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ABSTRACT

We solve for waves in a polytropic, stratified medium with a spatially varying background mag-

netic field that points along a horizontal x-direction, and with gravity that is directed along

the vertical z-direction. Force balance determines the magnitude of the background magnetic

field, B2
0 ∼ zn+1, where n is the polytropic index. Using numerical and asymptotic meth-

ods, we deduce an accurate and explicit dispersion relation for fast pressure-driven waves: Ω2 ∼
K (2m+ n)

[
1 + (1/MA)

2(4− 2γ + cos2 θ − 3 cos4 θ)/4
]
. Here, Ω is the frequency, K the wavenumber,

θ the angle the wave-vector makes with the background magnetic field, MA the Alfvénic Mach number,

and m an integer representing the eigen state. Applications of our result are in magnetoseismology

and nonlinear asteroseismology.

1. INTRODUCTION

The strengths of magnetic fields buried below the sur-

face of stars are not known, though they are vital for

improved understanding of the magnetic behaviour of

stars. This challenge has impeded progress in the devel-

opment of stellar magnetism and the evolution of mag-

netized stellar interiors. To estimate the magnetic field

strengths, linear asteroseismology has stood as a promis-

ing candidate (Aerts et al. 2010), although nonlinear as-

teroseismology may also be able to provide insights. It

is undisputed that the asteroseismology, both linear and

nonlinear, benefits from reliable and simple expressions

of anisotropic magnetic effect on linear waves. Specif-

ically, the development of nonlinear asteroseismology

(Guo 2020; Van Beeck et al. 2021, 2023) requires lin-

ear dispersion relations to evaluate mode resonances;

the linear asteroseismology directly employs dispersion

relations to solve the inverse problem of detecting sub-

surface magnetic fields using observed stellar surface os-

cillations. Such magnetoseismology has witnessed fit-

ful progress. For example, observational studies report

travel-time perturbations of acoustic waves to be a criti-
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cal signature of strong magnetic fields in the stellar inte-

rior (Schunker et al. 2005; Ilonidis et al. 2011). Numer-

ical simulations of asteroseismic waves also suggest the

possibility of detecting deep-seated fields, before they

emerge on the surface (Singh et al. 2014, 2015, 2016,

2020; Das et al. 2020; Das 2022). To bolster such sugges-

tive findings, a thorough understanding of the impact of

magnetic fields on asteroseismic waves is essential (Nye

& Thomas 1976; Adam 1977; Thomas 1983; Campos

1983; Cally 2007; Campos & Marta 2015; Tripathi &

Mitra 2022).

Waves in an unmagnetized polytropic atmosphere

were exactly solved analytically by Lamb (1911) who

derived the relation

Ω2

2K
− (n+ 1)(n+ 1− γn)K

2γ2Ω2
= m+

n

2
, (1)

where Ω is the frequency,K the wavenumber, n the poly-

tropic index, γ the adiabatic index, and m the eigen-

state index, with m = 0, 1, 2, ... . This advancement

led to a series of newer and significant understanding

of hydrodynamic waves. Under fast-wave approxima-

tion, Ω2/K ≫ 1, the leading-order dispersion relation

becomes

Ω2 ∼ K (2m+ n) . (2)

A similar closed-form expression for waves in a mag-

netized polytrope, as of yet, is unknown. Despite sev-
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eral progresses (e.g., Gough & Thompson 1990; Bog-

dan & Cally 1997; Cally & Bogdan 1997), the prob-

lem, to this day, remains unsolved. Gough & Thompson

(1990) treat a global problem (in spherical coordinates);

there, the computation of eigenfrequenices requires nu-

merical evaluation of complicated integral expressions

[e.g., Eqs. (4.11)–(4.13) in Gough & Thompson (1990)].

A closed-form analytical formula is not available. The

limitations of purely numerical approach and lack of

a closed-form expression were succinctly expressed by

Bogdan & Cally (1997):

“Ideally, we would wish to proceed by writing

down an equation analogous to Lamb’s for-

mula for the magnetized polytrope. Unfortu-

nately, this approach is not feasible and for

the most part one must instead be content

with a numerically derived visual compari-

son of how the allowed oscillation frequen-

cies depend upon the choice of the horizontal

wavenumber k.”

