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Abstract
On-device machine learning (ODML) enables
powerful edge applications, but power con-
sumption remains a key challenge for resource-
constrained devices. To address this, developers
often face a trade-off between model accuracy and
power consumption, employing either computa-
tionally intensive models on high-power cores or
pared-down models on low-power cores. Both
approaches typically lead to a compromise in user
experience (UX). This work focuses on the use of
Gated Compression (GC) layer to enhance ODML
model performance while conserving power and
maximizing cost-efficiency, especially for always-
on use cases. GC layers dynamically regulate data
flow by selectively gating activations of neurons
within the neural network and effectively filter-
ing out non-essential inputs, which reduces power
needs without compromising accuracy, and en-
ables more efficient execution on heterogeneous
compute cores. These improvements enhance
UX through prolonged battery life, improved de-
vice responsiveness, and greater user comfort. In
this work, we have integrated GC layers into vi-
sion and speech domain models including the
transformer-based ViT model. Our experiments
demonstrate theoretical power efficiency gains
ranging from 158x to 30,000x for always-on sce-
narios. This substantial improvement empowers
ODML applications with enhanced UX benefits.

1. Introduction
On-device machine learning (ODML), the practice of run-
ning machine learning (ML) algorithms directly on a user’s
device, has emerged as a promising approach to provide
more interactive and responsive user experiences. Without
the need for data to travel to cloud-based servers, ODML en-
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sures that sensitive information is processed securely on the
device, enhancing user privacy (Chen et al., 2014). This lo-
cal processing capability not only allows devices to operate
intelligently while offline but also avoids the costs associ-
ated with cloud computing, making ODML an economical
choice for users and developers alike. ODML facilitates low-
latency inference as data can be processed locally by lever-
aging hardware acceleration on device (i.e., avoiding round
trip to the server) resulting in swift and smooth the user
experience (Murshed et al., 2021). Therefore, ODML appli-
cation in various devices, such as smartphones, wearables,
and IoT devices, can allow for real-time, context-aware,
and personalized user interactions. However, deploying ML
models on resource-constrained devices presents unique
power consumption challenges that directly impact the user
experience (UX) (Han et al., 2015).

The transition to ODML brings forth its own set of chal-
lenges, foremost among them is the constraint on computa-
tional resources inherent to edge devices. Power consump-
tion in ML models ondevice is influenced by factors such as
model size and complexity, computational load, and mem-
ory access frequency. These factors lead to UX challenges
including reduced battery life, inadequate storage and mem-
ory, performance trade-offs, decreased responsiveness, and
limited functionality (Chen et al., 2016; Gupta et al., 2015).
Furthermore, the thermal effects of continuous computing
can lead to device throttling, thereby diminishing UX (Zhou
et al., 2022). To address these challenges and deliver a supe-
rior UX, it is essential to develop power-efficient techniques
and strategies for ODML.

To understand and solve the power consumption challenges
in ODML and their impact on UX, researchers have pro-
posed various techniques to address these challenges, includ-
ing model compression, hardware-aware optimization, and
neural architecture search (NAS) (Han et al., 2015; Hinton
et al., 2015; Zhou et al., 2017; Chen et al., 2016; Tan et al.,
2019; Li et al., 2024). Normally, modern devices utilize
dedicated heterogeneous hardware, supporting low-power,
lightweight ML models. As user expectations grow, it is
vital to provide better UX for context-aware models that
activate selectively, ensuring that devices run only when
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needed. This not only provides a better UX by preserving
battery life but also aligns with environmentally sustainable
computing practices.

Always-on models are a category of ODML models that
run continually, searching for potential signals of interest
(referred to as positive samples) amidst a steady flow of
mostly irrelevant information (referred to as negative sam-
ples). Positive samples are less frequent, for example, a
keyword in a conversation. Because these models are con-
tinually invoked, they can consume a significant amount
of power on an edge device. The efficient approach for
deploying always-on models would be to consume minimal
power resources on negative samples while on a look-out
for positive events though those events are sparse.

As ODML models grow in complexity, efficiently using a
device’s heterogeneous computing cores (e.g., always-on
accelerators, DSPs and neural processing units) becomes
crucial for energy-efficient execution. In this paper, we de-
ploy larger models with integrated Gated Compression (GC)
layer (Li et al., 2023) that allows for the nuanced use of
these heterogeneous cores resulting in better UX. The inte-
gration of the GC layer can allow for the early layers of the
neural network to operate on ultra-low-power accelerators,
focusing on the detection of signal of interest (i.e., posi-
tive samples). Subsequently, the later stages, responsible
for more complex analyses, are activated only when neces-
sary, and can operate on compute-intensive processors as
needed. This tiered computational strategy improves feature
detection and system responsiveness without compromising
battery life, ultimately enhancing the user experience.

In this study, we aim to improve user experience in ODML
by incorporating the Gated Compression Layer (Li et al.,
2023) into pre-existing baseline models, such as ResNet-152
(He et al., 2016) and TC-ResNet (Choi et al., 2019), which
cater to vision and speech domains. Our comprehensive
experimental findings indicate that a significant reduction in
power consumption can be achieved by efficiently stopping
negative samples early and promoting activation sparsity
(i.e., compressing intermediate feature data to minimize
the data that is propagated through an active network) for
positive samples, leading to an enhanced user experience.

