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ABSTRACT

Healthcare monitoring is crucial, especially for the daily care of elderly individuals living alone.
It can detect dangerous occurrences, such as falls, and provide timely alerts to save lives. Non-
invasive millimeter wave (mmWave) radar-based healthcare monitoring systems using advanced
human activity recognition (HAR) models have recently gained significant attention. However, they
encounter challenges in handling sparse point clouds, achieving real-time continuous classification,
and coping with limited monitoring ranges when statically mounted. To overcome these limitations,
we propose RobHAR, a movable robot-mounted mmWave radar system with lightweight deep
neural networks for real-time monitoring of human activities. Specifically, we first propose a sparse
point cloud-based global embedding to learn the features of point clouds using the light-PointNet
(LPN) backbone. Then, we learn the temporal pattern with a bidirectional lightweight LSTM model
(BiLiLSTM). In addition, we implement a transition optimization strategy, integrating the Hidden
Markov Model (HMM) with Connectionist Temporal Classification (CTC) to improve the accuracy
and robustness of the continuous HAR. Our experiments on three datasets indicate that our method
significantly outperforms the previous studies in both discrete and continuous HAR tasks. Finally,
we deploy our system on a movable robot-mounted edge computing platform, achieving flexible
healthcare monitoring in real-world scenarios.

1 Introduction

With the rapid development of artificial intelligence techniques [1, 2, 3, 4, 5], the task of how to use the machine
to automatically recognize human activities (HAR) has become a research hotspot in many application fields. It
can be implemented in indoor monitoring scenarios to perform home behavior analysis [6], fall detection [7] and
intruder detection [2, 8]. In the field of healthcare monitoring, researchers apply HAR technologies for sleep and
respiration detection [9, 10], gait and abnormal behavior detection [11]. Other areas such as sports analysis [12], and
human-machine interaction [13] also benefit from HAR technologies. The HAR research is primarily based on three
categories of sensing devices: visual cameras, wearable devices, and contactless sensors. Although numerous efforts
have been invested in visual-based HAR studies [14] and have achieved high recognition accuracy, optical cameras
have some inherent flaws, such as being sensitive to lighting and blocking, and poor privacy protection. This has caused
significant limitations in many specific scenarios such as restrooms and bathrooms [15]. Wearable devices such as
smart watches and smart glasses mainly employ built-in accelerometers, magnetometers and gyroscopes to acquire
motion information of the human body. However, due to the need to frequently charge and wear, people often forget
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to charge causing the device to shut down, or even forget to wear the device [16]. Recently, healthcare monitoring
robots with non-contact radar sensors have received extensive attention. Their immunity to illumination and blocking,
as well as privacy-preserving features, make them superior to optical cameras and wearables in HAR applications.
Moreover, in contrast to video data, radar data requires lower bandwidth due to small data volume [17, 18]. This study
indicates that contactless radar can realize real-time continuous HAR on robot-mounted edge devices and achieve
superb classification results.

This paper specifically focuses on a millimeter-wave (mmWave) radar. The mmWave radar works in the wavelength
range between 1 and 10 mm. Thus, it has the following advantages compared to traditional sensing technologies.
First, it can provide high-precision multi-dimensional search and measurement to perform high-precision distance,
azimuth, frequency and spatial position measurement and positioning for moving objects1. Secondly, mmWave radar is
more unobtrusive since it can be concealed inside furniture or walls as it can penetrate thin layers of materials [19].
Third, mmWave radar units can be low cost, low power, small in size, and can be mounted on walls and ceilings in any
room [7], or be mounted on movable edge computing platforms as healthcare monitoring robot [10].

The data generated by mmWave radar mainly contains a 3D position (measured by the Range and the Azimuth) and a
1D Doppler (radial velocity component) information [7]. Traditionally, most radar-based HARs are based on Range
and Doppler data, which generate 1D to 3D feature maps from the Time-Range-Doppler domain information for HAR
tasks [18]. However, the attributes of Range and Doppler data also cause them to perform poorly in some tasks. First,
activities of similar motions, like falling compared to fast sitting and kneeling, as well as pets jumping off the table,
have similar time-Doppler signatures which may cause false alarms [20]. Secondly, radar is insensitive in the direction
of orthogonality direction to the radar, where only a weak Doppler signature is received [20]. Thirdly, radar-based
human activity data are still insufficient, especially for occasional actions such as falls and crawls. This is because it is
difficult to collect data of these rare events [7]. Additionally, little evidence is found from previous literature about
data augmentation applied to extend the original radar data. Thus, an increasing number of emerging studies tend to
choose 3D point cloud data in mmWave radar-based HAR [19, 7, 21, 22]. However, it is challenging to represent and
learn the pattern based on sparse and imbalanced point clouds. An extensive number of existing studies implement 2D
histogram features or 3D volumetric representations. One limitation is the trade-off between the granularity of feature
extraction and exponentially increased computational intensity. In addition, most previous research is still limited to
non-continuous data in a controlled laboratory environment, which is far from real-world scenarios. In reality, human
activity is a continuous activity and there is no pre-set start time and end time. Thus, it is still an open question about
how to automatically segment different activities and ensure the accuracy of continuous activity recognition.

