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Dissipation and decoherence of quantum systems in thermal environments are important to various
spectroscopies. It is generally believed that dissipation can broaden the line shape of spectroscopies
and thus stronger system-bath interaction can result in more significant homogeneous broadening
of two-dimensional electronic spectroscopy (2DES). Here we show that the case can be the opposite
in the regime of electromagnetically induced transparency (EIT). We predict that assisted by the
EIT, the homogeneous broadening of the 2DES at a higher temperature can be significantly reduced
due to the detailed balance. This anomalous effect is due to the long-lasting off-diagonal peaks in
2DES.

I. INTRODUCTION

As known to all, multitransition and higher temper-
ature can induce more significant decoherence and thus
result in broader line width [1, 2]. However, it has been
theoretically predicted and experimentally observed that
the multitransition of a nitrogen-vacancy (NV) center in
diamond can have longer coherence time than the single
transitions, due to manipulation of the quantum bath
evolution via flips of the center spin [3, 4]. Therefore,
it might be interesting to investigate the effect of the
temperature on the homogeneous broadening in spec-
troscopies. In this paper, we theoretically demonstrate
that the homogeneous broadening of the two-dimensional
electronic spectroscopy (2DES) in the presence of the
electromagnetically-induced transparency (EIT) can be
anomalously reduced at higher temperatures because of
the detailed balance.
In recent years, two-dimensional electronic spec-

troscopy (2DES) has emerged as a powerful tool
for investigating the ultrafast dynamics of complex
quantum systems [1, 5–13], including quantum wells [14],
quantum dots and 2D materials [15, 16], perovskites
[17], organic photovoltaic cells [18–21], photosynthetic
complexes [22–30], NV centers in diamond [31], and
chiral molecules [32]. The fundamental theoretical
framework of 2DES involves the application of three
coherent laser pulse trains to samples, generating third-
order polarization signals. Through the analysis of
the nonlinear signals, 2DES can unveil nuanced aspects
of electronic coherence, energy transfer pathways, and
correlations within a wide array of physical systems.
Notably, explorations of ultrafast processes in molecular
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aggregates, photosynthetic complexes, and semiconduc-
tor nanostructures has unearthed fundamental principles
governing the dynamics of excited states. Given that the
time-correlation function intricately influences quantum
dynamics in conjunction with the system Hamiltonian,
the center-line slope of 2DES has been proposed as
a means to extract information regarding system-bath
interaction under various conditions [33–35]. When
spectral line bands from different processes overlap,
making it challenging to distinguish distinct peaks [36],
the ability of 2DES to resolve both the structure and
dynamics is significantly hindered. The problem tends to
get worse as the environment around a molecule becomes
more diverse. As a result, the application of 2DES is
significantly limited by the spectral line width.

On the other hand, the EIT has been widely used
to realize optical non-reciprocity [37, 38], suppress
dissipation in artificial light-harvesting systems [39], and
polarize the nuclear spin at the vicinity of NV centers
in diamond [40, 41]. Intuitively, it may be natural
to utilize the EIT to effectively improve the signal-
noise ratio of 2DES [42]. The previous investigation
proposes utilizing the quantum optical EIT effect to
improve multi-dimensional spectroscopic measurements
beyond the standard resolution limits [42]. However,
at high temperature, only the downhill population
relaxation has been taken into account, while the uphill
population relaxation has been neglected therein. In
other words, the whole relaxation does not fulfill the
detailed-balance condition [1, 2]. But it is worth noting
that under non-zero temperature conditions, the uphill
population relaxation in combination with the downhill
population relaxation drive the open quantum system
towards the steady state described by the Boltzmann
distribution [1, 2]. It is this fundamental principal that
inspires us to take into account this overlooked crucial
information and consider the influence of temperature
on the spectral resolution, making it more aligned with
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Three probe pulses Control field

FIG. 1. Schematic illustration of removing homogeneous
broadening by EIT and coupling to a high-temperature bath:
(a) Pulse sequence, (b) four-level system, and (c) Feynman
diagrams.

real-world scenarios.
The rest of the paper is structured as follows. In

Sec. II, we introduce the theoretical model and perform
calculations based on the response functions. In Sec. III,
numerical simulation results are presented and analyzed.
Sec. IV describes the physical implementation. Finally,
a summary and discussion are provided in Sec. V. In
Appendixes A and B, we derive the master equations for
a two-level system and a four-level system, respectively.
In Appendix C, we discuss the whole rephasing signal.

