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Schwarz Methods for Nonlocal Problems

Matthias Schuster∗ Christian Vollmann∗ Volker Schulz∗

Abstract. The first domain decomposition methods for partial differential equations were already

developed in 1870 by H. A. Schwarz. Here we consider a nonlocal Dirichlet problem with variable

coefficients, where a nonlocal diffusion operator is used. We find that domain decomposition methods

like the so-called Schwarz methods seem to be a natural way to solve these nonlocal problems. In this

work we show the convergence for nonlocal problems, where specific symmetric kernels are employed,

and present the implementation of the multiplicative and additive Schwarz algorithms in the above

mentioned nonlocal setting.

Keywords. Schwarz methods, nonlocal diffusion, finite element method, domain decomposition.

1 Introduction

Nonlocal operators can be helpful to describe physical phenomena, where long range interactions
occur. Therefore, in these cases, nonlocal models are better suited than the classical approach
via partial differential equations. Nonlocal operators have already been applied in many fields,
such as image denoising[3, 11], anomalous diffusion[2, 27, 6], peridynamics[26, 14] and stochastic
processes[21, 8], just to name a few.
Moreover, nonlocal interface problems as well as models that contain domain-dependent param-
eters have become popular in recent years, see e.g., [23, 4, 12]. These domain-dependent pa-
rameters may naturally suggest a domain decomposition which leads to domain decomposition
methods that are widely used in the case of partial differential equations and have been investi-
gated in, e.g., [20, 28]. In the matter of nonlocal equations the approach of finite element tearing
and interconnecting (FETI) has been successfully applied as described in [15, 31]. Another class
of domain decomposition methods are Schwarz algorithms, that were initially developed in [24]
for partial differential equations. An abstract framework for the Schwarz approach can be found
in [19, 17, 18].
Although FETI is a very efficient way to solve nonlocal equations, Schwarz methods have several
advantages. They are easier to implement and it is straightforward to incorporate black-box
solvers, whereas for FETI the finite element formulation on overlapping domains needs to be
changed. Moreover, we could observe that Schwarz methods can also converge in case of a non-
symmetric kernel as shown in an experiment in Chapter 7.3. Lastly, if the parameter δ, which
determines the the range of nonlocal interaction and thus the width of the nonlocal boundary
regarding one (sub-)domain (see Section 2), is quite huge, FETI cannot decompose the domain
in many subdomains. In this case, GMRES with a Schwarz preconditioner might be faster, es-
pecially if we include the set-up times of both solvers.
Schwarz methods have also been utilized to solve an energy-based Local-to-Nonlocal(LtN) cou-
pling in [1]. Additionally, in [1] they showed the convergence of the multiplicative Schwarz
method for this energy-based LtN coupling by applying [19, Theorem I.1]. In Section 4 we
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present the convergence of the multiplicative Schwarz method for two cases of nonlocal prob-
lems in a similar fashion by referring to [19, Theorem I.2]. Furthermore, we point out that the
Schwarz formulation solves linear, quadratic and cubic patch tests. These patch tests often serve
as a criterion to evaluate and therefore compare Local-to-Nonlocal couplings. We refer to the
review paper [10] for more information on LtN couplings. Additionally we test GMRES against
two preconditioned versions of GMRES that result from the multiplicative and additive Schwarz
method combined with the finite element method.
We start by introducing nonlocal Dirichlet problems and nonlocal problems that involve Neu-
mann boundary conditions in Chapter 2. After that we describe the multiplicative and additive
Schwarz method for the previously mentioned nonlocal problems in Chapter 3. Next, in Chapter
4, we prove the convergence of this multiplicative Schwarz method to the unique solution under
the assumption that the kernel is symmetric. Furthermore, we present the finite element method
as a way to numerically solve nonlocal problems in Chapter 5. Here, we also illustrate how
Schwarz methods are applied for this discrete framework. In Chapter 6 we shortly introduce
patch tests, which are used to evaluate Local-to-Nonlocal or Nonlocal-to-Nonlocal couplings. In
the last Chapter 7 we start by testing the Schwarz methods on two examples. The first one is a
nonlocal Dirichlet problem, where we use a singular symmetric kernel, and the second example
is a nonlocal problem with Neumann boundary, where we employ a constant kernel. Then, we
investigate an example of a nonlocal Dirichlet problem with a nonsymmetric kernel that addi-
tionally satisfies the patch test. Lastly, we study two versions of preconditioned GMRES, that
are connected to the Schwarz method for the finite element formulation, and we compare these
two approaches to a GMRES without preconditioning.

2 Problem Formulation

Let Ω Ă Rd be an open and bounded domain and tΩiu
n
i“1 be a partition of Ω, where Ωi Ă Ω is

open for i “ 1, ..., n, and that satisfies

Ω “
nď

i“1

Ωi and Ωi X Ωj “ H for i, j “ 1, ..., n and i ‰ j. (1)

From now on we denote by γ : Rd ˆ Rd Ñ r0,8q a nonnegative (interaction) kernel and define
the nonlocal boundary I of Ω as follows

I :“ ty P R
dzΩ :

ż

Ω

γpx,yq dx ą 0u.

Based on the partition tΩiu
n
i“1 we can express the kernel γ as

γ “
nÿ

i,j“1

γijχΩiˆΩj
`

nÿ

i“1

γiIχΩiˆI `
nÿ

i“1

γIiχIˆΩi
, (2)

with potentially different nonnegative kernels

γij : Ωi ˆ Ωj Ñ r0,8q, γiI : Ωi ˆ I Ñ r0,8q and γIi : I ˆ Ωi Ñ r0,8q, for i, j “ 1, ..., n.

Then, we define the nonlocal diffusion operator ´L, which can be found in, e.g., [8, 5, 7, 29, 30],
as

´Lupxq “

ż

Rd

pupxq ´ upyqq γpx,yq dy. (3)
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2.1 Nonlocal Dirichlet Problems

One class of problems, that we focus on, are nonhomogeneous steady-state Dirichlet problems
with nonlocal boundary constraints given by

´Lu “ f on Ω

u “ g on I,
(4)

where the forcing term f may vary across the various parts of the decomposition (1), i.e., there
exist possibly mutually different fi : Ωi Ñ R, for i “ 1, ..., n, such that

f “
nÿ

i“1

fiχΩi
. (5)

Similar types of nonlocal problems can also be found in, e.g., [5, 23]. Moreover, the kernel γ is
assumed to be symmetric and is supposed to fulfill the following conditions

(K1) There exist δ ą 0 and φ : Rd ˆ Rd Ñ r0,8q with γpx,yq “ φpx,yqχBδpxqpyq.

(K2) There exist 0 ă γ0 ă 8 and ǫ P p0, δq such that γ0 ď γpx,yq for y P Bǫpxq and x P Ω.

In order to derive a weak formulation, we multiply the first equation of the left-hand side of (4)
by a test function v : Ω Y I Ñ R and then integrating over Ω yields

p´Lu, vqL2pΩq “ pf, vqL2pΩq

ô

ż

Ω

vpxq

ż

Rd

pupxq ´ upyqqγpx,yq dydx “

ż

Ω

fpxqvpxq dx. (6)

By applying Fubini’s theorem and by considering vpyq “ 0 on I the first integral of the left-hand
side can be expressed as

ż

Ω

vpxq

ż

ΩYI

pupxq ´ upyqqγpx,yq dydx

“
1

2

ĳ

pΩYIq2

pvpxq ´ vpyqqpupxq ´ upyqqγpx,yq dydx.

Thus we now define the nonlocal bilinear form

Apu, vq :“
1

2

ĳ

pΩYIq2

pvpxq ´ vpyqqpupxq ´ upyqqγpx,yq dydx

“
nÿ

i,j“1

1

2

ż

Ωi

ż

Ωj

pvpxq ´ vpyqq pupxq ´ upyqq γijpx,yq dydx

`
nÿ

i“1

ż

Ωi

ż

I

pvpxq ´ vpyqqpupxq ´ upyqqγiIpx,yq dydx

and the linear functional

F pvq :“

ż

Ω

fpxqvpxq dx “
nÿ

i“1

ż

Ωi

fipxqvpxq dx,
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where we used the definition of the forcing term (5) and that the kernel can be expressed as a
sum of kernels as in (2). Moreover, with A we can define the following semi-norm and norm,
respectively,

|u|V pΩYIq :“
a
Apu, uq,

||u||V pΩYIq :“ |u|V pΩYIq ` ||u||L2pΩYIq.
(7)

This enables us to define the following spaces

V pΩ Y Iq :“ tu P L2pΩ Y Iq : ||u||V pΩYIq ă 8u and

VcpΩ Y Iq :“ tu P V pΩ Y Iq : u “ 0 on Iu.