To address these challenges, we first extract sparse point cloud-based global embedding to represent the posture status
of human activities at each frame, using the lightweight designed light-PointNet backbone [23]. We then propose a
bidirectional LiteLSTM (BiLiLSTM) model [24] to the time-distributed frame embeddings to classify activities within
a fixed time window. This concatenated architecture can explicitly extract the spatial and temporal features of human
activities and conduct accurate human activity recognition. Furthermore, we combine our HAR model with transition
optimization algorithms, including the Hidden Markov Model (HMM) [25] and Connectionist Temporal Classification
(CTC) [26], to enhance the accuracy and robustness of real-time continuous HAR in real-world application scenarios.

Specifically, we adopt the following steps in this study. First, we collect 3D point cloud data from a public dataset called
MMActivity [21], as well as from two self-collected datasets: discHAR (discrete data) and contHAR (continuous data).
Second, we develop a segment-wise point cloud augmentation (SPCA) algorithm, which includes data preprocessing,
hybrid alignment of point cloud data, and segment-wise augmentation. Thirdly, we extract the point cloud global
embedding using Lite-PointNet backbone on the sparse and imbalanced data. Cumulative features over time steps are
then fed into the BiLiLSTM network for feature learning and activity classification. Finally, we apply an integrated
transition optimization algorithm, combining HMM and CTC, to enhance the robustness and accuracy of continuous
HAR. In particular, we have creatively ported our model to the Raspberry Pi which is connected with the mmWave radar
and mounted on a movable healthcare monitoring platform. This forms a low-cost and deployment-friendly healthcare
monitoring robot that can be used in real-world scenarios. Based on extensive experiments, our results show that our
method performs accurately, efficiently, and robustly in both discrete and continuous HAR scenarios.

This paper contributes to the literature as follows.

1) To the best of our knowledge, this study marks the first to develop a health monitoring robot using mmWave
radar-based HAR systems, named RobHAR. It achieves mobile, lightweight, continuous HAR in real-world scenarios,
addressing challenges such as handling sparse point cloud-based HAR, enabling real-time prediction on edge computing
platforms, and overcoming fixed monitoring ranges.

1http://www.ti.com/sensors/mmwave/overview.html.
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2) A sparse point cloud-based global embedding using Light-PointNet (LPN) backbone is proposed to learn the point
cloud feature. Experiments show that the global embedding contains sufficient spatial information to represent human
activities in each frame, even in the case of very sparse and unbalanced point clouds. SPCA, a segment-wise point cloud
augmentation technique, is also proposed to improve the quantity and quality of the sparse point cloud data, reducing
the workload of labeling and ultimately significantly improving the robustness and accuracy of the model.

3) A bidirectional lightweight LSTM model, BiLiLSTM, is proposed to learn the temporal pattern of human activities,
The time-distributed global features are accumulated by consecutive time steps to represent the spatio-temporal pattern
of different human activities. Furthermore, a transition optimization strategy is proposed on the HAR model to enhance
the robustness of continuous HAR. By integrating HMM with CTC, this transition optimization method efficiently
reduces false alarms in continuous HAR and obtains satisfactory accuracy and stability.

4) Extensive experiments have been conducted on two discrete and one continuous HAR datasets. The results
demonstrate that our proposed LPN-BiLiLSTM model significantly outperforms the benchmarks, achieving higher
accuracy with lower computing costs on all datasets. Additionally, our proposed transition optimization strategy,
HMM-CTC, further enhances the robustness and accuracy of continuous HAR. Particularly, our system is deployed
on a robot-mounted mmWave radar-based edge computing platform, achieving accurate and continuing healthcare
monitoring in real-world scenarios.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related work of point cloud feature
representation, HAR models and transition optimization algorithms. Section 3 introduces our RobHAR system, which
consists of segment-wise point cloud augmentation, sparse point cloud global embedding, HAR model, and transition
optimization. Section 4 presents the experiment settings and the evaluation of our proposed approach, with extensive
experiments on three datasets. Section 5 concludes the paper.

2 Related Work

Intensive research works have been conducted on radar-based HAR in recent years. This paper focuses on sparse point
cloud-based HAR on mmWave radar. In this section, we focus on sparse point cloud feature representation, HAR
models, and transition optimization strategies for HAR.

2.1 Point Cloud Feature Representation

Generally, mmWave radar generates time series signals, and after signal transformation, it can output a series of frames.
Each frame comprises a random number of points. In the HAR area, feature extraction is based on windowed data (i.e.,
data within each time window segment) to produce feature vectors for recognition.

