
ar
X

iv
:2

40
5.

01
76

6v
1 

 [
m

at
h.

FA
] 

 2
 M

ay
 2

02
4

MULTIPLICATIVE POLYNOMIAL EQUATIONS IN INFINITELY

MANY VARIABLES

MELVYN B. NATHANSON AND DAVID A. ROSS

Abstract. This paper describes infinite sets of polynomial equations in in-
finitely many variables with the property that the existence of a solution or
even an approximate solution for every finite subset of the equations implies
the existence of a solution for the infinite set of equations.

1. Finitely many implies infinite many

In mathematics there are theorems asserting that, for certain classes of equations,
if every finite subset of an infinite set of the equations has a solution, then the infinite
set of equations has a solution. For example, if every finite subset of an infinite set of
linear equations in n variables (that is, equations of the form

∑n
j=1 ai,jxj = bi) has

a solution, then the infinite set of linear equations in n variables has a solution. For
infinite sets of linear equations in infinitely many variables, in which each equation
contains only finitely many variables (that is, equations of the form

∑∞

j=1 ai,jxj = bi
with ai,j 6= 0 for only finitely many j), a “finitely solvable implies infinitely solvable”
theorem is also true. For a survey of related results, see Nathanson [4].

There are analogous results for linear equations that contain infinitely many
variables. The pair (p, q) is Hölder conjugate or, simply, conjugate if p > 1 and
q > 1 are real numbers such that

1

p
+

1

q
= 1

or if p = 1 and q = ∞. For 1 ≤ p < ∞, let

ℓp =











a = (aj)
∞

j=1 : ‖a‖p =





∞
∑

j=1

|aj |
p





1/p

< ∞











and, for p = ∞, let

ℓ∞ =
{

a = (aj)
∞

j=1 : ‖a‖∞ = sup{|aj| : j = 1, 2, 3, . . .} < ∞
}

be the classical Lebesque spaces of infinite sequences of real or complex numbers.
Recall Hölder’s inequality: If (p, q) is a conjugate pair and

a = (aj)
∞

j=1 ∈ ℓp and x = (xj)
∞

j=1 ∈ ℓq
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then

ax = (ajxj)
∞

j=1 ∈ ℓ1

and
∞
∑

j=1

|ajxj | = ‖ax‖1 ≤ ‖a‖p ‖x‖q .

Thus, the infinite series

(a,x) =

∞
∑

j=1

ajxj

converges absolutely and it makes sense to ask if there is a solution x ∈ ℓq of the
linear equation in infinitely many variables

(1) L(x) = (a,x) =

∞
∑

j=1

ajxj = b.

We retain the usual ambiguity between sequences of numbers and sequences of
variables. An exact solution or, simply, a solution of equation (1) is a sequence
x = (xj)

∞
j=1 ∈ ℓq such that L(x) = b. Equation (1) has an approximate solution if,

for every ε > 0, there exists xε ∈ ℓq such that

|L(xε)− b| < ε.

Let N = {1, 2, 3, . . .} be the set of positive integers and Nk the set of k-tuples
of positive integers. Extending a classical result of F. Riesz [5, pp. 61–62] (see also
Banach [2, p. 47]), Abian and Eslami [1] proved the following beautiful theorem.

Theorem 1. Let (p, q) be a conjugate pair with p > 1 and q > 1 and let ai =
(ai,j)

∞

j=1 ∈ ℓp for all i ∈ N, Consider the linear equation in infinitely many variables

Li(x) =

∞
∑

j=1

ai,jxj = bi.

Let M > 0. If, for every finite subset S of N, there is a sequence xS ∈ ℓq such that

‖xS‖q ≤ M and Li(xS) = bi for all i ∈ S, then there is a sequence x ∈ ℓq such that

‖x‖q ≤ M and Li(x) = bi for all i ∈ N.

Abian and Eslami proved their theorem only for p > 1 and for countably many
equations with real coefficients and real solutions, but the result also holds for
(p, q) = (1,∞) and for uncountably many equations with complex coefficients and
complex solutions. In Appendix A we prove Riesz’s theorem and derive Theorem 1
from it.

It is important to observe that Theorem 1 is not true without the condition that
the norm of ‖xS‖q is uniformly bounded by M for all finite sets S. The following
example is essentially due to Helly [3].

Let a = (aj)
∞
j=1 ∈ ℓp with aj 6= 0 for all j ∈ N. For all i ∈ N, define the sequence

ai = (ai,j)
∞
j=1 ∈ ℓp as follows:

ai,j =

{

0 if j < i

ai if j ≥ i.
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For all i ∈ N, consider the linear equation in infinitely many variables

Li(x) =

∞
∑

j=1

ai,jxj =

∞
∑

j=i

ajxj = 1.