Analytic dispersion relations are also essential for de-

veloping wave turbulence theory in the presence of both

gravity and magnetic fields. In wave turbulence the-

ory, calculations of mode resonances require simple, ex-

plicit dispersion relations that accurately capture the

magnetic effect on observed linear waves. We note that

the Lamb’s dispersion relation (2), Ω ∼
√
K, is similar

to that of surface gravity waves in oceans (Hasselmann

1962). However, there is a critical difference: the surface

gravity waves do not couple via three-wave resonance,

thus requiring a weaker four-wave coupling (Nazarenko

& Lukaschuk 2016). The Lamb waves, on the other

hand, can couple via three-wave resonance, because

there are infinitely many such waves (eigen states) at a

given wave number, unlike only one pair of surface grav-

ity waves at a given wave number. Thus, the infinitely

many Lamb waves at a given wavenumber have distinct

wave frequencies, which allow the sum of three frequen-

cies at three wavenumbers to become null. While a wave

turbulence theory for surface gravity waves has been well

established, it is yet to be developed for the asteroseis-

mic waves, whose dispersion relation in fully analytic

form is a basic requirement for such a theory. The value

that an analytic dispersion relation offers in resonant-

coupling theory cannot be overstated when magnetic

fields make the wave dispersion relation anisotropic and

complicated. Motivated by these reasons, we seek here

an accurate and simple formulae for the effect of mag-

netic fields on the Lamb waves.

Introducing magnetic fields, aligned orthogonal to

a vertical gravity (Fig. 1), we find, as did Bogdan

& Cally (1997), that the linearized magnetohydrody-

namic (MHD) equations are too cumbersome to ob-

tain a closed-form expression for the dispersion relation,

even with the fast-wave approximation, Ω2/K ≫ 1.

Here, we overcome this difficulty by using both nu-

merical simulations and extensive use of Mathematica,

followed by a variant of Jeffereys–Wentzel–Kramers–

Brillouin (JWKB) approximation to deduce

Ω2 ∼ K (2m+ n)

[
1 +

ϵ2(4− 2γ + cos2 θ − 3 cos4 θ)

4

]
,

(3)

in the limit Ω2/K ≫ 1, withm = 0, 1, 2, ... . The param-

eter ϵ is the inverse of the Alfvénic Mach number and θ

is the angle the wave vector makes with the background

magnetic field. Equation (3) is the principal result of

this paper.

This paper is organized in the following way. In § 2, we
describe our model and present the linearized compress-

ible MHD equations. Such equations are then numeri-

cally solved in § 3. To obtain analytical understanding

of the numerical results, the linearized equations are re-

duced to a wave equation in § 4. The normal-form wave

equation is then perturbatively solved using a variant of

the JWKB theory we devise; analytical understanding

is gained in § 5. With astrophysical implications and

utility of our results, we conclude in § 6.

2. SYSTEM SETUP AND LINEARIZED

PERTURBATION EQUATIONS

To study waves in a magnetized, stratified medium, we

consider the ideal compressible MHD equations (Chan-

drasekhar 1961)

∂tρ+∇ · (ρU) = 0, (4a)

ρ [∂tU + (U ·∇)U ] = −∇P + ρg + J ×B, (4b)

∂tB = ∇× (U ×B) , (4c)

Dp

Dt
= c2

Dρ

Dt
, (4d)

where ρ, U , P , and B represent the density, the

velocity, the pressure, and the magnetic field, respec-

tively. The current density is J = ∇ × B/µ0, where

µ0 represents the magnetic permeability of the vacuum.

The magnetic field is additionally constrained to be

divergence-less

∇ ·B = 0. (5)

We consider a local Cartesian domain where the equilib-

rium density ρ0 and pressure P0 satisfy the polytropic

relation

P0 ∼ ρ
1+1/n
0 , (6)
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Figure 1. An inhomogeneous magnetic field B0(z), ori-
ented orthogonal to a constant vertical gravity g, is consid-
ered where the wave is allowed to propagate in an arbitrary
direction, shown with K, making an angle θ with B0. The
gradient in the colormap of the box schematically represents
increasing functions with depth z of the magnetic field, fluid
density, pressure, and sound speed.

where n is the polytropic index of the gaseous atmo-

sphere. In an unmagnetized atmosphere, the force bal-

ance gives ∂zP0(z) = ρ0(z)g, where g = gêz, with g as

the constant acceleration due to gravity along the ver-

tical z-axis, as depicted in Fig. 1. The force balance

requires

ρ0(z) ∼ zn; P0(z) ∼ zn+1. (7)

2.1. Background magnetic field and sound speed

We introduce an inhomogeneous background magnetic

field, B = B0(z)êx. The force-balance relation with the

Lorentz force, (∇×B/µ0)×B, then becomes

∂zP0 = ρ0g −
1

2µ0
∂zB

2
0 . (8)

The solution

B2
0(z) ∼ zn+1 (9)

also satisfies Eq. (7). The plasma β is then a constant

throughout the domain

β ≡ Pgas

Pmagnetic
=

2µ0P0

B2
0

. (10)

The sound speed (c) may now be deduced from Eq. (8),

using P0 = c2ρ0/γ, where γ is the adiabatic index of the

gas

∂zc
2 = −nc

2

z
+

γg

1 + β−1
. (11)