The earlier studies normally extract point cloud features with generic volumetric feature extraction methods by
voxelating sparse point cloud into a 3D space [21, 19]. Sing et al. [21] proposed RadHAR framework to classify five
human activities through a mmWave radar. By voxelating, they generated a 60 × 10 × 32 × 32 (614,400) feature
vector as an input to classifiers. Zhao et al. [19] proposed a human tracking and identification system (mID) to
identify people’s unique characteristics based on mmWave radar. They created an occupancy grid cube and then
flatted it into a feature vector of a dimension of 16,000 for each frame. The feature volume of the mID is much larger
(16, 000× 33× 2 = 1, 056, 000) than RadHAR. The main limitation of the above-mentioned volumetric methods is
enormous memory occupation (e.g., RadHAR requires more than 45GB for training and 16GB for testing while mID
requires an even larger occupation) and computational intensity in training and testing [27].

A breakthrough made by Qi et al. [28] is that PointNet was introduced to overcome the drawbacks of volumetric
methods. PointNet is an end-to-end deep neural network that directly consumes point clouds to learn point-wise and
global features. Extensive empirical evidence shows that this approach enables the network to sufficiently represent the
global features of point clouds in a broad range of application scenes, such as object classification and part segmentation.
A series of following research further extends this method [29, 30, 31, 32, 23, 33]. They mainly focus on improving
local structure representation in object classification and part segmentation.

Later, inspired by the Transformer [34] models, various iterations such as Point Transformer v1-v3 [35, 36, 37] have
gained attention and demonstrated cutting-edge performance. However, despite their success, Transformer-based
backbones require substantial computational resources and encounter challenges in quadratic complexity and handling
long sequences [23].

Recently, Mamba [38] empowered point cloud representations such as PointMamba [32] and Mamba3D [23], have
shown superior performance and higher efficiency than the Transformer-based models, using a light-PointNet model to
extract patch embedding for small amount of points, integrated with a state space model to represent the overall large
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amount of points. Inspired by their success and considering the limited computational power of our robot platform,
as well as the sparsity of our point clouds generated by mmWave radar, we select only the patch embedding model
light-PointNet (LPN) as backbone to extract the point cloud feature.

2.2 HAR Models

In early studies, machine learning techniques such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Decision Tree (DT), Quadratic Discriminant Analysis (QDA), Random Forest (RF) have been widely used in small-scale
static HAR scenarios [39, 17]. Later, an increasing number of deep learning methods including convolutional neural
networks (CNNs), recurrent neural networks (RNNs), Gated Recurrent Units (GRU), and Auto-Encoder (AE), and have
demonstrated superior performance with the conventional machine learning methods [40, 41, 21].

In recent years, with the success of Transformer [34], there has been a surge in time series modeling methods based
on them, including Informer [42], Dliner [43], and SCINet [44]. These models have demonstrated state-of-the-art
performance in time series data prediction tasks, such as HAR. However, Transformer-based models incur high
computational costs and are not suitable for direct deployment on robot-mounted edge devices for real-time HAR [23].
Recent research by Xie et al. [45] has shown that a concatenate model, which combines feature embedding with
the classic MLSTM-FCN model, can achieve comparable performance compared to the Transformer-based models.
Additionally, a light-weighted LSTM model LiteLSTM [24], is proven to be more accurate and efficient than the
traditional LSTM model in HAR task.

Inspired by these previous works, in this study, we propose a concatenate model for HAR. It stacks the LPN-generated
point cloud embeddings by consecutive time steps, then combines a bidirectional LiteBiLSTM (BiLiLSTM) model to
classify human activities accurately.

2.3 Transition Optimization

Although numerous successful HAR research works have appeared in recent years, most of them are based on
segmented time sequences for learning and predicting human activities, without considering the fact that there is no
pre-segmentation in real-world application scenarios.

Researchers have conducted exploratory studies on transition optimization. Ding et al. [46] proposed a concept of
transitions that refers to a timeslot between two meaningful activities. They introduced a peak search method based on
dynamic range-Doppler trajectory to extract the local maximum of Doppler components and select the most appropriate
window centered on the peak points. Coppola et al. [47] applied an HMM to learn a transition probability distribution
between two activity states from the number of state changes in the training set. The HMM is capable of enhancing
the robustness and accuracy of segmentation estimation by eliminating potential errors. Another method dealing with
transitions between valid motions is Connectionist Temporal Classification (CTC) [26]. CTC is widely used in the field
of speech and text recognition, and it has been shown to be effective in filtering the transition gap between adjacent
words [48, 49]. Zhang et al. [50] implemented the CTC algorithm in the field of dynamic continuous hand gesture
recognition using radar sensors. They demonstrated that CTC performs effectively in processing unsegmented human
activity sequences.

In this study, we design a joint architecture that synthetically integrates HMM and CTC with the proposed HAR model,
which obtains continuous, accurate and real-time HAR in the real world.