We obtain the “triangular” system of equations

a1x1 + a2x2 + a3x3 + · · ·+ aixi + ai+1xi+1 + · · · = 1
a2x2 + a3x3 + · · ·+ aixi + ai+1xi+1 + · · · = 1

a3x3 + · · ·+ aixi + ai+1xi+1 + · · · = 1
...

aixi + ai+1xi+1 + · · · = 1
ai+1xi+1 + · · · = 1

For all i ≥ 1, if Li(x) = Li+1(x) = 1, then aixi = 0 and so xi = 0 (because ai 6= 0).
It follows that the infinite set of equations has no solution. However, every finite
subset of these equations is solvable.

Here is one solution. For all r ∈ N, the sequence xr = (xr,j)
∞
j=1 ∈ ℓq defined by

xr,j =

{

1/ar if j = r

0 if j 6= r

is a solution of the finite set of equations {Li(x) = 1 : i = 1, . . . , r}. We have

‖xr‖q =
1

|ar|
and lim

r→∞
‖xr‖q = lim

r→∞

1

|ar|
= ∞.

Thus, the sequence of solutions (xr)
∞
r=1 is not uniformly bounded in ℓq.

If xr is any solution of the finite set of the first r equations, then

1 =

∞
∑

j=r

ajxj =

∞
∑

j=1

ar,jxj = ‖arxr‖1 ≤ ‖ar‖p‖xr‖q

and so

‖xr‖q ≥
1

‖ar‖p
.

Because a ∈ ℓp, we have limr→∞ ‖ar‖p = 0 and so the sequence of solutions (xr)
∞
r=1

is not uniformly bounded in ℓq.
The following result extends Theorem 1 to approximately solvable systems of

linear equations.

Theorem 2. Let (p, q) be a conjugate pair. Let I be an infinite set and let ai =
(ai,j)

∞

j=1 ∈ ℓp for all i ∈ I. Consider the linear equation in infinitely many variables

Li(x) =

∞
∑

j=1

ai,jxj = bi.

Let M > 0. If, every finite subset S of I and for every ε > 0, the finite set of linear

inequalities

{|Li(x)− bi| ≤ ε : i ∈ S}

has a solution xS,ε ∈ ℓq with ‖xS,ε‖q ≤ M , then the infinite set of linear equations

{Li(x) = bi : i ∈ I}

has an exact solution x ∈ ℓq with ‖x‖q ≤ M .
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In this paper we generalize Theorem 2 to certain infinite sets of polynomial
equations in infinitely many variables and prove (this is our main result) that the
existence of norm-bounded or even sequentially bounded approximate solutions to
all finite subsets of the set of polynomial equations is sufficient to guarantee the
existence of an exact solution to the infinite set (Theorems 4 and 5). The theorems
on linear equations are special cases of the polynomial results.

Our results apply to polynomials with coefficients and solutions in the field of
real numbers and also in the field of complex numbers. However, the “finitely
many implies infinitely many” paradigm is not true for all subfields of the complex
numbers. It is not true, for example, for the field Q of rational numbers. Let
(bi)i∈I be an infinite sequence of irrational numbers and consider the infinite set of
linear equations {xi = bi : i ∈ I}. For every ε > 0, every finite subset and, indeed,
the infinite set of the equations has an approximate solution in Q, but neither the
infinite set nor any nonempty finite subset of the equations has an exact solution
in Q.

2. Polynomials in infinitely many variables

Let D be a positive integer, let d ∈ {1, 2, . . . , D}, and let

1 ≤ D < q ≤ ∞.

If q < ∞, then
1

q/(q − d)
+

1

q/d
= 1

and so the real numbers q/(q − d) > 1 and q/d > 1 form a conjugate pair. For
q = ∞, we define

q

(q − d)
= 1 and

q

d
= ∞.

If

a = (aj)
∞

j=1 ∈ ℓq/(q−d)

and

x = (xj)
∞

j=1 ∈ ℓq

then

xd =
(

xd
j

)∞

j=1
∈ ℓq/d.

From Hölder’s inequality we obtain

axd =
(

ajx
d
j

)∞

j=1
∈ ℓ1

and
∞
∑

j=1

∣

∣ajx
d
j

∣

∣ =
∥

∥axd
∥

∥

1
≤ ‖a‖q/(q−d)

∥

∥xd
∥

∥

q/d
.

