[12].

While several efforts have been made to automatically clas-
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sify DR images using DL in order to help ophthalmologists
identify the disease at an early stage, the majority of these ef-
forts have focused just on DR detection rather than the identifi-
cation of multiple DR phases. Additionally, there aren’t many
challenges in identifying and locating the different forms of DR
lesions, which is useful in practice since opthalmologists can
evaluate the severity of DR and track its evolution based on
the appearance of the lesion. Due to these factors, the cur-
rent study suggests using quantum-based CNN for fully auto-
mated screening in order to simultaneously localize all DR le-
sion types and detect the five phases of DR. These goals are
outlined below. The suggested effort would help opthalmolo-
gists mimic the DR diagnostic technique that locates DR le-
sions, identifies their type, and determines the true phase of DR.
The following is a list of this study’s primary contributions:

e Resizing the photos is done during pre-processing to pro-
vide them flexibility for additional processing;

e To carry out DR classification using the suggested
quantum-based Deep CNN, which enhances the accu-
racy of the suggested system by utilizing an optimized
multiple-qubit gate quantum neural network;

o The effectiveness of the suggested model is disclosed in or-
der to assess its efficacy using common performance met-
rics including recall, accuracy, specificity, precision, and
f1-score.
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The structure of the paper is as follows: The literature study
and transfer learning overview are covered in Section 2. Sec-
tion 3 follows, in which the suggested system is explained using
the appropriate flow and mathematical representations. Results
obtained following the implementation of the suggested system
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Figure 3: Architecture of Transfer Learning Model.

are contained in Section 4. Finally, Section 5 provides a sum-
mary of the research findings together with suggestions for the
future.

2. LITERATURE REVIEW

Transfer learning is a predictive modeling method in which a
model established for one problem is reused or changed for an-
other, increasing training speed and performance. This method
is especially useful for training deep neural networks with mini-
mal data sets. Transfer learning (TL) with convolutional neural
networks (CNNs) is important in medical image analysis be-
cause it uses knowledge from previous jobs to improve perfor-
mance on new ones. It addresses issues like data scarcity and
the requirement for considerable hardware resources. Tradi-
tional feature extraction approaches in medical image analysis
have given way to deep learning (DL) algorithms like CNNss,
which require big datasets for optimal training. Domain adapta-
tion and unsupervised learning, for example, assist circumvent
this data barrier by adapting information from source tasks to
target tasks [13]]. The two basic ways to utilizing CNN models
in TL are feature extraction and fine-tuning, with each giving
distinct advantages in terms of computing efficiency and adapt-
ability [13].

Quantum machine learning extends this paradigm, particu-
larly in hybrid neural networks that combine conventional and
quantum elements. A quantum layer is frequently added to a
classically pre-trained network in this case. To categorize the
retrieved characteristics, this method employs a quantum clas-
sifier, such as a variational quantum classifier.

Several DR detection research have made use of traditional
machine learning approaches. For instance, Mansour [32] de-
ployed deep CNNs with transfer learning for DR diagnosis.
Mohammadian [15] applied fine-tuning on pre-trained models
like Inception-V3 and Xception for DR classification, achieving
notable accuracy. On the Kaggle dataset, Wan et al. [[16] used
transfer learning with models such as AlexNet and VggNet,
with Vgg Net-s demonstrating the highest accuracy. Dutta et
al. [17] used fundus pictures to train several models, including
VggNet-16, with varying degrees of accuracy.

These papers emphasize the widespread usage of transfer
learning in DR detection, with a focus on model performance
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Inception-V3 and Variational
Quantum Classifier

Inception-V3 and Xception pre-
trained models

Pre-trained models AlexNet,
VggNet-s, VggNet-16, VggNet-
19, GoogleNet and RestNet

Shallow feed forward neural net-
work, deep neural network and
VggNet-16 model

Pretrained Inception-Resnet-V2
and some custom block of CNN
layers

Pre-trained model ResNet 34
and vector to quantum varia-
tional circuit (QVC)

A CNN model

An Inception Model

CNN model with a dropout reg-
ularization technique

CNN Architecture

CNN (Alexnet, VGGnetl6, etc.)

Neural network

Fundus images based screening

Random forest approach

Random forest approach

CAD
Multi layered perceptron net-
work

Convolutional neural network

Convolutional neural network

Accuracy of 93%—-96% on the quantum hybrid model and 85% accuracy
rate on the classical model

Fine-tuned the Inception-V3 and Xception pre-trained models to classify
the DR data set into two classes. Accuracy score of 87.12% and 74.49%
achieved.

Implemented transfer learning and hyperparameter tuning on the pre-
trained models. Highest accuracy score was that of VggNet-s model,
which reached 95.68%.

On a test data set of 300 images, the shallow neural network scored an
accuracy of 42%, and the deep neural network scored 86.3% while the
VggNet-16 scored 78.3% accuracy.

The model performed better on APTOS 2019 dataset with accuracy of
82.18%.

A hybrid classical-quantum model was proposed achieving a precision
of 99.1%.