3 RobHAR System

In this section, we provide a detailed explanation of our proposed RobHAR system, which is comprised of four modules,
including SPCA, sparse point cloud global embedding, HAR, and transition optimization module. The architecture of
RobHAR is shown in Figure 1.

3.1 Segment-wise Point Cloud Augmentation

The task in this study is classifying human activities based on a sparse point cloud generated by a mmWave radar.
For this purpose, we extract global embedding using LPN model, which directly learns the features of sparse and
non-uniformed point clouds. To ensure a balanced input and enhance the generalization of the point cloud global
embedding, we develop a segment-wise point cloud augmentation (SPCA) algorithm, as detailed below.
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Figure 1: The architecture of our proposed RobHAR system.

3.1.1 Hybrid Alignment

Given non-uniformed raw point clouds from mmWave radar, we adopt a hybrid alignment method, i.e., hybrid
sampling to ensure a balanced input fed to the LPN model. We denote a set of point clouds as PC, where each point
has coordinates of (x, y, z) in the radar polar coordinates. The hybrid sampling method automatically implements
upsampling or downsampling when the number of points in each frame is smaller or larger than the alignment size AS.
Upsampling randomly replicates points from the frame until the total number of points reaches AS while downsampling
randomly selects the number of points equalling AS.

To obtain the optimal AS, we compare and evaluate the impact of different AS on the classification accuracy according
to the distributions of point clouds on the experiment datasets, including MMActivity [21] and our constructed discHAR
and contHAR dataset. For example, the MMActivity has a maximum of 25 points for each frame, while discHAR and
contHAR have a maximum of 64 points per frame. Therefore, for MMActivity data alignment, we set AS to 5, 10,
15, 20, and 25, respectively, to identify the optimal AS; for discHAR and contHAR, we set 10, 20, 30, 40, 50, and 64,
respectively, to seek the optimal AS.

3.1.2 Segment-wise Augmentation

To enlarge the training sample size and enhance the robustness of our model, we develop the SPCA algorithm (see
Figure 6 in Appendix 5), including segment-wise rotating, stretching and perturbating for the training set. Previous
studies have successfully applied frame-wise augmentation methods in static object classification and part segmentation
tasks [28]. It is capable of augmenting the points randomly to any direction by any angle in 3D coordinates. To transfer
it to our dynamic point clouds scenario, and based on the observation of human activities in the real world, we make the
following two assumptions:

Assumption 1. Conventional frame-wise point cloud augmentation methods may easily fail in the HAR domain.

Assumption 2. Segment-wise augmentation will only take effect if it is consistent with the natural characteristics of
human activities. Specifically, rotation can only be applied on the horizontal plane, stretching can be applied in the
horizontal plane and vertical directions, and perturbation can be applied on all points.

It is easy to prove Assumption 1 since numerous examples can be found in the real world. For example, when we
rotate the points in a “standing” sample by 90 degrees, the points mistakenly represent “lying” after the rotation, thus
misleading the learning model to classify the actual human activities. For Assumption 2, it is also explainable. Rotating
and stretching the segment (sequence of point cloud frames) on the horizontal plane is consistent with the fact that
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Figure 2: The sparse point cloud global embedding model to learn the frame-wise point cloud feature.

humans can move in various directions and at different speeds on the ground. Meanwhile, stretching in the vertical
directions actually indicates higher or shorter objects. Perturbation indicates the slight movement of the human body,
which is consistent with the phenomenon that our body keeps moving gently with the heartbeat and breath.

SPCA formulation. Figure 6 shows the detailed SPCA algorithm. We denote P = {Pij |i = 1, 2, · · · , L; j =
1, 2, · · · , AS} as a training segment with a shape of (L,AS, 3), where Pij = (xij , yij , zij) denotes the jth point in the
ith frame in P ; L refers to time-window size, indicating that a training sample P comprises L consecutive frames; the
alignment size AS is related to the hybrid sampling methods discussed above, ensuring a balanced point cloud vector
for the feature extraction model; and 3 indicates the 3D dimension of xyz space. We further denote rotation angle θ,
stretching index s, and perturbation value p for the SPCA.

We first calculate the centroid Pc = (xc, yc, zc) of the point segment P . Then, we apply rotation on the horizontal
plane by angle θ around the axis u = (xc, yc, zc). This is implemented by first mapping the points in P to PM so
that rotating around the axis u′ = (0, 0, 1) is implemented by straightforwardly multiplying a basic rotation matrix on
the vertical axis. After that, a reverse operation is applied to update the PR back to the original coordinates. Then,
the stretched points PS are obtained by multiplying the stretching index s to all points and followed by adding the
perturbation values p = (px, py, pz) to all points.

Thus, the SPCA is successfully implemented on the training set to get augmented segment PA. By repeating this
operation by epochs, it can acquire tens of times larger number of training samples that represent a variety of human
characteristics (tall or short, fat or slim), various moving directions (e.g. forward, backward, sideways), and different
acting speeds (fast or slow).

