arXiv:2405.01905v1 [math.NA] 3 May 2024

Schwarz Methods for Nonlocal Problems

Matthias Schuster* Christian Vollmann* Volker Schulz*

Abstract. The first domain decomposition methods for partial differential equations were already
developed in 1870 by H. A. Schwarz. Here we consider a nonlocal Dirichlet problem with variable
coefficients, where a nonlocal diffusion operator is used. We find that domain decomposition methods
like the so-called Schwarz methods seem to be a natural way to solve these nonlocal problems. In this
work we show the convergence for nonlocal problems, where specific symmetric kernels are employed,
and present the implementation of the multiplicative and additive Schwarz algorithms in the above
mentioned nonlocal setting.
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1 Introduction

Nonlocal operators can be helpful to describe physical phenomena, where long range interactions
occur. Therefore, in these cases, nonlocal models are better suited than the classical approach
via partial differential equations. Nonlocal operators have already been applied in many fields,
such as image denoising[3} [I1], anomalous diffusion[2] 27 [6], peridynamics[26], [14] and stochastic
processes[21], [§], just to name a few.

Moreover, nonlocal interface problems as well as models that contain domain-dependent param-
eters have become popular in recent years, see e.g., [23, 4 [12]. These domain-dependent pa-
rameters may naturally suggest a domain decomposition which leads to domain decomposition
methods that are widely used in the case of partial differential equations and have been investi-
gated in, e.g., [20, 28]. In the matter of nonlocal equations the approach of finite element tearing
and interconnecting (FETT) has been successfully applied as described in [I5, [31]. Another class
of domain decomposition methods are Schwarz algorithms, that were initially developed in [24]
for partial differential equations. An abstract framework for the Schwarz approach can be found
in [0} 17 (18]

Although FETI is a very efficient way to solve nonlocal equations, Schwarz methods have several
advantages. They are easier to implement and it is straightforward to incorporate black-box
solvers, whereas for FETI the finite element formulation on overlapping domains needs to be
changed. Moreover, we could observe that Schwarz methods can also converge in case of a non-
symmetric kernel as shown in an experiment in Chapter Lastly, if the parameter &, which
determines the the range of nonlocal interaction and thus the width of the nonlocal boundary
regarding one (sub-)domain (see Section [2)), is quite huge, FETI cannot decompose the domain
in many subdomains. In this case, GMRES with a Schwarz preconditioner might be faster, es-
pecially if we include the set-up times of both solvers.

Schwarz methods have also been utilized to solve an energy-based Local-to-Nonlocal(LtN) cou-
pling in [I]. Additionally, in [I] they showed the convergence of the multiplicative Schwarz
method for this energy-based LtN coupling by applying [I9, Theorem I.1]. In Section @ we
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present the convergence of the multiplicative Schwarz method for two cases of nonlocal prob-
lems in a similar fashion by referring to [19, Theorem I.2]. Furthermore, we point out that the
Schwarz formulation solves linear, quadratic and cubic patch tests. These patch tests often serve
as a criterion to evaluate and therefore compare Local-to-Nonlocal couplings. We refer to the
review paper [I0] for more information on LtN couplings. Additionally we test GMRES against
two preconditioned versions of GMRES that result from the multiplicative and additive Schwarz
method combined with the finite element method.

We start by introducing nonlocal Dirichlet problems and nonlocal problems that involve Neu-
mann boundary conditions in Chapter [2l After that we describe the multiplicative and additive
Schwarz method for the previously mentioned nonlocal problems in Chapter[3l Next, in Chapter
@ we prove the convergence of this multiplicative Schwarz method to the unique solution under
the assumption that the kernel is symmetric. Furthermore, we present the finite element method
as a way to numerically solve nonlocal problems in Chapter Here, we also illustrate how
Schwarz methods are applied for this discrete framework. In Chapter [6] we shortly introduce
patch tests, which are used to evaluate Local-to-Nonlocal or Nonlocal-to-Nonlocal couplings. In
the last Chapter [7] we start by testing the Schwarz methods on two examples. The first one is a
nonlocal Dirichlet problem, where we use a singular symmetric kernel, and the second example
is a nonlocal problem with Neumann boundary, where we employ a constant kernel. Then, we
investigate an example of a nonlocal Dirichlet problem with a nonsymmetric kernel that addi-
tionally satisfies the patch test. Lastly, we study two versions of preconditioned GMRES, that
are connected to the Schwarz method for the finite element formulation, and we compare these
two approaches to a GMRES without preconditioning.

2 Problem Formulation

Let Q = R? be an open and bounded domain and {€;} ; be a partition of 2, where Q; c  is
open for i = 1,...,n, and that satisfies

ﬁ:LjﬁiE’“ninﬁQj=®f0ri,j=1,...,namdi;réj. (1)
i=1

From now on we denote by 7 : R? x R? — [0,c0) a nonnegative (interaction) kernel and define
the nonlocal boundary Z of €2 as follows

T:={yeR\Q: J-Q v(x,y) dx > 0}.

Based on the partition {€2;}?_; we can express the kernel ~y as
n n n
v = Z Yij X xq,; + Z VT X xT + 2 VLiXT x> (2)
i,j=1 i=1 i=1
with potentially different nonnegative kernels
Yij 1 Qi x Q5 —[0,0), vz : Q@ x I —[0,0) and vz, : T x Q; — [0,0), for i,j =1,...,n.

Then, we define the nonlocal diffusion operator —£L, which can be found in, e.g., [8 B} [7, 29] [30],
as

~Lu(x) = f (u(x) — u(y)) 7(x, y) dy. 3)

Rd



2.1 Nonlocal Dirichlet Problems

One class of problems, that we focus on, are nonhomogeneous steady-state Dirichlet problems
with nonlocal boundary constraints given by

—Lu = fon ()
u=gonlZ,

(4)

where the forcing term f may vary across the various parts of the decomposition (), i.e., there
exist possibly mutually different f; : ; — R, for ¢ = 1,...,n, such that

f=>] fixa. (5)
1=1

Similar types of nonlocal problems can also be found in, e.g., [5 23]. Moreover, the kernel v is
assumed to be symmetric and is supposed to fulfill the following conditions

(K1) There exist § > 0 and ¢ : R? x R? — [0,00) with v(x,y) = ¢(X,¥)XB; ) (¥)-
(K2) There exist 0 < vy < o0 and € € (0,0) such that vy < y(x,y) for y € B¢(x) and x € Q.

In order to derive a weak formulation, we multiply the first equation of the left-hand side of ()
by a test function v : Q UZ — R and then integrating over €2 yields

( Lu ’U)LZ(Q (f, )LZ(Q

= | 060 | (w6~ uly)r ) dyix = | o) dx. ()

By applying Fubini’s theorem and by considering v(y) = 0 on Z the first integral of the left-hand
side can be expressed as

J Luz (¥)v(x,y) dydx
JJ y)(u(x) — u(y))y(x,y) dydx.

(QuT)?