2. GC Layers for Always-On Models
The GC layer, as described in Li et al. (2023), is a gating
mechanism specifically designed to filter out irrelevant or
redundant information within input data. This is achieved
by applying a trainable gate function to each neuron’s out-
put. The GC layer can be incorporated into existing neural
network architectures, with its position optimized to strike
a balance between performance and power efficiency (see
Figure 1).

x

Sparse Activations

Neural 
Block 1

G
C

 L
ay

er
 (

1)

Neural 
Block 2

x

x

x

G
C

 L
ay

er
 (

2)

Neural 
Block 3

x

x

Early Stopping

Figure 1. Two GC layers added to existing architectures to trans-
form any network into an efficient Always-On Gated Neural Net-
work.

In always-on use cases that involve ML models on low-
power computing cores, the GC layer contributes to en-
hanced power efficiency, extended battery life, and better
resource utilization, all while maintaining or even improv-
ing model accuracy. This is accomplished by reducing data
transmission and computation requirements as explained in
the following sections.

2.1. Distributed Model with GC Layers

Always-on use cases commonly feature multiple heteroge-
neous compute islands, including sensors, micro controllers,
sensor hubs, mobile devices, and even the cloud. GC lay-
ers partition existing networks into smaller sub-networks,
which can be executed on separate compute islands. GC
layers can enhance distributed models by enabling selec-
tive activation of network components, ensuring that only
the necessary parts of the model are running at any given
time. This approach allows for the complete utilization of
all available resources, resulting in larger, more powerful
networks with enhanced performance.

2.2. Early Stopping for Negative Samples

Early-stopping plays a vital role in reducing power con-
sumption and computational resources, while maintaining
or even enhancing the model’s performance. Early stopping
is determined by monitoring the confidence scores or activa-
tion values of the gates inside the GC layers in the neural
network during the inference process. If the confidence
score for a particular sample surpasses a predefined thresh-
old, the processing is stopped early without invoking the
remaining sub networks. Essentially, the model is confident
enough in its prediction at this point and does not need to
perform further computations through the remainder of the
network.

This early stopping mechanism in the GC layer allows for
efficient filtering of negative samples which can be discarded
earlier in the processing pipeline. Doing so, it saves power
and computation resources as the network does not need to
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Table 1. Overview of datasets and model architectures used in the study, highlighting the distinction between vision and speech datasets,
the respective model architectures, implementation details, and learning rate strategies tailored to each usecase.

VISION SPEECH

Dataset ImageNet 2012 (Russakovsky et al., 2015) Speech Command (Warden, 2018)
Model Architecture ResNet-152 (He et al., 2016) TC-ResNet (Choi et al., 2019)
Implementation TensorFlow Model Garden (Yu et al., 2020) Streaming Keyword Spotting (Rybakov et al., 2020)
Learning Rate Cosine Decay (Loshchilov & Hutter, 2016)(Fig. 3, left) Piecewise Constant Decay(Fig. 3, right)

Real-World Use-Case/Scenario Person Detector Dog Detector 35 Keywords Detector 10 Keywords Detector
Number of Positive Classes/labels 4 130 35 10
Negative Samples / Whole Dataset 99.6% 87.0% 80.0% 80.0%
Class Weight: Positive vs Negative 0.99 vs 0.01 0.8 vs 0.2 0.5 vs 0.5 0.5 vs 0.5

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Enhancing User Experience in On-Device Machine Learning with Gated Compression Layers

Table 1. Overview of Datasets and Model Architectures used in the study, highlighting the distinction between vision and speech datasets,
the respective model architectures, implementation details, and learning rate strategies tailored to each use-case.

VISION SPEECH

Dataset ImageNet 2012 (Russakovsky et al., 2015) Speech Command (Warden, 2018)
Model Architecture ResNet-152 (He et al., 2016) TC-ResNet (Choi et al., 2019)
Implementation TensorFlow Model Garden (Hongkun Yu & Li, 2020) Streaming Keyword Spotting (Rybakov et al., 2020)
Learning Rate Cosine Decay (Loshchilov & Hutter, 2016)(Fig. 3, left) Piecewise Constant Decay(Fig. 3, right)

Real-World Use-Case/Scenario Person Detector Dog Detector 35 Keywords Detector 10 Keywords Detector
Number of Positive Classes/labels 4 130 35 10
Negative Samples / Whole Dataset 99.6% 87.0% 80.0% 80.0%
Class Weight: Positive vs Negative 0.99 vs 0.01 0.8 vs 0.2 0.5 vs 0.5 0.5 vs 0.5

Figure 2. Comparative Analysis of sub-model size (i.e., initial
network before GC layer) relative to the placement depth of the
GC layer for ImageNet and Speech Command experiments.

Figure 3. Learning Rate Schedules, depicting the Cosine Decay
schedule for ImageNet and the Piecewise Constant Decay sched-
ule for speech command.

ficient filtering of negative samples, which can be discarded
earlier in the processing pipeline. By doing so, it saves
power and computation resources, as the network does not
need to process these samples through all the layers.

