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MULTIPLICATIVE POLYNOMIAL EQUATIONS IN INFINITELY
MANY VARIABLES

MELVYN B. NATHANSON AND DAVID A. ROSS

ABSTRACT. This paper describes infinite sets of polynomial equations in in-
finitely many variables with the property that the existence of a solution or
even an approximate solution for every finite subset of the equations implies
the existence of a solution for the infinite set of equations.

1. FINITELY MANY IMPLIES INFINITE MANY

In mathematics there are theorems asserting that, for certain classes of equations,
if every finite subset of an infinite set of the equations has a solution, then the infinite
set of equations has a solution. For example, if every finite subset of an infinite set of
linear equations in n variables (that is, equations of the form 2?21 a; jx; = b;) has
a solution, then the infinite set of linear equations in n variables has a solution. For
infinite sets of linear equations in infinitely many variables, in which each equation
contains only finitely many variables (that is, equations of the form Z;’il a; jxj =b;
with a; ; # 0 for only finitely many j), a “finitely solvable implies infinitely solvable”
theorem is also true. For a survey of related results, see Nathanson [4].

There are analogous results for linear equations that contain infinitely many
variables. The pair (p,q) is Hélder conjugate or, simply, conjugate if p > 1 and
q > 1 are real numbers such that

1 1
— - = 1
p q
orif p=1and ¢ =o00. For 1 <p < o0, let
- 1/p
= a= (a3, alp,=| D lal” < o0
j=1

and, for p = oo, let
0 = {a=(a;)72, : lallow = supfla;| 1 j = 1,2,3,...} < oo}

be the classical Lebesque spaces of infinite sequences of real or complex numbers.
Recall Holder’s inequality: If (p, q) is a conjugate pair and

a= (aj);il ewr and x = (a:j);il e
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then

ax = (ajz;);2, € '

and
oo

> lajal = llax|, < Jall, Ixll,
j=1

Thus, the infinite series
oo
(a,x) =Y _ax;
j=1

converges absolutely and it makes sense to ask if there is a solution x € ¢9 of the
linear equation in infinitely many variables

(1) L(x) = (a,x) = Zajxj =b.

We retain the usual ambiguity between sequences of numbers and sequences of
variables. An ezxact solution or, simply, a solution of equation () is a sequence
x = ()52, € ¢? such that L(x) = b. Equation () has an approzimate solution if,
for every € > 0, there exists x. € 9 such that

IL(x.) — b| < e.

Let N = {1,2,3,...} be the set of positive integers and N* the set of k-tuples
of positive integers. Extending a classical result of F. Riesz [5l pp. 61-62] (see also
Banach [2 p. 47]), Abian and Eslami [I] proved the following beautiful theorem.

Theorem 1. Let (p,q) be a conjugate pair with p > 1 and ¢ > 1 and let a; =
(ai,j);; € (P for alli € N, Consider the linear equation in infinitely many variables

Li(X) = Zamxj = bi.
Jj=1

Let M > 0. If, for every finite subset S of N, there is a sequence xg € €4 such that
Ixsllq < M and L;(xs) = b; for alli € S, then there is a sequence x € £7 such that
Ixllq < M and Li(x) = b; for all i € N.

Abian and Eslami proved their theorem only for p > 1 and for countably many
equations with real coefficients and real solutions, but the result also holds for
(p,q) = (1,00) and for uncountably many equations with complex coefficients and
complex solutions. In Appendix [A]l we prove Riesz’s theorem and derive Theorem [
from it.

It is important to observe that Theorem [Ilis not true without the condition that
the norm of ||xgl|4 is uniformly bounded by M for all finite sets S. The following
example is essentially due to Helly [3].