We now present a variational formulation of problem (4):

Definition 2.1. Given f P L2pΩq and g P V pΩ Y Iq, if u P V pΩ Y Iq solves

Apu, vq “ F pvq for all v P VcpΩ Y Iq and

u´ g P VcpΩ Y Iq,
(8)

then u is called weak solution of (4).

Since Apu, vq “ Apu´g, vq `Apg, vq and u´g P VcpΩYIq, problem (8) can also be reformulated
as a homogeneous Dirichlet problem

Given f P L2pΩq and g P V pΩ Y Iq, find ũ P VcpΩ Y Iq :

Apũ, vq “ F pvq ´Apg, vq for all v P VcpΩ Y Iq,

then u :“ ũ` g P V pΩ Y Iq is a weak solution of (8).

(9)

Remark 2.2. In this work, we show the convergence of the multiplicative Schwarz method for
nonlocal Dirichlet problems for symmetric kernels, that fulfill (K1) and (K2). Additionally, the
kernels are assumed to satisfy the requirements of one of the following two classes, where the
well-posedness of the corresponding nonlocal Dirichlet problem (8) is shown, e.g., in [7]:

• Integrable kernels:
There exist constants 0 ă γ1, γ2 ă 8 with

γ1 ď inf
xPΩ

ż

ΩYI

γpx,yq dy and sup
xPΩ

ż

ΩYI

pγpx,yqq
2
dy ď pγ2q

2
.

Then the solution u P V pΩ Y Iq for (8) exists, is unique and in this case the spaces`
VcpΩ Y Iq, | ¨ |V pΩYIq

˘
and

`
L2
cpΩ Y Iq, || ¨ ||L2pΩYIq

˘
as well as

`
V pΩ Y Iq, || ¨ ||V pΩYIq

˘

and
`
L2pΩ Y Iq, || ¨ ||L2pΩYIq

˘
are equivalent.

• Singular kernels:
There exist constants 0 ă γ˚, γ

˚ ă 8 and s P p0, 1q with

γ˚ ă γpx,yq||x ` y||d`2s
2 ă γ˚ for all y P Bδpxq and x P Ω.

Then the solution to (8) exists, is unique and the spaces
`
VcpΩ Y Iq, | ¨ |V pΩYIq

˘
and`

Hs
c pΩ Y Iq, | ¨ |HspΩYIq

˘
as well as

`
V pΩ Y Iq, || ¨ ||V pΩYIq

˘
and

`
HspΩ Y Iq, || ¨ ||HspΩYIq

˘

are equivalent.
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2.2 Nonlocal Problems with Robin Boundary Conditions

Besides solving a nonlocal Dirichlet problem, we are also interested in solving nonlocal problems
that involve a Neumann boundary condition, i.e., find a solution u for

´Lupxq ` κpxqupxq “ fpxq for x P Ω,

Nupyq “ gN pyq for y P IN ,

upyq “ gDpyq for y P ID,

(10)

where

I “ I
N

9YI
D, κ : Ω Ñ rα, βs with 0 ă α ď β ă 8, γ : Rd ˆ R

d Ñ r0,8q measurable and

N pyq :“

ż

ΩYI

pupxq ´ upyqq γpx,yq dy for y P IN . (11)

Here, N is called nonlocal Neumann operator. For problems of type (10), we only assume
γ : Rd ˆ Rd Ñ r0,8q to be a measurable and symmetric function. Furthermore, if γpx,yq “ 0
for x,y P I, the Neumann operator reduces to

N pyq “

ż

Ω

pupxq ´ upyqq γpx,yq dy for y P I
N . (12)

In the case of IN “ I and (12) there exists a unique weak solution to problem (10) according to
[30]. In the following we show existence of a unique solution to problem (10) for the more general
case (10) by following the approach in [30]. Therefore, in order to get a variational formulation
for the problem (10), we multiply the first two equations of (10) by a test function v : ΩYI Ñ R,
integrate over Ω, or IN respectively, and add up the two equations. Then we get

p´Lu` κu, vqL2pΩq ` pNu, vqL2pINq “ pf, vqL2pΩq `
`
gN , v

˘
L2pIN q

. (13)

By assuming v “ 0 on ID and by using similar computations as in Section 2 we can reformulate
(13) as

1

2

ż

ΩYI

ż

ΩYI

pvpxq ´ vpyqq pupxq ´ upyqq γpx,yq dydx `

ż

Ω

κpxqvpxqupxq dx

“

ż

Ω

fpxqvpxq dx `

ż

IN

gN pxqvpxq dx.

(14)

Next, we define the spaces

VpΩ, IN , IDq :“ tv P L2pΩ Y Iq : ||v||VpΩ,IN ,IDq ă 8u, and

VcpΩ, IN , IDq :“ tv P VpΩ, IN , IDq with v “ 0 on I
Du, where

||v||2
VpΩ,IN ,IDq :“

ż

Ω

vpxq2 dx `

ż

ΩYI

ż

ΩYI

pvpxq ´ vpyqq
2
γpx,yq dydx.

Moreover, set

xu, vyVpΩ,IN ,IDq :“

ż

Ω

upxqvpxq dx `

ż

ΩYI

ż

ΩYI

pupxq ´ upyqq pvpxq ´ vpyqq γpx,yq dydx,
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which is a semi-inner product for VcpΩ, I
N , IDq. We further define the quotient space

V pΩ, IN , IDq :“ VpΩ, IN , IDq{Z, and VcpΩ, IN , IDq :“ VcpΩ, I
N , IDq{Z, where

Z :“ tv P VcpΩ, IN , IDq : vpxq “ 0 for a.e. x P Ω Y Iu and set

xrus, rvsyV pΩ,IN ,IDq :“ xu, vyVpΩ,IN ,IDq and ||rvs||V pΩ,IN ,IDq “ ||v||VpΩ,IN ,IDq.

In the following we write u instead of rus for ease of presentation.
The first line of (14) yields the bilinear form B : V pΩ, IN , IDq ˆ V pΩ, IN , IDq Ñ R, where

Bpu, vq :“
1

2

ż

ΩYI

ż

ΩYI

pupxq ´ upyqq pvpxq ´ vpyqq γpx,yq dydx.

Additionally, we define the linear functional FN : V pΩ, IN , IDq Ñ R as

FN pvq “

ż

Ω

fpxqvpxq dx `

ż

IN

gN pxqvpxq dx.

Definition 2.3. Given functions gD P V pΩ, IN , IDq, f P L2pΩq, gN P L2pIN q and κ : Ω Ñ rα, βs,
where 0 ă α ď β ă 8, then, if a function u P V pΩ, IN , IDq solves

Bpu, vq `

ż

Ω

κpxqupxqvpxq dx “ FN pvq for all v P VcpΩ, IN , IDq and

u´ gD P VcpΩ, IN , IDq,

(15)

the function u is called weak solution to problem (10).

Again, this weak formulation can also be reformulated as a problem with homogeneous Dirichlet
boundary conditions:

Given functions gD P V pΩ, IN , IDq, f P L2pΩq, gN P L2pIN q and κ : Ω Ñ rα, βs,

where 0 ă α ď β ă 8, find a function ũ P VcpΩ, IN , IDq such that

Bpũ, vq `

ż

Ω

κpxqũpxqvpxq dx “ FN pvq ´

ˆ
BpgD, vq `

ż

Ω

κpxqgDpxqvpxq dx

˙
(16)

for all v P VcpΩ, IN , IDq, then u :“ ũ` gD P V pΩ, IN , IDq solves (15).

Now, we can show the following theorem, which is similar to [30, Theorem 3.1].

Theorem 2.4. The space VcpΩ, I
N , IDq is complete regarding ||¨||VpΩ,IN ,IDq. As a consequence,

VcpΩ, IN , IDq is a Hilbert space with respect to || ¨ ||V pΩ,IN ,IDq.

Proof. Let pvnqnPN be a Cauchy sequence in VcpΩ, I
N , IDq. Then, due to the completeness

of L2pΩq, respectively L2ppΩ Y IN q ˆ pΩ Y IN qq, there exist functions ṽ P L2pΩq and w P
L2ppΩ Y IN q ˆ pΩ Y IN qq, such that

lim
kÑ8

ż

Ω

pvkpxq ´ ṽpxqq
2
dx “ 0 and

lim
kÑ8

ż

ΩYIN

ż

ΩYIN

´
pvkpxq ´ vkpyqq

a
γpx,yq ´ wpx,yq

¯2

dydx “ 0.
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Analogously to [30, Theorem 3.1] one can show that there exists a subsequence pvnl
qlPN of pvnqnPN

and an extension v : Ω Y I Ñ R of ṽ, i.e., v “ ṽ on Ω, with v “ 0 on ID and

lim
lÑ8

vnl
pxq “ vpxq for a.e. x P Ω Y I.