The performance of the CNN model is evaluated based on binary clas-
sification resulting in sensitivity 93.6% and specificity 97.6% on Di-
aretDB1.

High AUC on a normal and referable DR task 0.978 and 0.960 respec-
tively and specificity is 0.5.

The accuracy achieved by their model is 94%. They manually performed
augmentation and preprocessing steps by using an image editing tool.

The overall kappa score accuracy is 0.74, for the validation purpose,
10% of the images were used.

Achieved the best results on VGG16 and achieved 93.65% specificity,
54.47% sensitivity, and 83.68% accuracy.

The results have exhibited the advancement of the considered method-
ology with accuracy as the performance measure.

The implementation results demonstrate that just 6 of the underlying DR
acknowledgment was ineffectual, accordingly uncovering its advance-
ment in treating DR in youngsters.

The introduced methodology was assessed by considering both clinic
and public datasets with measures sensitivity and specificity.

The methodology concentrates on examining the high and low points
of DR for perceiving the vascular variations. Likewise, Retinal fundus
pictures were analyzed.

The investigation results have offered a superior degree of sensitivity,
which was seen as the one accomplished by the specialists.

An algorithm based on an SVM classifier which utilizes a Gabor filtering
approach.

The precision of the executed model was demonstrated from the imple-
mented results.

The computations related to the received recognizing strategy were im-
plemented and the upgraded results were achieved for sensitivity and
precision.

Table 1: Survey Papers on DR Detection
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rather than dataset quality improvement. Transfer learning
model accuracy is largely dependent on dataset properties.
Google’s quantum supremacy and the creation of new quan-
tum algorithms like parameterized quantum circuits (PQCs)
and Quantum Neural Networks (QNNs) mimic the evolution
from machine learning to deep learning, unlocking tremendous
computing possibilities.

Gangwar et al. [8]] used a model that used the pretrained
Inception-Resnet-V?2 with additional custom CNN layers to de-
tect blindness in the Messidor-1 diabetic retinopathy dataset
and APTOS 2019 blindness detection (Kaggle dataset). The in-
ception blocks processed photos of 229x229 pixels using filters
of sizes 3x3, 5x5, 7x7, and 9x9. On the APTOS 2019 dataset,
this model achieved an accuracy of 82.18

T. Shahwar et al. [18] used 6400 tagged MRI scans to con-
struct a hybrid classical-quantum model for Alzheimer’s detec-
tion in the world of quantum computing. A pre-trained ResNet
34 was used for feature extraction, and a quantum variational
circuit (QVC) was used to reduce a 512-feature vector to four
features. The model had a training accuracy of 99.1Using the
APTOS 2019 dataset and Inception V3 for feature extraction,
a classical-quantum transfer learning model in ophthalmology
[14] revealed significant improvements in 2022. This model
achieved accuracies of 93-96% when tested on several quantum
simulation systems.

Sim et al. [33] investigated the properties of variational quan-
tum circuits, as did [34]. They investigated the expressibility
and entanglement capacity of these circuits, discovering a sub-
stantial association between circuit expressiveness and classifi-
cation accuracy and a lower correlation between entanglement
capacity and classification accuracy. This discovery influenced
the design of quantum circuits for classification tasks, particu-
larly in hybrid models where pre-trained classical models are
utilized for feature extraction and variational quantum circuits
are used for classification.

Gondal et al. [19] created a CNN model for referable
DR that was trained on the Kaggle dataset and tested on Di-
aretDB1. Normal and mild DR were classed as non-referable,
whereas the remaining stages were classified as referable, yield-
ing 93.6% sensitivity and 97.6% specificity on DiaretDBI.
Wang et al. [20] proposed a novel architecture for categoriz-
ing DR pictures, combining main, attention, and crop networks
to achieve excellent AUC scores.

Quelle et al. [35] created three CNN models for binary clas-
sification, with a focus on detecting DR lesions, using both the
Kaggle and DiaretDb1 datasets. [21] constructed a CNN model
with dropout regularization on the Kaggle dataset and tested it
on the DRIVE and STARE datasets, reaching 94% accuracy.
[22] used CNN on the Kaggle dataset as well, using prepro-
cessing techniques such as nonlocal mean denoising, and found
a kappa score accuracy of 0.74. [36] presented a CNN architec-
ture for distinguishing the five stages of DR, but had difficulty
reliably diagnosing the moderate stage.

Yang et al. [37] investigated the use of a Deep Convolu-
tional Neural Network (DCNN) for two stages of DR, using a
local-global network strategy for lesion highlighting and grad-
ing. The performance of several CNN models on the Kaggle

dataset was examined in research [[17]. Garcia et al. [23] used
right and left eye pictures individually, employing CNN models
such as AlexNet and VGGnetl16, with VGG16 producing the
best results without completely connected layers. Dutta et al.
[[17] used the Kaggle dataset with three deep learning models:
FNN, DNN, and CNN, picking 2000 photos from the dataset
for training and getting the maximum training accuracy with
DNN.