II. THEORETICAL MODEL

In essence, the two-dimensional spectroscopy is the
third-order nonlinear polarization signal generated by
the interaction of three coherent ultra-short laser pulses
with the substance [1], where the heterodyne detection
method is applied to detect the signal. As shown
in Fig. 1(b), four pulses are applied, including three
short probe pulses and one long control field. The
first probe pulse is temporally centered at t = 0, and
the next two probe pulses are delayed by t1 and t2
in time successively. Finally, a heterodyne pulse is
applied after the time interval t3. The first three ultra-
short laser pulses generate a signal, which is heterodyne
detected by a fourth pulse in a specific phase-matching
direction. In 2DES, excitation frequency axis ω1 and
detection frequency axis ω3 are the Fourier transform of
the time delays t1 and t3, respectively. In addition to
a sequence of four pulses commonly-used in traditional
two-dimensional spectroscopy, a narrow-band control
field is applied to drive a specific transition between the
energy levels a1 and c in Fig. 1(b). Here, broadband
probe pulses can drive the transitions between b and aj
(j = 1, 2).
Without loss of generality, we first consider the 2DES

generated by the R2 path, that is, the stimulated
emission process in the direction of ks = −k1 + k2 + k3.

Here, four Feynman diagrams can be drawn for the R2

path, as shown in Fig. 1(c). We remark that in the three-
level case, i.e., a2 is absent, there is only one kind of
Feynman diagram for the R2 path, which is not shown
here. And the broadband probe pulses can not induce the
transitions a1 ⇋ a2 and c ⇋ aj , but b ⇋ aj (j = 1, 2).

The total Hamiltonian including the interaction
between the system and the control field reads

H =
∑

j

ωj |j〉〈j| −
Ω

2
e−iνct|a1〉〈c|+ h.c., (1)

where ωj is the energy of the state |j〉 (j = b, a1, a2, c),
we assume ~ = 1 for simplicity, Ω = µa1cεc is the Rabi
frequency with µa1c being the transition dipole moment,
εc and νc being the amplitude and the frequency of the
control field, respectively. Here, ωa2

is adjustable in our
investigation.

Generally, the quantum dynamics are governed
by the quantum master equation ρ̇ = − i

~
[H, ρ] −

Γ1L(Aa2a1
)ρ−Γ2L(Aa1a2

)ρ [1, 39, 43], where L(Aαβ)ρ =
1
2{A

†
αβAαβ , ρ} − AαβρA

†
αβ with {A†

αβAαβ , ρ} being

the anti-commutator, Aαβ = |α〉〈β| is the quantum
jump operator from the initial state |β〉 to the
final state |α〉. The exact quantum dynamics can
be obtained by the hierarchical equation of motion,
which can be exponentially accelerated by a recently-
developed quantum algorithm [44, 45]. However, under
certain circumstances, the quantum master equation
approach without the quantum-jump term can provide
an analytical result and thus effectively help us grasp
the underlying mechanism. In the interaction picture,
assuming νc = ωa1

−ωc, the time evolution of the density
matrix is determined by

˙̃ρa1a1
= −Γ1ρ̃a1a1

+ Γ2ρ̃a2a2
+

i

2
Ω (ρ̃ca1

− ρ̃a1c) ,

˙̃ρa1c =
i

2
Ω (ρ̃cc − ρ̃a1a1

)− γa1cρ̃a1c,

˙̃ρcc =
i

2
Ω (ρ̃a1c − ρ̃ca1

)− Γcρ̃cc,

˙̃ρa2a2
= Γ1ρ̃a1a1

− Γ2ρ̃a2a2
,

(2)

where γa1c = (Γ1+Γc)/2+γ
(0)
a1c, the population relaxation

rates between the states a1 and a2 are respectively Γ1

and Γ2, between which the relation is governed by the

detailed balance [2]. γ
(0)
a1c is the pure-dephasing rate

between states a1 and c. Here, we have assumed that
the population relaxation Γc of the metastable state c
can be neglected. As a result, we can obtain the Green
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FIG. 2. 2DES with ωa1b
− ωa2b