2.3. Activation Sparsity for Positive Samples

In the distributed networks, the GC layer promotes activa-
tion sparsity for positive samples; it means only the most
crucial connections within the network are activated, cor-
responding to the most informative features of the input
data. In other words, GC layer induces sparsity within in-
termediate feature maps of the neural network. This means
that during the forward pass, when the network is making
prediction, any computations involving those zeroed fea-
ture maps are essentially skipped. This selective activation
(akin to feature selection) of feature maps conserves energy
and processing power by reducing the number of computa-
tions across the network as we are effectively operating on
a reduced subset of feature maps.

In a distributed environment, two adjacent smaller networks
operate on distinct compute islands. The output of one sub-
network serves as the input to the subsequent sub-network.
Data transmission across physical boundaries (e.g., device-
to-device communication via Bluetooth or WiFi) consumes
significant power. GC layers purposefully establish network

bottlenecks to decrease data transmission across boundaries.
By limiting the amount of data transferred to the following
layers, these bottlenecks lead to reduced power consump-
tion.

2.4. UX Benefits with GC Layers

Incorporating GC layers into ODML architectures notably
refines UX by offering smart computation. The early-exit
mechanism (i.e., preemptively halting data processing when
no relevant signal is present) minimizes unnecessary power
usage and computational latency. This can enhance device
responsiveness to the user interactions particularly in dis-
tributed network environments where computational tasks
are split across multiple nodes.

GC layers also enable devices to stay operational for longer
periods, conserving energy by avoiding the full activation
of feature maps in neural networks (i.e., activation sparsity).
This translates to sustained user engagement without fre-
quent interruptions for charging, a critical factor for UX in
mobile and wearable technologies. Additionally, improved
power efficiency helps devices operate at cooler tempera-
tures, increasing user comfort during use. Moreover, better
power efficiency contributes to enhanced performance, as
devices can run more swiftly and seamlessly.

Overall, superior power efficiency contributes to a better
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network before GC layer) relative to the placement depth of the
GC layer for ImageNet and Speech Command experiments.
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process these samples through all the layers.

2.3. Activation Sparsity for Positive Samples

In distributed networks, the GC layer promotes activation
sparsity for positive samples; it means only the most crucial
connections within the network are activated, corresponding
to the most informative features of the input data. In other
words, the GC layer induces sparsity within intermediate
feature maps of the neural network. This means that during
the forward pass, when the network is making a prediction,
any computations involving those zeroed feature maps are
skipped. This selective activation (akin to feature selection)
of feature maps conserves power by reducing the number
of computations across the network as we are effectively
operating on a reduced subset of feature maps.

In a distributed environment, two adjacent smaller networks
operate on distinct compute islands. The output of one sub-
network serves as the input to the subsequent sub-network.
Data transmission across physical boundaries (e.g., device-
to-device communication via Bluetooth or WiFi) consumes
significant power. GC layers purposefully establish network
bottlenecks to decrease data transmission across boundaries.
By limiting the amount of data transferred to the following
layers, these bottlenecks lead to reduced power consump-
tion.

2.4. UX Benefits of GC Layers

Incorporating GC layers into ODML architectures refines
UX by offering smart computation. The early-exit mech-
anism (i.e., preemptively halting data processing when no
relevant signal is present) minimizes unnecessary power
usage and computational latency. This can enhance device
responsiveness to the user interactions particularly in dis-
tributed network environments where computational tasks
are split across multiple nodes.

GC layers also enable devices to stay operational for longer
periods, conserving energy by avoiding the full activation
of feature maps in neural networks (i.e., activation sparsity).
This translates to sustained user engagement without fre-
quent interruptions for charging, a critical factor for UX in
mobile and wearable technologies. Additionally, improved
power efficiency helps devices operate at cooler tempera-
tures, increasing user comfort during use. Moreover, better
power efficiency contributes to enhanced performance, as
devices can run more swiftly and seamlessly.

Overall, superior power efficiency contributes to a better
UX, as users can enjoy devices that last longer while avoid-
ing needless power drain and thermal buildup. This results
in devices that are more convenient, comfortable, and plea-
surable to use.
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3. Experiments
We apply GC layers to always-on scenarios across both the
vision and speech domains. In this section, we first describe
the datasets, evaluation protocols, and implementation de-
tails used to train and test each model, then discuss results.
Following this, we explore the outcomes and analyze the
different components of the GC layer.

3.1. Datasets, Architectures, and Implementation
Details

We conduct experiments using ImageNet 2012 (Rus-
sakovsky et al., 2015), the most common and robust public
image dataset, and Speech Command (Warden, 2018), a
popular audio dataset. For the ImageNet dataset, we tested
GC layer performance on two different tasks: person de-
tection and dog detection. For the person detection task,
we map all classes without people involved to a generic
background class. Similarly, for the dog detection task, we
map all classes without dogs to a generic background class
while only dog classes are considered as positive classes.
This was done to reflect an always-on use case, where data
distribution is typically dominated by negative/background
classes. The Speech Command dataset already contains a
background class with a 1:4 ratio of positive to negative sam-
ples, and no additional class-label remapping is needed. It is
important to note that real-world tasks often have significant
imbalances weighted towards negative samples, highlight-
ing the need for techniques that support early stopping in
always-on models. In Table 1, we provided detailed infor-
mation on our datasets and architectures.