3. PROPOSED METHODOLOGY

Quantum computing, with its unique capabilities using
qubits, offers exponential processing power compared to clas-
sical computing, particularly valuable for complex problem-
solving across various disciplines, including healthcare. The
integration of quantum transfer learning enhances quantum al-
gorithm development by leveraging pre-trained models, reduc-
ing resource demands, and accelerating progress in chemistry,
optimization, and machine learning within the quantum com-
puting landscape. The study delves into classical model founda-
tions, quantum circuit integration with classical networks, and
the application of hybrid models in tasks like diabetic retinopa-
thy detection, illustrating the potential transformative impact of
quantum technologies on medical diagnostics and beyond.

3.1. Quantum Computing vs. Classical Computing

Quantum computing is a major leap forward from classical
computing, employing qubits that may exist in several states at
the same time, allowing for exponential improvements in pro-
cessing capacity. This quantum advantage is especially useful
in addressing complicated problems more efficiently than clas-
sical computers, and it has potential applications in a variety
of disciplines, including healthcare. Quantum computers, for
example, may simulate molecular biological or chemical sys-
tems, which is useful in drug development and medical diag-
nostics. However, hybrid algorithms mixing quantum and clas-
sical computing approaches are developing as a feasible solu-
tion for practical applications in industrial and medical areas
due to their current small size and error-prone character.
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Figure 4:  Variational Quantum Classifier with embedding layers U(x) and
variational circuit V(6) and final measurements in classical output f(x) € C.

We presented three essential components (embedding lay-
ers U(x), variational circuit V(6), and final measurements) on
which the Variational Quantum Classifier (VQC) is developed



in Figure 4. The variational circuit is an essential component
of VQC. Figure 5 depicts a variational circuit for a single qubit

operation.
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Figure 5: Simple case of one Qubit
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3.2. Quantum Transfer Learning

Quantum transfer learning is a novel approach that leverages
pre-trained quantum models to enhance the training and per-
formance of new quantum tasks. Similar to classical transfer
learning, where knowledge gained from one task is transferred
to another related task, quantum transfer learning adapts exist-
ing quantum models by fine-tuning their parameters or reusing
learned features for new applications. This technique acceler-
ates the development of quantum algorithms, reduces the need
for extensive quantum resources, and holds promise for advanc-
ing various fields, including chemistry, optimization, and ma-
chine learning, within the burgeoning realm of quantum com-
puting.

3.2.1. Classical Model Foundation

The classical model foundation for this approach involves the
selection of a pre-trained network such as ResNet18, renowned
for its strong performance in deep learning tasks related to im-
age processing. This choice is based on the network’s estab-
lished capabilities and effectiveness in handling complex visual
data. The model’s initial training on a vast dataset like Ima-
geNet ensures that it has acquired a sophisticated ability to rec-
ognize and extract detailed features from images. By leveraging
this pre-trained architecture and its feature extraction mecha-
nism, we can efficiently utilize learned representations to ad-
dress specific image processing tasks with enhanced accuracy
and efficiency. This foundational framework provides a solid
starting point for further optimization and customization tai-
lored to specific application domains.

3.2.2. Quantum Circuit Integration

In the integration of the quantum circuit with the classical
model, a sophisticated hybrid system is formulated. This hy-
brid model combines the strengths of classical deep learning
with the unique capabilities of quantum computing. By lever-
aging quantum properties such as superposition and entangle-
ment, the system processes and analyzes the intricate features
extracted by the classical model at a quantum level. The quan-
tum circuit serves as a complementary component, enhancing
the overall computational power and potential for tackling com-
plex image processing tasks. This integration marks a signifi-
cant advancement in harnessing the benefits of both classical
and quantum computing paradigms, paving the way for innova-
tive solutions in image analysis and beyond.

3.3. Classical Pre-Processing

In the initial stages of retinal image processing for diabetic
retinopathy (DR) detection, a critical step involves utilizing a
pre-trained model like ResNetl8’s architecture to preprocess
these images. This process is pivotal for extracting essential
information needed for subsequent analysis. The primary ob-
jective of this phase is to distill a set of 512 high-level features
from the retinal images. These features are carefully selected
as they hold significant relevance and granularity for the sub-
sequent quantum processing that follows. By leveraging the
pre-trained model, the system effectively abstracts and isolates
these pertinent features, optimizing the data for further analysis
and classification in the subsequent stages of the DR detection
pipeline. This streamlined approach ensures that the extracted
features are both comprehensive and focused, setting the stage
for precise and effective utilization in the subsequent phases of
the diagnostic process.
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Figure 6: General Transfer Learing

As sketched in Figure 6, one can give the following general
definition of the transfer learning method:

1. Take a network A that has been pre-trained on a dataset
Dy. and for a given task T4.

2. Remove some of the final layers. In this way, the resulting
truncated network A’ can be used as a feature extractor.

3. Connect a new trainable network B at the end of the pre-
trained network A’.

4. Keep the weights of A’ constant, and train the final block
B with a new dataset Dg. and/or for a new task of interest
Tg.