Let a = (a;)32, € 7 with a; # 0 for all j € N. For alli € N, define the sequence
a; = (a; ;)52 € (¥ as follows:

{0 if j <
Q5 = e
a; if j>i.
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For all ¢ € N, consider the linear equation in infinitely many variables

oo o0
Li(X) = E Qi ;L5 = E a;T5 = 1.
j=1 j=i

We obtain the “triangular” system of equations

a1x1 + a2x2 +agrs + -+ @ix + A1 Tipr + o0 =1
asxz +azxrs + -+ aiT + a1 Tipr + 0 =1

azxrs + - + 4% + @i 1T+ =1

a;T; + Gi41Tip1 + -0 =1

i1 Tip1 +--- =1

For all i > 1, if L;(x) = Li+1(x) = 1, then a;z; = 0 and so z; = 0 (because a; # 0).
It follows that the infinite set of equations has no solution. However, every finite
subset of these equations is solvable.

Here is one solution. For all » € N, the sequence X, = (,;)32; € £7 defined by

1/a, ifj=
xr,j:{/a ifj=r

0 if j#£r
is a solution of the finite set of equations {L;(x) =1:¢=1,...,7}. We have
1 ) . 1
Pely=mr  and Jim = lim o= oo

Thus, the sequence of solutions (x,)22; is not uniformly bounded in ¢.
If x,. is any solution of the finite set of the first  equations, then

oo oo
1= Zajxj = Zar,jxj = [larx[l1 < [lar|lpl1%:[lq
j=r j=1
and so
P p—
T ]y

Because a € (P, we have lim, . ||a,||, = 0 and so the sequence of solutions (x, )22
is not uniformly bounded in ¢9.

The following result extends Theorem [ to approximately solvable systems of
linear equations.

Theorem 2. Let (p,q) be a conjugate pair. Let I be an infinite set and let a; =
(ai,j);i1 € (P for alli € I. Consider the linear equation in infinitely many variables

Ll(X) = Zaiyj:rj = bl
Jj=1

Let M > 0. If, every finite subset S of I and for every € > 0, the finite set of linear
inequalities
{|L1(X) — b1| <g:1€ S}
has a solution xg,c € L1 with ||Xse|lq < M, then the infinite set of linear equations
{Ll(x) =b;:1 € I}

has an ezxact solution x € ¢7 with ||x||q < M.
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In this paper we generalize Theorem [2] to certain infinite sets of polynomial
equations in infinitely many variables and prove (this is our main result) that the
existence of norm-bounded or even sequentially bounded approximate solutions to
all finite subsets of the set of polynomial equations is sufficient to guarantee the
existence of an exact solution to the infinite set (Theorems @ and[Bl). The theorems
on linear equations are special cases of the polynomial results.

Our results apply to polynomials with coefficients and solutions in the field of
real numbers and also in the field of complex numbers. However, the “finitely
many implies infinitely many” paradigm is not true for all subfields of the complex
numbers. It is not true, for example, for the field Q of rational numbers. Let
(b;)icr be an infinite sequence of irrational numbers and consider the infinite set of
linear equations {x; = b; : © € I'}. For every € > 0, every finite subset and, indeed,
the infinite set of the equations has an approximate solution in Q, but neither the
infinite set nor any nonempty finite subset of the equations has an exact solution

in Q.
2. POLYNOMIALS IN INFINITELY MANY VARIABLES
Let D be a positive integer, let d € {1,2,..., D}, and let
1< D <q<o0.

If ¢ < 00, then
1 1

- @ + -

a/(g—d)  q/d
and so the real numbers ¢/(¢ —d) > 1 and ¢/d > 1 form a conjugate pair. For
q = o0, we define

=1

q — g =
G—d) =1 and p 0.
If
a— (aj);?il e ¢a/(g=d)
and
x = (x;);2, €L
then
x? = (x?)jil e ¢9/d
From Holder’s inequality we obtain
ax? = (aj:b‘j);; et
and -
> lagaf| = llaxl, < lallyq-a) 1%l 0
j=1
Thus, the infinite series
(a,x7) = Z 0}
j=1

converges absolutely.
For all k € {1,2,..., D}, let D) be the set of all k-tuples of positive integers
whose sum is at most D, that is,