Consequently, we derive

wpx,yq “ lim
lÑ8

pvnl
pxq ´ vnl

pyqq
a
γpx,yq “ pvpxq ´ vpyqq

a
γpx,yq for a.e. px,yq P pΩ Y Iq2.

Therefore, v P VcpΩ, I
N , IDq and we can conclude

lim
lÑ8

||vnl
´ v||VpΩ,IN ,IDq “ 0 and lim

nÑ8
||vn ´ v||VpΩ,IN ,IDq “ 0.

Set |||u|||2
V pΩ,IN ,IDq :“ Bpu, uq`

ş
Ω

κpxqu2pxq dx, then the norms |||¨|||V pΩ,IN ,IDq and || ¨ ||V pΩ,IN ,IDq

are equivalent for u P VcpΩ, IN , IDq since

mint
1

2
, αu||u||2V pΩ,IN ,IDq ď |||u|||2V pΩ,IN ,IDq ď maxt

1

2
, βu||u||2V pΩ,IN ,IDq. (17)

By applying the Riesz representation theorem we directly get the following conclusion.

Corollary 2.5. Given f P L2pΩq, gN P L2pIN q and gD P V pΩ, IN , IDq, there exists a unique
function ũ P VcpΩ, IN , IDq that satisfies (16), i.e., u “ ũ` gD is a weak solution for (10).

3 Schwarz Methods

The first domain decomposition method was already formulated by Hermann Amandus Schwarz
around 1869 and is now known as the Schwarz alternating method[24, 25]. It is an iterative
method which was originally used to solve the Laplace equation on a domain by decomposing
the domain into two overlapping domains where the Laplace equation could be easily solved on
each. In every iteration the former solution regarding the problem on the other domain was used
as a boundary condition on the boundary that was part of the other domain.
In this section we formulate the additive and multiplicative Schwarz method for the nonlocal
problem (4) in the same manner. Therefore, we denote the nonlocal boundary regarding the
subdomains Ωi of the decomposition (1) by

Ii :“ ty P R
dzΩi :

ż

Ωi

γpx,yqdx ą 0u.

3.1 Schwarz Methods for Nonlocal Dirichlet Problems

Given the solution u of the nonlocal problem (8), for i “ 1, ..., n we set ui :“ u|ΩiYIi
, and observe

that ui is a solution of

Find a weak solution ui P V pΩi Y Iiq subject to

´Lui “ fi on Ωi,

ui “ uj on Ii X Ωj , for j “ 1, ..., n and j ‰ i,

ui “ g on Ii X I.

(18)

7



In this case, u|ΩjYIj
P V pΩj Y Ijq for j “ 1, ..., n and j ‰ i serve as the boundary data.

On the other hand, as we will show in Section 4.1, if we have weak solutions tuiu
n
i“1 for (18),

the function

u :“
nÿ

i“1

uiχΩi
` gχI

solves the nonlocal problem (4).

Remark 3.1. Since we derive (18) from (4) and (8), respectively, the boundary data of the
problem on Ωi is an element of V pΩi Y Iiq and can naturally be extended to a function of
V pΩ Y Iq. Therefore, we expand the boundary Ii to Îi :“ pΩzΩiq Y I and restrict ourselves to
boundary data in V pΩiYÎiq. Consequently, we will make use of the spaces V pΩiYÎiq “ V pΩYIq
and VcpΩi Y Îiq “ tu P V pΩ Y Iq : u “ 0 on Îi “ pΩzΩiq Y Iu in order to formulate a weak
formulation for (18).

Thus, for vi P VcpΩi Y Îiq and u P V pΩ Y Iq the bilinear form A reduces to the corresponding
bilinear operator that only contains integrals over pΩi Y Iiq ˆ pΩi Y Iiq as follows

Apu, viq “
nÿ

l,j“1

1

2

ż

Ωl

ż

Ωj

pupxq ´ upyqq pvipxq ´ vipyqq γpx,yq dydx

`
nÿ

j“1

ż

Ωj

upxqvipxq

ż

I

γpx,yq dydx

“
1

2

ż

Ωi

ż

Ωi

pupxq ´ upyqq pvipxq ´ vipyqq γpx,yq dydx

`
nÿ

j“1
j‰i

ż

Ωi

ż

Ωj

vipxq pupxq ´ upyqq γpx,yq dydx `

ż

Ωi

upxqvipxq

ż

I

γpx,yq dydx,

where we used the symmetry of γ in the last step. Analogously, F can in this case be written as
an operator that only integrates over Ωi, i.e.,

F pviq “

ż

Ω

fvi dx “

ż

Ωi

fivi dx.

Then, we define the variational formulation for the subproblem on Ωi as:

Given f P L2pΩq and boundary data g P V pΩi Y Îiq “ V pΩ Y Iq,

find ui P V pΩi Y Îiq “ V pΩ Y Iq such that

Apui, viq “ F pviq for all vi P VcpΩi Y Îiq,

ui ´ g P VcpΩi Y Îiq.

(19)

In the following we show two popular Schwarz methods to solve the problem (18) in an iterative
manner. In both cases we start with initial guesses tu0i uni“1. In the multiplicative Schwarz
method, as shown in Algorithm 1, we use the most recent solutions in every iteration as the
boundary data, i.e., for the subproblem i the solutions uk`1

j for 0 ď j ă i from the current

8



iteration are employed.

Algorithm 1: Multiplicative Schwarz method

input: u0i for i “ 1, ..., n
for k “ 0, 1, ... until convergence do

for i “ 1, ..., n do

Find uk`1
i s.t.

´Luk`1
i “ fi on Ωi,

uk`1
i “ uk`1

j on Ii X Ωj for j “ 1, ..., i´ 1,

uk`1
i “ ukj on Ii X Ωj for j “ i` 1, ..., n,

uk`1
i “ g on Ii X I.

end

end

Another approach is to only use the solutions of the former outer iteration tukj unj“1 instead of

utilizing uk`1
j for the subproblem i, if 0 ď j ă i. This leads to the so-called additive Schwarz

algorithm that is presented in Algorithm 2. This version of Schwarz iterative methods is easily
parallelizable. In some cases there is also a way to compute the multiplicative Schwarz algorithm
in parallel to some extend, which leads to the multicolor Schwarz algorithm that is illustrated in
[20, Algorithm 2.2.2] for a coercive elliptic partial differential equation.

Algorithm 2: Additive Schwarz Method

input: u0i for i “ 1, ..., n
for k “ 0, 1, ... until convergence do

for i “ 1, ..., n do

Find uk`1
i s.t.

´Luk`1
i “ fi on Ωi,

uk`1
i “ ukj on Ii X Ωj for j “ 1, ..., n,

uk`1
i “ g on Ii X I.

end

end

Remark 3.2. If we decompose Ω in only two domains Ω1 and Ω2 the additive Schwarz method
basically consists of two multiplicative Schwarz methods, where one starts by solving the subprob-
lem on Ω1 and the second one begins by computing the solution on Ω2. Therefore, the application
of the additive Schwarz methods can only be faster, if the domain Ω is decomposed in at least
three subdomains.

In Chapter 5.3 we will present the finite element versions of the multiplicative and additive
Schwarz method. Then, the discretized multiplicative Schwarz method coincides with the block-
Gauß-Seidel algorithm and the discretized additive Schwarz approach is equivalent to the block-
Jacobi method.

9



3.2 Schwarz Methods for Nonlocal Problems with Neumann Boundary

Conditions

In this section we apply the Schwarz Method on a nonlocal problem with Neumann boundary
conditions as introduced in Chapter 2.2 For ease of presentation, we assume IN “ I (and
consequently ID “ H). The case, where I “ IN

9YID with ID ‰ H, can be handled analogously.
Thus, we consider the following problem.

Find a weak solution u P V pΩ, I,Hq to

´Lu` κu “ f on Ω,

Nu “ gN on I,

(20)

where γpx,yq “ 0 for x,y P I, i.e., we use the nonlocal Neumann operator (12).
Moreover, let tIN

i uni“1 be a partition of the nonlocal boundary Ip“ IN q such that

I “

˜
nď

i“1

I
N

i

¸
, IN

i X I
N
j “ H for i, j “ 1, ..., n, i ‰ j and

I
N
i Ă Ii X I “ ty P I :

ż

Ωi

γpx,yq dx ą 0u.