Thus we now define the nonlocal bilinear form

f f (v(x) — v(y))(u(x) — u(y))1(x,y) dydx

(Qul’)2

9=t LJ ¥)) (u(x) = u(y)) i (x,y) dydx

* Zf _ L(v(x) — o(y))(u(x) — uly))mz(x,y) dydx

and the linear functional

)i= [ 76900x) i = 2 [ £t ax,



where we used the definition of the forcing term (B and that the kernel can be expressed as a
sum of kernels as in ([2)). Moreover, with A we can define the following semi-norm and norm,
respectively,

|U’|V(QUI) = A(u,u), (7)
l[ullv@uz) = lulvieur) + IlullL2 o)
This enables us to define the following spaces

VQuUI):={uel*(QuI): l[ullv@uz) < o} and
Ve@QuUI):={ueV(QuUI):u=0onZ}.

We now present a variational formulation of problem (H):

Definition 2.1. Given f e L?*(Q) and ge V(QUI), ifue V(Q U I) solves

A(u,v) = F(v) for allve V.(QUTI) and N
u—geVe(QuI), ®)

then u is called weak solution of (@).

Since A(u,v) = A(u—g,v)+ A(g,v) and u—g € Vo.(QuUT), problem (&) can also be reformulated
as a homogeneous Dirichlet problem

Given f e L*(Q) and ge V(QUT), find i e V. (QuUT) :
A(t,v) = F(v) — A(g,v) for allve V.(QuUTI), 9)
then u:=u+ g€ V(QuUZI)is a weak solution of ().

Remark 2.2. In this work, we show the convergence of the multiplicative Schwarz method for
nonlocal Dirichlet problems for symmetric kernels, that fulfill (K1) and (K2). Additionally, the
kernels are assumed to satisfy the requirements of one of the following two classes, where the
well-posedness of the corresponding nonlocal Dirichlet problem () is shown, e.g., in [7:

e Integrable kernels:
There exist constants 0 < y1,7v2 < 00 with

xeQ xe)

7 < inff v(x,y) dy and supf (v(x,y))* dy < (32)*.
QuT QuT

Then the solution u € V(Q u I) for [) exists, is unique and in this case the spaces
(VC(Q uI),|- |V(QUI)) and (Lg(Q ANIE ||L2(QUI)) as well as (V(Q ANIE ||V(QUI))
and (L2(QU I),|| - ||120u1)) are equivalent.

e Singular kernels:
There exist constants 0 < 4, v* < 0 and s € (0,1) with

d+2s
2

v < Y(x,¥)|x +yl| < ~* for ally € Bs(x) and x € Q.

Then the solution to ) exists, is unique and the spaces (Ve(Q U I), |- [y (our)) and
(HCS(Q o I)a | ' |HS(QUI)) as well as (V(Q Y I)v || ' ||V(QUI)) and (HS(Q Y I)v || ' ||H5(QUI))

are equivalent.



2.2 Nonlocal Problems with Robin Boundary Conditions

Besides solving a nonlocal Dirichlet problem, we are also interested in solving nonlocal problems
that involve a Neumann boundary condition, i.e., find a solution u for

—Lu(x) + k(x)u(x) = f(x) for x € Q,
Nu(y) = g™ (y) for y e IV, (10)
u(y) = g"(y) fory e I°,

where
T=1INUIP, k:Q — [, B] with 0 < a < f < 00, v : R? x RY — [0, 00) measurable and

N(y) = f ()~ uy) 1 x,y) dy for y €7V, (11)

Here, N is called nonlocal Neumann operator. For problems of type (I0), we only assume
7 :R? x R — [0,0) to be a measurable and symmetric function. Furthermore, if v(x,y) = 0
for x,y € Z, the Neumann operator reduces to

N(y) = L (u(x) — u(y))7(x,y) dy for y € TV. (12)

In the case of TV = 7 and (2] there exists a unique weak solution to problem (I0) according to
[30]. In the following we show existence of a unique solution to problem (I for the more general
case ([I0) by following the approach in [30]. Therefore, in order to get a variational formulation
for the problem ([I0), we multiply the first two equations of (I0) by a test function v : QUZ — R,
integrate over €, or TV respectively, and add up the two equations. Then we get

(—Lu + Ku ’U)LQ(Q) + (NU ’U)Lz IN) = (f,v )LZ(Q (gN, U)LZ(IN) . (13)

By assuming v = 0 on Z” and by using similar computations as in Section ] we can reformulate

@3) as
1
2 Luz Luz (v(x) = v(y)) (u(x) —u(y)) y(x,y) dydx + L r(x)v(x)u(x) dx "
J f(x ) dx + JIN gN(x)v(x) dx.

Next, we define the spaces

V(Q, IV, IP) = {ve L*(QUI): [[v[ly(@,zv 2y < o0}, and
Vo(Q,ZV,Z7) := {v e V(Q,IV,TP) with v = 0 on Z”}, where

ol ey = [ 0002 axt [ [ (i) o) () dye
Q QuZ JQuUT

Moreover, set

(s Wy zn 20) = me)v(x) dx + f ) f () = u(y) (000) = v(¥)) 7 x.¥) dyx.



which is a semi-inner product for V,(Q,Z%,ZP). We further define the quotient space
V(Q,TV,IP) = v(Q, IV, I7)/Z, and V.(Q, IV, I7) := V.(Q, TV, TP)/Z, where
Z = {veV.(Q,I,I7) : v(x) = 0 for a.e. xe QU T} and set
{[u], [U]>V(Q,IN,ID) = <uav>V(Q,IN,ZD) and ||[U]||V(Q,IN,ZD) = ||U||V(Q,IN,ZD)-
In the following we write u instead of [u] for ease of presentation.

The first line of (I4)) yields the bilinear form B : V(Q,ZV,ZP) x V(Q,ZV,IP) — R, where

B(u,v) = = f f (u(x) - u(y)) (v(x) — v(y)) (%, y) dydx.

Additionally, we define the linear functional F'V : V(Q,ZV,ZP) — R as

F¥0) = | o0 ax+ | oV Gout) dx

N

Definition 2.3. Given functions g” € V(Q,IV,IP), f € L?(Q), gV € L>(TV) and r : Q — [o, 3],
where 0 < o < B < o0, then, if a function u e V(Q,IN,IP) solves

B(u,v) + f r(x)u(x)v(x) dx = FN(v) for all ve Vo (Q,ZV,TP) and
" (15)
u— gD € ‘/C(Q7INaID)7

the function u is called weak solution to problem (I0J).

Again, this weak formulation can also be reformulated as a problem with homogeneous Dirichlet
boundary conditions:

Given functions g” € V(Q,IV,IP), f e L*(Q), ¢" € L*(ZTV) and k : Q — [o, A],
where 0 < o < B < o0, find a function @ € Vo(Q, IV, IP) such that
Bl + [ situn) ax = £ - (B0 + [ sxigPGou ax)  16)
for all ve Vo(Q,IN,IP), then u := i + g° € V(Q, IV, I") solves (7).
Now, we can show the following theorem, which is similar to [30, Theorem 3.1].