The solution to Eq. (11) is c2=c20z, where c
2
0 is a constant

given by

c20 =
γg

(n+ 1)(1 + β−1)
. (12)

It is useful to express β−1 in terms of the Alfvénic Mach

number MA, which is the ratio of the Alfvén speed to

the sound speed,

β−1 =
B2

0

µ0ρ0
· ρ0
γP0

· γ
2
=

γ

2M2
A

, (13)

using which the sound speed becomes

c2 =
γgz

(n+ 1)(1 + γM−2
A /2)

. (14)

2.2. Linearized perturbation equations

We now linearize the MHD equations around the back-

ground profiles [ρ0,0, B0, P0], introduced in Eqs. (7) and

(9). Such a linearization yields evolution equations for

infinitismal perturbations [ρ̃, ũ, b̃, p̃] as

∂tρ̃ = −(ũ ·∇)ρ0 − ρ0(∇ · ũ), (15a)

∂tũx = −∂xp̃
ρ0

+
b̃z∂zB0

µ0ρ0
, (15b)

∂tũy = −∂yp̃
ρ0

+
B0(∂xb̃y − ∂y b̃x)

µ0ρ0
, (15c)

∂tũz = −∂z p̃
ρ0

+
ρ̃g

ρ0
+
B0(∂xb̃z − ∂z b̃x)− b̃x∂zB0

µ0ρ0
,

(15d)

∂tb̃x = −B0(∂yũy + ∂zũz)− ũz∂zB0, (15e)

∂tb̃y = −B0∂xũy, (15f)

∂tb̃z = −B0∂xũz, (15g)

∂tp̃ = −(ũ ·∇)P0 − c2ρ0(∇ · ũ). (15h)

We shall use

χ̃ = ∇ · ũ (16)

in the rest of the article, where helpful.
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Equations (15a)–(15h) can be simplified to derive a

set of fewer (closed) equations

∂2t ũx = c2∂xχ̃+ g∂xũz, (17a)

∂2t ũy = c2∂yχ̃+ g∂yũz +
c2

M2
A

(∂xxũy + ∂yχ̃− ∂xyũx) ,

(17b)

∂2t ũz = c2∂zχ̃− g∂xũx

[
1 +

γ

M2
A(1 + γM−2

A /2)

]
− g∂yũy

+
γ(1 +M−2

A )gχ̃

(1 + γM−2
A /2)

+
c2

M2
A

(∂xxũz + ∂zχ̃− ∂xzũx) .

(17c)

We note that the appearance of M2
A in Eq. (17c) in cer-

tain terms may seem non-trivial at first sight; however,

upon inspection, we understand them as terms emerging

from the effect of the Lorentz force on the background

states, via terms like ∂zc
2(z) and (∂zP0)/ρn, while pro-

cessing Eqs. (15a)–(15h). Admittedly, Eqs. (17a)–(17c)

are somewhat challenging to proceed with clarity. Thus,

we now non-dimensionalize the equations to make them

reasonably transparent.

2.3. Non-dimensionalized linear equations

We define L as the characteristic length scale over

which the sound speed varies (and, for that matter,

pressure, density, and temperature also vary) appre-

ciably. Then we find that the characteristic sound

speed in an unmagnetized polytrope is, using Eq. (14),

cL =
√
γgL/(n+ 1). Using L and L/cL as the dimen-

sional length and time units, we non-dimensionalize all

variables henceforth, starting with the sound speed

C2 =
c2

c2L
=

Z

1 + γM−2
A /2

, (18)

where the lowercase dimensional variables (c and z)

are cast as uppercase non-dimensional variables (C and

Z). Thus we replace all the dimensional variables in

Eqs. (17a)–(17c) using

(x, y, z) = (LX,LY,LZ), (19a)

c2 = c2L
Z

1 + γM−2
A /2

, (19b)

∂t ≡
cL
L
∂T , (19c)

where the uppercase characters X,Y, and T represent

non-dimensional variables.

We analyze perturbations by Fourier-transforming in

the (x, y)-plane, viz.,

ũx(Z) =

∫
dKXdKY dΩ ûx exp [i(KXX +KY Y +ΩT )] ,

(20)

where the uppercase characters represent non-

dimensional quantities, e.g., K ≡ (KX ,KY ) is the

non-dimensional wavevector in the (x, y)-plane, and

Ω is the nondimensional frequency. Fourier analyzing

Eqs. (17a)–(17c) and representing M−1
A by ϵ henceforth,

we write[
−Ω2(1 + γϵ2/2)

iKXZ

]
ûx +

[
−(n+ 1)(1 + γϵ2/2)

γZ

]
ûz = χ̂,

(21a)[
−iϵ2KX

]
ûx +

[
−Ω2(1 + γϵ2/2)

iKY Z
+
ϵ2K2

X

iKY

]
ûy

+

[
−(n+ 1)(1 + γϵ2/2)

γZ

]
ûz = χ̂(1 + ϵ2),

(21b)[
iKX

{
1 + γϵ2/2

γ
+ ϵ2

(
1 +

Z∂Z
n+ 1

)}]
ûx

+

[
iKY (1 + γϵ2/2)

γ

]
ûy +

[
−Ω2(1 + γϵ2/2) + ϵ2ZK2

X

n+ 1

]
ûz

=

(
χ̂+

Z∂Z χ̂

n+ 1

)
(1 + ϵ2).