3.4. Quantum Circuit for Classification

Reshaping Weights: The flat array of quantum weights
q-weights_flat is reshaped to fit the structure of the variational
layers, with dimensions (q-depth, n_qubits). This allows each
layer of the circuit to have its own set of rotation angles for the
qubits.

Embedding Layer: The circuit initializes all qubits in a bal-
anced superposition of up and down states using the Hadamard
layer (H_layer(n_qubits)). Then, it rotates each qubit around
the y-axis by an angle corresponding to the input features



(RY _layer(q-input_features)). This process encodes the classi-
cal input data into the quantum state of the system. This layer
can use the following Gates:

Hadamard Gate: The Hadamard gate is one of the funda-
mental quantum gates, and its role is to create superpositions.
When applied to a qubit initially in a basis state (|0) or [1)), the
Hadamard gate transforms it into a state that is an equal super-
position of the |0) and |1) states.

SR !

where: H represents Hadamard Gate.

S (Phase) Gate and St (Dagger) Gate: By applying an S gate
followed by a Hadamard, or vice versa, you can introduce a
phase shift into the superposition, which can be useful for cer-
tain algorithms.

1 0
5 = [0 l.} @
where: The S gate applies a nt/2 phase shift to the |1) state
(or equivalently, a 90° rotation around the Z-axis on the Bloch
sphere), leaving the |0) state unchanged.

] 1 0
o
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where: The ST gate (conjugate transpose of S) applies a
—n/2 phase shift to the |1) state (or a —90° rotation around

the Z-axis on the Bloch sphere), leaving the |0) state unchanged.

RX Gate: The RX gate is a rotation around the x-axis of the
Bloch sphere. Like the Hadamard gate, it can create superposi-
tions, but with the ability to adjust the ratio of |0) and |1) in the
superposition by changing the rotation angle.

cos (Q) —isin (Q)
—isin Z%) cos (g; @

where: 0 is the rotation angle in radians. cos (g) represents the

Rx(0) =

cosine of half the rotation angle. sin (g) represents the sine of
half the rotation angle. —i denotes the imaginary unit.

RY Gate: Similar to the RX gate, but it rotates around the
y-axis. This gate is particularly versatile for creating arbitrary
superpositions based on the rotation angle.

B cos(Q) —sin(g)
Ry(6) = [sin (gz) cos (%72) )
where: 0 is the rotation angle in radians. cos (g) represents the

cosine of half the rotation angle. sin (g) represents the sine of
half the rotation angle.

Variational Layers: The circuit iteratively applies a sequence
of variational layers, each consisting of an entangling layer

followed by a rotation layer. The entangling layer (entan-
gling_layer(n_qubits)) applies a predefined pattern of CNOT
gates to generate quantum entanglement between qubits. The
rotation layer (RY _layer(q-weights[k]) then applies rotations
around the y-axis to each qubit, with the rotation angles de-
termined by the current set of trainable weights. This sequence
is repeated q-depth times, where q-depth represents the depth
of the quantum circuit. This layer can use the following Gates:

CNOT Gate: The CNOT gate is a two-qubit gate that flips
the state of the second qubit (target) if the first qubit (control) is
in the state |1).

1000
0100

CNOT={) o o | (©)
0010

where: The rows and columns of the matrix correspond to the
basis states |00),|01),[10),|11) respectively. The CNOT gate
flips the state of the target qubit (second qubit) if the control
qubit (first qubit) is |1).

CZ (Controlled-Z) Gate: This gate applies a phase shift only
when both qubits are in the |1) state. It can be used to create
a phase-entangled state and is useful in algorithms that require
phase manipulation.

100 0
010 0

CZ=1o 01 o 7
000 -1

where: The rows and columns of the matrix correspond to
the basis states 100),|01),]10),|11) respectively. The CZ gate
applies a phase factor of —1 to the state |11), leaving the other
basis states unchanged.

SWAP Gate: The SWAP gate exchanges the states of two
qubits. It can be used to entangle qubits and is especially useful
in algorithms requiring qubit reordering or in architectures with
limited qubit connectivity.

SWAP = (®)

e
S O = O
—_ o O O

1
0
0
0 0
where: The rows and columns of the matrix correspond to the
basis states 100),101),]10),|11) respectively. The SWAP gate
swaps the states of the qubits represented by the second and

third basis states |01) and |10), while leaving |00) and |11)
unchanged.

Controlled RX, RY, RZ Gates: These are controlled versions
of the rotation gates (RX, RY, RZ) that apply a rotation around
the respective axis only when the control qubit is in the |1) state.
They offer more control over the entanglement process and can
be used to create various entangled states.
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where:0 is the rotation angle in radians. The controlled
gates perform a rotation on the target qubit conditioned on the
state of the control qubit. The matrices are represented in the
computational basis states |00),]01),]10),|11).