Here, it is possible that there exist a subset of indices S Ă t1, ..., nu with |S| ď n ´ 1 such that

IN
j “ H for j P S.

Thus, the partition tIN
i uni“1 can contain the empty set multiple times and includes at least one

non-empty set. Moreover, the boundary data gN may vary across the different parts of the
decomposition tIN

i uni“1, i.e., there exist mutually different gNi : IN
i Ñ R, for i “ 1, ..., n, such

that gN “
řn

i“1 g
N
i χIN

i
.

Given the weak solution u of the problem (20), then the functions ui :“ uχΩiYIi
for i “ 1, ..., n

are solutions of

Find a weak solution ui P V pΩi, I
N
i , IizI

N
i q subject to

´Lui ` κui “ fi on Ωi,

Nui “ gNi on IN
i ,

ui “ uj on Ii X
`
Ωj Y IN

j

˘
, for j “ 1, ..., n and j ‰ i.

(21)

So, on every subproblem we are solving a nonlocal Robin problem. Additionally, since the
nonlocal boundary regarding Ωi can be partially in another subdomain Ωj , i.e., Ii X Ωj ‰ H,
the integration domain of the Neumann operator corresponding to the subproblem on Ωi can
contain parts of the nonlocal Dirichlet Boundary and the nonlocal Neumann operator is in this
case of type (11) and not of type (12). Again, if we have a weak solutions puiq

n
i“1 of the problems

(21), we set

u “
nÿ

i“1

uiχΩiYIN
i

and then u is weak solution to (21), which we show in Section 4.2. Again, analogously to the
nonlocal Dirichlet case as described in Remark 3.1, we extend the Dirichlet boundary IizI

N
i corre-

sponding to the subproblem on ΩiYIN
i to the domain Îi :“

nŤ
j“1
j‰i

`
Ωj Y IN

j

˘
“ pΩ Y Iq z

`
Ωi Y IN

i

˘
.

10



Then, V pΩ, I,Hq Ă V pΩi, I
N
i , Îiq and, due to the symmetry of γ, we obtain for ui P V pΩi, I

N
i , Îiq

and vi P VcpΩi, I
N
i , Îiq that

Bpui, viq `

ż

Ω

κpxquipxqvipxq dx “
1

2

ż

ΩiYIN
i

ż

ΩiYIN
i

puipxq ´ uipyqq pvipxq ´ vipyqq γpx,yq dydx

`
nÿ

j“1
j‰i

ż

ΩiYIN
i

ż

ΩjYIN
j

vipxq puipxq ´ uipyqq γpx,yq dydx

`

ż

Ωi

κpxquipxqvipxq dx.

Thus, we define the variational formulation of the Robin problem on Ωi Y IN
i as:

Given f P L2pΩq, gN P L2pIN q and gD P V pΩi, I
N
i , Îiq, find ui P V pΩi, I

N
i , Îiq with

Bpui, viq `

ż

Ωi

κpxqvipxquipxq dx “ FN pviq for all vi P VcpΩi, I
N
i , Îiq

and ui ´ gD P VcpΩi, I
N
i , Îiq.

(22)

The multiplicative Schwarz algorithm can then be formulated as follows:

Algorithm 3: Multiplicative Schwarz Method for Nonlocal Problems with Neumann
Boundary Conditions

input: u0i for i “ 1, ..., n
for k “ 0, 1, ... until convergence do

for i “ 1, ..., n do

Find weak solution uk`1
i to

´Luk`1
i ` κuk`1

i “ fi on Ωi,

Nuk`1
i “ gNi on I

N
i ,

uk`1
i “ uk`1

j on Ii X Ωj for j “ 1, ..., i´ 1,

uk`1
i “ ukj on Ii X Ωj for j “ i` 1, ..., n.

end

end

The additive Schwarz method can be analogously derived as in Section 3.1 by only using the
solution of the former outer iteration puki qni“1 as the boundary data in iteration k to compute
the new solutions puk`1

i qni“1.

4 Well-posedness of the Multiplicative Schwarz Method

In this section we show that the multiplicative Schwarz methods as described in Chapters 3.1
and 3.2 converge. Therefore we recall the first part of [19, Theorem I.2]:

Theorem 4.1. Given closed subspaces tViu
n
i“1 of a Hilbert space V :“ ‘n

i“1Vi, orthogonal

projections Pi : V Ñ V onto the subspace Vi and a sequence
`
ul

˘8

l“1
, where Pipu

l´1q “ ul for

l “ km` i given some data u0. Then ul converges to a unique u P V.

11



The version of Theorem 4.1 for two domains (see [19, Theorem I.1]) has also been used to show
the convergence of the multiplicative Schwarz method for an energy-based Local-to-Nonlocal
coupling (see [1]).

Remark 4.2. The second part of [19, Theorem I.2] states that if V “ ‘n
i“1Vi holds, then there

exists a constant ǫ P p0, 1q such that

||ul ´ u||V ď ǫl||u0 ´ u||V.

Linear convergence of the Schwarz methods in the nonlocal framework of Chapter 3 can also be
observed in the numerical experiments in Chapter 7 and is proven in the discrete case(see Remark
5.3). However, the proof of the assumption V “ ‘n

i“1Vi is left to future work.

4.1 Well-posedness of the Multiplicative Schwarz Method for Nonlocal

Dirichlet Problems

Here in this subsection, we assume the kernel γ to be as described in Remark 2.2, i.e., γ fulfills
conditions (K1) and (K2) and is either a singular symmetric or an integrable symmetric kernel.
As seen in (9) we only need to consider the case g “ 0 on I since the case g ‰ 0 on I is a direct
consequence. Given Algorithm 1 we can define for every subproblem in (18) an operator

S
f
i :

`
VcpΩ Y Iq, | ¨ |V pΩYIq

˘
Ñ

`
VcpΩ Y Iq, | ¨ |V pΩYIq

˘
,

such that S
f
i pgq “ ui and ui : Ωi Y Îi Ñ R is the weak solution of the subproblem on Ωi as

described in (19) given g and f , i.e., Si maps the boundary data g onto the solution ui on Ωi.

We start by showing the convergence for f ” 0. In this case, we set Si :“ S
f
i .

Lemma 4.3. The operator Si is linear and bounded as follows

||ui||V pΩYIq ď 2|g|V pΩYIq for ui “ Sipgq.

Proof. Since the linearity of Si is trivially true, we only have to proof the boundedness of Si. As
a consequence of f ” 0 and (9) in the second step of the following calculation and by applying
Cauchy-Schwarz in the third step we derive

|ui ´ g|2V pΩYIq “ Apui ´ g, ui ´ gq ď |Apg, ui ´ gq|

ď
a
Apg, gq

a
Apui ´ g, ui ´ gq “ |g|V pΩYIq|ui ´ g|V pΩYIq and therefore |ui ´ g|V pΩYIq ď |g|V pΩYIq.

Then, we conclude

|ui|V pΩYIq ď |ui ´ g|V pΩYIq ` |g|V pΩYIq ď 2|g|V pΩYIq.

Further, we define spaces

VipΩ Y Iq :“ tui P VcpΩ Y Iq : ui “ Sipuiqu and VpΩ Y Iq :“ ‘n
i“1VipΩ Y Iq, (23)

that is equipped with the the inner product

xu, vyVpΩYIq :“ A pu, vq and the norm ||u||VpΩYIq :“
a

xu, uy
VpΩYIq.

12



Then x¨, ¨yVpΩYIq is linear in the first argument, symmetric and positive-definite, see Remark 2.2.

Here, every ui P VipΩ Y Iq is a solution to (19) on Ωi given ui P V pΩi Y Îiq as boundary data
on Îi and f ” 0.

Lemma 4.4. Let the spaces VipΩYIq and VpΩYIq be as defined in (23) for i “ 1, ..., n. Then,
the space VipΩ Y Iq is a closed subspace for every i “ 1, ..., n. Moreover, VpΩ Y Iq is a closed
subspace of VcpΩ Y Iq and therefore a Hilbert space.

Proof. 1. VipΩ Y Iq is closed under linear combinations: Given ui, ψi P VipΩ Y Iq and λ P R,
then λui ` ψi P VcpΩ Y Iq and we get

Apλui ` ψi, viq “ λApui, viq `Apψi, viq “ 0 for all vi P VcpΩi Y Îiq

ñ λui ` ψi P VipΩ Y Iq.