We demonstrate that GC layers can be applied to common
model architectures by using ResNet-152 (He et al., 2016)
for ImageNet 2012 and TC-ResNet (Choi et al., 2019) for
Speech Command.

We compare architectures that are expanded with GC lay-
ers to baseline architectures that do not include gating and
activation sparsity. For each dataset, the GC architecture
is identical to the baseline architecture with the exception
of an additional GC layer placed at various depths of each
network (as shown in Figure 2).

We evaluate the precision, recall, early-stopping, and acti-
vation sparsity performance of architectures expanded with
GC layers. Early stopping is defined as the percentage of
negative test examples that are successfully gated by the
model without having to propagate to the final classification
layer.

We implemented all methods using TensorFlow 2.x (Abadi
et al., 2015), and used the Adam optimizer (Kingma &
Ba, 2015) with either Cosine Decay or Piecewise Constant
Decay learning rate scheduler (as shown in Figure 3) for
model training. All experiments are repeated 10 times with

the mean and variance results reported.

3.2. Model Performance: Precision and Recall

Table 2 Compares the baseline models and GC models
across different real-world use-cases in the vision and
speech domains. Note that GC models consistently achieve
better model performance with higher precision and recall
compared to the baseline models.

Figure 4 shows that GCL@3 — a GC layer placed at 6%
depth of the baseline network — achieves the highest preci-
sion (99.5320%) and recall (95.7075%) for ImageNet person
detection task. By comparison, the baseline model without
a GC layer achieves a precision of 99.3512% and a recall of
95.2378% lower than that of any model with a GC layer.

For the ImageNet dog detection task (Figure 4), inserting a
GC layer also yielded substantial improvements in detection
capabilities. For example, GCL@3 — a GC layer placed at
6% depth of the baseline network — achieves the highest
precision (97.0122%) and recall (97.1914%) for the dog
detection task. By contrast, the baseline model achieves a
precision of 96.6936% and recall of 96.27%, again lower
than that of any model with a GC layer.

Similarly, in Figure 5, GCL@2 — a GC layer placed at 20%
depth of the baseline network — yields the highest precision
for both the 35 keyword classes detection (96.8182%) and
the 10 keyword classes detection (97.6821%) on the Speech
Command dataset. Additionally, GCL@3 — a GC layer
placed at 30% depth of the baseline network — also achieves
the highest recall (96.7892% and 97.8194%) for 35 keyword
and 10 keyword classes detection tasks respectively.

In both the vision and speech domains, the GC models
consistently outperform the baseline models in terms of
precision and recall. The specific GC layers that achieved
the highest precision and recall for different use-cases are
highlighted in Figures 4 and 5. These findings suggest that
early layers of neural network with the insertion of GC
layer can effectively filter relevant features, enhancing the
network’s focus and efficiency. Such results underscore
the potential of GC layers to refine ODML, bolstering not
only computational efficiency but also the accuracy of the
models.

3.3. Gating Performance: Early Stopping

In this section, we discuss the comparative effectiveness of
gating performance as applied to different datasets/models.
We also analyze how the GC layer placement impacts it’s
ability to accurately distinguish negative samples (i.e., back-
ground class) from the positive samples (e.g., dog or face
detection). For the gating experiments described in this
section, we have set a low false negative rate (i.e., incorrect
gating rate), ensuring only 1% of relevant samples (i.e., pos-
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Table 2. Comprehensive Performance Analysis: This table displays the precision, recall, gating performance and activation sparsity for
person detector, dog detector, 35 keywords and 10 keywords detector models. Baseline metrics are compared against models with different
depths of GC layer integration, demonstrating the impact of GC layer on model prediction performance.

Precision Recall Early Stopping (Gating) Activation Sparsity
Baseline GCL@1 GCL@2 GCL@3 Baseline GCL@1 GCL@2 GCL@3 GCL@1 GCL@2 GCL@3 GCL@1 GCL@2 GCL@3

V
IS

IO
N Person Detector

99.3512 99.4449 99.5193 99.5320 95.2378 95.3911 95.2656 95.7075 38.1243 45.5015 52.3367 99.0943 99.0435 98.9026
±0.0706 ±0.0609 ±0.0529 ±0.0406 ±0.1288 ±0.1597 ±0.1804 ±0.1579 ±9.5612 ±9.6713 ±4.2481 ±0.0032 ±0.0052 ±0.0048

Dog Detector
96.6936 96.9241 96.8247 97.0122 96.2765 96.7232 96.8664 97.1914 42.2562 73.1245 94.8752 98.2470 97.9511 98.6593
±0.0401 ±0.0446 ±0.0466 ±0.0502 ±0.0494 ±0.0388 ±0.0605 ±0.0612 ±2.5132 ±1.7628 ±0.9114 ±0.0502 ±0.0508 ±0.0406