Theorem 2.4. The space V.(Q, IV, IP) is complete regarding || Ilv,zn zpy. As a consequence,
Ve(Q,IN,IP) is a Hilbert space with respect to || - ||y oz~ 70y

Proof. Let (vn)nen be a Cauchy sequence in V.(Q,ZV,ZP7). Then, due to the completeness
of L?(Q), respectively L2((Q u ZV) x (Q u Z)), there exist functions ¥ € L?(Q) and w €
L2(QuIN) x (QuZIV)), such that

lim | (vp(x) —3(x))* dx =0 and

k—o0

Q
im [ (0060 = s )VAGe) i) dyix =0,

k—o0



Analogously to [30, Theorem 3.1] one can show that there exists a subsequence (vp, ),y Of (Vn)nen
and an extension v : QUZ — R of 7, i.e., v = ¥ on €, with v = 0 on Z” and

llirr% U, (x) = v(x) for a.e. xe QUL
Consequently, we derive
w(x,y) = lim (vn, (%) = v, (¥)) V7(%,¥) = (0(x) = 0(y)) V(x,y) for ace. (x,y) € (20 T)*.
Therefore, v € V.(2, IV, ZP) and we can conclude

lim ||’Um - 'UHV(Q’IN;Z'D) =0 and lim ||’Un - U||V(911N71D) = 0.
>0 n—00

O
Set |||u|||%/(911-N71D) = B(u, U)+§z k(x)u?(x) dx, then the norms -l[lv @z~ zry and || - [y 2~ 20y
are equivalent for u € V.(Q,ZV,ZP) since
. 1
mln{iaa}HuH%/(Q,IN,ID) S |||U|||\2/(sz,IN,ID) S max{§7ﬂ}”uH\Q/(Q,IN,ID)' (17)

By applying the Riesz representation theorem we directly get the following conclusion.

Corollary 2.5. Given f e L?(2), gV € L*(ZV) and gP € V(Q,IN,IP), there exists a unique
function @ € V.(Q, IV, IP) that satisfies (I0), i.e., u = @ + g is a weak solution for ([I0).

3 Schwarz Methods

The first domain decomposition method was already formulated by Hermann Amandus Schwarz
around 1869 and is now known as the Schwarz alternating method[24] 25]. It is an iterative
method which was originally used to solve the Laplace equation on a domain by decomposing
the domain into two overlapping domains where the Laplace equation could be easily solved on
each. In every iteration the former solution regarding the problem on the other domain was used
as a boundary condition on the boundary that was part of the other domain.

In this section we formulate the additive and multiplicative Schwarz method for the nonlocal
problem (@) in the same manner. Therefore, we denote the nonlocal boundary regarding the
subdomains §2; of the decomposition () by

T, = {y e R\, : f ~v(x,y)dx > 0}.

i

3.1 Schwarz Methods for Nonlocal Dirichlet Problems

Given the solution u of the nonlocal problem (), for i = 1, ..., n we set u; := u|q,_z,, and observe
that u; is a solution of
Find a weak solution u; € V(Q; U ;) subject to
—Lui = fi on €,
u; =uj onZ;nQy, forj=1,...n and j # 1, (18)
u; =g onZL; nT.



In this case, u|;oz;, € V(Q; UZ;) for j =1,...,n and j # i serve as the boundary data.
On the other hand, as we will show in Section ] if we have weak solutions {u;}}_; for (8],
the function

n
wi= Y uixo, +gxz
1=1

solves the nonlocal problem ().

Remark 3.1. Since we derive (AI8) from (@) and (&), respectively, the boundary data of the
problem on ; is an element of V(2 U Z;) and can naturally be extended to a function of
V(Q U I). Therefore, we expand the boundary T; to I; := (Q\Q;) U Z and restrict ourselves to
boundary data in V(S UZL;). Consequently, we will make use of the spaces V (Q; uZ;) = V(QUT)
and Vo(u 0ZL) = {u e VIQUZI) :u=0onZ; = (Q\Q) U I} in order to formulate a weak
formulation for (I8]).

Thus, for v; € V(€ uZ;) and u € V(Q U Z) the bilinear form A reduces to the corresponding
bilinear operator that only contains integrals over (©; U Z;) x (£; U Z;) as follows

L
Alu,v;) = - u(x) —u v;(x) — v; X,y) dydx
(o= 33 5 | J, 009 = o) (0560~ ) 03)

! ; J;l u(x)vi(x) J-IW(X, y) dydx
1

+ Zlfﬂ Lj v;(x) (u(x) —u(y))v(x,y) dydx + f

o u(x)v; (x) L v(x,y) dydx,

J#i

where we used the symmetry of 7y in the last step. Analogously, F' can in this case be written as
an operator that only integrates over €, i.e.,

F(v;) = L fui dx = Li fiv; dx.

Then, we define the variational formulation for the subproblem on €2; as:

Given f € L*(Q) and boundary data g€ V(Q; 0 1;) = V(Q U T),
find u; € V(Q; L) = V(QUT) such that ) (19)
A(ui,v;) = F(v;) for all v; € Vo.(Q; U L),
u; — g€ Vo (Q; u Z)
In the following we show two popular Schwarz methods to solve the problem (8] in an iterative
manner. In both cases we start with initial guesses {u?}” ;. In the multiplicative Schwarz

method, as shown in Algorithm [Il we use the most recent solutions in every iteration as the
boundary data, i.e., for the subproblem ¢ the solutions uf“ for 0 < j < ¢ from the current



iteration are employed.

Algorithm 1: Multiplicative Schwarz method

input: v fori =1,...,n
for k = 0,1, ... until convergence do
fori=1,...,ndo

Find uf“ s.t.
E+1
—Lu;" = f; on £,
uf“ = u?“ onZ;nQjforj=1,..,i—1,
uf“ =u§’ onZ;nQyfor j=i+1,..,n,
ué”l =g onZ; n1.
end
end

Another approach is to only use the solutions of the former outer iteration {uéc -1 instead of
utilizing uf“ for the subproblem ¢, if 0 < j < 4. This leads to the so-called additive Schwarz
algorithm that is presented in Algorithm 2] This version of Schwarz iterative methods is easily
parallelizable. In some cases there is also a way to compute the multiplicative Schwarz algorithm
in parallel to some extend, which leads to the multicolor Schwarz algorithm that is illustrated in
[20, Algorithm 2.2.2] for a coercive elliptic partial differential equation.
Algorithm 2: Additive Schwarz Method

input: u{ fori =1,...,n

for k = 0,1, ... until convergence do
fori=1,...,n do
Find uf“ s.t.

*Euf-’—l = fz on Qi,
k+1 k .
w; T =wuj onZ;nQyfor j=1,..,n,

k+1 _
u, =g onZ;nT.

end
end

Remark 3.2. If we decompose € in only two domains 1 and Qs the additive Schwarz method
basically consists of two multiplicative Schwarz methods, where one starts by solving the subprob-
lem on Q1 and the second one begins by computing the solution on Qy. Therefore, the application
of the additive Schwarz methods can only be faster, if the domain Q is decomposed in at least
three subdomains.