3.2 Sparse Point Cloud global embedding

This section introduces the details of sparse point cloud global embedding that extracts frame-wise features from sparse
point cloud, using LPN model as the backbone.

As shown in Figure 2, the feature extraction process begins with a Transformation Net, which standardizes the input
point clouds, ensuring robustness against various transformations.

Subsequent layers of Conv1D + BN + ReLU are employed for feature learning. These layers, with batch normalization
and ReLU activation, introduce non-linearity and efficiently capture essential features, progressively reducing dimen-
sionality. Maxpooling1D is then utilized to further abstract the features by taking the maximum value over intervals,
significantly reducing spatial dimensions and emphasizing critical aspects. A Reshape layer follows, adjusting the
dimensions to maintain compatibility throughout the architecture. This is crucial for the seamless flow of data between
different stages.

Finally, the FC + BN + ReLU layer processes the reshaped features to learn complex patterns. The Lambda: multiply
operation at this stage combines the features to generate a comprehensive global embedding that encapsulates the
essential characteristics of the original sparse point clouds.

This structure exemplifies a systematic approach to handling specialized data, ensuring effective feature extraction
through a series of transformational, convolutional, pooling, reshaping, and fully connected operations.

3.3 HAR module

In this section, we employ the bidirectional lightweight LSTM (BiLiLSTM) as the HAR module, as shown in Figure 1.
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The HAR module is designed for human activity pattern learning, utilizing a time series of point clouds as raw data.
As we described in the previous section, each frame of point clouds is extracted through the sparse point cloud global
embedding module first, and shared weights are applied to extract significant features from the point clouds. These
features are then processed through a BiLiLSTM network with 256 units, which captures temporal patterns by analyzing
data in both forward and backward directions. This comprehensive temporal analysis allows for a nuanced understanding
of the sequence of activities. The output from the BiLiLSTM is condensed to 128 units before reaching the Activity
Classification (AC) layer, which classifies the activities into distinct categories based on the learned temporal patterns.

This architecture highlights the potential for real-time, efficient human activity recognition from point cloud data.

3.4 Transition Optimization

To achieve continuous real-time HAR, a popular approach is to split the time series data into sliding windows [51].
However, there is the potential for windows to overlap and not correctly represent realistic activity behaviors [47].

In our RobHAR system, the HAR module independently outputs a series of classification results without considering
the relationship between adjacent predictions. This contradicts the continuous nature of human activities, which exhibit
close relationships between adjacent time steps.

In this section, we introduce a transition optimization strategy that employs a combination of HMM and CTC methods
to enhance performance in continuous HAR tasks. This dual approach is designed to improve accuracy and avoid
abnormal predictions. In the HMM stage, the hidden states Y is the ground truth of human activities, the observed
data D denotes the outputs of the HAR module, and the observed states X indicate the predicted activities. Based
on the labeled training dataset, the HMM model learns parameters including 1) start probability π, represents the
initial likelihood of each state Yi; 2) emission probability A, denotes the probability of Yi generating X; 3) transition
probability B, refers to the chance of transitioning from one state Yi to another Yj . The output H encapsulates these
predictions, providing an optimized probability to better interpret the pattern of human activities.

The CTC stage introduces a blank placeholder ϵ to handle alignment issues between input sequences and output labels
during training. This stage refines the activity recognition results by filtering out the blank transition frames between
two adjacent activities. At last, it produces the final optimized output C.

By integrating HMM’s temporal dependency modeling with CTC’s sequence alignment robustness, our proposed
transition optimization strategy ensures a more accurate representation of transitions between different human activities,
which is crucial for the reliability of continuous HAR systems. This sophisticated approach highlights the potential for
advanced applications in real-time healthcare monitoring and analysis.

4 Experiments and Evaluation

In this section, we first introduce the experiment settings, including the details of datasets, the comparative algorithms,
and the evaluation metrics. Then, we explain the details of the selection of time window size, the evaluation of SPCA,
HAR, transition optimization and the computational costs.

4.1 Experiment Settings

4.1.1 Datasets

We evaluate the performance of our RobHAR on three datasets, MMActivity [21], and two self-constructed datasets,
including a discrete dataset discHAR and a continuous dataset contHAR.

MMActivity. The MMActivity Dataset[21] is an indoor human activity dataset consisting of 5 activities, including
walking, jumping, jumping jacks, squats, and boxing. Each activity is performed by two subjects in front of the radar,
which is placed on a tripod at a height of 1.3m in a laboratory environment. The radar chip is from TI’s low-cost
commercial product IWR1443BOOST. It has three transmitters and four receiver antennas, making it capable of
detecting moving objects in the 3D plane and producing point clouds with multi-dimensional information, including
spatial coordinates, velocity, range, intensity and azimuth. The entire dataset is acquired at a 30Hz sampling frequency,
with a duration of around 20 minutes for each activity and 93 minutes in total.