Thus, the infinite series
(

a,xd
)

=

∞
∑

j=1

ajx
d
j

converges absolutely.
For all k ∈ {1, 2, . . . , D}, let Dk be the set of all k-tuples of positive integers

whose sum is at most D, that is,

(2) Dk =
{

(d1, . . . , dk) ∈ Nk : d1 + d2 + · · ·+ dk ≤ D
}

.
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This is a finite set of cardinality
(

D
k

)

. The set
⋃D

k=1 Dk has cardinality
∑D

k=1

(

D
k

)

=

2D − 1. For all ∆ = (d1, d2, . . . , dk) ∈ Dk and J = (j1, j2, . . . , jk) ∈ Nk, we define
the monomial

(3) x∆
J = xd1

j1
xd2

j2
· · ·xdk

jk

of degree

|∆| = d1 + d2 + · · ·+ dk ≤ D.

For example, let D = 3. There are seven sets of monomials. For k = 1 and
J = (j1) ∈ N1, we have

∆ ∈ D1 = {(1), (2), (3)} and x∆
J ∈

{

xj1 , x2
j1 , x3

j1

}

.

For k = 2 and J = (j1, j2) ∈ N2, we have

∆ ∈ D2 = {(1, 1), (1, 2), (2, 1)} and x∆
J ∈

{

xj1xj2 , xj1x
2
j2 , x2

j1xj2

}

.

For k = 3 and J = (j1, j2, j3) ∈ N3, we have

∆ ∈ D3 = {(1, 1, 1)} and x∆
J = xj1xj2xj3 .

Monomials do not have a unique representation in the form x∆
J . For example,

with D = 3, let k = 2 and J = (1, 1) ∈ N2. If ∆ = (1, 2) ∈ D2, then x∆
J = x1x

2
1 =

x3
1. If ∆ = (2, 1) ∈ D2, then x∆

J = x2
1x1 = x3

1. If D = 3, k = 1, J = (1) ∈ N1, and
∆ = (3) ∈ D1, then x∆

J = x3
1.

We do not need unique representation of monomials, but would have unique
representation if we considered only k-tuples (j1, j2, . . . , jk) ∈ Nk such that j1 <
j2 < · · · < jk.)

We consider only polynomials with zero constant term. In this paper, “polyno-
mial” means polynomial with zero constant term.

A polynomial of degree at most D in infinitely many variables x1, x2, x3, . . . is
an infinite series of the form

(4) P (x) =

D
∑

k=1

∑

∆∈Dk

∑

J∈Nk

a∆,J x∆
J

with coefficients a∆,J ∈ R. For example, a polynomial of degree at most 3 in
infinitely many variables is of the form

P (x) =

∞
∑

j1=1

a(1),(j1)xj1 +

∞
∑

j1=1

a(2),(j1)x
2
j1 +

∞
∑

j1=1

a(3),(j1)x
3
j1

+

∞
∑

j1=1

∞
∑

j2=1

a(1,1),(j1,j2)xj1xj2 +

∞
∑

j1=1

∞
∑

j2=1

a(1,2),(j1,j2)xj1x
2
j2

+

∞
∑

j1=1

∞
∑

j2=1

a(2,1),(j1,j2)x
2
j1xj2 +

∞
∑

j1=1

∞
∑

j2=1

∞
∑

j3=1

a(1,1,1),(j1,j2,j3)xj1xj2xj3 .

3. Multiplicative polynomials

Let

P (x) =

D
∑

k=1

∑

∆∈Dk

∑

J∈Nk

a∆,J x∆
J
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be a polynomial of degree at most D in infinitely many variables x = (xj)
∞
j=1 with

coefficients a∆,J . We consider polynomials whose coefficients a∆,J aremultiplicative

in the following sense: For all d ∈ {1, 2, . . . , D} there is a sequence

ad = (ad,j)
∞

j=1 ∈ ℓq/(q−d)

such that, if

∆ = (d1, d2, . . . , dk) ∈ Dk and J = (j1, j2, . . . , jk) ∈ Nk

then

a∆,J = a(d1,d2,...,dk),(j1,j2,...,jk) = ad1,j1ad2,j2 · · ·adk,jk .

This gives the monomial factorization

a∆,Jx
∆
J = (ad1,j1ad2,j2 · · · adk,jk)

(

xd1

j1
xd2

j2
· · ·xdk

jk

)

=
(

ad1,j1x
d1

j1

)(

ad2,j2x
d2

j2

)

· · ·
(

adk,jkx
dk

jk

)

and so
∑

J∈Nk

a∆,J x∆
J =

∑

(j1,j2,...,jj)∈Nk

(

ad1,j1x
d1

j1

)(

ad2,j2x
d2

j2

)

· · ·
(

adk,jkx
dk

jk

)

=





∞
∑

j1=1

ad1,j1x
d1

j1









∞
∑

j2=1

ad2,j2x
d2

j2



 · · ·





∞
∑

jk=1

adk,jkx
dk

jk





=
(

ad1
,xd1

) (

ad2
,xd2

)

· · ·
(

adk
,xdk

)

.