S
P

E
E

C
H 35 Keywords

96.1344 96.3844 96.8182 96.3892 96.0691 96.3679 96.5263 96.7892

100

88.1242 82.2701 75.6890
±0.0723 ±0.0799 ±0.0966 ±0.0791 ±0.0757 ±0.0825 ±0.0936 ±0.0699 ±0.0034 ±0.0079 ±0.0071

10 Keywords
97.1314 97.5848 97.6821 97.6083 97.0029 97.7129 97.6266 97.8194 95.2541 89.7053 85.8261
±0.0739 ±0.0799 ±0.0966 ±0.0902 ±0.0720 ±0.0852 ±0.0854 ±0.0908 ±0.0055 ±0.0058 ±0.0061
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Figure 4. Performance Impact of GC layer on the ImageNet dataset. This figure illustrates the precision, recall, gating performance, and
activation sparsity at various depths of GC layer integration within the network architecture, indicating the GC layer’s influence on the
overall model performance for the person and dog detection tasks.

itive samples) were incorrectly gated. This strict threshold
allows us to observe the effectiveness of early stopping by
the GC layer, with the correct gating rate illustrating the
percentage of irrelevant data (i.e., negative samples) that
was successfully halted.

For the ImageNet tasks (person and dog detection), as shown
in Figure 4, the dog detector model outperforms the person
detector model in terms of gating performance, achieving
42.3%, 73.1%, and 94.9% early stopping at 2%, 4%, and 6%
network depth, respectively. On the other hand, the person
detector model shows lower performance, reaching 38.1%,
45.5%, and 52.3% stopping performance at 2%, 4%, and
6% network depth, respectively. This discrepancy in perfor-
mance can be attributed to the limited number of positive
classes (4) for the person detection task in the dataset, in
contrast to, 130 positive classes for dog detection task in

ImageNet dataset as presented in Table 1. In other words,
99.6% of data is comprised of negative samples for the per-
son detection task in comparison to 86% of negative samples
in dog detection task (as shown in Table 1). In the testing
set, each class contains merely around 50 samples, leading
to a total of merely 200 positive samples for assessment.
In order to maintain a low false negative rate (≤ 1%), the
model can make no more than two mistakes when identi-
fying positive samples. Additionally, the person detector
model exhibits higher variance, as each false negative has a
more significant impact on the false negative rate.

For the keyword detection task on Speech Command dataset,
as shown in Figure 5, placing the GC layer between 10%
and 30% depth of the baseline network consistently leads to
100% early stopping performance for all GC models. Fur-
thermore, a more detailed receiver operating characteristic
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Figure 5. GC layer impact on Speech Command Dataset, shown here are the performance metrics of precision, recall, gating performance,
and activation sparsity highlighting the effect of GC layer insertion at different depths of the network. For example, GCL@1, the first GC
layer is inserted at 10% depth of the baseline network, whereas the GCL@3, the third GC layer is inserted at 30% depth of the baseline
network.

Figure 6. Gating Performance on Different Use Cases on the ImageNet and Speech Command Datasets, stratified by the depth at which
the GC layer is introduced within the neural network architecture. The gating performance is quantified by the correct gating rate, with
higher values indicating better selective gating of irrelevant information (i.e., early stopping of negative samples). Lastly, the correct
gating results (i.e., blue lines) are highlighted by setting the incorrect gating rate (i.e., false negative rate) to a strict threshold of 1%.

Figure 7. Power Costs Analysis of GC layer Integration Across Use-Cases. This graph quantifies the computational and transmission
costs associated with GC layer depth variations in various speech and vision tasks. A lower ‘a’ value corresponds to lower computational
expense, while a lower ‘b’ value indicates minimized data transmission requirements. Each bar represents a different configuration,
comparing the baseline with three different GC layer configurations.
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performance, and activation sparsity highlighting the effect of GC layer insertion at different depths of the network. For example, GCL@1,
the first GC layer is inserted at 10% depth of the baseline network, whereas the GCL@3, the third GC layer is inserted at 30% depth of
the baseline network.
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expense, while a lower ‘b’ value indicates minimized data transmission requirements. Each bar represents a different configuration,
comparing the baseline with three different GC layer configurations.
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plot for each 10 runs in Figure 6 indicates that the GC layer
can accurately identify all background samples without mis-
takenly predicting any positive samples as negative.

Another observation evident from these results (Figure 4
and Figure 5) is that the performance of the GC layer sig-
nificantly improves as it is placed deeper in the network.
For example, the performance of early stopping for dog
detection task improved from 42.3% to 94.9% at 2% ver-
sus 6% network depth (also demonstrated in Figure 6 dog
detector model results). This improved performance can
be attributed to the fact that at greater depths, the GC layer
benefits from network’s prior computations, which already
have filtered much of the noise and less relevant information.
Therefore, GC layer can apply a more informed gating strat-
egy, and better identify the signals of interest (i.e., positive
samples) with greater precision.

Early stopping greatly reduces the computational burden by
not processing the entire cascade of network layers when it
is unnecessary. In doing so, early stopping has a significant
impact on improving model performance, accuracy, and
efficiency in both vision and speech domain related tasks.