(21c)

3. EXACT NUMERICAL SOLUTION

We obtain fully converged numerical solution to

Eqs. (21a)–(21c) by employing the spectral code

“Dedalus” (Burns et al. 2020). Referring to the Dedalus

methods paper (Burns et al. 2020) for more details,

we briefly outline the numerical procedures employed

in Dedalus for eigenvalue problems. At each horizontal

wavenumber (KX ,KY ), the state variables—the three

components of velocity—are expanded in the Cheby-

shev polynomials along the inhomogeneous z-axis. Be-

cause of the background inhomogeneity, different Cheby-

shev coefficients couple, creating a dense linear opera-

tor. Sparsification is provided by a change of basis from

the Chebyshev polynomials of the first kind to those of

the second kind. To impose boundary conditions and

keep the matrix sparse, Dirichlet preconditioning is ap-

plied. Efficient solution of the resulting matrices is then

found by passing the matrices L and M in the eigen-

value (σ) problem, LX = σMX , to the “scipy” linear

algebra packages. For a given spectral resolution along

the z-axis, we solve for all the eigenvalues of the ma-

trices. Such a non-targeted, general solution produces

eigenmodes of all the linear MHD waves, including the

pressure-driven and gravity-driven modes. We specialize

in the high-frequency modes to assess the effect of mag-

netic fields on such pressure-driven modes. We identify

the pressure-driven modes by comparing their eigenfre-

quencies with those predicted by Lamb’s solution.
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Figure 2. Ω2(KX ,KY ) for hydrodynamic and magnetized
polytropes. The two plotted surfaces are visually indifferen-
tiable because the difference (∆Ω2) between them is much
smaller than Ω2; see Fig. 3. The parameters used are ϵ = 0.1,
m = 20, n = 2.5, and γ = 5/3. For variations in these pa-
rameters, the surface plot of Ω2(KX ,KY ) remains the same
qualitatively.

For the boundary condition, at the lower boundary

z = Lz, we require ũz = 0. At the upper boundary, z =

0, where the atmosphere ceases, we enforce, following

Lamb (1911),
Dp

Dt
= 0, (22)

which implies

c2
Dρ

Dt
= −c2ρ0χ̃ = 0 = zn+1χ̃. (23)

We first validate that the solver successfully repro-

duces Lamb’s exact analytical dispersion relation in

the absence of the magnetic field. We then compute

the eigenvalues of the magnetized polytrope, which we

present in Fig. 2. Although the two surface plots of

Ω2(KX ,KY ) are displayed in Fig. 2—one for the hydro-

dynamic and other for the magnetized polytrope, the

plots are visually indistinguishable. The difference be-

tween the two surface plots is shown in Fig. 3. For

KY = 0, ∆Ω2 is negative, and for KX = 0, ∆Ω2 is

positive and relatively large. We also note a minor de-

crease in positive value of ∆Ω2 in going from KX ≈ 0

to KX = 0.

It turns out that ∆Ω2 is related to the hydrodynamic

squared-frequency Ω2
hydro; and ∆Ω2/Ω2

hydro is almost en-

tirely independent of the wavevector magnitude (Fig. 4).

Only angular dependence is observed.

The extremely low wavenumbers in Fig. 4 correspond

to very large scale waves that cannot be captured in a

Figure 3. ∆Ω2 = Ω2 − Ω2
hydro is plotted for a magnetized

polytrope, with ϵ = 0.1, m = 20, n = 2.5, and γ = 5/3. This
surface plot shows the difference between the two surface
plots in Fig. 2.

Figure 4. Relative difference of squared-frequency de-
pends on the wavevector propagation angle (spanned by the
black circle), but the relative difference is insensitive to the
wavevector magnitude. The parameters chosen are ϵ = 0.1,
m = 20, n = 2.5, and γ = 5/3.

finite box in numerical calculation. To capture lower

wavenumbers, we significantly extended domain size

along the vertical z-axis, which allowed us to obtain fully

converged numerical results for other wavenumbers.