In Chapter £.3] we will present the finite element versions of the multiplicative and additive
Schwarz method. Then, the discretized multiplicative Schwarz method coincides with the block-
Gauf3-Seidel algorithm and the discretized additive Schwarz approach is equivalent to the block-
Jacobi method.



3.2 Schwarz Methods for Nonlocal Problems with Neumann Boundary
Conditions
In this section we apply the Schwarz Method on a nonlocal problem with Neumann boundary
conditions as introduced in Chapter For ease of presentation, we assume ZV = Z (and
consequently ZP” = (#). The case, where T = TV UZP with Z” # ¢, can be handled analogously.
Thus, we consider the following problem.
Find a weak solution uw e V(Q,Z, &) to
—Lu+ ku=f on €, (20)
Nu=g" onT,

where y(x,y) = 0 for x,y € Z, i.e., we use the nonlocal Neumann operator (I2)).
Moreover, let {ZN}"_; be a partition of the nonlocal boundary Z(= Z") such that

j-:(UffV))IZJVmI;V:@fOY'L,j:l,77’L,’L;éjand
i=1

IZ-NCIiﬁI={yEI:J- ~v(x,y) dx > 0}.

Here, it is possible that there exist a subset of indices S  {1,...,n} with |S| < n — 1 such that
N _ .
I;' = for jES.

Thus, the partition {Z}¥}™_; can contain the empty set multiple times and includes at least one
non-empty set. Moreover, the boundary data ¢”¥ may vary across the different parts of the
decomposition {ZV}"_,, i.e., there exist mutually different g~ : ZV — R, for i = 1,...,n, such
that g™ = 37 g xzn.

Given the weak solution u of the problem (20), then the functions u; := uxq, z, fori =1,....,n
are solutions of

Find a weak solution u; € V(Qy;, I,
—Lu; + ku; = fi on Q,
Nu; =g on IV,

ui=uj onZ; 0 (Q; UIY), forj=1,..,n and j # i.

TN\IN) subject to

(21)

So, on every subproblem we are solving a nonlocal Robin problem. Additionally, since the
nonlocal boundary regarding {2; can be partially in another subdomain Q;, i.e., Z; n Q; # &,
the integration domain of the Neumann operator corresponding to the subproblem on €2; can
contain parts of the nonlocal Dirichlet Boundary and the nonlocal Neumann operator is in this
case of type (1)) and not of type (I2). Again, if we have a weak solutions (u;)?_; of the problems

1), we set

U = 2 WiX 0N
i=1
and then wu is weak solution to (2II), which we show in Section Again, analogously to the
nonlocal Dirichlet case as described in Remark[3.]] we extend the Dirichlet boundary Z,\Z» corre-
sponding to the subproblem on ; UZY to the domain Z; := | (QuZl) = (QuI)\ (uouIl).

Jj=1
J#i

10



Then, V(Q,Z, &) < V(u,IN, 7, i ;) and, due to the symmetry of v, we obtain for u; € V(QZ,IZN,i)
and v; € Vo(Qq, IV, Z;) that

Blusvn) + [ nGubaute) de=g [ [ (b~ uiy) (160) - vy () dydx
Q Q; uIN Q; uI
> (ui() = ui(y)) 7(x, ) dydx
j=1 ZUI ]uI
J#i
+J K(X)u; (x)v;(x) dx.
Q;
Thus, we define the variational formulation of the Robin problem on €; U ZV as:

Gien f e L*(), g~ € LX(ZN) and g e V(, IV, ), find u; € V(Q4, TN, 1;) with

B(ug,v; +J K(x ui(x) dx = FN(v;) for all v; € Vo(Q4, TN, T;)
Q (22)

and u; — gP € Vo(Qi, TN, T;).

(2Rt NS

The multiplicative Schwarz algorithm can then be formulated as follows:

Algorithm 3: Multiplicative Schwarz Method for Nonlocal Problems with Neumann
Boundary Conditions

input: v fori =1,...,n
for £k =0,1,... until convergence do
fori=1,..,ndo

Find Weak solution uk’L1 to

—Lu k“ + /iu = f; on £,
NuFtt =gV on !,

K2

uFtt =l on 7, A Qjforj=1,..,i—1

i 7 )
uerl:u;? onZ;nQforj=i+1,..,n
end
end

The additive Schwarz method can be analogously derived as in Section B.J] by only using the
solution of the former outer iteration (u¥)™ , as the boundary data in iteration k to compute
k+1)

the new solutions (u; ™) ;.

4 Well-posedness of the Multiplicative Schwarz Method

In this section we show that the multiplicative Schwarz methods as described in Chapters B.1]
and converge. Therefore we recall the first part of [19, Theorem 1.2]:

Theorem 4.1. Given closed subspaces {V;}"_, of a Hilbert space V := @I ,V;, orthogonal

projections P; : V. — V onto the subspace V; and a sequence (ul)il, where P;(u!=1) = u! for

0

I = km + i given some data u®. Then u' converges to a unique ue V.

11



The version of Theorem 1] for two domains (see [I9, Theorem 1.1]) has also been used to show
the convergence of the multiplicative Schwarz method for an energy-based Local-to-Nonlocal
coupling (see [I]).

Remark 4.2. The second part of [19, Theorem I.2] states that if V. = @V, holds, then there
exists a constant € € (0,1) such that

[lu' = ullv < €[|u® = ully.

Linear convergence of the Schwarz methods in the nonlocal framework of Chapter[3 can also be
observed in the numerical experiments in Chapter[7 and is proven in the discrete case(see Remark
[2.3). Howewver, the proof of the assumption V = @ |V, is left to future work.

4.1 Well-posedness of the Multiplicative Schwarz Method for Nonlocal
Dirichlet Problems

Here in this subsection, we assume the kernel v to be as described in Remark 2.2] i.e., y fulfills
conditions (K1) and (K2) and is either a singular symmetric or an integrable symmetric kernel.
As seen in (@) we only need to consider the case g = 0 on Z since the case g # 0 on Z is a direct
consequence. Given Algorithm [Tl we can define for every subproblem in (I8]) an operator

S (Vo) lviaon) = (Ve(QUI), |- lviaon) »

such that Sif (9) = u; and u; : Q; U Z — R is the weak solution of the subproblem on €2; as
described in ([[9) given g and f, i.e., S; maps the boundary data g onto the solution u; on £;.
We start by showing the convergence for f = 0. In this case, we set S; := Sif .

Lemma 4.3. The operator S; is linear and bounded as follows
l|willvouz) < 2|9lvi@ur) for ui = Si(g).