= 0.18Γ1 when t2 = 3Γ−1

1
,

and (a) kBT = 0.01Γ1, Ω = 0, (b) kBT = 0.01Γ1, Ω = 9Γ1,
(c) kBT = 0.1Γ1, Ω = 9Γ1, (d) kBT = 5Γ1, Ω = 9Γ1.

function as

Ga1a1,a1a1
=

−1

4iA1A3Ω̃

[
A1e

−
γa1c

2
t
(
A+

2 e
i Ω̃
2
t +A−

2 e
−i Ω̃

2
t
)

−2iΩ̃
(
Γ2A3 + Γ1A4e

−A1t
)]

,

Ga2a2,a1a1
=

Γ1

4iΩ̃A1B5

[
2iΩ̃B1

(
e−A1t −B2

)

+A1B3e
−

γa1c

2
t
(
ei

Ω̃

2
t +B4e

−i Ω̃
2
t
)]

, (3)

Ga1a1,a2a2
= −

Γ2

A1

(
−1 + e−A1t

)
,

Ga2a2,a2a2
=

1

A1

(
Γ1 + Γ2e

−A1t
)
,

where Ω̃ =
√
4Ω2 − γ2

a1c, A1 = Γ1 + Γ2, A
±
2 = [Γ2(Γ1 +

Γ2−γa1c)+Ω2](iΩ̃±γa1c)∓2Γ1Ω
2, A3 = −(Γ1+Γ2)(Γ1+

Γ2 − γa1c)−Ω2, A4 = 2A3 +Ω2, B1 = −2(Γ1 +Γ2)(Γ1 +
Γ2 − γa1c) − Ω2, B2 = (B1 − Ω2)/2, B3 = (Γ1 + Γ2 −

γa1c)(γa1c+ iΩ̃)+2Ω2 and B4 = (Γ1+Γ2−γa1c)(−γa1c+

iΩ̃)− 2Ω2.

If we consider the R2 term in the rephrasing case, the
response function is written as [1]

S(ω3, t2, ω1) = Re

2∑

i,j=1

|µbai
|2|µajb|

2Gajb,ajb(ω3)

×Gajaj ,aiai
(t2)Gbai,bai

(ω1), (4)

where µbai
is the transition dipole moment between the

states b and ai (i = 1, 2).

III. NUMERICAL RESULTS AND ANALYSIS

We investigate the effect of temperature on the
2DES under the near-resonant condition in the long-
population-time limit, as shown in Fig. 2. When there is
no control field, there is only one peak in Fig. 2(a) due
to the absence of EIT. If the control field is applied, e.g.
Fig. 2(b), the diagonal peak is split into two peaks, in
which the homogeneous broadening is partially reduced.
However, if the temperature is increased, e.g. kBT =
0.1Γ1 in Fig. 2(c), two additional small peaks begin to
emerge at the side of the above two peaks. Interestingly,
if temperature is sufficiently high, i.e., kBT = 5Γ1 in
Fig. 2(d), the original large peak in Fig. 2(a) is almost
evenly split into four peaks. Notice that the homogeneous
broadening is even narrower than that in Fig. 2(b), which
has been significantly reduced due to the EIT. In general,
the downhill and uphill rates fulfill the detailed balance
[2]. At the absolute zero temperature, there is only
population transfer from the higher level to the lower
one. As the temperature increases, the population-back
transfer emerges due to the heating by the bath. We
remark that the combination of the heating and the EIT
results in the eliminating of homogeneous broadening in
the long-population-time limit.

In order to illustrate the underlying physical mecha-
nism explicitly, we consider the case of a large detuning
between the two levels a1 and a2. We discuss the
kBT = Γ1 case as shown in the upper panel of Fig. 3,
i.e., at low temperatures. When t2 = 0, there are two
sets of diagonal peaks at ωajb (j = 1, 2), respectively. The
diagonal peak at ωa1b is split into four small peaks due to
the EIT introduced by the control field, which induces the
transition between a1 and c, while the diagonal peak at
ωa2b remains as a whole large peak. When the population
time elapses, e.g. t2 = 0.5Γ−1

1 , a set of off-diagonal peaks
at (ωa1b, ωa2b) emerge due to the population transfer
from level a1 to a2. And generated by the processes
corresponding to the four Feynman diagrams in Fig. 1(c),
the peaks in 2DES which overlap with each other in
the nearly-resonant case will be separated. When the
population time is sufficiently long, e.g. t2 = 5Γ−1