4. REDUCTION TO WAVE EQUATION

To analytically determine the dispersion relation, we

solve the set of equations (21a)–(21c) perturbatively in

the limit of a weak magnetic field, i.e., ϵ≪ 1. By setting

ϵ = 0, we recover the Lamb’s equations for the unmagne-

tized polytrope (Lamb 1911). The Lamb’s equations re-

duce to a second-order differential equation for χ̂. With

the same goal, we proceed in the following manner. We
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rewrite Eqs. (21a)–(21c) as M11 M12 M13

M21 M22 M23

M31 M32 M33


 ûxûy
ûz

 =

 hx(χ̂)

hy(χ̂)

hz(χ̂, ∂Z χ̂)

 , (24)

where the matrix elements Mij are independent of Z-

derivatives, and are functions of KX ,KY ,Ω, n, γ, ϵ, and

Z only (for their complete expressions, see Appendix A).

In arriving at Eq. (24), we have replaced ∂Z ûx in the

first term on the left-hand side of Eq. (21c) with its

exact expression obtained by differentiating Eq. (21a)

with respect to Z. We then substitute ∂Z operation

in ∂Z ûz by writing it as χ̂ − iKX ûx − iKY ûy. Such a

process removes ∂Z operation from the matrix M . The

functions hν are linear in χ̂ and ∂Z χ̂.

Straightforward inversion of the matrix M expresses

all components of the velocity in terms of χ̂ and ∂Z χ̂:

ûν = fν(Z)χ̂+ gν(Z)∂Z χ̂, (25)

where ν can be either x, y, or z. We recognize that

fν and gν are functions of Z, but do not involve ∂Z .

The three velocity components of Eq. (25) can now be

subsumed into a single second-order differential equation

for χ̂:

∂2Z χ̂+ P (Z, ϵ)∂Z χ̂+R(Z, ϵ)χ̂ = 0, (26)

which can be recast into the normal form of the second-

order differential equation by changing variable as

χ̂(Z) = ψ̂(Z) exp

[
−1

2

∫
Z

dZ P (Z)

]
, (27)

which reduces Eq. (26) to the wave equation

∂2Z ψ̂ + Γ2(Z, ϵ)ψ̂ = 0. (28)

The procedure outlined above appears straightfor-

ward. However, the analytical manipulations in arriving

at Eq. (28)—a magnetized version of Lamb’s equation—

require laborious and careful calculations, as Γ2(Z, ϵ)

alone conceals an expression of exhaustive length—tens

of pages of this article. In the absence of the magnetic

field, the expression for Γ2(Z, ϵ = 0) = Γ2
0(Z) is beau-

tifully short, Γ0(Z) = K2(Z − α)(β − Z)/Z2, where α

and β are the two turning points—two zeros of Γ0(Z).

5. PERTURBATIVE SOLUTION FOR

ANISOTROPIC MAGNETIC EFFECT

The presence of a weak magnetic field may be con-

sidered as a perturbation to Lamb’s two-turning point

eigenvalue problem. Hence, the magnetic field changes

both the locations of the turning points and the form of

the potential Γ(Z, ϵ). In general, we write the JWKB

quantization condition (see e.g., Bender & Orszag 1978;

Tripathi 2022) as

1

π

∫ Z2(ϵ)

Z1(ϵ)

Γ(Z, ϵ) dZ ∼
(
m+

1

2

)
; m = 0, 1, 2, ..., (29)

where m refers to the eigen-state index, Γ(Z, ϵ) is

the magnetically-modified wavenumber, and Z1(ϵ) and

Z2(ϵ) are the magnetically-shifted turning points.

5.1. Perturbative calculations

First, we expand the wavenumber Γ(Z, ϵ) as

Γ(Z, ϵ) = Γ0(Z) + ϵΓ1(Z) + ϵ2Γ2(Z) + ϵ3Γ3(Z) +O(ϵ4).

(30)

It may be noted that the leading-order effect of the

Lorentz force on the wavenumber appears only at the

second order O(ϵ2) in the expansion. So, Γ1(Z) above

is zero. The expressions for Γ0(Z) and Γ2(Z) are

Γ0(Z) =
iK
√
(Z − α)(Z − β)

Z
, (31a)

Γ2(Z) =
i(b2Z

2 + b1Z + b0)√
(Z − α)(Z − β)

, (31b)

where we have used KX = K cos θ and KY = K sin θ.

The parameters α and β satisfy the following properties

αβ =
n(n+ 2)

4K2
, (32a)

α+ β =

[
Ω2

K
− (n+ 1)(n+ 1− nγ)

γ2
K

Ω2

]
1

K
. (32b)

The lengthy expressions of b0, b1, and b2 are presented

in Appendix B. We note that these parameters depend

on Ω,K, θ, n, and γ only.