For x = (xj)
∞
j=1 ∈ ℓq, the rearrangement is justified by the absolute convergence of

the k infinite series
(

ad1
,xd1

)

,
(

ad2
,xd2

)

, . . . ,
(

adk
,xdk

)

. We obtain

P (x) =

D
∑

k=1

∑

∆∈Dk

∑

J∈Nk

a∆,J x∆
J

=

D
∑

k=1

∑

(d1,d2,...,dk)∈Dk





∞
∑

j1=1

ad1,j1x
d1

j1









∞
∑

j2=1

ad2,j2x
d2

j2



 · · ·





∞
∑

jk=1

adk,jkx
dk

jk





=
D
∑

k=1

∑

(d1,d2,...,dk)∈Dk

(

ad1
,xd1

) (

ad2
,xd2

)

· · ·
(

adk
,xdk

)

.

This is a finite sum, and so the series P (x) converges absolutely for all x ∈ ℓq.
Thus, for all b ∈ R, the multiplicative polynomial equation

P (x) = b

is well-defined, and we can ask if this equation has a solution x ∈ ℓq.
Here is an example of a multiplicative polynomial. Let 1 ≤ d ≤ D < q ≤ ∞ and

so

1 ≤
q

q − 1
≤

q

q − d
≤

q

q −D
.

For all s ∈ C with ℜ(s) > (q − d)/q, the Riemann zeta function

ζ

(

qs

q − d

)

=

∞
∑

j=1

1

jqs/(q−d)
=

∞
∑

j=1

(

1

js

)q/(q−d)
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converges absolutely. Consider the sequence

ad =

(

1

js

)∞

j=1

∈ ℓq/(q−d)

and the polynomial

(ad,x
d) =

∞
∑

j=1

xd
j

js
.

Let

∆ = (d1, d2, . . . , dk) ∈ Dk and J = (j1, j2, . . . , jk) ∈ Nk.

For all h ∈ {1, . . . , k}, let sh ∈ C satisfy ℜ(sh) > (q−d)/q and let adh
= (j−sh)

∞

j=1.
Then

∑

J∈Nk

a∆,J x∆
J =

(

ad1
,xd1

) (

ad2
,xd2

)

· · ·
(

adk
,xdk

)

=
∑

(j1,...,jk)∈Nk

xd1

j1
· · ·xdk

jk

js11 · · · jskk
.

The associated multiplicative polynomial of degree at most D is

P (x) = P (x, s1, . . . , sh)

=
D
∑

k=1

∑

∆∈Dk

∑

J∈Nk

a∆,J x∆
J

=

D
∑

k=1

∑

(d1,...,dk)∈Dk

∑

(j1,...,jk)∈Nk

xd1

j1
· · ·xdk

jk

js11 · · · jskk
.

For D = 1 and q = 2 and for complex numbers s with ℜ(s) > 1/2, the linear
polynomial in infinitely many variables is the Dirichlet series

P (x, s) =

∞
∑

n=1

xn

ns
.

The analogue of Theorem 1 for linear equations is the following “finitely many
implies infinitely many” solvability result for multiplicative polynomial equations.

Theorem 3. Let D be a positive integer and let 1 ≤ D < q ≤ ∞. Let I be an

infinite set. For all i ∈ I and d ∈ {1, 2, . . . , D}, let

ai,d = (ai,d,j)
∞

j=1 ∈ ℓq/(q−d).

For ∆ = (d1, d2, . . . , dk) ∈ Dk and J = (j1, j2, . . . , jk) ∈ Nk, let

ai,∆,J = ai,d1,j1ai,d2,j2 · · · ai,dk,jk .
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For all i ∈ I, the sequences ai,d determine the multiplicative polynomial equation

Pi(x) =

D
∑

k=1

∑

∆∈Dk

∑

J∈Nk

ai,∆,J x∆
J

=

D
∑

k=1

∑

(d1,d2,...,dk)∈Dk

(

ai,d1
,xd1

) (

ai,d2
,xd2

)

· · ·
(

ai,dk
,xdk

)

= bi.

Let M > 0. If, for every finite subset S of I, the finite set of polynomial equations

{Pi(x) = bi : i ∈ S} has a solution xS ∈ ℓq with ‖xS‖q ≤ M , then the infinite set

of polynomial equations {Pi(x) = bi : i ∈ I} has a solution x ∈ ℓq with ‖x‖q ≤ M .