DiscHAR and ContHAR. The discHAR and contHAR datasets are acquired by a movable robot-mounted mmWave
radar platform. It has 3 TX antennas and 4 RX antennas, where the radar frame period is 100 ms. The chirp start
frequency is 77 GHz, and 48 chirp signals are issued during each frame period. The sweep bandwidth is 3.2 GHz, and
the chirp sweep rate is 100 MHz/us. The radar installation height is about 1.6m, the pitch angle is about 20 degrees, and
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the active test area of 3.5m× 3.5m is marked 1.2m ahead of the radar. A total of 14 sets of data sets are collected in
the experiment. The total duration of the data sets is about 100 minutes. Five human activities are labeled in the dataset,
including walking, falling, standing, rising and lying.

The discHAR dataset collects each independent individual activity without considering the transition between two
events. For example, the samples of “walking" and “falling" are collected separately. The contHAR dataset collects
continuous events that are closer to real-world scenarios. For example, a subject sequentially performs walking followed
by falling and then lying on the floor. Thus, this dataset collects both activity frames and the transition frames between
two activities.

The number of valid samples for training is mainly corresponding to the size of the time window L. As shown in
Figure 3, the total activity events count for 2,474 while each event lasts for different durations, from 0.5 seconds
to 14 seconds. Hence, the number of valid samples varies from 18,315 to 976. We have conducted comprehensive
experiments to select the optimal time window size L in below sections.

Figure 3: The statistics of valid samples of the discHAR and contHAR dataset. The L denotes the size of the time
window. With different L values, the valid samples in both datasets change dramatically.

4.1.2 Comparative Algorithms

We compare the benchmark models and our proposed models in our experiments.

TD-CNN-BiLSTM [21]. This is the baseline model of the MMActivity dataset, using the TD-CNN model to extract
the point cloud feature and a BiLSTM model as the classifier.

TD-CNN-MLP [21]. This is a comparative method proposed in the MMActivity dataset that applies the MLP network
for the classification of human activities.

LPN-GRU. This is a concatenate model developed by us using the LPN as a feature extraction model and a GRU as the
human activity classifier.

LPN-BiLiLSTM. This is a concatenate model proposed by us using the LPN model to extract the global embedding of
sparse point clouds and using bidirectional BiLSTM as a lightweight but efficient classifier for HAR.
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4.1.3 Evaluation Metrics

Our evaluation matrices contain the micro accuracy (micA), macro precision (P ), macro recall (R) and macro F1 score
(F1). The micro accuracy refers to the proportion of correctly classified samples. The macro precision and recall are
computed by averaging precision and recall for all classes. The macro F1 score is calculated by the macro precision and
recall by F1 = 2 ∗ P ∗R/(P +R).

4.2 Selection of Time Window Size

Human activity is composed of a series of continuous body motions over a period of time. It is a key issue to select an
appropriate size of the time window for the HAR model.

Intuitively, if a time window is too short, it is not sufficient to represent the entire activity, while if a time window is
too long, it is not sensitive to speedily occurring activities. Based on the experience of previous studies, the baseline
model TD-CNN-BiLSTM on MMActivity simplistically set a time window of 2 seconds with a sliding window of 0.33
seconds, achieving an accuracy level of 90.47%. In our study, differently, to evaluate the impact of time-window size L
on the classification accuracy, we set L to 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 seconds, respectively.

Figure 4: The impact of the time window L on the accuracy and execution time on the MMActivity dataset

We use our proposed LPN-BiLiLSTM model on the MMActity dataset to evaluate and select the optimal time window
size. The left part in Figure 4 shows that the classification accuracy basically increases as L increases and remains
stable after the highest point. Specifically, the classification accuracy improves from 89.48% when L is set to 0.5,
reaches the highest point 95.45% when L is set to 3, and keeps accuracy over 95% when L is set to longer than 3, which
is significantly superior than the MMActivity benchmark. This indicates that too-short time windows fail to cover
the entire event, while after the accuracy reaches the highest point, the additionally added time window cannot make
incremental contributions to accuracy enhancement. It is worth mentioning that the accuracy of our model achieves over
93% when L is set to 2, suggesting that, compared to the RadHAR benchmark, our LPN-BiLiLSTM model achieves a
higher accuracy level at the same settings.

The right part in Figure 4 shows the testing and training time linearly increase as the length of the time window increases.
Specifically, training time increases from 10 seconds to 67 seconds per epoch when L is set from 0.5 to 4. Testing time
increases from 2 seconds to 8 seconds when L is set from 0.5 to 4. Thus, Figure 4 and 4 collectively indicate that if our
goal is to achieve the optimal accuracy level, we should set L to 3, while if our goal is to obtain optimal sensitiveness
and ensure a satisfactory accuracy (around 94%), we should set L to 2.