2. VipΩY Iq is a closed subspace regarding || ¨ ||VpΩYIq: Given a sequence tumi u8
m“1 such that

umi P VipΩ Y Iq for all m P N and tumi u8
m“1 is a Cauchy sequence regarding || ¨ ||VpΩYIq.

Then, there exists a unique function ui P VpΩYIq with lim
mÑ8

|umi ´ui|V pΩYIq “ 0, because

pumi q
8
m“1 is a Cauchy sequence in the Hilbert space

`
VcpΩ Y Iq, | ¨ |V pΩYIq

˘
. Consequently,

the continuity of Si implies ui P VipΩ Y Iq since

|ui ´ Sipuiq|VcpΩYIq ď |ui ´ umi |V pΩYIq ` |Sipu
m
i q ´ Sipuiq|V pΩYIq

ď 3|ui ´ umi |V pΩYIq Ñ 0 for m Ñ 8.

3. VpΩYIq is closed regarding linear combinations, which follows directly from the definition
of VpΩ Y Iq and the fact that every VipΩ Y Iq is closed under linear combinations. Then,
VpΩ Y Iq is a Hilbert space since it is closed regarding || ¨ ||VpΩYIq.

We can now conclude the following:

Lemma 4.5. For i “ 1, ..., n the function Si is an orthogonal projection onto VipΩYIq regarding
the inner product x¨, ¨yVpΩYIq.

Proof. Obviously Sipgq P VipΩ Y Iq for all g P VpΩ Y Iq. In order to prove the orthogonality
condition g ´ Sipgq “ pg ´ SipgqqχΩi

K VipΩ Y Iq we set vi :“ g ´ Sipgq P VcpΩi Y Îiq, then for
all ui P VipΩ Y Iq we get

xui, g ´ SipgqyVpΩYIq “ Apui, viq “ F pviq “ 0,

since vi P VcpΩi Y Îiq can be interpreted as a test function and ui with ui “ Sipuiq solves the
subproblem on Ωi as defined in (19) given ui as boundary data and fi “ 0.

Corollary 4.6. In the case of integrable symmetric or singular symmetric kernels for the solution
u P VcpΩ Y Iq of (9) trivially also holds u P VpΩ Y Iq. Therefore, the multiplicative Schwarz

method yields a sequence
`
ul

˘8

l“1
, where ul P VpΩ Y Iq for l P N, that converges to u regarding

|| ¨ ||VpΩYIq “ | ¨ |V pΩYIq.

Remark 4.7. For f ı 0 the multiplicative Schwarz method yields a sequence tulu8
l“1 such that

for l “ km ` i the function ul fulfills ul “ S
f
i pul´1q and ul ´ ul´1 P VcpΩi Y Îiq, i.e., u

l solves
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(19) on Ωi given f and boundary data ul´1. Let u be the solution of the problem on the whole
domain. Then for l “ km` i the function ũl :“ ul ´ u fulfills

Apũl, viq “ Apul ´ u, viq “ F pviq ´ F pviq “ 0 for all vi P VcpΩi Y Îiq.

Therefore tũlu8
l“1 is a sequence generated by the multiplicative Schwarz method which converges

to zero, i.e., lim
lÑ8

ul ´ u “ 0.

4.2 Well-posedness of the Multiplicative Schwarz Method for Nonlocal

Problems with Neumann Boundary Conditions

As mentioned in Chapters 2.2 and 3.2 we only consider the kernel γ to be symmetric in nonlocal
problems of type (20). Next, we define

S
N,f,gN

i :
´
V pΩi, I

N
i , Îiq, || ¨ ||V pΩi,I

N
i ,Îiq

¯
Ñ

´
V pΩi, I

N
i , Îiq, || ¨ ||V pΩi,I

N
i ,Îiq

¯

such that SN,f,gN

i pgq “ ui and ui : Ω Y I Ñ R is the weak solution of the subproblem regarding
Ωi as described in (22). We will only show the convergence for f, gN ” 0, since the convergence
for f P L2pΩq and gN P L2pIq with f, gN ı 0 is a direct conclusion, which can be shown

analogously to Remark 4.7. In this case, we set SN
i :“ S

N,f,gN

i .

Lemma 4.8. The operator SN
i is linear and bounded by the boundary data, i.e., there exists a

constant C ą 0 with

||ui||V pΩi,I
N
i ,Îiq ď C||g||V pΩi,I

N
i ,Îiq, if ui “ SN

i pgq and g P V pΩi, I
N
i , Îiq. (24)

Proof. Set pC :“ maxt2, 1
α

u and notice that ui ´ g P VcpΩi, I
N
i , Îiq. As a consequence, we get by

applying the norm equivalence (17) and formulation (16) on the space V pΩi, I
N
i , Îiq that

||ui ´ g||2
V pΩi,I

N
i ,Îiq

ď pC
ˆ
Bpui ´ g, ui ´ gq `

ż

Ωi

κ pui ´ gq
2
dx

˙

ď pC |Bpg, ui ´ gq| ` pC
ˇ̌
ˇ̌
ż

Ωi

κg pui ´ gq dx

ˇ̌
ˇ̌

ď pC
a
Bpg, gq

a
Bpui ´ g, ui ´ gq ` pC

dż

Ωi

κg2 dx

dż

Ωi

κ pui ´ gq
2
dx

ď pC||g||
V pΩi,I

N
i ,Îiq||ui ´ g||

V pΩi,I
N
i ,Îiq,

where we used Cauchy-Schwarz in the third step. Then, the assertion follows from

||ui||V pΩi,I
N
i ,Îiq ď ||ui ´ g||

V pΩi,I
N
i ,Îiq ` ||g||

V pΩi,I
N
i ,Îiq.

Additionally define

V
N
i pΩ, I,Hq :“ tui P V pΩ, I,Hq : ui “ SN

i puiqu and V
N pΩ, I,Hq :“ ‘n

i“1V
N
i pΩ, I,Hq, (25)

which are equipped with the inner product xu, vyVNpΩ,I,Hq :“ Bpu, vq `
ş
Ω
κuv dx and the norm

||u||VN pΩ,I,Hq :“
a

xu, uy
VN pΩ,I,Hq

`
“ |||u|||V pΩ,I,Hq

˘
. Here, every function ui P V

N
i pΩ, I,Hq is

a solution to (22) on Ωi Y IN
i given ui P V pΩi, I

N
i , Îiq as boundary data on Îi and f ” 0.
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Lemma 4.9. Let the spaces VN
i pΩ, I,Hq and VN pΩ, I,Hq be as defined in (25) for every

i “ 1, ..., n. Then, the space V
N
i pΩ, I,Hq is a closed subspace for i “ 1, ..., n and V

N pΩ, I,Hq is
a closed subspace of V pΩ, I,Hq and therefore a Hilbert space.

Proof. 1. VN
i pΩ, I,Hq is closed under linear combinations. Given u, ψ P VN

i pΩ, I,Hq and
λ P R, then λu` ψ P V pΩ, I,Hq and we get

Bpλu` ψ, viq `

ż

Ω

κvi pλu` ψq dx

“ λ

ˆ
Bpu, viq `

ż

Ω

κviu dx

˙

` Bpψ, viq `

ż

Ω

κviψ dx “ 0 for all vi P VcpΩi, I
N
i , Îiq

ñ λu` ψ P V
N
i .

2. VN
i pΩ, I,Hq is closed with regards to || ¨ ||VN pΩ,I,Hq. Given a Cauchy sequence tumi u8

m“1

regarding || ¨ ||VN pΩ,I,Hq. Due to the equivalence of || ¨ ||VN pΩ,I,Hq “ ||| ¨ |||V pΩ,I,Hq and
|| ¨ ||V pΩ,I,Hq, there exists a function ui P V pΩ, I,Hq such that

lim
mÑ8

||umi ´ ui||V pΩ,I,Hq “ 0.

Then, by using the continuity of SN
i we get ui P VN

i pΩ, I,Hq since

||ui ´ SN
i puiq||V pΩ,I,Hq “ ||ui ´ SN

i puiq||
V pΩi,I

N
i ,Îiq

ď ||ui ´ umi ||V pΩi,I
N
i ,Îiq ` ||SN pumi q ´ SN

i puiq||V pΩi,I
N
i ,Îiq

ď p1 ` Cq ||ui ´ umi ||
V pΩi,I

N
i ,Îiq Ñ 0 m Ñ 8,

where we used that ui “ SN
i puiq on pΩYIqzΩi in the first step as well as (24) and the fact

that || ¨ ||
V pΩi,I

N
i ,Îiq ď || ¨ ||V pΩ,I,Hq in the last two step.