(2) Dk:{(dl,...,dk)ENk:d1—|—d2—|—"'—|—dkSD}.
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This is a finite set of cardinality (f) The set Uszl Dy has cardinality Zszl (f) =
2P — 1. For all A = (dy,da,...,dy) € Dy and J = (j1, jo, ..., jr) € N¥, we define
the monomial
2
of degree
|A| =dy+do+---+dp <D.
For example, let D = 3. There are seven sets of monomials. For £k = 1 and
J = (j1) € N}, we have
AeDy={(1),(2),3)} and 27 € {x;,, 237, 25
For k =2 and J = (j1,j2) € N?, we have
A €Dy ={(1,1),(1,2),(2,1)} and 2% € {zj2;, vj,23,, v7 2, }.
For k = 3 and J = (j1, j2, j3) € N3, we have

A €Dy = {(17 1, 1)} and I§ = Ljy Ljs T -

Monomials do not have a unique representation in the form x?. For example,

with D =3, let k = 2 and J = (1,1) € N2 If A = (1,2) € Dy, then 75 = 2127 =
23 I A =(2,1) € Dy, then 25 =22z, =23. D=3, k=1,J = (1) € N, and
A = (3) € Dy, then 25 = 3.

We do not need unique representation of monomials, but would have unique
representation if we considered only k-tuples (j1,j2,--.,jx) € N¥ such that j; <
j2 < e < .]k)

We consider only polynomials with zero constant term. In this paper, “polyno-
mial” means polynomial with zero constant term.

A polynomial of degree at most D in infinitely many variables x1,x2,x3,... is
an infinite series of the form

D
(4) Px)=> > > aanszy
k=1 A€Dy JENk

with coefficients an,; € R. For example, a polynomial of degree at most 3 in
infinitely many variables is of the form

oo

P(x) = a@).go®i + Y 6@.60%50 + Y 6@).60)%

Jj1=1 J1=1 Jj1=1

+ Z Z A(1,1),(j1,j2) Tj1 Tj2 T Z Z a(1,2),(j1.52) T T,

J1=1j2=1 Jj1=1j2=1

oo oo oo o0 o0
2
+ Z E:a(zyl),(a‘l,m)%l%z + E , E , E :a(l,l,l),(j17j2,js)$j1%‘2%‘3-

j1=1ja=1 j1=1j2=1j3=1
3. MULTIPLICATIVE POLYNOMIALS
Let

P(x):Z Z Z an.y 5

k=1 A€D) JENF
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be a polynomial of degree at most D in infinitely many variables x = (z;)32; with
coeflicients aa,y. We consider polynomials whose coefficients aa . are multiplicative
in the following sense: For all d € {1,2,..., D} there is a sequence

aa = (a4) 7, € 09/~
such that, if
A= (dy,do,....d;) €Dy and  J = (j1,j2,--.,jk) € NF
then
AA,J = (dy,da;...,di),(J1,52,005k) = Ad1,j10dz,j2 " Qdy i -
This gives the monomial factorization

A ) . ) dy _.do dy
an,jxj = (adlulad2-,az e 'akok) (le Ty e 'Ijk)

_ o da C ed2 - dk
= (admlle) (adzu2xj2) T (a’dk-ﬂkxjk)
A d1 do dy
E apn,g Ty = E (a’dl-,jlle) (admjzsz) T (adkyjkxjk)

JENF (41,J2,--,35 ) ENF
oo oo oo
_ o d Cad2 - dk
= E Ady 51 L, E Ady,jaXjy |~ E Ady,ji L),
Jji=1 j2=1 Jr=1

= (adl,xdl) (adQ,de) s (adk,xd’“) .
For x = (z; );";1 € 01, the rearrangement is justified by the absolute convergence of
the k infinite series (agl1 , xdl) , (adQ,xd2) e (adk,xdk). We obtain

D
P(x)zz Z Z aAJ:v?

k=1 AeDy JENFk
D

o0 o0 o0
_ o .d1 . .d2 o di
= Z Z Z Ady 515, Z Ady,jalj, |~ Z Ady,,ji T j,,

k=1 (dy,d2,....,dr)ED \J1=1 Jj2=1 Jr=1

i Z (adl,xdl) (adz,xdz) e (adk,xd") .

k=1 (d1,d2,...,d;)EDy,

This is a finite sum, and so the series P(x) converges absolutely for all x € ¢9.
Thus, for all b € R, the multiplicative polynomial equation