Measurement Layer: Finally, the circuit measures the
expectation value of the Pauli-Z operator on each qubit
(gml.expval(gml.PauliZ(position))). These measurements pro-
duce a classical output vector where each element corresponds
to the expectation value measured on one of the qubits. This
vector can represent the output of the quantum circuit for
further processing or decision-making in a hybrid quantum-
classical algorithm.

3.5. Hybrid Model Structure

In dual network integration, a Classical Network (A’) extracts
features from input data using a truncated pre-trained network
like ResNet18. These features are then fed into a Quantum
Network (B) for classification using a quantum circuit. Train-
ing and optimization of the Quantum Network (B) involve ad-
justing parameters through techniques like gradient descent to
improve classification accuracy based on the extracted features
from the Classical Network (A”).

3.5.1. Dual Network Integration

In the dual network integration approach described, there are
two distinct components working in tandem: the Classical Net-
work (referred to as A’) and the Quantum Network (referred to
as B).

The Classical Network, based on a truncated pre-trained
model like ResNet18’s architecture, is primarily responsible for
feature extraction from input data. Unlike a complete model
like ResNet18, which would typically include classification lay-
ers, this truncated version focuses solely on extracting meaning-
ful features from the data without making final classifications.
This classical feature extraction phase aims to distill relevant
information from the input, preparing it for further processing.

Once feature extraction is completed by the Classical Net-
work, the extracted features are then handed over to the Quan-
tum Network for the classification task. The Quantum Network
operates using a quantum circuit designed specifically for clas-
sification purposes. This circuit leverages the features provided
by the Classical Network to perform the final classification in a
quantum computing framework.

3.5.2. Training & Optimization

In the training and optimization phase of this dual network
integration model, the focus is on refining the Quantum Net-
work (referred to as B) to minimize classification errors effi-
ciently.

Firstly, during training, the primary adjustment targets the
parameters of the quantum circuit within the Quantum Net-
work. Unlike the Classical Network (A’), which is a pre-trained
model like ResNet18 which focused on feature extraction, the
training process specifically modifies and optimizes the param-
eters of the quantum circuit. By adjusting these parameters, the
goal is to enhance the quantum circuit’s ability to accurately
classify the features extracted by the Classical Network.

To achieve this optimization, various techniques are em-
ployed, including gradient descent and its variants. These op-
timization methods are instrumental in iteratively adjusting the
parameters of the quantum circuit to minimize the loss func-
tion associated with classification errors. Gradient descent, in
particular, allows for efficient updates of the quantum circuit’s
parameters by computing the gradient of the loss function with
respect to these parameters. Through this iterative process, the
quantum circuit’s parameters are tuned to enhance classification
performance and reduce errors.

3.6. Classical - to - Quantum Transfer Learning

We focus on the CQ transfer learning scheme and we give a
specific example.

1. As pre-trained network A we use ResNetl8, a deep
residual neural network introduced by Microsoft [38]
which is pre-trained on the ImageNet dataset. Apart
from ResNet18, we perform a comparative study across
ResNet34, ResNet50, ResNet101, ResNet152 and Incep-
tion V3.

2. After removing its final layer we obtain A’, a pre-
processing block which maps any input high-resolution
image into 512 abstract features

3. Such features are classified by a 4-qubit “dressed quantum
circuit” B, i.e., a variational quantum circuit sandwiched
between two classical layers

4. The hybrid model is trained, keeping A’ constant, on the
Kaggle Dataset containing fundus images of the retina.

A graphical representation of the full data processing pipeline
is given in the figure below.

3.7. Application to DR Detection

The integrated model for diabetic retinopathy (DR) detection
specializes in stage-wise classification, crucial for accurate di-
agnosis. It incorporates a quantum circuit trained to recognize



'4- ResNet18 || L QPU > LD DR

Figure 7: Classic-to-Quantum Transfer Learning

patterns indicating different DR stages, learning from labeled
datasets to classify features accurately.

This approach enhances diagnostic capabilities, enabling
early detection and intervention for effective patient care. By
leveraging the quantum circuit’s ability to discern subtle fea-
tures associated with DR stages, the model supports clinicians
in making informed decisions for optimal management and
treatment strategies.

3.8. Algorithm Steps

This algorithm outlines a systematic approach for diabetic
retinopathy (DR) detection and classification. The steps include

1. Data Pre-processing: Detailed feature extraction from DR
images using the classical network.

2. Quantum Classification: In-depth classification of features
by the quantum circuit.

3. Training and Validation: Iterative optimization of the
quantum circuit with a focus on reducing classification er-
rors.

4. Evaluation Metrics: Utilizing accuracy, precision, recall,
and other metrics to assess the model’s effectiveness.

3.9. Conclusion

The synergy between classical and quantum computing rep-
resents a significant advancement in the field of medical imag-
ing, potentially surpassing the capabilities of either computing
approach in isolation. This combined methodology harnesses
the strengths of classical deep learning for robust feature extrac-
tion and quantum computing for intricate classification tasks,
creating a powerful tool with enhanced capabilities for medical
diagnostics.