4. Approximate finite implies exact infinite

The set {Pi(x) = bi : i ∈ S} of polynomial equations in infinitely many variables
x = (xj)

∞
j=1 has an approximate solution if, for every ε > 0, there exists a sequence

xε such that |Pi(xε) − bi| ≤ ε for all i ∈ S. We shall prove that an infinite set of
multiplicative polynomial equations has an exact solution if every finite subset of
the equations has a norm-bounded approximate solution. This is the main result
in this paper and immediately implies Theorem 3.

Theorem 4. Let D be a positive integer and let 1 ≤ D < q ≤ ∞. For all k ∈ N,

let

Dk =
{

(d1, . . . , dk) ∈ Nk : d1 + d2 + · · ·+ dk ≤ D
}

.

Let I be an infinite set and let x = (xj)
∞
j=1. For all i ∈ I and d ∈ {1, 2, . . . , D}, let

ai,d = (ai,d,j)
∞

j=1 ∈ ℓq/(q−d).

Then
(

ai,d,x
d
)

=

∞
∑

j=1

ai,d,jx
d
j .

For ∆ = (d1, d2, . . . , dk) ∈ Dk and J = (j1, j2, . . . , jk) ∈ Nk, let

ai,∆,J = ai,d1,j1ai,d2,j2 · · · ai,dk,jk .

. For all i ∈ I, the finite set of sequences {ai,d}
D
d=1 determines the multiplicative

polynomial equation

Pi(x) =
D
∑

k=1

∑

∆∈Dk

∑

J∈Nk

ai,∆,J x∆
J

=

D
∑

k=1

∑

(d1,d2,...,dk)∈Dk

(

ai,d1
,xd1

) (

ai,d2
,xd2

)

· · ·
(

ai,dk
,xdk

)

= bi.

Let M > 0. If, for every ε > 0 and every finite subset S of I, the finite set of

polynomial inequalities

{|Pi(x) − bi| ≤ ε : i ∈ S}

has a solution xS,ε ∈ ℓq with ‖xS,ε‖q ≤ M , then the infinite set of polynomial

equations

{Pi(x) = bi : i ∈ I}
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has an exact solution x ∈ ℓq with ‖x‖q ≤ M .

We begin with two results whose statements and proofs are valid in both the
real and complex cases.

For M > 0, the closed interval [−M,M ] = {x ∈ R : |x| ≤ M} and the closed
ball BM = {x ∈ C : |x| ≤ M} are compact. For polynomial equations in R we use
the compact topological space

Ω =

∞
∏

j=1

[−M,M ]

and for polynomial equations in C we use the compact topological space

Ω =

∞
∏

j=1

BM .

Lemma 1. The set

Xq,M = {x ∈ ℓq : ‖x‖q ≤ M}

is a compact subset of the topological space Ω.

Proof. If x = (xj)
∞
j=1 ∈ ℓq and ‖x‖q ≤ M , then |xj | ≤ M for all j ∈ N and so

Xq,M ⊆ Ω. Because Ω is compact, it suffices to prove that Xq,M is closed in the
product topology on Ω, or equivalently, that the complement of Xq,M is open. The
complement of Xq,M is the set

Yq,M = Ω \Xq,M

= {y ∈ Ω : y /∈ ℓq}
⋃

{y ∈ Ω : y ∈ ℓq and ‖y‖q > M}

=







y = (yj)
∞
j=1 :

∞
∑

j=1

|yj|
q > M q







.

Let y = (yj)
∞
j=1 ∈ Yq,M . There exist ε > 0 and N ∈ N such that

N
∑

j=1

|yj|
q > M q + ε.

Because the function f(t) = |t|q is continuous, there exists δ > 0 such that |t−yj | <
δ implies

|t|q > |yj |
q −

ε

2N
for all j ∈ {1, 2, . . . , N}. The set

U =
{

z = (zj)
∞
j=1 ∈ Ω : |zj − yj | < δ for all j ∈ {1, 2, . . . , N}

}

is an open neighborhood of y in Ω. For all z = (zj)
∞
j=1 ∈ U we have

∞
∑

j=1

|zj |
q ≥

N
∑

j=1

|zj |
q >

N
∑

j=1

(

|yj |
q −

ε

2N

)

=
N
∑

j=1

|yj |
q −

ε

2
> M q +

ε

2

> M q
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and so z ∈ Yq,M . It follows that U ⊆ Yq,M and so Yq,M is an open subset of Ω.
This completes the proof. �

Lemma 2. Let (p, q) be a conjugate pair and let a = (aj)
∞
j=1 ∈ ℓp. Let M > 0.