3.4. Compression Performance: Activation Sparsity

As illustrated in Figure 4, the GC models consistently
achieve activation sparsity of greater than 98% and 92% for
the person detection and dog detection tasks, respectively.
Likewise, in Figure 5, the GC models attain activation spar-
sity ranging from 75% to 90% for the 35 keyword classes
detection task and from 85% to 95% for the 10 keyword
classes detection task.

The results presented in Figure 4 and Figure 5 shows that
as GC layer is moved to deeper positions, activation spar-
sity in most cases decreases. This is because, as the GC
layer is placed in shallower positions, it can compress more
dimensions due to the larger internal feature map size.

Overall, these results demonstrate that the GC layer has con-
sistently demonstrated the ability to achieve high activation
sparsity in both the vision and speech domain related tasks.

3.5. Gating Performance Versus GC Layer’s Depth

When a GC layer is added to an existing network, it cre-
ates two sub-networks, with the size of the first sub-model
increasing as the position of the GC layer deepens (as illus-
trated in Figure 2). This larger sub-model allows for better
gating performance (as shown in Figure 4).

Although there is no universally optimal position for plac-
ing the GC layer, a deeper position allows for a larger sub-
network to be fine-tuned, resulting in better gating perfor-
mance. However, the optimal position depends on the spe-
cific use case and resource constraints. A general approach

is to identify the deepest position within resource limits and
then evaluate the benefits of moving towards a shallower
position.

In terms of the UX benefits, the initial network can reside
on a low-power core (i.e., always-on core), continuously
processing data with minimal energy consumption. When
this initial network encounters a positive sample, it triggers
the activation of the more powerful core (i.e., on-demand).
This limits the operations of high-energy cores to only es-
sential tasks. This strategic activation of resources ensures
that the device remains responsive and ready for important
tasks without unnecessary power drain.

3.6. Power Saving: Theoretical Analysis

In addition to benefits in model performance and size, GC
models offer power savings. However, power cost in real-
world scenarios is influenced by several variables. In this
work, the power cost schema can be simplified into three
components: 1) the power cost of running inference on the
first sub-network, 2) the power cost of propagating data
from the first sub-network to the second sub-network, and
3) the power cost of running inference on the remaining sub-
network. Assuming that the power cost of running inference
is proportional to the depth of the model with a constant
of a, and the power cost of propagating data across sub-
networks is proportional to the amount of data propagated
with a constant of b.

For an existing model M, since it requires the computation
of the entire network and the propagation of the entire data
amount, therefore, the expected power cost of running one
inference through can be computed as:

Epower(M) = a+ b. (1)

By assigning distinct values to a and b, the power expenses
of various system configurations can be characterized. A
higher value of a implies that executing model inferences
requires more power (i.e., computation expensive), whereas
a higher value of b implies that transmitting data requires
more power (i.e., IO expensive).

After adding a GC layer, the new GC model M′ is split into
two disjoint sub models. Since the GC layer is a simple
binary classifier head and a sparse binary mask, its size
and computation is small and can be neglected. Then, the
expected power cost of running inference on one example
can be computed as:

Epower(M′; ρ, µ, ν, γ) =

µa+ [ρ+ (1− ρ)(1− γ)][(1− µ)a+ (1− ν)b],
(2)

where ρ denotes the probability of selecting a positive sam-
ple from the data distribution, µ represents the ratio of the
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Table 3. Comprehensive Performance Analysis: This table displays the precision, recall, gating performance and activation sparsity for
the person, dog and cat detection task. Baseline metrics are compared against models with different depths of GC layer integration and by
varying the early stopping weight (α), demonstrating the impact of GC layer on model prediction performance.

GCL Precision Recall Early Stopping (Gating) Activation Sparsity

α Baseline GCL@1 GCL@2 GCL@3 GCL@4 Baseline GCL@1 GCL@2 GCL@3 GCL@4 GCL@1 GCL@2 GCL@3 GCL@4 GCL@1 GCL@2 GCL@3 GCL@4
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0.1

89.448
±0.212

90.906 89.908 90.163 90.156

90.923
±0.119

91.414 91.297 91.468 91.460 44.391 51.902 58.482 59.481 89.726 90.461 90.555 90.758
±0.374 ±0.726 ±0.289 ±0.330 ±0.267 ±0.516 ±0.183 ±0.241 ±1.823 ±1.462 ±1.517 ±2.653 ±0.162 ±0.059 ±0.025 ±0.077

0.3
90.896 89.997 90.233 90.256 91.403 91.397 91.481 91.469 49.219 55.942 62.823 69.881 89.926 90.191 90.225 90.651
±0.314 ±0.291 ±0.219 ±0.302 ±0.169 ±0.316 ±0.389 ±0.241 ±1.837 ±1.629 ±1.812 ±2.153 ±0.092 ±0.092 ±0.071 ±0.071