This innovative approach holds promise for revolutionizing
diabetic retinopathy (DR) detection by enabling more accu-
rate and early diagnosis. By leveraging the unique compu-
tational advantages of both classical and quantum computing
paradigms, this methodology aims to elevate the standards of
medical diagnosis, ultimately leading to improved patient out-
comes and healthcare efficiency.

4. IMPLEMENTATION AND RESULT

Implementing the Quantum Transfer Learning model for Di-
abetic Retinopathy (DR) detection involves a synergistic blend
of classical and quantum computing, leveraging pre-processed
data from a classical network and driving classification through
a quantum circuit. The following provides a breakdown of the
implementation process.

4.1. Comparison of Datasets

Numerous publicly accessible datasets for retinal analysis are
available, instrumental for training, validating, and benchmark-
ing diagnostic systems for DR and vascular detection. These
datasets, featuring fundus color images and Optical Coherence
Tomography (OCT), provide vital insights. OCT, leveraging
low-coherence light, captures detailed 2D and 3D images of
the retina, revealing structural and thickness information. Fun-
dus images, on the other hand, are 2-dimensional captures of
the retina using reflected light. The introduction of OCT retinal
images in recent years complements the diverse range of exist-
ing fundus image datasets utilized in this domain.Fundus Image
Datasets are as follows:

1. DIARETDBI1 [40] : Comprises 89 retina fundus images
(1500 x 1152 pixels) at 50-degree FOV, including 84 DR
and 5 normal images, annotated by four medical experts.

2. Kaggle : Features 88,702 high-resolution images with res-
olutions ranging from 433 x 289 to 5184 x 3456 pixels.
The dataset is classified into five DR stages, with training
images’ ground truths available. Notable for some poor-
quality and incorrectly labeled images.

3. E-ophtha [41] : Includes two sets, E-ophtha EX with 47
EX images and 35 normal, and E-ophtha MA with 148
MA images and 233 normal.

4. DDR [42] : Contains 13,673 fundus images at a 45-degree
FOV, annotated to five DR stages, with 757 images anno-
tated for DR lesions.

5. DRIVE [43]] : Used for blood vessel segmentation, this
dataset includes 40 images at a 45-degree FOV, with sizes
of 565 x 584 pixels, featuring seven mild DR and normal
retina images.

6. HRF [44] : Offers 45 images for blood vessel segmenta-
tion (3504 x 2336 pixels), including 15 DR, 15 healthy,
and 15 glaucomatous images.

7. Messidor [45] : Features 1200 fundus color images at a
45-degree FOV, annotated to four DR stages.

8. Messidor-2 [45] : Comprises 1748 images at a 45-degree
FOV.

9. STARE [46] : Used for blood vessel segmentation, in-
cludes 20 images at a 35-degree FOV, sized 700 x 605 pix-
els, with 10 normal images.

10. CHASE DB1 [47]] : Provided for blood vessel segmenta-
tion, this set includes 28 images (1280 x 960 pixels) at a
30-degree FOV.

11. IDRID [48] : Contains 516 fundus images at a 50-degree
FOV, annotated to five DR stages.

12. ROC : Offers 100 retina images at a 45-degree FOV, sizes
ranging from 768 x 576 to 1389 x 1383 pixels, annotated
for MA detection.

13. DR2 : Features 435 retina images (857 x 569 pixels), pro-
viding referral annotations, with 98 images graded as re-
ferral.



Dataset Number Normal Mild | Moderate and | Proliferative | Training | Test Image Size
of Images | Image DR Severe Non- | DR Sets Sets
Proliferative
DR
DiaretDB1 | 89 images | 27 images | 7 im- | 28 images 27 images 28 images | 61 im- | 1500 x 1152 pixels
ages ages
Kaggle 88,702 — — - — 35,126 53,576 | Different image resolu-
images images im- tion
ages
DRIVE 40 images | 33 images | 7 im- | — - 20 images | 20im- | 565 X 584 pixels
ages ages
HRF 45 images | 15images | 15im- | — - - - 3504 x 2336 pixels
ages
DDR 13,673 6266 im- | 630 4713 images 913 images 6835 im- | 4105 Different image resolu-
images ages im- ages im- tion
ages ages
Messidor | 1200 im- | — - - - - - Different image resolu-
ages tion
Messidor- | 1748 im- | — - - - - - Different image resolu-
2 ages tion
STARE 20 images | 10 images | — - - - - 700 x 605 pixels
CHASE 28 images | — - - - - - 1280 x 960 pixels
DBI1
IDRiD 516  im- | - - - - 413  im- | 103 4288 x 2848 pixels
ages ages im-
ages
ROC 100 im- | — - - - 50 images | 50im- | Different image resolu-
ages ages tion
DR2 435 im- | — - - - - - 857 x 569 pixels
ages

Table 2: Datasets of Eye Images for DR Detection [39]

4.2. Dataset Loading

Gaussian filtered retina scan images are used to diagnose di-
abetic retinopathy. APTOS 2019 Blindness Detection has the
original dataset. These photos have been scaled to 224x224
pixels in order to be used with several pre-trained deep learning
models.