1 ,
we can observe from the spectroscopy that the peaks at
ω3 = ωa1b have disappeared and the peak in the bottom
right corner has been enhanced. And that’s because
in the long-population-time limit, i.e., t2 ≫ Γ−1

1 , the
entire population of the level a1 has been unidirectionally
transferred to the level a2. The lower panel of Fig. 3
is simulated at kBT = 103Γ1, that is, at a sufficiently-
high temperature. In the case of t2 = 0, we can not
discriminate the difference between Fig. 3(d) for kBT =
103Γ1 and Fig. 3(a) for kBT = Γ1. When t2 = 0.5Γ−1

1 ,
two off-diagonal peaks appear in Fig. 3(e). In addition to
the one in Fig. 3(b), there is one at (ωa2b, ωa1b) because
of the population-back transfer from the lower level to
the higher level due to heating by the bath. At t2 =
5Γ−1

1 , the peaks in these four regions of Fig. 3(f) do not
disappear, which is quite different from the observation
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FIG. 3. 2DES for Ω = 9Γ1, ωa1b
− ωa2b

= 50Γ1 and t2 = (a,d) 0, (b,e) 0.5Γ−1

1
, (c,f) 5Γ−1

1
. In the top panel, kBT = Γ1, while

in the bottom kBT = 103Γ1.

in the case of kBT = Γ1. Because of non-vanishing Γ2,
the bidirectional population transfer between levels a1
and a2 always exists dynamically.

In a real system, there is not only the downhill
relaxation from a1 to a2, but also the uphill relaxation
from a2 to a1. The ratio of the two relaxation rates
is determined by the temperature and the energy gap
between a1 and a2. In order to observe the different
scenarios as shown in Figs. 2-3, we can effectively adjust
the energy gap between a1 and a2. As the energy gap
increases, the 2DES obtained when a1 and a2 are nearly-
resonant will split, and thus more detailed information
about the dynamics under investigation will be revealed.

The average of inhomogeneous broadening will super-
pose 2DES with different level spacings ωa1a2

between
|a1〉 and |a2〉. When the static disorder is small, the
average of inhomogeneous broadening will not essentially
modify our main findings, as shown in Fig. 4(a). As the
static disorder increases, the homogeneous broadening
will be enlarged due to the average of inhomogeneous
broadening, as shown in Fig. 4(b). Therefore, we may
safely arrive at the conclusion that the anomalously-
reduced homogeneous broadening can be still observed
as long as σ < 2.6Γ1, which is within the experimental
observation σ = 1.4Γ1 [46].

So far as the average of the interaction between
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(a) (b)

FIG. 4. 2DES with ωa1b
− ωa2b

= 0.18Γ1 when t2 = 3Γ−1

1
,

kBT = 5Γ1, Ω = 9Γ1, and (a) σ = Γ1, (b) σ = 2.6Γ1.

the electric field and the transition dipole moments of
molecules is considered, it will superpose 2DES with
different widths of the gaps between the peaks in
Fig. 2(d). If the electric field is big enough or the
interaction between the electric field and the transition
dipole moments of molecules are nearly identical, our
main findings will not be essentially modified. In order
to make the interaction between the electric field and the
transition dipole moments of molecules nearly identical,
we can initially prepare the sample to be crystal [47].
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IV. PHYSICAL IMPLEMENTATION

To demonstrate our theoretical proposal, we use
the energy-level structure of two pheophytins, i.e.,
PheD1 and PheD2, in the PSII-RC. Their energies are
respectively E1 = 15030 cm−1 and E2 = 15020 cm−1.
The electronic coupling between them is J = −3 cm−1

[48]. We calculate the new energy levels of the dimer due
to the coupling as ε1 = (E1+E2+∆E)/2 = 15031 cm−1

and ε2 = (E1 + E2 − ∆E)/2 = 15019 cm−1 where

∆E =
√
(E1 − E2)2 + 4J2 is the gap between two levels

a1 and a2. In order to realize the four-level configuration
in Fig. 1, we utilize a vibronic mode with frequency
745 cm−1 with relaxation rate Γb = 0.1 ps−1 [49], i.e.,
|b〉 = |g〉|1〉v, |c〉 = |g〉|0〉v, |a1〉 = |ε1〉|0〉v, and |a2〉 =
|ε2〉|0〉v, where |0〉v and |1〉v are respectively the ground
and first excited state of the vibronic mode. The pure-

dephasing rates are respectively γ
(0)
a1c = γ

(0)
a1b

= γ
(0)
a2b

=

10Γ1 and γ
(0)
bc = 10Γb. The Rabi frequency of the control

field is Ω = 9Γ1. The downhill population transfer rate
is Γ1 = 10 ps−1. Here, the uphill population transfer
rate Γ2 and Γ1 satisfy the detailed-balance relation,
i.e., Γ2/Γ1 = exp(−∆E/kBT ), where T is the ambient
temperature.