The linear functional f on Xq,M defined by

f(x) = (a,x) =

∞
∑

j=1

ajxj

is continuous with respect to the product topology on Xq,M as a subspace of Ω.

Proof. Let U be an open subset of R or C. We shall prove f−1(U) is open in Xq,M

as a subspace of Ω.
If x = (xj)

∞
j=1 ∈ f−1(U), then f(x) ∈ U and there exists ε > 0 such that U

contains the open set

{t : |t− f(x)| < ε} ⊆ U.

Because a ∈ ℓp, the series
∑∞

j=1 |aj |
p converges and there is an integer Na such

that
∞
∑

j=N+1

|aj |
p <

( ε

3M

)p

for all N ≥ Na. Because x ∈ ℓq, the series
∑∞

j=1 |xj |
q converges and there is an

integer Nx such that
∞
∑

j=N+1

|xj |
q <

( ε

3M

)q

for all N ≥ Nx. Choose N ≥ max(Na, Nx) and let δ > 0 satisfy

δ

N
∑

j=1

|aj | <
ε

3
.

The set

V ′ =
{

y = (yj)
∞
j=1 ∈ Ω : |yj − xj | < δ for all j ∈ {1, 2, . . . , N}

}

is an open neighborhood of x in the topological space Ω and so

V = V ′ ∩Xq,M

=
{

y = (yj)
∞
j=1 ∈ Xq,M : |yj − xj | < δ for all j ∈ {1, 2, . . . , N}

}

is an open neighborhood of x in Xq,M . We shall prove that V ⊆ f−1(U).
Let y = (yj)

∞
j=1 ∈ V . We define

x̃j =

{

0 if j ≤ N

xj if j ≥ N + 1

and

ỹj =

{

0 if j ≤ N

yj if j ≥ N + 1

and
x̃ = (x̃j)

∞
j=1 ∈ ℓq and ỹ = (ỹj)

∞
j=1 ∈ ℓq.

Then

‖x̃‖q ≤ ‖x‖q ≤ M and ‖ỹ‖q ≤ ‖y‖q ≤ M.
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We define

ãj =

{

0 if j ≤ N

aj if j ≥ N + 1

and

ã = (ãj)
∞
j=1 ∈ ℓp.

Then

‖ã‖p ≤
ε

3M
.

We have

f(y) − f(x) = (a,y − x) =

∞
∑

j=1

aj(yj − xj)

=

N
∑

j=1

aj(yj − xj) +

∞
∑

j=N+1

aj(yj − xj).

Applying the Hölder and Minkowski inequalities, we obtain

|f(y)− f(x)| ≤
N
∑

j=1

|aj | |yj − xj |+
∞
∑

j=N+1

|aj(yj − xj)|

≤ δ

N
∑

j=1

|aj |+ ‖(ã, ỹ − x̃)‖1

<
ε

3
+ ‖ã‖p ‖ỹ − x̃‖q

≤
ε

3
+ ‖ã‖p

(

‖ỹ‖q + ‖x̃)‖q

)

<
ε

3
+

ε

3M
(M +M)

= ε.

Therefore, f(y) ∈ U and V ⊆ f−1(U). Thus, the set f−1(U) is open in Xq,M and
the function f(x) = (a,x) is continuous on Xq,M . This completes the proof. �

We can now prove Theorem 4.

Proof. For all i ∈ I we have the multiplicative polynomial

Pi(x) =
D
∑

k=1

∑

(d1,d2,...,dk)∈Dk

(

ai,d1
,xd1

) (

ai,d2
,xd2

)

· · ·
(

ai,dk
,xdk

)

.

By Lemma 1, the set Xq,M is a compact subset of Ω. By Lemma 2, the linear
functionals

(

ai,d1
,xd1

)

are continuous on Xq,M . Finite sums of finite products of
continuous functions are continuous, and so the multiplicative polynomials Pi(x)
are continuous functions on Xq,M for all i ∈ I. It follows that, for all i ∈ I and
ε > 0, the approximation set

Fi,ε = {x ∈ Xq,M : |Pi(x) − bi| ≤ ε}

is a closed subset of the compact set Xq,M . For every finite subset S of I, the set
of polynomial inequalities

{|Pi(x) − bi| ≤ ε : i ∈ S}
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has a solution xS,ε ∈ ℓq with ‖xS,ε‖q ≤ M and so the set of closed sets {Fi,ε : i ∈
I and ε > 0} has the finite intersection property. Therefore,

⋂

i∈I
ε>0

Fi,ε = {x ∈ Xq,M : Pi(x) = bi for all i ∈ I}

is nonempty and the infinite set of polynomial equations has an exact solution.
This completes the proof Theorem 4. �

Theorem 2 for infinitely many linear equations in infinitely many variables is
the special case of Theorem 4 with D = 1. Theorem 4 implies Theorem 3 and
Theorem 2 implies Theorem 1.