3. Analogously to Lemma 4.4.

Lastly, we can deduce the following:

Lemma 4.10. The function SN
i is an orthogonal projection onto VN

i pΩ, I,Hq regarding the
inner product x¨, ¨yVN pΩ,I,Hq for i “ 1, ..., n.

Proof. Obviously, SN
i pgq P VN

i pΩ, I,Hq for all g P VN pΩ, I,Hq.

Set vi :“ g ´ SN
i pgq “

`
g ´ SN

i pgq
˘
χΩiYIN

i
P VcpΩi, I

N
i , Îiq. We now have to proof

g ´ S
N
i pgq “ vi K V

N
i pΩ, I,Hq.

For all ui P V
N
i pΩ, I,Hq we get

xui, g ´ SN
i pgqyVN pΩ,I,Hq “ Bpui, viq `

ż

Ωi

κuivi “ FN pviq “ 0,

since ui with ui “ SN
i puiq solves the variational formulation (22) on Ωi Y IN

i given the Dirichlet

boundary data ui and vi P VcpΩi, I
N
i , Îiq serves as a test function.
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Corollary 4.11. The weak solution u P V pΩ, I,Hq of (20) is also an element of the space

VN pΩ, I,Hq. As a consequence, the multiplicative Schwarz method yields a sequence
`
ul

˘8

l“1
,

where ul P VN pΩ, I,Hq for l P N, which converges to u regarding || ¨ ||VN pΩ,I,Hq “ ||| ¨ |||V pΩ,I,Hq

(or equivalently, || ¨ ||V pΩ,I,Hq).

5 Schwarz Methods for the Finite Element Formulation

5.1 Finite Element Approximation

In order to solve problem (8) we use the finite element method. Therefore we need a triangulation

of finite (polyhedral) elements T h “ tEjuJj“1 with vertices txkuKk“1. We assume that Ω “
ŤJ

j“1 Ej

or Ω «
ŤJ

j“1 Ej and, for ease of exposition, that there exists a KΩ P N such that xk P Ω for
k “ 1, ...,KΩ and xk P I for k “ KΩ ` 1, ...,K. Furthermore, we utilize continuous piecewise
linear basis functions tφkuKk“1 that satisfy φkpxlq “ δkl. In our tests we use a slightly different
set of basis functions, which we describe in Section 5.2. Moreover, we define finite dimensional
function spaces as

V h “ spantφk : k “ 1, ...,Ku and V h
c “ spantφk : k “ 1, ...,KΩu.

Thus, we can project u P V pΩ Y Iq to a function uh P V h as follows

uh
i :“ upxiq, for all i “ 1, ...,K, and uhpxq “

Kÿ

i“1

uh
i φipxq.

With the projection gh “
řK

j“KΩ`1 giφi of the boundary data g, we formulate a discretized
version of the weak formulation (9):
Find uh

Ω P V h
c such that

Apuh
Ω, φiq “ F pφiq for all i “ 1, ...,KΩ,

ô
KΩÿ

k“1

Apφk, φiqu
h
k “ fhi ´

Kÿ

j“KΩ`1

Apφj , φiqg
h
j , for all i “ 1, ...,KΩ, (26)

where fhi :“
ş
Ω
fpxqφipxq dx. Then, uh “

řKΩ

i“1 u
h
i φi `

řK
j“KΩ`1 g

h
j φj is called finite element

approximation of (9).
By defining a matrices A,AI and a forcing vector f as

f “
`
fhi

˘
1ďiďKΩ

,A “ paijq
1ďi,jďKΩ

, and AI “ paijq
1ďiďKΩ;KΩ`1ďjďK

,

where aij :“ Apφj , φiq, we can write (26) as a system of linear equations

Auh “ f ´ AIg
h. (27)

A detailed description on how to assemble the stiffness matrices A and AI can be found in [9].

Remark 5.1. The finite element formulation for the nonlocal problem with Neumann boundary
conditions (16) can be derived in a similar fashion by replacing the bilinear operator Apu, vq with
the function B̃pu, vq :“ Bpu, vq `

ş
Ω
κuv dx. Therefore, the Schwarz algorithms for the finite

element method, as described in Section 5.3, can be employed analogously in this case.
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Remark 5.2. In the case of a singular symmetric or an integrable symmetric kernel as introduced
in Remark 2.2 the corresponding variational operator A is symmetric and positive definite and,
as a result, A is also symmetric and positive definite. If we instead consider the nonlocal problem
with Neumann boundary condition, where the kernel γ is only assumed to be symmetric, we also
derive that the corresponding bilinear operator B̃pu, vq “ Bpu, vq `

ş
Ω
κuv dx and therefore the

resulting finite element matrix is positive definite and symmetric (see Chapter 2.2).

5.2 Splitting of Inner Boundary Basis Functions

For ease of exposition, we now assume Ω̄ “ Ω̄1 Y Ω̄2 in this section. Since we use the continuous
Galerkin method in order to solve the variational formulation, the support of a piecewise linear
nodal function φk corresponding to a vertex xk, that lies on the boundary between Ω1 and Ω2,
intersects with both domains, i.e., supppφkq X Ωi ‰ H, for i “ 1, 2. Therefore, we replace every
one of these basis function φk, whose support intersects with both domains, by two functions φ1k
and φ2k, that fulfill

φkpxq “ φ1kpxq ` φ2kpxq and supppφikq Ă Ω̄i, for i “ 1, 2.

Additionally, we replace uh
k by two new degrees of freedom u

h,i
k , for i “ 1, 2. If we now follow

the derivation of the finite element formulation analogously to Section 5.1 we get again a system
of linear equations, which contains a linear equation for each u

h,i
k .

5.3 Formulation of the Schwarz Methods

In this section we assume that the basis functions and the corresponding degrees of freedom are
constructed as described in the previous Section 5.2. Then, in order to formulate the additive
and multiplicative Schwarz methods for the linear system (27) we now assign every node xk to
a domain Ωi according to the following index sets

Ji “ tj1, ..., jKi
u Ă t1, ...,KΩu, for i “ 1, ..., n, with

nď

i“1

Ji “ t1, ...,KΩu and Ji X Jj “ H, for i, j “ 1, ..., n and i ‰ j,

where additionally the implication supppφkq Ă Ω̄i ñ k P Ji is fulfilled. So the index k of every
node xk is in exactly one Ji. With these index sets we now define several submatrices and
subvectors as follows

Aij :“ paklqkPJi,lPJj
,AiI :“ paklqkPJi,KΩ`1ďlďK ,

fi :“
`
fhk

˘
kPJi

and ui :“
`
uh
k

˘
kPJi

.

Then, we can rewrite (26) as

nÿ

j“1

Aijuj “ fi ´ AiIg for all i “ 1, ...,KΩ, .

Furthermore, in the Schwarz method below we denote by uk
i the solution for the subproblem

on the domain Ωi in iteration k. The formulation of the additive Schwarz method is shown in
Algorithm 4. In order to compute solution uk`1

i the solutions uk
j regarding the other domains

are known and serve as Dirichlet boundary conditions. In contrast to (26) they are put on the
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right-hand side of the equation. In this case the algorithm is equivalent to a block-Jacobi method
to solve the linear system (26).

Algorithm 4: Additive Schwarz Method (Block-Jacobi Method)

input: u0
i for i “ 1, ..., n

for k “ 0, 1, ... until convergence do

for i “ 1, ..., n do

Find uk`1
i s.t.

Aiiu
k`1
i “ fi ´ AiIg ´

ÿ

j‰i

Aiju
k
j (28)

end

end

The description of the multiplicative Schwarz method is depicted in Algorithm 5. As mentioned
above, in the case of the multiplicative Schwarz formulation the most recent solution uk`1

j for
j “ 1, ..., i ´ 1 is used to solve the problem regarding Ωi. This alternating Schwarz method is
equivalent to the block-Gauß-Seidel method applied on the linear system (26).

Algorithm 5: Multiplicative Schwarz Method
(Block-Gauss-Seidel Method)

input: u0
i for i “ 1, ..., n

for k “ 0, 1, ... until convergence do

for i “ 1, ..., n do

Find uk`1
i s.t.

Aiiu
k`1
i “ fi ´ AiIg ´

i´1ÿ

j“1

Aiju
k`1
j ´

nÿ

j“i`1

Aiju
k
j

end

end

The description and analysis of the block-Jacobi and block-Gauß-Seidel method for linear systems
can be found in, e.g., [13, Chapter 3] or [22, Chapter 4].