Px)=0b

is well-defined, and we can ask if this equation has a solution x € ¢9.
Here is an example of a multiplicative polynomial. Let 1 <d < D < g < 0o and
SO

fo 4 4 __ 4
¢q=17q-d~ q-D
For all s € C with R(s) > (¢ — d)/g¢, the Riemann zeta function

o o /(a—d)
qs '\ _ r I
(753) =L =L (7)

S
= =1 N
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converges absolutely. Consider the sequence
ay — (i) c o/ (a-d)

and the polynomial

Let
A = (dy,ds,...,d}) € Dy and J = (j1,j2,...,jr) € NF.

For all h € {1,...,k}, let s}, € C satisfy R(sp) > (¢—d)/q and let a4, = (jfsh');il.
Then

Z an,y 5 = (adl,xdl) (adQ,x‘b) ... (admxdk)

JENFK
dl... dk
- ¥ u
= et
]1 o Ik

(J15e-dx) ENF
The associated multiplicative polynomial of degree at most D is

P(x) = P(x,81,...,8h)

D
=2 2 D> easl

k=1 A€D; JENk

D di . .dk
_ Ly L
- -S1 :Sk *

k=1 (d1,.oerdn)EDx (1.t 1Tk

For D = 1 and ¢ = 2 and for complex numbers s with R(s) > 1/2, the linear
polynomial in infinitely many variables is the Dirichlet series

0
=3
_n

The analogue of Theorem [ for linear equations is the following “finitely many
implies infinitely many” solvability result for multiplicative polynomial equations.

Theorem 3. Let D be a positive integer and let 1 < D < q < oo. Let I be an
infinite set. For alli €1 andd € {1,2,...,D}, let

a4 = (al d)]) L€ ¢3/(a=d)
For A = (dy,ds,...,dy) € Dy and J = (j1, ja,- - -, jx) € N¥, let

@i, A, J = Qiydy g1 Qiyda,go " Qiydy, g
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For all i € I, the sequences a; 4 determine the multiplicative polynomial equation

D
Px)=> Y > a2y

k=1 A€Dy JENF

D
- Z Z (aivdl ) Xdl) (ai,d2, Xdz) e (ai,dkvxdk)

k=1 (d1,ds,...,dr)EDx
=b;.
Let M > 0. If, for every finite subset S of I, the finite set of polynomial equations
{P;(x) =b; : i € S} has a solution xg € €1 with ||xg|q < M, then the infinite set
of polynomial equations {P;(x) =b; : i € I} has a solution x € (1 with ||x|; < M.

4. APPROXIMATE FINITE IMPLIES EXACT INFINITE

The set {P;(x) = b; : i € S} of polynomial equations in infinitely many variables
X = (,Tj);?il has an approzimate solution if, for every € > 0, there exists a sequence
x. such that |P;(x.) — b;| < ¢ for all 4 € S. We shall prove that an infinite set of
multiplicative polynomial equations has an exact solution if every finite subset of
the equations has a norm-bounded approximate solution. This is the main result
in this paper and immediately implies Theorem [3]

Theorem 4. Let D be a positive integer and let 1 < D < qg < oo. For all k € N,
let
Dy = {(dl,...,dk)ENk:d1—|—d2—|—"'—|—dk SD}
Let I be an infinite set and let x = (v;)52,. For alli € I andd € {1,2,...,D}, let
a;q = (aiyd,j);il c KQ/(q—d)_

Then
o0
d 2 : d
(ai,d,x ) = ai7d,j:vj.
j=1

For A = (dy,ds,...,dy) € Dy and J = (j1, ja,- - -, jx) € N¥, let
Qi A, J = Qi.dy,51 Pi,da,jo " Qi,dy,jp -

. For alli € I, the finite set of sequences {ai7d}fl):1 determines the multiplicative
polynomial equation

D
Px)=> Y > a2y

k=1 A€Dy JENF

D
- Z Z (aivdl ) Xdl) (ai,d2, Xd2) T (aiqdkvxdk)

k=1 (d1,da,...,dy) €Dy
=b;.
Let M > 0. If, for every ¢ > 0 and every finite subset S of I, the finite set of
polynomial inequalities

{|Pi(x) —b;] <e:ie S}
has a solution xg. € €9 with ||xs.|lq < M, then the infinite set of polynomial
equations
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has an ezxact solution x € ¢7 with ||x||q < M.