Proof. Since the linearity of S; is trivially true, we only have to proof the boundedness of S;. As
a consequence of f =0 and (@) in the second step of the following calculation and by applying
Cauchy-Schwarz in the third step we derive

< VA9, 9V A(u; — g,ui — g) = |glvoon)lui — glvaor) and therefore [u; — glvour) < |9lvaor)-

Then, we conclude

luilvQuz) < [wi — glvaur) + 19lvaur) < 2lglviu)-

Further, we define spaces
ViQQuI)={u;€e Ve(QuUI):u =8(uw;)} and V(QUI):=@",V,(QuI), (23)
that is equipped with the the inner product

(u, v)v(ur) = A(u,v) and the norm ||u|lyquz) := V<U’U>V(Quz)'
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Then (-, -)y(uz) is linear in the first argument, symmetric and positive-definite, see Remark 2.21

Here, every u; € Vi(2 U Z) is a solution to [I3) on Q; given u; € V(Q; L Z) as boundary data
onZ; and f=0.

Lemma 4.4. Let the spaces V;(QUT) and V(QUZ) be as defined in @23) fori=1,...,n. Then,
the space V;(Q U T) is a closed subspace for every i = 1,...,n. Moreover, V(Q U Z) is a closed
subspace of Vo(Q U T) and therefore a Hilbert space.

Proof. 1. V;(QuZ) is closed under linear combinations: Given u;,1; € V;(Q UZ) and A € R,
then Au; + ¢; € Vo.(Q U Z) and we get

A(AUZ + ’(/)i, ’UZ‘) = )\A(u“ ’UZ‘) + A(’L/)Z,’U%) =0 for all v; € ‘/C(Q’L U Iz)
= du; + ¢, € V,(QUI).

2. Vi(2uZ) is a closed subspace regarding || - [[v(quz): Given a sequence {uj"}}_; such that
ui* € Vi(Qu Z) for all m € N and {u"};,_, is a Cauchy sequence regarding || - [|v(quz)-
Then, there exists a unique function u; € V(Q UZ) with lim |uf* —u;|y(uz) = 0, because

m—00
(u?)izl is a Cauchy sequence in the Hilbert space (VC(Q vuI),|- |V(QUI)). Consequently,

the continuity of S; implies u; € V;(Q U 7) since
lu; — Si(wi)lv, o) < [wi —ui"lveur) + 1Si(wi") — Si(wi)lv(@ur)
< 3lus — ui' |y ooz — 0 for m — co.

3. V(U Z) is closed regarding linear combinations, which follows directly from the definition
of V(2 U Z) and the fact that every V;(£2 U Z) is closed under linear combinations. Then,
V(Q u ) is a Hilbert space since it is closed regarding || - ||v(ouz)-

O

We can now conclude the following;:

Lemma 4.5. Fori = 1,...,n the function S; is an orthogonal projection onto V;(QUT) regarding
the inner product -, )vu1)-

Proof. Obviously S;(g) € Vi(Q uZ) for all g € V(Q U Z). In order to prove the orthogonality
condition g — §;(9) = (9 — Si(9)) xa, L Vi(QUZ) we set v; := g — Si(g9) € V(s U Z;), then for
all u; € V;(Q U T) we get

(uiy g — Si(g))viaur) = Alui,vi) = F(v;) = 0,

since v; € Vo(Q; U fl) can be interpreted as a test function and u; with u; = S;(u;) solves the
subproblem on ; as defined in (I3)) given u; as boundary data and f; = 0. O

Corollary 4.6. In the case of integrable symmetric or singular symmetric kernels for the solution
ue Ve(QuI) of @ trivially also holds uw € V(2 U ). Therefore, the multiplicative Schwarz
method yields a sequence (ul)?ozl, where u! € V(Q U ) for | € N, that converges to u regarding
|- [lvuz) =1 lvieur-

Remark 4.7. For f #£ 0 the multiplicative Schwarz method yields a sequence {ul}lﬁl such that
for 1 = km + i the function u! fulfills u' = Sif(ul*l) and u' —ul=1 e V.(Q; U Z), i.e., ul solves
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@) on Q; given f and boundary data u'~'. Let u be the solution of the problem on the whole
domain. Then for 1 = km + i the function @' == u' — u fulfills

A(al,vi) = A(ul —u,v;) = F(v;) — F(v;) = 0 for all v; € Vo(Q; ufl)

Therefore {ﬂl}?il is a sequence generated by the multiplicative Schwarz method which converges
to zero, i.e., llim ut—u=0.
—00

4.2 Well-posedness of the Multiplicative Schwarz Method for Nonlocal
Problems with Neumann Boundary Conditions

As mentioned in Chapters 2.2l and [3:2] we only consider the kernel v to be symmetric in nonlocal
problems of type [20). Next, we define

N.f.g" 7 7
SEPT (VL T ) - vz ) = (VO TN T lyvanzy 2)

such that SZ-N’f’gN (9) = u; and u; : QU T — R is the weak solution of the subproblem regarding
€2; as described in ([22). We will only show the convergence for f, ¢~ = 0, since the convergence
for f e L?(Q) and ¢V € L?(Z) with f,¢g" # 0 is a direct conclusion, which can be shown

N
analogously to Remark 7l In this case, we set S}V := SiN’f’g .
Lemma 4.8. The operator SV is linear and bounded by the boundary data, i.e., there exists a
constant C' > 0 with

||Ui||V(Qi7ZiN,ii) < C||g||V(Qi7Zé\;’L), ifu; = SN (g) and g € V(0, IV, ). (24)

Proof. Set C := max{2, 1} and notice that u; — g € VC(QZ-,IZ-N,Z'). As a consequence, we get by
applying the norm equivalence (7)) and formulation () on the space V (€;,Z ,Z;) that

o= 18 0,23,y < € (Bl = =90+ [ = 0)? )

< C|B(g,u; — g)| + C

f kg (u; — g) dx
Qi

<WB(g,g)w(ui—g,ui—g)m\/ f kg? W f k (ui — 9)* dx

S C||9||V(Qi,zgvii) Ui — g||V(Qi,IfV,7:'i)’

where we used Cauchy-Schwarz in the third step. Then, the assertion follows from

lwilly o, 25 2y < i = 9llv o, 25 2y + l9llv @,z 2.

Additionally define

VN, Z, ) = {u; e V(Q, T, ) 1 u; = S (u)} and VNV(Q,Z, &) := @, VN(Q,Z, &), (25)

which are equipped with the inner product (u, v)y~ (o z,g) := B(u,v) + {, kuv dx and the norm
l[ullvy 2,0 = «/(u,u>VN(Qny®) (= llulllv(9,z,05))- Here, every function u; € VN(Q,Z, &) is
a solution to Z2) on Q; U ZN given u; € V(Qy, ZN,Z;) as boundary data on Z; and f = 0.
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Lemma 4.9. Let the spaces VN(Q,Z, &) and VN (T, &) be as defined in @8) for every
i=1,...,n. Then, the space VYN (Q,Z, &) is a closed subspace for i =1,...n and VN (Q, T, ) is
a closed subspace of V(Q,Z, ) and therefore a Hilbert space.