V. CONCLUSION AND DISCUSSION

The proposed anomalous effect can be observed for a
wide range of parameters, which will be elucidated as
follows. First of all, the temperature must be sufficiently
high to satisfy Γ1/Γ2 ≈ 1, which is easily achieved for
a molecule with small level spacing, i.e., ~ωa1a2

≪ kBT .
This is because the contributions from the off-diagonal
peaks become more significant at higher temperatures.
Secondly, the population time t2 must exceed the inverse
of the relaxation rate 1/Γ1, i.e., t2Γ1 > 1, ensuring
that the off-diagonal peaks remain relatively stable over
time. The last but not the least, the Rabi frequency
of the control field needs to be sufficiently large, as the
separation of the sub-peaks introduced by the EIT is
proportional to the Rabi frequency. In this study, a
significant phenomenon can be observed at Ω = 9Γ1.

In this paper, we theoretically explore the anomalous
reduction of homogeneous broadening in 2DES at high
temperatures, which is attributed to the detailed balance
assisted by the EIT. Compared with lower temperatures,
the homogeneous broadening is much narrower at higher
temperatures due to the long-lasting off-diagonal peaks,
which vanish at the former case. Since in realistic
experiments, R2 can not be separated from the rephasing
signal which also contains R3, our discovery still holds
when R3 is included. When the static disorder is
considered, the homogeneous broadening is remarkably
suppressed as long as σ < 2.6Γ1, which is within the
experimental observation.
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Appendix A: Master Equation for 2-Level System

In this appendix, we will derive the master equation for
2-level system [50]. We begin by considering a quantum
system S coupled to a reservoir R. The Hamiltonian of
the total system is

H = HS +HR +HI , (A1)

where HS and HR are respectively the Hamiltonian of
the system and the reservoir,HI describes the interaction
between them.
In the interaction picture, the von Neumann equation

reads

d

dt
ρI(t) = −

i

~
[HI(t), ρI(t)] , (A2)

where ~ is the reduced Planck constant. Formally, the
total density matrix ρI(t) can be given as

ρI(t) = ρI(0)−
i

~

∫ t

0

dt
′

[
HI(t

′

), ρI(t
′

)
]
. (A3)

Inserting it into Eq. (A2) and tracing over the degrees of
freedom of the reservoir, we find

d

dt
ρS(t) = −

1

~2

∫ t

0

dt
′

trR

[
HI(t),

[
HI(t

′

), ρI(t
′

)
]]

,

(A4)
where we have assumed trR [HI(t), ρI(0)] = 0.
Assuming that the coupling between the system and

the reservoir is weak, the backaction of the system on
the reservoir can be neglected. Therefore, the density
matrix of the reservoir ρR is only negligibly affected by
the interaction and the state of the total system at time t
can be approximated by a tensor product, i.e., the Born
approximation [2],

ρI(t) ≈ ρS(t)⊗ ρR. (A5)

By substituting Eq. (A5) into Eq. (A4), we have

d

dt
ρS(t) = −

1

~2

∫ t

0

dt
′

trR

[
HI(t),

[
HI(t

′

), ρS(t
′

)⊗ ρR

]]
.

(A6)
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We perform the Markovian approximation [2], in which
the time evolution of the state of the system at time t
only depends on the present state ρS(t), i.e.,

d

dt
ρS(t) = −

1

~2

∫ t

0

dt
′

trR

[
HI(t),

[
HI(t

′

), ρS(t)⊗ ρR

]]
.