We have the following refinement of Theorem 4.

Theorem 5. With the hypotheses of Theorem 4, let

m = (mj)
∞
j=1 ∈ ℓq with mj ≥ 0 for all j ∈ N.

If, for every ε > 0 and every finite subset S of I, the finite set of polynomial

inequalities

{|Pi(x) − bi| ≤ ε : i ∈ S}

has a solution xS,ε = (xS,ε,j)
∞

j=1 ∈ ℓq with |xS,ε,j| ≤ mj for all j ∈ N, then the

infinite set of polynomial equations

{Pi(x) = bi : i ∈ I}

has an exact solution x = (xj)
∞

j=1 ∈ ℓq with |xj | ≤ mj for all j ∈ N.

Proof. Let M = ‖m‖q. For polynomial equations in R we use the compact space

Xm =
∞
∏

j=1

[−mj,mj ]

and for polynomial equations in C we use the compact space

Xm =

∞
∏

j=1

Bmj
.

If x ∈ Xm, then x ∈ ℓq and ‖x‖q ≤ M , and so

Xm ⊆ Xq,M = {x ∈ ℓq : ‖x‖q ≤ M} .

By Lemma 1, the set Xq,M is a compact subset of Ω. The set Xm is a closed subset
of Xq,M and so Xm is compact. By Lemma 2, for all a ∈ ℓp, the linear functional
f(x) = (a,x) is continuous on Xq,M , and so its restriction to Xm is continuous. It
follows that the multiplicative polynomials Pi(x) are continuous functions on Xm

for all i ∈ I, and so the approximation set

Fi,ε = {x ∈ Xm : |Pi(x) − bi| ≤ ε}

is a nonempty closed subset of the compact set Xm. These sets have the finite
intersection property and so

⋂

i∈I
ε>0

Fi,ε = {x ∈ Xq,M : Pi(x) = bi for all i ∈ I}

is nonempty. This completes the proof �
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5. Open problems

. The results in this paper suggest several questions.

(1) Are Theorems 3, 4, and 5 true for infinite sets of polynomial equations in
which the polynomials are not multiplicative?

(2) Are there classes C of infinite sets of polynomial equations in infinitely many
variables for which there is an integer S = S(C) such that, if every finite
set of at most S equations has a solution or an approximate solution, then
the infinite set of equations has a solution?

(3) Let E be a subfield of the complex numbers. Let {Pi(x) = bi : i ∈ I} be
an infinite set of polynomial equations in which every finite subset of the
equations has an exact solution or an approximate solution in E.
(a) For what subfields E of the complex numbers is it true that the infinite

set of equations have an exact solution in E?
(b) For what sets of polynomial equations might this be true?

(4) For what subfields E of the complex numbers do we have “approximate
finite implies infinite exact” for all infinite sets of polynomial equations
with all scalars in E?

(5) The ”finitely many implies infinitely many” paradigm applies to linear equa-
tions and multiplicative polynomial equations with bounded or sequentially
bounded norms (Theorems 3, 4, and 5). For equations of this special type,
countably many implies finitely many. But there may be other classes of
equations for which this paradigm does not hold, but a stronger condition
(”countably many implies uncountably many”) is true. The problem is to
determine if such ”new” classes of equations exist.

Is there an uncountably infinite set of equations such that every count-
ably infinite subset of the equations has an exact or an approximate solu-
tion, but the uncountably infinite set of equations has no exact solution?

Appendix A. The theorems of F. Riesz and Abian-Eslami

Theorem 6. Let (p, q) be a conjugate pair and let M > 0. Let ai = (ai,j)
∞
j=1 ∈ ℓp

for all i ∈ N. The following are equivalent.

(a) For all r ∈ N, there exists xr = (xr,j)
∞
j=1 ∈ ℓq such that

‖xr‖q ≤ M and

∞
∑

j=1

ai,jxr,j = bi for all i ∈ {1, 2, 3, . . . , r}.

(b) For all r ∈ N and h1, . . . , hr ∈ R,

∣

∣

∣

∣

∣

r
∑

i=1

hibi

∣

∣

∣

∣

∣

≤ M





∞
∑

j=1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,j

∣

∣

∣

∣

∣

p




1/p

.

(c) There exists x = (xj)
∞
j=1 ∈ ℓq such that

‖x‖q ≤ M and

∞
∑

j=1

ai,jx=bi for all i ∈ N.