Using the train, all of the photographs are already saved into
their respective folders based on the severity/stage of diabetic
retinopathy. A csv file has been provided. There are five direc-
tories containing the images:

0-No_DR

1 - Mild

2 - Moderate

3 - Severe

4 - Proliferate_ DR

The PyTorch packages torchvision and torch.utils.data are
used to load the dataset and execute common preliminary pic-
ture operations such as resize, center, crop, normalize, and so
on.

As shown in Figure 9, we have provided a sample of the test
data to get a sense of the classification difficulty.

Diabetic Retinopathy

el { Advanee |
Non-Proliferative Proliferative Diabetic -
Diabetic Retinopathy Retinopathy (PDR)
R .
'ﬂ' Moderat &m,]
NPD NDPR NDPR

Venous beading in New

at least 2 quadrants blood vessel
& MA’s, HM’s in all formation

4 retina quadrants

Maximum no.
of MA’s,
EX’s, & HM’s

Pathological Presence
Signs of MA’s

Figure 8: Hierarchy depicting different types of Diabetic Retinopathy (DR)
along with clinical signs in different types of DR [49]

4.3. Variational quantum circuit

First, we define the quantum layers that will make up the
quantum circuit. The quantum circuit is now defined using the
PennyLane qnode decorator.

The structure is typical of a variational quantum circuit:

e Embedding layer: All qubits are initially started in a bal-
anced superposition of up and down states, then rotated
based on the input parameters (local embedding) using
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Figure 9: Batch of Test Data

Hadamard Gate or S (Phase) Gate and ST (Dagger) Gate in
combination with Hadamard Gate or RX Gate or RY Gate.

e Variational layers: It is applied to a sequence of train-
able rotation layers and constant entangling layers that use
CNOT Gate or CZ (Controlled-Z) Gate or SWAP Gate or
Controlled RX, RY, RZ Gates.

e Measurement layer: The local expectation value of the Z
operator is calculated for each qubit. This yields a tradi-
tional output vector suitable for further post-processing.

4.4. Dressed quantum circuit

We can now define a custom torch.nn.Module representing a
dressed quantum circuit.

This is a concatenation of:

A classical pre-processing layer (nn.Linear).

A classical activation function (torch.tanh).

A constant np.pi/2.0 scaling.

The previously defined quantum circuit (quantum_net).
5. A classical post-processing layer (nn.Linear).

Sl e

The module’s input is a collection of vectors with 512 real pa-
rameters (features), and its output is a collection of vectors with
five real outputs.

4.5. Hybrid classical-quantum Model

We are now ready to construct our comprehensive hy-
brid classical-quantum network. We use the transfer learning
method:

1. Load the traditional pre-trained networks like ResNet18,
ResNet34, ResNet50, ResNet101, ResNet152 or Inception
V3 from the torchvision.models first.

2. Freeze all weights that should not be trained.

3. Substitute our trainable dressed quantum circuit
(DressedQuantumNet) for the last completely linked
layer.

4.6.

In preparation for training the neural network, it is imperative
to define the appropriate loss function. For classification tasks,
the cross-entropy loss function is conventionally employed due
to its effectiveness in measuring the disparity between predicted
and actual class probabilities. In our implementation, we uti-
lize the cross-entropy loss function readily available within the
torch.nn module.

Training and Results
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Figure 10: Quantum Circuit

To optimize the network parameters during training, we ini-
tialize the Adam optimizer. The Adam optimizer is chosen for
its robust performance and efficient adaptation to varying learn-
ing rates. Additionally, we incorporate a learning rate sched-
uler to dynamically adjust the learning rate throughout training.
Specifically, we schedule to decrease the learning rate by a fac-
tor of gamma_Ir_scheduler every 10 epochs, ensuring smoother
convergence and potentially improved generalization.

The training process is facilitated by a dedicated function de-
signed to iteratively update the model’s weights based on the
specified loss function and optimizer. This function serves as
the cornerstone of our training pipeline, culminating in a trained
model capable of making accurate predictions on unseen data.

With the requisite components in place, we are poised to em-
bark on the pivotal phase of model training, wherein the neural
network learns to discern patterns and extract meaningful fea-
tures from the input data.

4.7. Experimental Evaluation

We have evaluated our model with five basic standards : Ac-
curacy, Precision, Recall, F1-score and specificity with the fol-
lowing formulas:

Tp+T
Accuracy = r- (12)
Tp+Ty+Fp+ Fy
T
Precision = ——— (13)
Tp+ Fp
Tp
Recall = ——— 14
ecd Tp+ Fy a4
Fl-score = 2 X Precision X Recall (15)

Precision + Recall



Tn

e 16
Ty + Fp (16)

Specificity =
where: Tp = True Positive, Ty = True Negative, Fp = False
Positive, Fy = False Negative.

The confusion matrix is used to assess the performance of the
suggested model. Figure 11 depicts the DR grading’s confusion
matrix. Figure 11 shows that all of the predictions provided by
the suggested model are correct, and there are no false predic-
tions with the proposed system.