Proof. 1. VN(Q,Z, ) is closed under linear combinations. Given u,¢ € VN (Q,Z, &) and
A €eR, then Au+ v e V(Q,Z, ) and we get

B(Au + v, v;) +J kv; (Au + 1) dx
Q

=\ (B(u, v;) + L KUju dx)

+ B(’(/),’Ul) + J K’UZ"L/) dx = 0 for all V; € ‘/C(QZ,IIN,ZA:%)
Q

= du+peVN.

0

2. VN(Q,Z, &) is closed with regards to || - [ly~ (0 z,). Given a Cauchy sequence {u}"};7_,
regarding || - ||VN(Q7I7®). Due to the equivalence of || - ||VN(Q,I,®) = Il - lllvz,z) and
Il - |lv(o,z,g), there exists a function u; € V (2, Z, ) such that

i [l = willy.z,g) = 0.
Then, by using the continuity of SV we get u; € VN (Q,Z, &) since
llui = S (ui)llvo,z.0) = llui = S (Wi)lly (o, zv 2,
< i = uly o, zv 2,y + I1S™ @) = S (ui)lly o, 25 2,)
<1+ O)||u; — U?”v((zi,le,L) -0 m— oo,

where we used that u; = SV (u;) on (Q U Z)\§); in the first step as well as (24) and the fact
that [| - |[; o, zv 7,y < I [lv(,7,) In the last two step.

3. Analogously to Lemma [£.4]

Lastly, we can deduce the following;:

Lemma 4.10. The function S is an orthogonal projection onto VN (Q,Z, &) regarding the
inner product {-,-)y~(q,z,g) fori=1,...,n.

Proof. Obviously, SN (g) € VN(Q,Z, &) for all g € VN(Q,Z, &).
Set v; :=g—SN(g9) = (9 —SN(9)) xa,uz~ € Vo(Q4,ZN, Z;). We now have to proof

g—8N(g) =v; LVN(Q,Z,2).

For all u; € VN(Q, T, &) we get

(ui, g — Sz'N(g)>VN(Q,I,®) = B(ui,v;) + L kuv; = FN(v;) = 0,

since u; with u; = SV (u;) solves the variational formulation 22)) on Q; UZ» given the Dirichlet
boundary data u; and v; € Vo(;, I, Z;) serves as a test function. O
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Corollary 4.11. The weak solution u € V(Q,Z, ) of @Q) is also an element of the space
VN(Q,Z, ). As a consequence, the multiplicative Schwarz method yields a sequence (ul)loozl,
where u' € VN(Q,Z, &) for | € N, which converges to u regarding || - llvv,z,2) = Il lllv,z,2)

(or equivalently, || - ||V(52717®)).

5 Schwarz Methods for the Finite Element Formulation

5.1 Finite Element Approximation

In order to solve problem (&) we use the finite element method. Therefore we need a triangulation
of finite (polyhedral) elements 7" = {&;}7/_, with vertices {x)};—,. We assume that = U

or ) ~ U}']=1 &; and, for ease of exposition, that there exists a Kq € N such that x; € for
k=1,..,.Kqg and x; € T for k = Kq + 1, ..., K. Furthermore, we utilize continuous piecewise
linear basis functions {¢y}5 | that satisfy ¢p(x;) = dp. In our tests we use a slightly different
set of basis functions, which we describe in Section Moreover, we define finite dimensional
function spaces as

Vh = span{éy : k =1,..., K} and V" = span{¢y : k = 1,..., Kq}.

Thus, we can project u € V(Q U Z) to a function u" € V" as follows

K3

ul = u(x;), foralli=1,..,K, and u”(x 2 ul ¢ (x

With the projection g" = Z]K: Ko418i¢i of the boundary data g, we formulate a discretized
version of the weak formulation (Q):
Find u}, € V" such that

A(ug, ¢;) = F(¢:) foralli=1,..., Kq,
Kq K
< Y Algrdiup = £ — > A(dy, 608!, for all i = 1,..., Kq, (26)
k=1 j=Kao+1
where ' := {, f( ) dx. Then, u® = Zz tulg; + Z] Ko+18; hg; is called finite element

approximation of ([Ql)
By defining a matrices A, Az and a forcing vector f as

f= (fh)1<z<1r<Q A = (aij)1 < sk » D AT = (2ij)1 <o ki +1< <k
where a;; := A(¢;, ¢;), we can write (28] as a system of linear equations
Au" =f - A;gh. (27)
A detailed description on how to assemble the stiffness matrices A and Az can be found in [9].

Remark 5.1. The finite element formulation for the nonlocal problem with Neumann boundary
conditions ([I8) can be derived in a similar fashion by replacing the bilinear operator A(u,v) with
the function B(u,v) = B(u,v) + §o kuv dx. Therefore, the Schwarz algorithms for the finite
element method, as described in Section[52.3, can be employed analogously in this case.
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Remark 5.2. In the case of a singular symmetric or an integrable symmetric kernel as introduced
in Remark[2.2 the corresponding variational operator A is symmetric and positive definite and,
as a result, A is also symmetric and positive definite. If we instead consider the nonlocal problem
with Neumann boundary condition, where the kernel v is only assumed to be symmetric, we also
derive that the corresponding bilinear operator lg’(u, v) = B(u,v) + SQ Kuv dx and therefore the
resulting finite element matriz is positive definite and symmetric (see Chapter[22).

5.2 Splitting of Inner Boundary Basis Functions

For ease of exposition, we now assume € = ©; U €2, in this section. Since we use the continuous
Galerkin method in order to solve the variational formulation, the support of a piecewise linear
nodal function ¢y corresponding to a vertex xj, that lies on the boundary between 2 and 2o,
intersects with both domains, i.e., supp(¢r) N Q; # &, for i = 1,2. Therefore, we replace every
one of these basis function ¢y, whose support intersects with both domains, by two functions ¢,
and ¢7, that fulfill

br(x) = ¢p(x) + ¢3(x) and supp(¢L) = Q, for i =1,2.

Additionally, we replace uZ by two new degrees of freedom uZ’i, for ¢+ = 1,2. If we now follow
the derivation of the finite element formulation analogously to Section L.l we get again a system
of linear equations, which contains a linear equation for each uZ’l.

5.3 Formulation of the Schwarz Methods

In this section we assume that the basis functions and the corresponding degrees of freedom are
constructed as described in the previous Section Then, in order to formulate the additive
and multiplicative Schwarz methods for the linear system (27)) we now assign every node xj to
a domain 2; according to the following index sets

Ji ={j1, i} < {1,..., Kq}, for i =1,...,n, with

n
U5i ={1,.,Kq}and 3, nJ; = &, fori,j = 1,...,n and i # 7,
i=1

where additionally the implication supp(¢x) < Q; = k € J; is fulfilled. So the index k of every
node xj is in exactly one J;. With these index sets we now define several submatrices and
subvectors as follows

Aij = (k1) ey, ey, » AT = (A ey, Ko +1<i<K >
f, .= (flg)keﬁi and u; := (uZ)keﬁi .