4.3 Evaluation of SPCA

To ensure a uniform input to the deep neural networks, we propose the segment-wise point cloud augmentation algorithm
SPCA, including the hybrid alignment and augmentation of the sparse point clouds. The augmentation is automatically
applied during the training process, while the hybrid alignment requires a prior definition of the number of points per
frame for sampling.
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The mainstream of point cloud datasets is generated by Lidar or depth camera, which comprises an extensive number of
points in each frame (approximately from 1k to 100k) [27]. Thus, downsampling is usually applied on the dense point
clouds. For example, PointNet downsampling the non-uniformed points by randomly selecting 2,048 points for each
target [28].

However, the point clouds generated by a mmWave radar in this study are highly sparse and imbalanced. Simplistically
utilizing downsampling may not be the best choice here. We thus evaluate the performance of different point cloud
sampling methods to show the impact on classification accuracy.

For example, the mmWave radar in the MMActivity dataset works at a frequency of 30 frames per second. Figure 5
shows the statistical distribution of the number of points in each frame. Each frame has a minimum of 7 (when the
object is moving slightly or even keeps static) and a maximum of 25 points (when the object is moving strongly). The
frames containing 25 points account for around 15% of total training samples. Other samples roughly follow a normal
distribution with the mean between 14 and 15, indicating that 14 or 15 points in each frame can mostly represent human
activities.

Figure 5: The statistics and impact of number of points per frame on the MMActivity dataset

We further investigate the impact of sampling methods on classification accuracy by setting the alignment size AS
to 5, 10, 15, 20, and 25, respectively. We adaptively use downsampling, upsampling and hybrid sampling methods
according to the setting of AS. When AS is set to 5, downsampling is applied to all frames, while when AS is set to
25, upsampling is applied to all frames; when AS is set to 10, 15, or 20, downsampling is applied to those frames with
a larger number of points than AS, otherwise, upsampling is applied. The results in Figure 5 are generated using the
LPN-BiLiLSTM model. Basically, classification accuracy increases when AS increases. When AS = 25, the accuracy
reaches a peak of over 94.5%. This indicates that our upsampling method effectively ensures the completeness of
information, at the same time, achieves a high-level accuracy. When AS is equal to 15 or 20, the accuracy is slightly
lower than that at 25 while when AS is equal to 5 or 10, the accuracy drops dramatically to lower than 92%. This
indicates that as AS keeps reducing, we lose more and more information contained in original point clouds. However,
it is worth noting that when AS is set to 15, the accuracy still remains at a high level. Consistent with the above
discussion, 15 points per frame is capable of representing the most features of activities.

4.4 Evaluation of HAR

To perform a comprehensive and fair comparison of the HAR models on the three datasets, we apply two feature
extraction algorithms TD-CNN and LPN, integrate with HAR models. Eventually, four concatenate models, including
TD-CNN-MLP, TD-CNN-BiLSTM, LPN-GRU and LPN-BiLiLSTM are evaluated (see more details in Section 4.1.2).
In addition, we test the computational costs of all models. The results are shown in the tables below. For all four models
on each dataset, the time window size L is set to 2s, and the alignment size AS is set to 25 on MMActivity and 64 for
both discHAR and contHAR datasets. In the tables, the “Micro Accuracy" refers to micro accuracy. The “Mac-P" refers
to macro Precision, “Mac-R" refers to macro recall and “Mac-F1" refers to macro F1 score.

4.4.1 Results on MMActivity

The experiment results on MMActivity are displayed in Table 1. Our proposed methods all significantly outperform the
comparative methods. Specifically, the LPN-BiLiLSTM model achieves the highest F1 score at 95.29%. The LPN-GRU
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model obtains an F1 score of 94.21%. Collectively, our proposed models all perform much better than the benchmark
methods.

Table 1: HAR results on MMActivity dataset

Method Micro Accuracy Mac-P Mac-R Mac-F1

TD-CNN-MLP[21] 83.86 84.69 84.01 83.81
TD-CNN-BiLSTM[21] 90.42 91.37 90.55 90.66

LPN-GRU 94.05 94.60 94.10 94.21
LPN-BiLiLSTM 95.12 95.85 95.18 95.29

4.4.2 Results on discHAR

Table 2 presents the experimental findings on the discHAR dataset, where our developed models demonstrate a clear
superiority over the existing methods. The LPN-BiLiLSTM approach, in particular, stands out with an F1 score of
95.45%, the highest among all models. Overall, our methods consistently surpass the established benchmarks in
performance.

Table 2: HAR results on discHAR dataset

Method Micro Accuracy Mac-P Mac-R Mac-F1

TD-CNN-MLP 94.03 94.55 94.10 94.21
TD-CNN-BiLSTM 93.15 94.01 93.37 93.41

LPN-GRU 95.14 95.39 94.14 94.67
LPN-BiLiLSTM 96.14 96.51 94.73 95.45

4.4.3 Results on contHAR

The experiment results on contHAR dataset are displayed in Table 3. Consistent with the results on the discHAR
dataset, our proposed LPN-BiLiLSTM model demonstrates the best F1 score of 81.02. However, the values dropped
largely from the results on discHAR as shown in Table 2. It is because the contHAR dataset includes lots of transition
frames between two different activities. These segment of frames has blank or unclear features that can’t represent any
of the labeled activities. This illustrates the challenges in real-time continuous HAR and motivates us for the transition
optimization, as discussed below.