Now we expand the turning points Z1(ϵ) and Z2(ϵ)

around the turning points of the unmagnetized poly-

trope, Z
(0)
1 = α and Z

(0)
2 = β, as

Zj(ϵ) = Z
(0)
j + ϵZ

(1)
j + ϵ2Z

(2)
j +O(ϵ3), (33)

where j = 1 and j = 2 refer to the left and the right

turning points, respectively (i.e., α < β). We note that,

in Eq. (33), the correction term at the first order in ϵ is

zero, i.e., Z
(1)
j = 0. We find this result by substituting

the expression for Zj(ϵ) from Eq. (33) in Γ(Z, ϵ) = 0,

and by employing Eq. (30). Solving the resulting equa-

tion order-by-order in ϵ produces Z
(1)
j = 0. We note,

however, that, at the second order in ϵ (which is where

the effect of the Lorentz force comes in action), Z
(2)
j be-

comes non-zero. The expressions for Z
(2)
j are given in

Appendix C.
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Because the term Z
(2)
j appears at the second order

in ϵ, it may be tempting to assume that the term con-

tributes to second order in ϵ itself in the JWKB integral

in Eq. (29). This, however, is not the case. The term

contributes to third and higher orders in ϵ as we show

next. Expanding Eq. (29),

1

π

∫ Z
(0)
2 +ϵ2Z

(2)
2 +O(ϵ3)

Z
(0)
1 +ϵ2Z

(2)
1 +O(ϵ3)

[
Γ0(Z) + ϵ2Γ2(Z) +O(ϵ3)

]
dZ

∼
(
m+

1

2

)
; m = 0, 1, 2, ....

(34)

We now integrate Γ0(Z) as

∫ Z
(0)
2 +ϵ2Z

(2)
2 +O(ϵ3)

Z
(0)
1 +ϵ2Z

(2)
1 +O(ϵ3)

Γ0(Z) dZ

=

(∫ α

α+ϵ2Z
(2)
1 +O(ϵ3)

+

∫ β

α

+

∫ β+ϵ2Z
(2)
2 +O(ϵ3)

β

)
Γ0(Z) dZ

= −
2ϵ3K(β − α)1/2

[
Z

(2)
1

]3/2
3α

+

∫ β

α

Γ0(Z) dZ

+
2ϵ3K(β − α)1/2

[
−Z(2)

2

]3/2
3β

+O(ϵ4),

(35)

where we notice terms with ϵ3 arising from the second-

order shifts in the turning points, ϵ2Z
(2)
1 and ϵ2Z

(2)
2 .

The additional power of ϵ emerges from the integrand

Γ0(Z), which has a term
√
Z − Z

(0)
j that when ex-

panded around Z
(0)
j in powers of ϵ contributes an ϵ to

the integral.

In Eq. (35) the term
∫ β

α
Γ0(Z) dZ is the integral that

one finds in Lamb’s calculations:∫ β

α

Γ0(Z) dZ ≡

ILamb =
(n+ 1)

2

[
Ω2

K(n+ 1)
+

(γn− n− 1)K

γ2Ω2
− 1

]
+ 1.

Thus, we replace the integral
∫ β

α
Γ0(Z) dZ, appearing in

Eq. (35), with ILamb from Eq. (36) to obtain

ILamb +
ϵ2

π

∫ β

α

Γ2(Z)dZ +O(ϵ3)

∼
(
m+

1

2

)
; m = 0, 1, 2, ...,

(36)

which is accurate up to second order in ϵ. We substi-

tute Γ2(Z) from Eq. (31b) and perform the integral in

Eq. (36) to arrive at

ILamb − ϵ2
[
b0 + b1

(
α+ β

2

)
+ b2

(
3α2 + 2αβ + 3β2

8

)]
∼
(
m+

1

2

)
; m = 0, 1, 2, ... .

(37)

Employing fast-wave approximation, we expand each

term on the left-hand side of Eq. (37) in powers of

δ = K/Ω2 as

ILamb ≈ 1

δ

[
1

2
+
δ(1− n)

2
+O(δ2)

]
,

(38a)

b0 ≈ 1

δ

[
2− γ

4
+O(δ2)

]
, (38b)

b1

(
α+ β

2

)
≈ 1

δ

[
cos2 θ

4
+O(δ2)

]
, (38c)

b2

(
3α2 + 2αβ + 3β2

8

)
≈ 1

δ

[
−3 cos4 θ

8
+O(δ2)

]
.

(38d)

Thus we obtain a simplified dispersion relation from

Eq. (37):

Ω2

K

[
1

2
− ϵ2

4

{
2− γ + cos2 θ − 3 cos4 θ

2

}]
∼
(
m+

n

2

)
; m = 0, 1, 2, ... . (39)

It turns out that Eq. (39) is not in excellent agreement

with our numerical results, but replacing cos2 θ with

(cos2 θ)/2 gives excellent agreement.