0.5
90.162 89.981 90.321 90.256 91.215 91.217 91.318 91.362 51.951 61.321 68.822 75.814 89.962 90.621 90.515 90.583
±0.274 ±0.314 ±0.291 ±0.293 ±0.226 ±0.213 ±0.238 ±0.244 ±1.831 ±1.622 ±1.712 ±2.032 ±0.069 ±0.089 ±0.055 ±0.087

0.7
89.961 90.522 90.469 90.456 91.149 91.295 91.388 91.426 56.991 68.925 78.829 85.981 89.996 90.216 90.325 90.251
±0.274 ±0.296 ±0.291 ±0.255 ±0.317 ±0.287 ±0.258 ±0.249 ±1.869 ±1.961 ±1.72 ±2.152 ±0.062 ±0.051 ±0.052 ±0.049

depth-first sub-network to the entire network, ν represents
the activation sparsity rate, and γ denotes the gating rate for
negative samples without affecting positive samples.

Since a+ b = 1, we can express b as b = 1− a. Therefore,
given the values of ρ, µ, ν, and γ, the power cost in Equation
2 can be considered as a function of a. The derivative of
the expected power cost of M′ with respect to a or b can be
computed as follows:

∂Epower(M′;ρ,µ,ν,γ)
∂a = µ+ [ρ+ (1− ρ)(1− γ)](1− µ)

> 0
∂Epower(M′;ρ,µ,ν,γ)

∂b = [ρ+ (1− ρ)(1− γ)](1− ν)

> 0

.

(3)

This indicates that the power cost increases with an increase
in the value of a (or b). More specifically, for a given use
case with fixed ρ and an optimized GC model with fixed µ, ν,
and γ, it is recommended to choose a system configuration
with lower computational expense (i.e., lower a value) and
transmission expense (i.e., lower b value). Moreover, using
the given parameters (ρ, µ, ν, and γ), the dividend ratio
can be computed to determine the system configuration
that offers the best trade-off between computational and IO
expense.

The value of ρ is determined by the data distribution of the
use case, which is beyond our control. On the other hand,
ν and γ depend on the placement of the GC layer (upper
bounded by the placement location), which is controlled by
µ. Hence, the crucial factor in adding a GC layer for power
efficiency is to select an appropriate placement location.

Figure 7 shows that GC models achieve substantially lower
power costs as compared to the original baselines (which
require 100% power cost) across all system configurations,
including computation expensive, computation/IO balanced,
and IO expensive. Specifically, GC models consume power
costs ranging from 0.003% to 0.63% of the baseline models,
leading to a reduction in power costs by a factor of 158 to
30,000 in comparison to the baseline models.

In summary, results presented in Figure 7 highlights that in-
troduction of GC layer to ODML can introduce a paradigm
shift in power consumption patterns, effectively minimizing
operational costs without compromising model effective-
ness.

4. Extending GC Layers to Transformers
While Li et al. (2023) and our previous work in Section 3 ex-
plored the impact of GC layers on CNN-based models (see
models in Table 1), we now extend the application of GC
layers to the powerful Transformer architecture (Vaswani
et al., 2017). Given their success in NLP (Wolf et al., 2020)
and computer vision (Khan et al., 2022), this integration
offers exciting opportunities.

Unlike traditional CNNs, Vision Transformers (ViTs) (Doso-
vitskiy et al., 2021) leverage the attention mechanism from
NLP transformers to process image data. This novel ap-
proach enables them to capture long-range dependencies
across an entire image in a way that CNNs cannot due to
their local receptive fields. We integrated the GC layer into
the ViT-L/16 model.

4.1. Overall Performance

Table 3 and Figure 8 summarize the comprehensive per-
formance analysis. Our findings demonstrate consistent
improvements in precision and recall compared to the base-
line model without GC layers. For example, we increased
the precision from the baseline value (i.e., without the GC
layer) of 89.448% to 90.996% by placing the GC layer at 5%
depth of the baseline network. Notably, we also achieved
a remarkable activation sparsity between 89% to 91% and
early stopping rates between 44% and 86%, all while main-
taining strong model performance (Figure 8).

This is particularly significant for ViTs as they are known
for their high computational cost, especially with increasing
input size and model depth (as cited in Maurício et al.,
2023). We believe that the introduction of the GC layer
(i.e., activation sparsity and early stopping techniques) has
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Figure 8. Impact of GC layer Depth and Early Stopping Weight
on ViT-L/16 Performance. This figure demonstrates the effect of
varying the GC layer depth and the early stopping weight (referred
to as α) on the performance of ViT-L/16 architecture. The ex-
periment measures the precision, recall, gating performance, and
activation sparsity at various depths of GC layer integration, each
tested with different α values as illustrated in figure.

the potential to significantly improve the efficiency of these
models without compromising their effectiveness.

4.2. Understanding the GC Layer’s Placement

We investigated how the placement of the GC layer within
the network architecture affects its ability to achieve early
stopping efficiently. We conducted experiments varying
the GC layer’s depth within the network at 5%, 10%, 25%,
and 50%. The results, presented in Figure 8, reveal a clear
relationship between GC layer placement and early stopping
performance.