We begin with two results whose statements and proofs are valid in both the
real and complex cases.

For M > 0, the closed interval [-M, M| = {x € R : |z] < M} and the closed
ball By = {x € C: |z| < M} are compact. For polynomial equations in R we use
the compact topological space

o0
Q= []-M, M]
j=1
and for polynomial equations in C we use the compact topological space
o0
Q=] Bu-
j=1

Lemma 1. The set
Xom ={xel?:|x]lg <M}
is a compact subset of the topological space 2.

Proof. If x = ()32, € €7 and |x|q < M, then |z;[ < M for all j € N and so

Xg.m € Q. Because 2 is compact, it suffices to prove that X, »s is closed in the
product topology on €2, or equivalently, that the complement of X, 5s is open. The
complement of X, »s is the set

Yq-,M:Q\quM
={yeQ:y¢ | J{yeQ:yeand |y, > M}

o0
=Sy = )52 ) |yl > M?
j=1

Let y = (y;)72; € Yg,m. There exist € > 0 and N € N such that

N
Z ly;|T > M9 +e.

j=1
Because the function f(t) = |¢|? is continuous, there exists 6 > 0 such that |[t—y;| <
0 implies
L 7
for all j € {1,2,...,N}. The set
U={z=(2)2,€Q:|z;—y| <dforall je{1,2,...,N}}

is an open neighborhood of y in Q. For all z = (2;)32, € U we have

oo N N
9
Sl = Y Il > 3 (il - 5)
j=1 j=1 j=1
N 9 9
— 4Q__>Mq —
> M1

<
2N
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and so z € Y, ps. It follows that U C Y, as and so Y as is an open subset of ).
This completes the proof. (I

Lemma 2. Let (p,q) be a conjugate pair and let a = (a;)32, € £P. Let M > 0.
The linear functional f on X4 v defined by

fx) = (@a,x) =) ax;
j=1

is continuous with respect to the product topology on X4 nr as a subspace of €.

Proof. Let U be an open subset of R or C. We shall prove f~*(U) is open in X, a
as a subspace of Q.
If x = (x;)52, € f~'(U), then f(x) € U and there exists ¢ > 0 such that U
contains the open set
{t:]t— fx)| <e} CU.
Because a € P, the series Z ~ 1 |aj|P converges and there is an integer N, such
that

0o c »
(i
‘ Z |a] | 3M
Jj=N+1
for all N > Na. Because x € £7, the series > 7, |2;|? converges and there is an
integer Ny such that

oo

§:|mp<(jiy
. ’ 3M
J=N+1
for all N > Ny. Choose N > max (N, Nx) and let § > 0 satisfy

N

€

0 lajl < 3.
j=1

The set
Vi={y= ()2, €Q:|y; —a;| <6 forall je{l,2,...,N}}
is an open neighborhood of x in the topological space 2 and so
V=V'"NnX,um
={y=();2 € Xgm : ly; —aj| <dforall je{1,2,...,N}}

is an open neighborhood of x in X, »s. We shall prove that V C f~1(U).
Let y = (y;)32, € V. We define

- 0 ifj<N
Tj = e
z; fj>N+1

and

~_Jo ifj<N

ity ifj>N+1
and

X = (fj)‘;';l e 1 and y = (y})‘]";l e /.