Remark 5.3. We recall from Remark 5.2 that we only consider nonlocal problems, where the
matrix A is symmetric and positive definite. Then, the multiplicative Schwarz method converges
linearly (see [13, Theorem 3.53 and 3.39]) and, if n “ 2, i.e., the domain Ω is decomposed in
two nonoverlapping subdomains Ω1 and Ω2, the additive Schwarz method is also converging in
a linear fashion to the unique solution, which follows from [13, Corollary 3.52 and Theorem
3.36]. However, if Ω is decomposed in more than two subdomains, the linear convergence of a
relaxed block-Jacobi algorithm as defined in [13, Chapter 12.5.3] can be shown, if the dampening
or Richardson parameter θ is small enough (see [22, Theorem 14.5 and 14.6]).

6 Patch Tests

In this section we show that Schwarz methods for nonlocal Dirichlet problems, where we employ
nonlocal diffusion operators, can be interpreted as a Nonlocal-to-Nonlocal coupling method, that
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satisfies linear, quadratic and cubic patch tests. Analogously to [10, Definition 1 and 2], we define
the linear and higher-order patch test for the coupling of two nonlocal operators as follows:

Definition 6.1. Given two nonlocal operators ´L1 and ´L2 and a linear function
u˚pxq :“ c0 ` c1x, where c0, c1 P Rd and u˚ is a solution of

´Liu “ 0 on Ω, upxq “ c0 ` c1x on I for i “ 1, 2. (29)

Then, a coupling method passes the linear patch test, if u˚ is also a solution of the coupled
problem with the same boundary condition.

Definition 6.2. Given two nonlocal operators ´L1 and ´L2, and a polynomial u˚pxq :“řp

|α|“0
cαx

α with degree p P t2, 3u, multi-indices α P Nd
0 and cα P R. Additionally, suppose

that u˚ is a solution of

´Liu “ fpoly on Ω, upxq “
pÿ

|α|“0

cαx
α on I for i “ 1, 2, (30)

where fpoly is a polynomial with degree p´2. Then, a coupling method passes the quadratic(cubic)
patch test, if p “ 2 (p “ 3) and u˚ is also a solution of the coupled problem with the same boundary
condition.

Given a solution u˚ of a nonlocal Dirichlet problem (29) or (30), and the right-hand side
fpoly of the corresponding linear, quadratic or cubic patch test, we can directly follow that u˚

is also the solution to the Schwarz formulation (18) since the Dirichlet boundary conditions on
every Ii holds and

´Liu
˚ “ fpoly on Ωi for i “ 1, ..., n.

Therefore the patch test is trivially fulfilled. Thus, we can also interpret the Schwarz method as
a coupling method. As we will demonstrate in Section 7, we can, e.g., couple a singular and a
constant kernel.
Next, we present a class of kernels where the corresponding nonlocal operator is equivalent
to the Laplace operator ´∆upxq :“

řd

i“1 B2
i upxq in case of polynomials up to degree three

ppxq “
ř3

|α|“0 cαx
α. Hence, given a radially symmetric kernel γδpx,yq :“ γδp|y ´ x|qχBδpxqpyq

that satisfies
ż

Bδp0q

z2i γδp|z|q dz “ 2, (31)

we derive for such polynomials p that

´Lppxq “

ż

Bδpxq

pppxq ´ ppyqq γδpx,yq dy “

ż

Bδp0q

pppxq ´ ppx ` zqq γδp|z|q dy

“ ´

ż

Bδp0q

3ÿ

α“1

Dαppxq

|α|!
zαγδp|z|q dz “ ´

ż

Bδp0q

1

2

dÿ

i“1

B2
i ppxqz2i γδp|z|q dz “ ´∆ppxq,

where we used in the last step that the function zα is an odd function regarding one xi-axis, if
|α| is an odd number. Furthermore, if α “ pα1, ...,αdq with |α| “ 2, αi “ αj “ 1 and i ‰ j, the
function zα “ zizj is an odd function regarding the xj -axis. Since Bδp0q is a symmetric domain
regarding every xi-axis, the integrals, in which these functions zα appear, vanish. In Section
7.3 we use different kernels that satisfy the conditions (31) in a numerical example, where the
nonlocal Schwarz formulation passes the linear patch test.
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7 Numerical Experiments

In the following we numerically examine the Schwarz method for several nonlocal problems. We
start with an example for the nonlocal Dirchlet problem and continue with a Neumann prob-
lem. After that we investigate the patch test for one example. In the last section we study
two preconditioned GMRES versions that we compare with GMRES without preconditioner.
We apply the finite element method in all experiments as mentioned in Chapter 5. More-
over, we consider the residual error regarding the Euclidean norm ||Auk ´ b||2, where uk is
the solution after the k-th iteration and b :“ f ´ AIg. In our experiments the energy error

||uk ´ uk´1||A :“
`
uk ´ uk´1

˘J
A

`
uk ´ uk´1

˘
had the same behaviour as the residual error.

For a more concise presentation, we therefore only discuss results involving the residual error.

7.1 Nonlocal Dirichlet Problem

In our first experiment, we compute a nonlocal Dirichlet problem as described in Section 2.1.
Here, we choose Ω as depicted in Figure 7.1 and δ “ 0.1. Thus, we have Ω̄ “ Ω̄1YΩ̄2YΩ̄3. Further,

Ω1

Ω2

Ω3

I

Figure 7.1: The domain Ω “ p0, 1q2 is divided into Ω1, Ω2 and Ω3. The nonlocal boundary I is
depicted in red.

we use the following kernel, which satisfies the requirements of a singular symmetric kernel of
Remark 2.2, and we employ the subsequent piecewise constant forcing term and boundary data

γpx,yq “

$
’’’’’&
’’’’’%

4cδ
||x´y||2`2s

2

χBδpxqpyq x,y P Ω1 or x,y P Ω2,

7cδ
||x´y||2`2s

2

χBδpxqpyq x,y P Ω3,

5cδ
||x´y||2`2s

2

χBδpxqpyq x P I or y P I,

10cδ
||x´y||2`2s

2

χBδpxqpyq else,

cδ “
2 ´ 2s

πδ2´2s
, s “ 0.5, fpxq “ 5χΩ1YΩ2

pxq ` 1χΩ3
pxq and g “ 0 on I.

Here, the kernel γ can, e.g., be considered as a special case of the kernels investigated in [5]
or as a Case 1 kernel of [7]. The stiffness matrices for every subproblem are computed by
using the python package nlfem[16], which has to be done only once at the beginning of the
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algorithm. Then, every subproblem is solved with LGMRES with tolerance 10´12 and the
Schwarz method stops, when the residual error is below 10´9. The results for the multiplicative
and additive Schwarz method are shown in Figure 7.2 for different choices of the mesh parameter
h. Additionally, we can observe quadratic h-convergence(see Figure 7.8).

0 200 400 600 800
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multiplicative Schwarz for h=0.1
additive Schwarz for h=0.1
multiplicative Schwarz for h=0.05
additive Schwarz for h=0.05
multiplicative Schwarz for h=0.025
additive Schwarz for h=0.025

Figure 7.2: Here, we can see the residual error of the multiplicative and additive Schwarz method
for the nonlocal Dirichlet problem with a singular symmetric kernel regarding different choices
for the mesh resolution h. In all cases the error decreases in a linear fashion, which we expected
at least for the multiplicative Schwarz version due to Remark 5.3. Moreover, the additive version
needs roughly twice as many iterations as the multiplicative Schwarz algorithm.
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7.2 Nonlocal Problem with Neumann Boundary

In this section we define a nonlocal problem with Neumann boundary conditions as described
in 3.2, where we can have both Neumann and Dirichlet boundary conditions for a subproblem,
see (21). The setting is shown in Figure 7.3. By applying the finite element method, we also
have degrees of freedom on the nonlocal boundary I, which we therefore divide into IN

1 and
IN
2 . Moreover, we choose an integrable kernel γ and f as well as κ to be piecewise constant and

dependent on Ω1 and Ω2 as follows

Ω “ p0, 1q
2
, δ “ 0.1,

γpx,yq “
4

πδ4
χBδpxqpyq,

κpxq “ 1χΩ1
pxq ` 10χΩ2

pxq and

fpxq “ 10χΩ1
pxq ` 1χΩ2

pxq.