As expected, we observed a positive correlation between
the base network’s size and the achievable early stopping
rate (similar to the results of ResNet-152 in the vision do-
main, Table 2). For example, in some cases (Figure 8, refer
to gating performance graph), the gating performance in-
creased from 56% to 85% as the GC layer’s depth within
the network is changed from 5% to 50%. This is because
placing the GC layer too early in the network limits the
processing of features, hindering its ability to make accu-
rate predictions for early stopping. In other words, strategic
positioning of the GC layer in a way to allow for adequate
feature computation by the base network is essential for the
GC layer to perform accurate early stopping.

4.3. Understanding the Early Stopping Weight, α

The early stopping weight, α, within the GC layer plays a
critical role in determining the effectiveness of early stop-
ping. Early stopping offers significant benefits in terms
of computational and power efficiency. We conducted a
series of experiments to analyze the impact of α on early
stopping performance while maintaining the overall model
performance.

Figure 8 summarizes the key findings: (1) Preserved Model
Performance: The values of α did not negatively impact
model performance metrics such as recall and precision. (2)
Enhanced Early Stopping: A clear positive correlation was
observed between α and the achieved early stopping rate.
Higher α values resulted in more frequent early stopping. (3)
Modest Impact on Activation Sparsity: As anticipated, there
was a slight decrease in activation sparsity with increasing α.
This is because the activation sparsity weight (β) is inversely
related to α, defined as β = 1− α.

These findings indicate that we can effectively use the early
stopping weight (α) to improve model efficiency through
increased early stopping without compromising overall ac-
curacy.

4.4. Understanding the Incorrect Gating Rate

High precision and recall performance depends on prop-
erly training the GC layer to strike a balance between: (1)
Correct Gating Rate: This metric signifies the GC layer’s ef-
fectiveness in accurately identifying and stopping irrelevant
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Figure 9. Impact of Adjusting Incorrect Gating Rate on Vit-L/16. This figure shows the relationship between varying incorrect gating
rates for different values of the early stopping weight, α. The graph highlights how changing the threshold for incorrect gating (indicated
by the blue dashed lines) affect the model’s ability to correctly gate computations as shown by the green curves.

data (i.e., negative samples). (2) Incorrect Gating Rate: This
metric represents the possibility of the GC layer mistakenly
stopping important samples (i.e., positive samples).

In this work, we prioritized minimizing incorrect gating
by setting a maximum threshold of 1% (0.01). However,
different use cases may have a different set of trade-offs.

As illustrated in Figure 9, increasing the acceptable incorrect
gating rate (while keeping α fixed) presents a trade-off: (1)
Improved Correct Gating: We observe a significant rise
in the correct gating rate. For instance, the correct gating
rate increased from 0.456 to 0.758 as shown in Figure 9
by setting α to 0.1. (2) Marginal Rise in Incorrect Gating:
There is a small upturn in the incorrect gating rate (e.g.,
from 0.01 to 0.05) suggesting a slight increase in the chance
of the GC layer incorrectly interrupting positive samples.

This trade-off empowers customization of the incorrect gat-
ing rate based on the specific priorities: (1) Prioritize High
Correct Gating: If maximizing efficiency through accurate
stopping is important, tolerating a marginally increased in-
correct gating rate may be viable. (2) Minimize Incorrect
Gating: If avoiding any erroneous early exiting of posi-
tive samples is critical, we recommend choosing a lower

incorrect gating rate.

Understanding this balance allows one to adjust the GC
layer for ideal performance, aligning with the specific needs
of proposed application.

5. Conclusion
This work demonstrates how Gated Compression (GC) lay-
ers significantly enhance the power efficiency of on-device
machine learning (ODML) models, particularly for always-
on use cases. Our approach overcomes the limitations of
traditional power-saving methods, enabling power conserva-
tion without sacrificing model accuracy. GC layers achieve
this through a combination of selective filtering of negative
samples and promoting activation sparsity for positive sam-
ples within intermediate feature maps of neural networks,
minimizing unnecessary computations and data transmis-
sion.

The integration of the GC layer into ODML offers substan-
tial user experience benefits, such as by extending battery
life, longer uninterrupted usage sessions can be enabled for
users. Devices become more responsive with reduced pro-
cessing latency, enhancing practical utility. Lower power
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consumption also results in devices operating at cooler tem-
peratures, which adds to user comfort. Additionally, our
proposed approach aligns with eco-friendly computing prac-
tices.

Our experiments across vision and speech tasks validate
the benefits of integrating GC layers. This includes their
successful first-time use within the transformer-based ViT
model, showcasing their adaptability. In always-on scenar-
ios, we achieved remarkable theoretical power efficiency
gains between 158x and 30,000x — crucially, without sac-
rificing accuracy. This paves the way for deploying more
powerful ODML applications, offering richer features while
extending device battery life for a superior user experience.

This research presents exciting directions for future work.
Investigating hardware co-design, with hardware-aware op-
timization of GC layers specifically for accelerators, could
maximize power efficiency. Additionally, exploring domain-
specific adaptations of GC layers across diverse fields like
healthcare and robotics holds significant potential. Ulti-
mately, large-scale real-world testing will illuminate the
broader UX impact of GC layers and their role in advancing
context-aware computing.
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