F. Riesz proved the equivalence of (b) and (c) and Abian-Eslami proved (a)
implies (c).
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Proof. First we prove that (a) implies (b). For all h1, . . . , hr ∈ R,

r
∑

i=1

hiai =

r
∑

i=1

hi(ai,j)
∞
j=1 =

(

r
∑

i=1

hiai,j

)∞

j=1

∈ ℓp

and

∥

∥

∥

∥

∥

r
∑

i=1

hiai

∥

∥

∥

∥

∥

p

=





∞
∑

j=1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,j

∣

∣

∣

∣

∣

p




1/p

.

We have xr = (xr,j)
∞
j=1 ∈ ℓq and so, by Hólder’s inequality,

(

r
∑

i=1

hiai

)

xr =

(

r
∑

i=1

hiai,jxj

)∞

j=1

∈ ℓ1

and

∥

∥

∥

∥

∥

(

r
∑

i=1

hiai

)

xr

∥

∥

∥

∥

∥

1

=

∞
∑

j=1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,jxj

∣

∣

∣

∣

∣

< ∞.

For every positive integer N , let

g(N) =

∞
∑

j=N+1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,jxj

∣

∣

∣

∣

∣

.

We have

lim
N→∞

g(N) = 0
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and
∣

∣

∣

∣

∣

r
∑

i=1

hibi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

r
∑

i=1

hi





∞
∑

j=1

ai,jxr,j





∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

r
∑

i=1

hi

N
∑

j=1

ai,jxr,j

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

r
∑

i=1

hi

∞
∑

j=N+1

ai,jxr,j

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

N
∑

j=1

r
∑

i=1

hiai,jxr,j

∣

∣

∣

∣

∣

∣

+

∞
∑

j=N+1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,jxr,j

∣

∣

∣

∣

∣

≤
N
∑

j=1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,jxr,j

∣

∣

∣

∣

∣

+ g(N)

≤
∞
∑

j=1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,jxr,j

∣

∣

∣

∣

∣

+ g(N)

=

∥

∥

∥

∥

∥

(

r
∑

i=1

hiai

)

xr

∥

∥

∥

∥

∥

1

+ g(N)

≤

∥

∥

∥

∥

∥

r
∑

i=1

hiai

∥

∥

∥

∥

∥

p

‖xr‖q + g(N)

≤ M





∞
∑

j=1

∣

∣

∣

∣

∣

r
∑

i=1

hiai,j

∣

∣

∣

∣

∣

p




1/p

+ g(N).

Because this inequality is valid for all N and because limN→∞ g(N) = 0, it follows
that (a) implies (b).

Next we prove that (b) implies (c). Let W be the vector subspace of ℓp spanned
by the set {ai : i ∈ N}. Let h1, . . . , hr, h

′
1, . . . , h

′
r be scalars such that

r
∑

i=1

hiai =
r
∑

i=1

h′
iai.

Then
r
∑

i=1

(hi − h′
i)ai = 0

and
∣

∣

∣

∣

∣

r
∑

i=1

hibi −

r
∑

i=1

h′
ibi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

i=1

(hi − h′
i)bi

∣

∣

∣

∣

∣

≤ M





∞
∑

j=1

∣

∣

∣

∣

∣

r
∑

i=1

(hi − h′
i)ai,j

∣

∣

∣

∣

∣

p




1/p

= M

∥

∥

∥

∥

∥

r
∑

i=1

(hi − h′
i)ai

∥

∥

∥

∥

∥

p

= 0.
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It follows that there is a well-defined linear functional f on W such that

f

(

r
∑

i=1

hiai

)

=

r
∑

i=1

hibi.

In particular, f(ai) = bi. Because
∣

∣

∣

∣

∣

f

(

r
∑

i=1

hiai

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

i=1

hibi

∣

∣

∣

∣

∣

≤ M

∥

∥

∥

∥

∥

r
∑

i=1

hiai

∥

∥

∥

∥

∥

p

for all
∑r

i=1 hiai ∈ W , the linear functional f has norm ‖f‖ ≤ M . By the Hahn-
Banach theorem, there is a bounded linear functional F on ℓp such that F (w) =
f(w) for all w ∈ W and ‖F‖ ≤ M .

For every bounded linear functional F on ℓp there is a sequence x ∈ ℓq such that
F (a) = (a,x) for all a ∈ ℓp. For all i ∈ N we have

bi = f(ai) = F (ai) = (ai,x) =

∞
∑

j=1

ai,jxj .

Thus, (b) implies (c).
The proof that (c) implies (a) is immediate. �
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