For these tests we only consider the multiplicative Schwarz approach(see Remark 3.2), and we
take the same tolerances as in the previous Chapter, i.e., tolerance 10´12 for LGMRES and 10´9

regarding the residual error as the termination criterion for the multiplicative Schwarz algorithm.
As we can observe in Figure 7.4 and as expected in Remark 5.3, the behavior of the errors
corresponding to the multiplicative Schwarz method stay the same compared to Schwarz methods
for nonlocal Dirichlet problems, i.e., the residual error decreases in a linear way. However, the
number of needed iterations to fulfill the termination criterion stays roughly the same, which
can be explained by the fact, that the condition number of the stiffness matrix in the continuous
Galerkin approach(without splitting of inner boundary basis functions) is constant for integrable
kernels(see [7, Theorem 6.3]). Lastly, we also notice quadratic h-convergence for this example,
which is illustrated in Figure 7.8.

Ω1 Ω2

IN
2

IN
1

Figure 7.3: In this example Ω is divided in two subdomains Ω1 and Ω2 and the nonlocal boundary
I is decomposed in IN

1 and IN
2 .
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Figure 7.4: In this picture the residual error regarding the multiplicative Schwarz method for
the nonlocal Problem with Neumann boundary condition w.r.t. a selection of mesh parameter h
is depicted. Again, we can observe a linear decrease in the residual error.

7.3 Patch Test

Now, we conduct a linear patch regarding two nonlocal diffusion operators. We solve in our case

´L1u1 “ 0 on Ω1, ´L2u2 “ 0 on Ω2,

u1 “ u2 on Ω2, and u2 “ u1 on Ω1,

u1 “ g on I u2 “ g on I,

where

gpxq :“ x1 ` x2 for x P Ω Y I, ´Liupxq :“

ż

ΩYI

pupxq ´ upyqq γipx,yq dy with

γ1px,yq :“
4

πδ4
χBδpxqpyq, γ2px,yq :“

cδ

||x ´ y||2`2s
χBδpxqpyq, s “ 0.6 and cδ :“

2 ´ 2s

πδ2´2s
.

Here, both kernels γ1 and γ2 are symmetric, but the resulting kernel γ on the complete domain
pΩ Y Iq ˆ pΩ Y Iq with

γpx,yq “ γ1px,yqχΩ1
pxq ` γ2px,yqχΩ2

pxq

is nonsymmetric. In Figure 7.5 the setup is the illustrated and the starting and final solution
are depicted in Figure 7.6. We again used LGMRES with tolerance 10´12 and stopped after the
residual error dropped under 10´9. The convergence results w.r.t. the residual error can be seen
in Figure 7.7, where we also observe linear convergence. Since we know the exact solution g, we
can examine the L2pΩ Y Iq-norm distance of several solutions uph of the patch test, that depend
on the choice of the mesh parameter h, to the the function g0.01, which is the projection of g
onto the mesh with size h “ 0.01. The results are presented in Figure 7.8. In this case, we again
observe quadratic h-convergence.
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Ω1

Ω2

I

Figure 7.5: Here, we see the decomposition of Ω in a turquoise area Ω1 and in a gray domain Ω2

that we use for the patch test and for testing the (preconditioned) GMRES in Chapter 7.4. The
nonlocal boundary I is again depicted in red.
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Figure 7.6: On the left-hand side we see the starting solution, where we have u0 “ g on the
nonlocal boundary I and u0 “ 0 on the domain Ω. Additionally, the final solution is shown on
the right-hand side.

24



0 20 40 60 80 100
iteration

10−8

10−6

10−4

10−2

re
sid

ua
l e

rro
r

multiplicative Schwarz for h=0.1
multiplicative Schwarz for h=0.05
multiplicative Schwarz for h=0.025

Figure 7.7: In case of this linear patch test, we can observe linear convergence regarding the
residual error for the multiplicative Schwarz approach.
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h2

Figure 7.8: Here, we denote by uDh , u
N
h and uph the final solution of the Dirichlet problem, the

Neumann problem and the patch test in dependence of the mesh parameter h as described in
Chapters 7.1, 7.2 and 7.3. In this Figure, we compare uDh and uNh in the L2pΩ Y Iq-norm to the
solution uD0.01 and uN0.01, respectively, where h “ 0.01. Moreover, in case of the patch test, we
compute the L2pΩ Y Iq-norm distance of upk to the projection of the exact solution g onto the
space of continuous piecewise linear basis functions regarding the mesh with size h “ 0.01, which
is indicated by g0.01. In all three cases, we can observe a quadratic convergence.
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7.4 Preconditioned GMRES

In the finite element setting the multiplicative Schwarz method is equivalent to the block-Gauß-
Seidel algorithm and the additive Schwarz method corresponds to the block-Jacobi algorithm as
seen in Section 5.3. Therefore, we make use of the block-Gauß-Seidel preconditioner M´1

BGS and
the block-Jacobi preconditioner M´1

BJ , that are defined as follows

MBGS “

¨
˚̋
A11 ¨ ¨ ¨ 0
...

. . .
...

A1n ¨ ¨ ¨ Ann

˛
‹‚ and MBJ “ diagpA11, ...,Annq,

to precondition GMRES. For more information on these two preconditioner we refer to [22,
Chapter 4.1.2]. In the tests we compare GMRES equipped with a left preconditioner M´1

BGS or
M´1

BJ to GMRES without any preconditioning.
In all cases we used the constant kernel γ1 on Ω1 and the fractional kernel γ2 on Ω2 of Section
7.3. Moreover, we set the boundary data g “ 0 on I and the forcing term f “ 10 on Ω. In
every test the convergence tolerance of GMRES is chosen to be 10´10. Additionally, we denote
by κGMRES the condition number of the finite element matrix A, by κGMRES`BJ the condition
number of M´1

BJA and by κGMRES`BGS the condition number of M´1
BGSA, respectively.

h GMRES GMRES+BJ GMRES+BGS κGMRES κGMRES+BJ κGMRES+BGS

0.1 177 39 15 2715.41 39.79 18.85
0.05 365 30 15 4649.59 42.46 20.15
0.025 580 32 13 8110.49 45.72 20.53

Table 7.1: For δ “ 0.1 and s “ 0.5 we tested different mesh sizes h and documented the number
of required iterations as well as the condition number of the (preconditioned) matrices.

s GMRES GMRES+BJ GMRES+BGS κGMRES κGMRES+BJ κGMRES+BGS

0.2 118 25 12 483.18 35.22 18.68
0.5 580 32 13 8110.49 45.72 20.53
0.8 2509 37 14 11687.19 59.13 22.18

Table 7.2: In these experiments we set δ “ 0.1 and the mesh size h “ 0.025 was chosen. Then,
we tested different values for the parameter s of the singular kernel and recorded the condition
number of the (preconditoned) system matrix and the number of iterations that each version of
GMRES needed.
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δ2 GMRES GMRES+BJ GMRES+BGS κGMRES κGMRES+BJ κGMRES+BGS

0.1 580 32 13 8110.49 45.72 20.53
0.05 1089 35 14 18862.67 57.83 22.24
0.025 1675 36 14 39848.76 63.35 21.58

Table 7.3: In these tests we set the horizon δ1 “ 0.1 for the constant kernel and varied the
parameter δ2 of the singular kernel. Moreover, we chose h “ 0.025 and s “ 0.5 and noted the
number of iterations that each GMRES variation required as well as the condition number of the
accompanying (preconditioned) matrices.

As we can see in all tests of Tables 7.1 - 7.3 the number of required iterations and the condition
number reduce significantly, if we use the block-Jacobi or block-Gauß-Seidel preconditioner in-
stead of GMRES with no preconditioning. For the block-Gauß-Seidel preconditioner the number
of iterations as well as the condition number even stay roughly the same.

8 Conclusion

We have shown in this paper how the multiplicative and additive Schwarz method can be ap-
plied to nonlocal Dirichlet problems and how they can be utilized to solve nonlocal problems
with Neumann boundary condition. In the first case we showed the convergence of the multi-
plicative version of the Schwarz algorithm for two widely used classes of symmetric kernels and
in the second case we only needed symmetric kernels to prove that the multiplicative Schwarz
approach converges. Additionally, coupling nonlocal operators with the Schwarz method fulfills
trivially nonlocal patch tests. In the last section we provided examples for all discussed problems
in this work. Additionally, we observed in the patch test experiments in Chapter 7.3, that the
Schwarz approach can also work for nonsymmetric kernels in practice. Further, we investigated
preconditioned GMRES variants that resulted from the multiplicative or additive Schwarz al-
gorithm in the finite element setting, where we noticed, that especially the block-Gauß-Seidel
preconditioned GMRES version only needs a small amount of iterations.
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