Informed in this way, we write the final dispersion

relation

Ω2

K

[
1

2
− ϵ2

4

{
2− γ +

cos2 θ

2
− 3 cos4 θ

2

}]
∼
(
m+

n

2

)
; m = 0, 1, 2, ... . (40)

5.2. Comparison between theory and numerics

Using the Lamb’s relation, Ω2
hydro ∼ K(2m + n), we

rewrite Eq. (40) as

g(θ) ≡ γ/2 + ∆Ω2/(ϵ2Ω2
hydro)

= 1 +
1

4

(
cos2 θ − 3 cos4 θ

)
, (41)

where ∆Ω2 ≡ Ω2 − Ω2
hydro. This is a remarkable result.

The right-hand-side of Eq. (41) is independent of every

other possible parameter other than θ ! In Fig. 5, we

plot the function g(θ) from our numerical determina-

tion of the eigenfrequencies for several different values
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Figure 5. Theory and numerics: Our theory predicts that g(θ) = ∆Ω2/(ϵ2Ω2
hydro) + γ/2 depends only on θ as given in

Eq. (41). The function g(θ) is independent of the wavenumber K, Alfvénic Mach number ϵ−1, the polytropic index n, the
adiabatic index γ, and the eigen-state index m. Here, we plot g(θ) obtained from our numerical solutions for several different
values of m, ranging from 10 to 35, and for several different values of K (0.6 ≤ |K| ≤ 2), and for two values of ϵ and two values
of γ (different symbols). All data points collapse on the same universal curve. The function g(θ) from our asymptotic theory,
Eq. (41), is also plotted here. The asymptotic curve is indistinguishable from the exact numerical solutions.

of m and K, and two different values of ϵ, and two dif-

ferent values of γ. These numerical values are shown as

different symbols. All the different curves fall on top of

each other, creating a universal curve. We also plot our

asymptotic expression, Eq. (40), which agrees very well

with the numerical results. This demonstrates that our

theory is in excellent agreement with numerics even for

ϵ as large as ϵ = 0.1.

It is surprising that, in our attempt to capture the

anisotropy brought in by the magnetic field, despite a

myriad of unwieldy expressions encountered on the way,

an expression as simple as Eq. (40), is obtained. This

simple expression is also highly accurate, as demon-

strated in Fig. 5. The success of our asymptotic the-

ory is somewhat unexpected, given that the analytical

solution is accurate only up to the leading order ϵ and

K/Ω2.

More accurate solutions can be obtained by using the

full expressions of b0, b1, and b2 from Appendix B in

Eqs. (38d)–(38b), and keeping higher-order terms in ϵ

in Eq. (34).

Finally, a remark on the effect of magnetic fields on

the slow gravity-driven waves is in order. For the slow

waves, the first term on the left-hand side of Eq. (1) may

be neglected, which implies that such waves in unmag-

netized medium become unstable when γ < (1 + 1/n).

This is consistent with the energy principle of Newcomb

(1961). When a magnetic field is present, by applying

the energy principle of Newcomb, we find, for KX ̸= 0,1

the instability threshold on γ for the gravity waves is

lifted to γ < (1 + 1/n)(1 + 1/β). When the magnetic

field is very strong (β ≪ 1), the regular perturbation

series in powers of ϵ (∝ 1/
√
β) is possibly inadequate for

unstable gravity-driven waves. Such considerations are

clearly beyond the scope of the present paper.

6. CONCLUSIONS

Here we derive, for pressure-driven waves, an accurate

and simple analytical formula that captures the effects of

magnetic field and five other parameters: adiabatic in-

dex, polytropic index, eigenmode state index, wavenum-

bers, and the angle between the wavevector and the

magnetic field [θ=cos−1(K̂·B̂0)]. Such a six-parameter-

1 For KX = 0, the criterion for the gravity waves to become un-
stable is slightly modified: γ < (1 + 1/n)(1 + 1/β)− 2/β.
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dependent formula is distilled using a perturbative so-

lution to magnetized version of Lamb’s hydrodynamic

polytropic waves. Our explicit analytical formula over-

comes the limitation of previously attempted formulae

for the magnetized polytrope that were presented in gen-

eral integral forms; such a formulation, for instance, that

of Gough & Thompson [1990; e.g., Eq. (4.11)] and Bog-

dan & Cally (1997), requires numerical evaluation of the

eigenfrequencies, and thus leaves out the critical step of

obtaining an analytical understanding and expression.

We achieve such here guided by our numerical solutions

and at the cost of extensive use of Mathematica for our

perturbative analyses.

We emphasize that the closed-form expression we ob-

tain is not solely by use of perturbative calculation.