(A7)
As an example, we consider a two-level system, whose

two states are denoted as |1〉 and |2〉, with energies E1

and E2 (E1 < E2), respectively. The Hamiltonian HS

can be written as

HS =
1

2
~ωAσz, (A8)

where ωA = (E2 − E1)/~, σz = |2〉〈2| − |1〉〈1|.
Since the system interacts with a reservoir R, the total

Hamiltonian is given by [50]

HT = HS +HR +HI , (A9)

where

HR =
∑

k,λ

~ωkr
†
kλrkλ, (A10)

HI =
∑

k,λ

~(κ∗
kλr

†
kλσ− + κkλrkλσ+). (A11)

ωk is the frequency of kth mode of the reservoir with

polarization λ and r†kλ (rkλ) being the raising (lowering)
operator. Here, the coupling between the atom and the
kth mode of the reservoir with polarization λ is

κkλ = −iei
~k·~rA

√
ωk

2~ǫ0V
êkλ · ~d21. (A12)

The unit polarization vector is ê~kλ. The atom is
positioned at ~rA and V is the quantized volume. σ+ =
|2〉〈1| = (σ−)

† are the raising and lowering operators of

the atom. ǫ0 is the dielectric constant of vacuum. ~d21 is
the transition dipole moment of the atom.
For simplicity, we define the following operators

s1 = σ−, (A13)

s2 = σ+, (A14)

Γ1 = Γ † =
∑

k,λ

κ∗
kλr

†
kλ, (A15)

Γ2 = Γ =
∑

k,λ

κkλrkλ, (A16)

where si’s and Γi’s are respectively the operators in the
Hilbert space of S and R. In the interaction picture with
respect to HS +HR, we have

s̃1(t) = σ−e
−iωAt, (A17)

s̃2(t) = σ+e
iωAt, (A18)

Γ̃1(t) = Γ̃ †(t) =
∑

k,λ

κ∗
k,λr

†
k,λe

iωkt, (A19)

Γ̃2(t) = Γ̃ (t) =
∑

k,λ

κk,λrk,λe
−iωkt. (A20)

Therefore, the interaction Hamiltonian in the interac-
tion picture reads

H̃I(t) = ~

∑

i=1,2

s̃i(t)Γ̃i(t). (A21)

R0 is the initial density operator of the reservoir. The
master equation is now

˙̃ρ = −
∑

i,j

∫ t

0

dt
′

{[s̃i(t)s̃j(t
′

)ρ̃(t
′

)− s̃j(t
′

)ρ̃(t
′

)s̃i(t)]

×〈Γ̃i(t)Γ̃j(t
′

)〉R + [ρ̃(t
′

)s̃j(t
′

)s̃i(t)− s̃i(t)ρ̃(t
′

)s̃j(t
′

)]

×〈Γ̃j(t
′

)Γ̃i(t)〉R}, (A22)

where we have used the cyclic property of the trace,
i.e., tr(ABC) = tr(CAB) = tr(BCA). And the two
correlation functions are

〈Γ̃i(t)Γ̃j(t
′

)〉R = trR[R0Γ̃i(t)Γ̃j(t
′

)], (A23)

〈Γ̃i(t
′

)Γ̃j(t)〉R = trR[R0Γ̃j(t
′

)Γ̃i(t)]. (A24)

Thus, we have

˙̃ρ = −

∫ t

0

dt
′

{[σ−σ−ρ̃(t
′

)− σ−ρ̃(t
′

)σ−]e
−iωA(t+t

′

)〈Γ̃ †(t)Γ̃ †(t
′

)〉R

+[σ+σ+ρ̃(t
′

)− σ+ρ̃(t
′

)σ+]e
iωA(t+t

′

)〈Γ̃ (t)Γ̃ (t
′

)〉R

+[σ−σ+ρ̃(t
′

)− σ+ρ̃(t
′

)σ−]e
−iωA(t−t

′

)〈Γ̃ †(t)Γ̃ (t
′

)〉R

+[σ+σ−ρ̃(t
′

)− σ−ρ̃(t
′

)σ+]e
iωA(t−t

′

)〈Γ̃ (t)Γ̃ †(t
′

)〉R}

+h.c., (A25)

where the correlation functions of the reservoir are
explicitly

〈Γ̃ †(t)Γ̃ †(t
′

)〉R = 〈Γ̃ (t)Γ̃ (t
′

)〉R = 0, (A26)

〈Γ̃ †(t)Γ̃ (t
′

)〉R =
∑

k,λ

|κk,λ|
2eiωk(t−t

′

)n̄(ωk, T ), (A27)

〈Γ̃ (t)Γ̃ †(t
′

)〉R =
∑

k,λ

|κk,λ|
2e−iωk(t−t

′

)[n̄(ωk, T ) + 1].