X

3 15
&

1
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Figure 11: Confusion Matrix

Figure 12 depicts the model loss plot for DR grading, which
offers information about the model’s performance on both the
validation (labeled test) dataset and the trained dataset. Further-
more, the model loss for the suggested system is determined to
be saturated at the minimal level, which is close to 0.

traiming acc
validation acc

Figure 12: Model Loss for DR

Figure 13 depicts the model accuracy plot for DR grading,
which offers information about the model’s performance and
the system’s correctness on both the validation (labeled test)
dataset and the training dataset. Table 3 provides a clear and
concise summary of the performance metrics (accuracy and F1-
score) for each classical image classifier.
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Figure 13: Model Accuracy for DR

These tables compare classical image classifiers’ perfor-
mance metrics with a proposed method integrating Hadamard
and CNOT gates in a quantum circuit (Table 4) and extending
this with a pretrained ResNet18 classifier using various quan-
tum gates (Table 5). The analyses highlight accuracy and F1-
score, demonstrating the evolving landscape of image classifi-
cation through the integration of quantum computational tech-
niques alongside classical methods.

Model Accuracy (%) | F1-Score (%)
ResNet18 85.3 85.6
ResNet34 86.7 86.8
ResNet50 87.4 87.5
ResNet101 88.1 88.3
ResNet152 88.9 89.0
Inception V3 | 89.8 89.5

Table 3: Performance Analysis of the Classical Image Classifiers

Proposed Accuracy (%) | F1-Score (%)
Model(Hybrid

Quantum  Classi-

fier)

ResNet18 97.2 97.4
ResNet34 97.3 97.5
ResNet50 97.6 97.9
ResNet101 97.8 98.0
ResNet152 98.2 98.3

Inception V3 98.5 98.4

Table 4: Performance Analysis of the Proposed Method using Hadamard &
CNOT Gates in the Quantum Circuit



Proposed Accuracy (%) | F1-Score (%)
Model(Hybrid

Quantum  Classi-

fier)

S(Phase) - 1921 924
Hadamard & CNOT

St(Dagger) -1 923 92.6
Hadamard & CNOT

RX & CNOT 97.5 97.9
Hadamard & CZ 95.2 954
Hadamard & SWAP | 94.8 94.3
Hadamard & CRX 97.8 97.9
RX & CRX 98.1 98.4

Table 5: Performance Analysis of the Proposed Method with ResNet18 pre-
trained Classifier using different Gates in the Quantum Circuit

S. CONCLUSION AND FUTURE WORK

5.1. Conclusion

This project on “Diabetic Retinopathy Detection Using
Quantum Transfer Learning” marks a significant advancement
in medical diagnostics by integrating quantum computing with
classical neural networks. Our hybrid model, combining classi-
cal feature extraction with quantum classification, notably im-
proved the accuracy of diabetic retinopathy detection, showcas-
ing the potential of quantum computing in healthcare.

5.2.

Achievements

o Successfully developed a hybrid quantum-classical model
for enhanced DR detection.

e Achieved superior accuracy rates, outperforming tradi-
tional classical models.

e Demonstrated the effective application of quantum com-
puting in medical diagnostics.

e Developed an accompanying application to facilitate easy
image uploading and result retrieval for practical use.

5.3.

Challenges and Limitations

e Navigated the computational limitations of current quan-
tum computing technology.

e Addressed optimization challenges in the quantum circuit
for complex DR datasets.

e Managed data constraints, including the limited availabil-
ity of diverse and comprehensive DR datasets.
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5.4. Future Work

Future research directions include:

e Advancing Quantum Models: As quantum computing ma-
tures, future work will involve enhancing the quantum cir-
cuits to handle larger datasets and more complex classifi-
cations. Studies like those on the IDX-DR system and Ret-
markerDR software, which have shown effective disease
progression analysis and high diagnostic performance, can
offer insights for future improvements.

e Broadening Dataset Diversity: Expanding the model to in-
clude more diverse datasets will enhance its robustness and
applicability. The use of datasets like Messidor-2 in val-
idating Al systems for DR screening exemplifies the im-
portance of diverse and quality datasets.

e Clinical Application and Trials: Implementing the model
in clinical settings to gather real-world data and feedback
is crucial. Studies like those conducted by the IDX-DR
system in the Dutch diabetic care system and Google’s
convolutional neural network-based DR detection algo-
rithm in Thailand provide templates for such real-world
applications and validations.

e Cross-Disease Application: Exploring the model’s utility
in other eye diseases and broader medical conditions will
widen its impact in healthcare, akin to the DL system de-
veloped by researchers in Singapore, which demonstrated
effectiveness across different patient subgroups.

5.5. Final Thoughts

This project stands at the forefront of integrating quantum
computing into medical diagnostics, specifically in ophthalmol-
ogy. The promising results from this hybrid model pave the
way for advanced, efficient, and accurate medical diagnostic
tools, with the potential to transform patient care and outcomes
in ophthalmology and other medical fields.
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