Then, we can rewrite (26)) as

Z Aijuj = fz — Ang for all i = 1, ...,KQ, .
j=1

Furthermore, in the Schwarz method below we denote by uf the solution for the subproblem
on the domain €; in iteration k. The formulation of the additive Schwarz method is shown in
Algorithm @ In order to compute solution uf“ the solutions u;? regarding the other domains
are known and serve as Dirichlet boundary conditions. In contrast to (26]) they are put on the
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right-hand side of the equation. In this case the algorithm is equivalent to a block-Jacobi method
to solve the linear system (26]).

Algorithm 4: Additive Schwarz Method (Block-Jacobi Method)
input: u? fori=1,...,n
for k = 0,1, ... until convergence do
fori=1,...,n do
Find uf“ s.t.

Auf T =f — Aizg — Z Aij“? (28)
J#i

end
end

The description of the multiplicative Schwarz method is depicted in Algorithm[5l As mentioned
above, in the case of the multiplicative Schwarz formulation the most recent solution u®*? for
j=1,...1—1 is used to solve the problem regarding ;. This alternating Schwarz method is

equivalent to the block-Gauf3-Seidel method applied on the linear system (28]).

Algorithm 5: Multiplicative Schwarz Method
(Block-Gauss-Seidel Method)
input: u? fori=1,...,n
for k = 0,1, ... until convergence do
fori=1,...,n do
Find uf“ s.t.

i—1 n
k+1 k+1 k
Ajiu;" =1 — Aizg — Z Ajju;™ — Z Ajju;

j=1 Jj=i+1

end

end

The description and analysis of the block-Jacobi and block-Gauf3-Seidel method for linear systems
can be found in, e.g., [I3] Chapter 3] or [22] Chapter 4].

Remark 5.3. We recall from Remark [5.2 that we only consider nonlocal problems, where the
matriz A is symmetric and positive definite. Then, the multiplicative Schwarz method converges
linearly (see [13, Theorem 3.53 and 3.39]) and, if n = 2, i.e., the domain Q is decomposed in
two monoverlapping subdomains 1 and s, the additive Schwarz method is also converging in
a linear fashion to the unique solution, which follows from [13, Corollary 3.52 and Theorem
3.36]. However, if Q is decomposed in more than two subdomains, the linear convergence of a
relazed block-Jacobi algorithm as defined in [13, Chapter 12.5.3] can be shown, if the dampening
or Richardson parameter 0 is small enough (see [22, Theorem 14.5 and 14.6]).

6 Patch Tests

In this section we show that Schwarz methods for nonlocal Dirichlet problems, where we employ
nonlocal diffusion operators, can be interpreted as a Nonlocal-to-Nonlocal coupling method, that
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satisfies linear, quadratic and cubic patch tests. Analogously to [I0, Definition 1 and 2], we define
the linear and higher-order patch test for the coupling of two nonlocal operators as follows:

Definition 6.1. Given two nonlocal operators —L1 and —Ls and a linear function
u*(x) 1= co + c1x, where co,c; € RY and u* is a solution of

—Liu=0o0nQ, ulx)=c+acaxonZ fori=1,2. (29)

Then, a coupling method passes the linear patch test, if u* is also a solution of the coupled
problem with the same boundary condition.

Definition 6.2. Given two nonlocal operators —L1 and —Ls, and a polynomial u*(x) :=
T)a\:O caX® with degree p € {2,3}, multi-indices a € N¢ and co, € R. Additionally, suppose
that u* is a solution of

P
—Liu= fr% on Q, u(x)= Z caX® on T fori=1,2, (30)
|ax|=0

where fP°W is a polynomial with degree p—2. Then, a coupling method passes the quadratic(cubic)
patch test, if p = 2 (p = 3) and u* is also a solution of the coupled problem with the same boundary
condition.

Given a solution u* of a nonlocal Dirichlet problem (23)) or (B0]), and the right-hand side
fP°W of the corresponding linear, quadratic or cubic patch test, we can directly follow that u*
is also the solution to the Schwarz formulation (I8) since the Dirichlet boundary conditions on
every Z; holds and

—Lu* = fP°% on Q, fori=1,...,n.

Therefore the patch test is trivially fulfilled. Thus, we can also interpret the Schwarz method as
a coupling method. As we will demonstrate in Section [7] we can, e.g., couple a singular and a
constant kernel.

Next, we present a class of kernels where the corresponding nonlocal operator is equivalent
to the Laplace operator —Au(x) := Zle 0?u(x) in case of polynomials up to degree three
p(x) = Z\?’a|:0 cax®. Hence, given a radially symmetric kernel v5(x,y) := Y5(|ly — X|)xB;x)(¥)
that satisfies

| atlal) da =2 (31)
Bs(0)
we derive for such polynomials p that

—Lp(x) = f (p(x) — p(y)) 78(x.y) dy = f (p(x) — p(x + 2)) 15(|2]) dy
Bs(x) Bs(0)

23 D d
Otp(X) o J‘ 1 9 5
- 7([Z s Z)dz:- B aiPXZZ—’y(5 Z)dZZ—Ap X),
J-BJ(O) a=1 | || (| | Ba(O) 2 ; ( ) (| | (

where we used in the last step that the function z® is an odd function regarding one z;-axis, if
|| is an odd number. Furthermore, if o = (a1, ..., ag) with || =2, a; = a; = 1 and i # j, the
function z* = z;z; is an odd function regarding the x;-axis. Since Bs(0) is a symmetric domain
regarding every x;-axis, the integrals, in which these functions z® appear, vanish. In Section
[3] we use different kernels that satisfy the conditions (ZI) in a numerical example, where the
nonlocal Schwarz formulation passes the linear patch test.
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7 Numerical Experiments

In the following we numerically examine the Schwarz method for several nonlocal problems. We
start with an example for the nonlocal Dirchlet problem and continue with a Neumann prob-
lem. After that we investigate the patch test for one example. In the last section we study
two preconditioned GMRES versions that we compare with GMRES without preconditioner.
We apply the finite element method in all experiments as mentioned in Chapter More-
over, we consider the residual error regarding the Euclidean norm ||[Au* — b||2, where u* is

the solution after the k-th iteration and b :=f — Azg. In our experiments the energy error

[[u? —uF L[ = (u¥ — u’“_l)T A (u* —u*71) had the same behaviour as the residual error.

For a more concise presentation, we therefore only discuss results involving the residual error.