(A28)

The average photon number of the kth mode of the
reservoir is

n̄(ωk, T ) = trR(R0r
†
k,λrk,λ) =

e−~ωk/kBT

1− e−~ωk/kBT
, (A29)

where kB is the Boltzmann constant, T is the
temperature.
Defining τ = t− t

′

, we have

˙̃ρ =

∫ t

0

dt
′

{[σ−σ+ρ̃(t− τ)− σ+ρ̃(t− τ)σ−]e
−iωAτ 〈Γ̃ †(t)Γ̃ (t− τ)〉R

+[σ+σ−ρ̃(t− τ) − σ−ρ̃(t− τ)σ+]e
iωAτ 〈Γ̃ (t)Γ̃ †(t− τ)〉R}

+h.c. (A30)
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In the continuum limit, the nonvanishing correlation functions of the reservoir are

〈Γ̃ †(t)Γ̃ (t− τ)〉R =
∑

λ

∫
d3kg(k)|κk,λ|

2eiωkτ n̄(ωk, T ), (A31)

〈Γ̃ (t)Γ̃ †(t− τ)〉R =
∑

λ

∫
d3kg(k)|κk,λ|

2e−iωkτ [n̄(ωk, T ) + 1],

(A32)

where g(k) is the density of states of the reservoir.
Because

lim
t→∞

∫ t

0

dτe−i(ωk−ωA)τ = πδ(ωk −ωA)+ iP

(
1

ωA − ωk

)
,

(A33)
where P indicates the Cauchy principal value and ωk =
kc. Based on the Markovian approximation, we replace
ρ̃(t− τ) by ρ̃(t) and obtain

˙̃ρ =
∑

λ

∫
d3kg(k)|κk,λ|

2

[
πδ(kc− ωA) + iP

(
1

ωA − ωk

)]
[n̄(kc, T ) + 1](σ−ρ̃σ+ − σ+σ−ρ̃)

+
∑

λ

∫
d3kg(k)|κk,λ|

2

[
πδ(kc− ωA) + iP

(
1

ωA − ωk

)]
n̄(kc, T )(σ+ρ̃σ− − ρ̃σ−σ+) + h.c. (A34)

To summarize, the master equation for the two-level
system reads

˙̃ρ =
[γ
2
(n̄+ 1) + i(∆

′

+∆)
]
(σ−ρ̃σ+ − σ+σ−ρ̃)

+
(γ
2
n̄+ i∆

′

)
(σ+ρ̃σ− − ρ̃σ−σ+) + h.c., (A35)

where the relaxation rate at the zero temperature is

γ = 2π
∑

λ

∫
d3kg(k)|κk,λ|

2δ(kc− ωA), (A36)

∆ =
∑

λ

P

(∫
d3k

g(k)|κk,λ|
2

ωA − kc

)
, (A37)

∆
′

=
∑

λ

P

(∫
d3k

g(k)|κk,λ|
2

ωA − kc
n̄(kc, T )

)
(A38)

are the Lamb shifts. Therefore, the ratio between the
uphill and downhill relaxation rates is determined by the
detailed balance as

Γ2

Γ1
=

n̄

n̄+ 1
= e−~ωA/kBT . (A39)

Appendix B: Master Equation for 4-Level System

For the four-level system considered in the main text,
the Hamiltonian of the system reads

H0 =
∑

j

~ωj|j〉〈j|, (B1)

where j = b, a1, a2, c, ωb < ωc < ωa2
< ωa1

. The
interaction between the system and the control field is
described by the Hamiltonian

Hint = −
~

2

∑

j=1,2

Ωje
−iνct|aj〉〈c|+ h.c., (B2)

where Ωj = µajcεc/~ (j = 1, 2) is the Rabi frequency
with µaic being the transition dipole moment between
|ai〉 and |c〉. εc and νc are the amplitude and the driving
frequency of the control field, respectively. In the basis
{|b〉, |a1〉, |a2〉, |c〉}, the Hamiltonian of the system can be
given in the matrix form as

H = H0 +Hint

=




~ωb 0 0 0
0 ~ωa1

0 −~

2Ω1e
−iνct

0 0 ~ωa2
−~

2Ω2e
−iνct

0 −~

2Ω1e
iνct −~

2Ω2e
iνct ~ωc


 .