At the last step, we needed guidance from our numer-

ical solutions. A possible explanation for inadequacy

of the perturbative calculation alone can be the order-

ing scheme in the perturbation series, which in this pa-

per has two small parameters—one that corresponds to

the WKB short-wavelength limit approximation and the

other that is the actual small parameter, inverse of the

Alfvénic Mach number. This implies that future work

should develop better perturbation theory to take this

inadequacy into account and to generalize our method-

ology to other complex wave problems.

The simplicity and accuracy of our formula are en-

couraging to employ the formula to help solve the inverse

problem of magnetoseismology. Our formula provides an

explicit, analytical dependence of the observed surface

oscillation frequency with the orientation and strength

of the deep-seated and subsurface magnetic field. Such

an information can be crucial to predict the surface-

emergence location and strength of sunspots. Precursors

for such may be detected by analyzing the anisotropic

magnetic effect in stellar ring diagrams—the rings of

constant frequencies over the wavenumber plane.

Nonlinear asteroseismology can also directly benefit

from our analytical work, as weak turbulence theory

of asteroseismic waves inevitably requires accurate and

simple expressions of linear wave frequencies in resonant

triad interactions. The effect of the magnetic field on

such is completely unknown. However, observations now

exist that suggest resonant mode interactions are possi-

ble and can be a critical element of strongly pulsating

stars (Guo 2020). Nonlinear mode coupling of linear

eigenmodes (Tripathi et al. 2023a,b) may also need to

be analyzed, in addition to mode resonances. Future

planned research will directly take advantage of the for-

mula derived here to assess the role of the magnetic field

and other parameters in asteroseismic wave turbulence,

which is awaiting to soon enter adulthood from its in-

fancy.
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APPENDIX A

The matrix elements Mij and hµ that appear in Eq. (24) are

M11 = −Ω2(1 + γϵ2/2), (A1a)

M12 = 0, (A1b)

M13 =
−iKX(n+ 1)(1 + γϵ2/2)

γ
, (A1c)

M21 = ϵ2KXKY Z, (A1d)

M22 = −Ω2(1 + γϵ2/2) + ϵ2K2
XZ, (A1e)

M23 =
−iKY (n+ 1)(1 + γϵ2/2)

γ
, (A1f)

M31 =
iKX

γ

[
1 + ϵ2

(
3γ

2
+
K2

XZ

Ω2

)]
, (A1g)

M32 =
iKY

γ

[
1 + ϵ2

(
γ

2
+
K2

XZ

Ω2

)]
, (A1h)

M33 =
−Ω2(1 + γϵ2/2) + ϵ2K2

XZ

n+ 1
, (A1i)

hx = iKXZχ̂, (A1j)

hy = iKY Zχ̂(1 + ϵ2), (A1k)

hz = χ̂+
Z∂Z χ̂

n+ 1
+ ϵ2χ̂

[
1 +

K2
XZ

{
γ − (n+ 1)(1 + γϵ2/2)

}
(n+ 1)γΩ2(1 + γϵ2/2)

]
+ ϵ2

Z∂Z χ̂

n+ 1

[
1 +

K2
XZ

Ω2(1 + γϵ2/2)

]
. (A1l)

APPENDIX B

The parameters introduced in Eq. (31b), while writing the expression for Γ2(Z), appear below:

b2 =
−K3 cos4 θ

Ω2
, (A2a)

b1 =
−K

[
−Ω8γ4 +Ω4γ2K2(n+ 1) {(n+ 1 + γ − γn) cos(2θ)− n− 1− 3γ}+ 2K4(n+ 1)4 −K4(n+ 1)3(n+ 1− γn) cos(2θ)

]
2Ω4γ2sec2θ [Ω4γ2 −K2(n+ 1)2]

,

(A2b)

b0 =

(
4Ω8γ4(2− γ)− 2Ω4γ2K2

{
2(n+ 1)2(4− 3γ) + n(2n+ 3)γ2

}
+K4(n+ 1)2

{
nγ2(2n+ 3)− 8(n+ 1)2(γ − 1)

}
+2K2γ cos(2θ)

[
K2(n+ 1)2 {n(γ − 4 + 2n(γ − 1))− 2}+Ω4γ2

{
2(n+ 1)2 − γn(2n+ 3)

}]
+ nγ2K4(n+ 1)2 cos(4θ)

)
16Ω2γ2K [Ω4γ2 −K2(n+ 1)2]

(A2c)

APPENDIX C

Due to the magnetic field, the locations of the turning

points, Z1 and Z2, shift—which to the second order in

ϵ in Eq. (33) are given by Z
(2)
1 and Z

(2)
2 :

Z
(2)
1 =

α(b2α
2 + b1α+ b0)

K(β − α)
, (A3a)

Z
(2)
2 =

−β(b2β2 + b1β + b0)

K(β − α)
. (A3b)
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