Then

1%llg <llxllg <M and lylly < [lylly <M.
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We define
. JOo ifj<N
7 e fj>N+1
and
a=(d;);2, €.
Then
. €
lall, < 5=
We have

j=1
N 00

= aily; —z) + Y ai(y; — ;).
Jj=1 j=N+1

Applying the Holder and Minkowski inequalities, we obtain

N 00
F) = LI <D lagl vy — 251+ D as(y; — )]
Jj=1 j=N+1

N
<6 oI+ 1Ay - %),

j=1
€ nxil e
<z +lal, ly —xl,
€ . . -
< <+ 1all, (151, +1=1,)
Sy e
3 3M
=e.
Therefore, f(y) € U and V C f=1(U). Thus, the set f~*(U) is open in X, »s and
the function f(x) = (a,x) is continuous on X, as. This completes the proof. O

We can now prove Theorem [l

Proof. For all i € I we have the multiplicative polynomial

D
PZ(X) = Z Z (ai7d1 y Xdl) (ai1d2,Xd2) s (aiﬂdk,xdk) .

k=1 (d1,dz,...,dx) €D},
By Lemma [I] the set X, a is a compact subset of Q. By Lemma [2] the linear
functionals (aiﬁdl,xdl) are continuous on X, p7. Finite sums of finite products of
continuous functions are continuous, and so the multiplicative polynomials P;(x)
are continuous functions on X, as for all 7 € I. It follows that, for all 4 € I and
€ > 0, the approximation set

E,a = {X S Xq7M : |P1(X) — b1| < E}

is a closed subset of the compact set X, ps. For every finite subset S of I, the set
of polynomial inequalities

{|P;(x) —b;|] <e:ie S}
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has a solution xg. € £7 with ||xg .|| < M and so the set of closed sets {F;. : i €
I and € > 0} has the finite intersection property. Therefore,

() Fic = {x € Xy : Pi(x) =b; for all i € I}
<h

is nonempty and the infinite set of polynomial equations has an exact solution.
This completes the proof Theorem [l O

Theorem [2] for infinitely many linear equations in infinitely many variables is
the special case of Theorem Ml with D = 1. Theorem Ml implies Theorem Bl and
Theorem [2] implies Theorem [I1

We have the following refinement of Theorem [

Theorem 5. With the hypotheses of Theorem[]), let

m = (m;)72, €07 with m; > 0 for all j € N.

If, for every € > 0 and every finite subset S of I, the finite set of polynomial
inequalities

{IP;(x) —b;] <e:i€ S}
has a solution xgs. = (Isﬁsyj);il € 07 with |zg.e ;| < mj for all j € N, then the
infinite set of polynomial equations
{Pi(x)=0b;:1€I}
has an exact solution x = (:Ej);il € 07 with |z;| < m; for all j € N.
Proof. Let M = ||ml|4. For polynomial equations in R we use the compact space

o0

Xm = H[_mjv mj]

Jj=1

and for polynomial equations in C we use the compact space

Xm = [[ Bm,-
j=1

If x € Xy, then x € (7 and ||x||, < M, and so
Xm CXqu={xel?: x|, < M}.

By Lemmal [T} the set X, as is a compact subset of Q. The set Xy, is a closed subset
of X4 and so Xy, is compact. By Lemma [2] for all a € ¢7, the linear functional
f(x) = (a,x) is continuous on X, ps, and so its restriction to Xy, is continuous. It
follows that the multiplicative polynomials P;(x) are continuous functions on X,
for all ¢ € I, and so the approximation set

Fi.={x€Xm:|P(x)—b]| <e}
is a nonempty closed subset of the compact set Xy,. These sets have the finite
intersection property and so
() Fic ={x € Xgnr: Pi(x)=1b; for all i € I}
i€l
e>0
is nonempty. This completes the proof ([
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5. OPEN PROBLEMS

. The results in this paper suggest several questions.

(1) Are Theorems [Bl 4 and [l true for infinite sets of polynomial equations in
which the polynomials are not multiplicative?

(2) Are there classes C of infinite sets of polynomial equations in infinitely many
variables for which there is an integer S = S(C) such that, if every finite
set of at most S equations has a solution or an approximate solution, then
the infinite set of equations has a solution?

(3) Let E be a subfield of the complex numbers. Let {P;(x) = b; : i € I} be
an infinite set of polynomial equations in which every finite subset of the
equations has an exact solution or an approximate solution in F.

(a) For what subfields E of the complex numbers is it true that the infinite
set of equations have an exact solution in E7?
(b) For what sets of polynomial equations might this be true?

(4) For what subfields E of the complex numbers do we have “approximate
finite implies infinite exact” for all infinite sets of polynomial equations
with all scalars in E?