(B3)

Furthermore, we assume that the control field is resonant
only with the transition between a1 and c, namely Ω1 =
Ω and Ω2 = 0. Then the Hamiltonian is simplified as

H =




~ωb 0 0 0
0 ~ωa1

0 −~

2Ωe
−iνct

0 0 ~ωa2
0

0 −~

2Ωe
iνct 0 ~ωc


 . (B4)
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As a result, the master equation can be written in a
compact form as

ρ̇ = −i[H, ρ] +
1

2
Γ1(|a2〉〈a1|ρ|a1〉〈a2| − |a1〉〈a2|a2〉〈a1|ρ)

+
1

2
Γ2(|a1〉〈a2|ρ|a2〉〈a1| − ρ|a2〉〈a1|a1〉〈a2|)

+
1

2
Γb(|g〉〈b|ρ|b〉〈g| − |b〉〈g|g〉〈b|ρ)

+
1

2
Γ ′
b(|b〉〈g|ρ|g〉〈b| − ρ|g〉〈b|b〉〈g|)

+
1

2
Γc(|g〉〈c|ρ|c〉〈g| − |c〉〈g|g〉〈c|ρ)

+
1

2
Γ ′
c(|c〉〈g|ρ|g〉〈c| − ρ|g〉〈c|c〉〈g|) + h.c., (B5)

where |g〉 is the ground state.

Finally, we can obtain the differential equations for the
elements of the density matrix as

ρ̇a1a1
=

i

2
Ω
(
e−iνctρca1

− eiνctρa1c

)
− Γ1ρa1a1

+ Γ2ρa2a2
, (B6)

ρ̇cc =
i

2
Ω(eiνctρa1c − e−iνctρca1

)− Γcρcc, (B7)

ρ̇a2a2
= −Γ2ρa2a2

+ Γ1ρa1a1
, (B8)

ρ̇a1c = −iωa1cρa1c +
i

2
Ω
(
e−iνctρcc − e−iνctρa1a1

)
− γa1cρa1c,

(B9)

where ωa1c = ωa1
−ωc, γa1c =

1
2 (Γ1 + Γc)+γ

(0)
a1c. For the

off-diagonal elements of the density matrix, the effect of

transverse relaxation rate γ
(0)
a1c should be considered.

In the interaction picture with respect to H0, the
master equation reads

˙̃ρa1a1
=

i

2
Ω (ρ̃ca1

− ρ̃a1c)− Γ1ρ̃a1a1
+ Γ2ρ̃a2a2

,(B10)

˙̃ρa1c =
i

2
Ω (ρ̃cc − ρ̃a1a1

)− γa1cρ̃a1c, (B11)

˙̃ρcc =
i

2
Ω (ρ̃a1c − ρ̃ca1

)− Γcρ̃cc, (B12)

˙̃ρa2a2
= −Γ2ρ̃a2a2

+ Γ1ρ̃a1a1
. (B13)

Here, we have used νc = ωac. In other words, we assume
that the driving field is resonant with the transition.

Furthermore, we assume that the population relax-
ation of state c can be neglected. Thus, Eq. (B12) is
further simplified as

˙̃ρcc =
i

2
Ω (ρ̃a1c − ρ̃ca1

) . (B14)

Appendix C: Rephasing Signal

As known to all that in experiments it is a challenge
to separate the two pathways, i.e., R2 and R3, in the
rephasing direction ks = −k1+k2+k3. In this section, we

FIG. 5. Four Feynman diagrams of R3.

further consider the ground-state bleaching R3. The two-
sided Feynman diagrams of the four possible processes
in R3 are shown in Fig. 5. When considering R3, we
explore the effect of the population dissipation of energy
level b on the whole spectrum. It is found that a similar
phenomenon appears in the whole rephasing signal, as
shown in Fig. 6.
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FIG. 6. Rephasing signal for 2DES when t2 = 3Γ−1

b
and

ωa1b
− ωa2b

= 0.18Γ1, and (a) kBT = 0.01Γ1, Ω = 0, (b)
kBT = 0.01Γ1, Ω = 9Γ1, (c) kBT = 0.1Γ1, Ω = 9Γ1, (d)
kBT = 5Γ1, Ω = 9Γ1.
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