Table 3: HAR results on contHAR dataset

Method Micro Accuracy Mac-P Mac-R Mac-F1

TD-CNN-MLP 70.11 71.56 70.88 71.21
TD-CNN-BiLSTM 73.48 74.28 72.61 73.44

LPN-GRU 80.25 80.51 79.84 79.94
LPN-BiLiLSTM 81.62 82.10 81.13 81.02

4.5 Evaluation of Transition Optimization

Table 4 shows the evaluation results of using HMM and CTC algorithms as transition optimization strategies to enhance
the accuracy and robustness of our model in a real-time continuous HAR setting. The compared methods include
LPN-BiLiLSTM, LPN-BiLiLSTM-HMM, and LPN-BiLiLSTM-HMM-CTC, with the latter integrating both HMM and
CTC algorithms. The results indicate that both HMM and CTC show significant improvement in performance (above 85
F1 score) compared with the baseline LPN-BiLiLSTM model (81.02 F1 score). The LPN-BiLSTM-HMM-CTC method
outperforms the others, achieving the highest scores across all metrics, which suggests the superior effectiveness of
this integrated transition optimization strategy HMM-CTC in optimizing transitions for accurate and robust activity
recognition.

11



Table 4: Evaluation of transition optimization with HMM and CTC

Method Micro P/R Mac-P Mac-R Mac-F1

LPN-BiLiLSTM 81.62 82.10 81.13 81.02
LPN-BiLiLSTM-HMM 85.13 85.65 84.96 85.01
LPN-BiLiLSTM-HMM-CTC 86.03 86.32 85.79 85.91

4.6 Comparison of Computational Costs

We conduct a comprehensive comparison of the computational costs of our methods with comparative methods with the
same time window and generating almost the same number of samples, to evaluate the applicability of our lightweight
model on a robot-mounted edge device. Computational costs include memory occupancy for training and testing, the
time consumption for feature extraction, the number of parameters, and the execution time. The results are summarized
in Table 5.

Specifically, the memory occupancy of our models is less than 1% of models used in RadHAR (i.e., TD-CNN-MLP and
TD-CNN-BiLSTM). The time consumption for feature extraction of our models is around 100 seconds, but the time in
RadHAR models is over 2 hours. Our lightweight model’s parameters (79k) are much fewer than their counterparts.
Finally, the execution time of our optimized model is 17 seconds, while the time of the optimal model of comparative
models is more than 46 times that of ours.

Table 5: Computational cost on MMActivity

Method MO-tr MO-ts FET Para ExT

TD-CNN-MLP[21] 45GB 16GB 2.3h 39.3m 130/31s
TD-CNN-BiLSTM[21] 45GB 16GB 2.3h 0.3m 796/79s

LPN-GRU 0.4GB 0.1GB 1.7m 2.8m 40/7s
LPN-BiLiLSTM 0.4GB 0.1GB 1.7m 79.7k 17/2s

The “MO-tr” refers to memory occupancy of training set; “MO-ts” refers
to memory occupancy of the testing set; “FET” refers to feature extraction
time; “Para” refers to the number of total parameters and “ExT” refers to the
execution time. The values under “ExT” follow the format of “training time
per epoch”/“testing time”.

5 Conclusion

This study has creatively proposed RobHAR, a mmWave radar-based HAR system mounted on a movable edge device
as a healthcare monitoring robot. This system first extracts the global embedding of point clouds using a light-PointNet
as the backbone. Then, the time series of features are concatenated with a bidirectional lightweight LSTM (BiLiLSTM)
model to learn the pattern of human activities and make the prediction. In order to enhance the stability and accuracy of
this model in continuous HAR, the HAR model has been integrated with transition optimization strategies, including
HMM and CTC algorithms. Extensive experiments have been conducted on three datasets to evaluate the performance
of our model in both discrete and continuing scenarios. Collectively, our model outperforms the benchmark point cloud
representations and HAR methods in sparse point cloud-based continuous HAR in terms of classification accuracy and
efficiency. Finally, to test the applicability of our approach in the real world, our RobHAR system has been deployed
to a movable edge computing platform, forming a flexible healthcare monitoring robot and obtaining satisfactory
performance on efficient, stable and continuing HAR in real-wrold scenarios.
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Appendix

The pseudo-code for the segment-wise point cloud augmentation (SPCA) algorithm is shown in Figure 6 below.

Figure 6: Segment-wise point cloud augmentation (SPCA) algorithm
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