(5) The ”finitely many implies infinitely many” paradigm applies to linear equa-
tions and multiplicative polynomial equations with bounded or sequentially
bounded norms (Theorems 3] 4 and [H). For equations of this special type,
countably many implies finitely many. But there may be other classes of
equations for which this paradigm does not hold, but a stronger condition
(” countably many implies uncountably many”) is true. The problem is to
determine if such "new” classes of equations exist.

Is there an uncountably infinite set of equations such that every count-
ably infinite subset of the equations has an exact or an approximate solu-
tion, but the uncountably infinite set of equations has no exact solution?

APPENDIX A. THE THEOREMS OF F. RIESZ AND ABIAN-ESLAMI
Theorem 6. Let (p,q) be a conjugate pair and let M > 0. Let a; = (a; ;)32 € (P
for all i € N. The following are equivalent.

(a) For allr € N, there exists X, = (v,j)32, € £ such that

Ixrllg < M and Zamxm =b; forallie{1,2,3,...,r}.
j=1

(b) For allT € N and hy,...,h,. € R,

i hib;
i=1

(c) There ewists x = (x;)52, € €7 such that

1
- p\ /P

<MY

Jj=1

T
> hiai

i=1

Ix]lq < M and Y a;;a_b;  foralli€N.
j=1

F. Riesz proved the equivalence of (b) and (c) and Abian-Eslami proved (a)
implies (c).
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Proof. First we prove that (a) implies (b). For all hy,...,h, € R,

i hiai = i hi(aiyj);?';l = (i hidi,j) c /P
i=1 i=1 i=1 j=1
and
, o | r p\ /P
Z h;a; = Z Z hiai,j
i=1 p J=11li=1

We have x,. = (z,;)72; € ¢? and so, by Hélder’s inequality,

(i hlaz> Xy = (i hﬂl@jIj) S él
=1 =1

and

oo

23

1 J=1

T
E hiai7j:vj < 00.

i=1

()
i=1

For every positive integer IV, let

g(N): Z Zhiai)jxj .
j=N+1|i=1
We have
lim g(N)=0

N —oc0
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and

Z hib;

=1

kA o0
= > hi | D aiwn
i=1 j=1

IN

T N T 0o
> hiY aigeeg|+ (D ki Y aien
i=1  j=1 i=1

i= j=N+1

N r o r
< ZZhiai7j:vT,j + Z Zhiai,jxﬂj

j=1i=1 j=N+1 |i=1
N T
<D0 |D 0 hiai g |+ g(N)
j=1li=1
< DD hiai g | + g(N)
j=1li=1
= | <Z hial-> x| + g(N)
i=1 1
< Z hiag|| [|%r[lq + g(N)
i=1 »
oo r p p
<MD D hiai +g(N).
j=1li=1

Because this inequality is valid for all N and because limy_,oc g(N) = 0, it follows
that (a) implies (b).

Next we prove that (b) implies (¢). Let W be the vector subspace of ¢ spanned
by the set {a; : i € N}. Let hy,...,h,,h],..., k. be scalars such that

T T

2 : 2 : /
hiai = hlal

i=1 i=1

Then

=1
and

Z(hi — hi)bi

ZT: hib; — Z hib;
=1 =1

i=1
o | r p\ /P
<M (DD (hi = hi)as
j=1li=1
i=1

P
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It follows that there is a well-defined linear functional f on W such that

f ihiai = ihzbz
i=1 i=1

In particular, f(a;) = b;. Because

i=1 i=1 i=1 P

for all >7_, h;a; € W, the linear functional f has norm || f|| < M. By the Hahn-
Banach theorem, there is a bounded linear functional F' on ¢? such that F(w) =
f(w) for allw € W and ||F| < M.

For every bounded linear functional F' on ¢ there is a sequence x € ¢4 such that
F(a) = (a,x) for all a € ¢P. For all i € N we have

bi = f(a;) = Fla;) = (a;,x) = iaiﬂj-
=1

Thus, (b) implies (c).
The proof that (c) implies (a) is immediate. O
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