7.1 Nonlocal Dirichlet Problem

In our first experiment, we compute a nonlocal Dirichlet problem as described in Section 2.1
Here, we choose Q2 as depicted in Figure[lTland 6 = 0.1. Thus, we have = Q;UQ0UQ3. Further,

g

a4«

Figure 7.1: The domain © = (0,1)? is divided into Q1, 2 and Q3. The nonlocal boundary Z is
depicted in red.

we use the following kernel, which satisfies the requirements of a singular symmetric kernel of
Remark 2.2] and we employ the subsequent piecewise constant forcing term and boundary data

HX_A;WXBS(@(Y) X,y € Q1 or x,y € Qy,
||X_Z,C|T2+2s XBs(x) (y) xyeQs,
")/(X, y) = 5052 . .
oy 7T XBseoy) x€Toryel,
Ty X, () else,
2—2s
Cs = 5225’ s =0.5, f(X) = 5XQ1u92 (X) + ]-XQS(X) and g=0on T

Here, the kernel v can, e.g., be considered as a special case of the kernels investigated in [5]
or as a Case 1 kernel of [7]. The stiffness matrices for every subproblem are computed by
using the python package nlfem[I6], which has to be done only once at the beginning of the
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algorithm. Then, every subproblem is solved with LGMRES with tolerance 10~!? and the
Schwarz method stops, when the residual error is below 10~°. The results for the multiplicative
and additive Schwarz method are shown in Figure [[.2] for different choices of the mesh parameter
h. Additionally, we can observe quadratic h-convergence(see Figure [(.g]).

multiplicative Schwarz for h=0.1
additive Schwarz for h=0.1
multiplicative Schwarz for h=0.05
additive Schwarz for h=0.05
multiplicative Schwarz for h=0.025
additive Schwarz for h=0.025

residual error

0 200 400 600 800
iteration

Figure 7.2: Here, we can see the residual error of the multiplicative and additive Schwarz method
for the nonlocal Dirichlet problem with a singular symmetric kernel regarding different choices
for the mesh resolution h. In all cases the error decreases in a linear fashion, which we expected
at least for the multiplicative Schwarz version due to Remark[5.31 Moreover, the additive version
needs roughly twice as many iterations as the multiplicative Schwarz algorithm.
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7.2 Nonlocal Problem with Neumann Boundary

In this section we define a nonlocal problem with Neumann boundary conditions as described
in 3:2] where we can have both Neumann and Dirichlet boundary conditions for a subproblem,
see (ZI). The setting is shown in Figure By applying the finite element method, we also
have degrees of freedom on the nonlocal boundary Z, which we therefore divide into Z&V and
Z&. Moreover, we choose an integrable kernel v and f as well as k to be piecewise constant and
dependent on €2 and Qs as follows

Q=(0,1?% §=0.1,
4
'}/(X, Y) = ﬂ—(leBg(x)(Y)a
k(x) = 1xq, (x) + 10xq,(x) and
f(x) = 10xq, (x) + Lxa, ().

For these tests we only consider the multiplicative Schwarz approach(see Remark B.2)), and we
take the same tolerances as in the previous Chapter, i.e., tolerance 1072 for LGMRES and 10~°
regarding the residual error as the termination criterion for the multiplicative Schwarz algorithm.
As we can observe in Figure [l and as expected in Remark (.3l the behavior of the errors
corresponding to the multiplicative Schwarz method stay the same compared to Schwarz methods
for nonlocal Dirichlet problems, i.e., the residual error decreases in a linear way. However, the
number of needed iterations to fulfill the termination criterion stays roughly the same, which
can be explained by the fact, that the condition number of the stiffness matrix in the continuous
Galerkin approach(without splitting of inner boundary basis functions) is constant for integrable
kernels(see [7, Theorem 6.3]). Lastly, we also notice quadratic h-convergence for this example,
which is illustrated in Figure

951 Qs

Figure 7.3: In this example € is divided in two subdomains 2; and {23 and the nonlocal boundary
T is decomposed in Z{¥ and ZJ'.
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100 A —— multiplicative Schwarz for h=0.1
S —-=-=- multiplicative Schwarz for h=0.05
----- multiplicative Schwarz for h=0.025
10-2 A
s
@ 107*
©
=)
il
7]
o
10-6
10-8

0 50 100 150 200 250
iteration

Figure 7.4: In this picture the residual error regarding the multiplicative Schwarz method for
the nonlocal Problem with Neumann boundary condition w.r.t. a selection of mesh parameter h
is depicted. Again, we can observe a linear decrease in the residual error.

7.3 Patch Test

Now, we conduct a linear patch regarding two nonlocal diffusion operators. We solve in our case

7,61’(,&1 =0 on Ql, 7[,2’[1,2 =0 on QQ,
up =ug  on o, and ug =u; on £y,
Uy =g onZ U = ¢ onZ,

where

g(x) :=x1 +x2 for xe QUZ, —Liu(x):= J (u(x) —u(y)) vi(x,y) dy with
QuT
4 cs 2—12s
71(X,Y) = WXBg(x)(y)a 72(Xa Y) = WXBJ(X)(Y), 5=0.6 and ¢5 := 52

Here, both kernels v, and 72 are symmetric, but the resulting kernel v on the complete domain
(QuUI)x(QuZ) with

(X, y) = 71(X, ¥)xa (%) +72(X, ¥) xa, (%)

is nonsymmetric. In Figure the setup is the illustrated and the starting and final solution
are depicted in Figure We again used LGMRES with tolerance 1072 and stopped after the
residual error dropped under 10~°. The convergence results w.r.t. the residual error can be seen
in Figure [[7] where we also observe linear convergence. Since we know the exact solution g, we
can examine the L?(€2 U Z)-norm distance of several solutions u} of the patch test, that depend
on the choice of the mesh parameter h, to the the function gg.1, which is the projection of g
onto the mesh with size h = 0.01. The results are presented in Figure [.8 In this case, we again
observe quadratic h-convergence.
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Figure 7.5: Here, we see the decomposition of €2 in a turquoise area 2; and in a gray domain 9
that we use for the patch test and for testing the (preconditioned) GMRES in Chapter [[4l The
nonlocal boundary 7 is again depicted in red.
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Figure 7.6: On the left-hand side we see the starting solution, where we have u’ = ¢ on the
nonlocal boundary Z and u° = 0 on the domain Q. Additionally, the final solution is shown on
the right-hand side.
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Figure 7.7: In case of this linear patch test, we can observe linear convergence regarding the
residual error for the multiplicative Schwarz approach.
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Figure 7.8: Here, we denote by u?, ul and u} the final solution of the Dirichlet problem, the
Neumann problem and the patch test in dependence of the mesh parameter h as described in
Chapters [T1} and In this Figure, we compare u? and u}¥ in the L?(Q U Z)-norm to the
solution ufy; and udy;, respectively, where h = 0.01. Moreover, in case of the patch test, we
compute the L?(Q U Z)-norm distance of u} to the projection of the exact solution g onto the
space of continuous piecewise linear basis functions regarding the mesh with size h = 0.01, which
is indicated by gg.01. In all three cases, we can observe a quadratic convergence.
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7.4 Preconditioned GMRES

In the finite element setting the multiplicative Schwarz method is equivalent to the block-Gauf-
Seidel algorithm and the additive Schwarz method corresponds to the block-Jacobi algorithm as
seen in Section Therefore, we make use of the block-Gauf3-Seidel preconditioner Mgé g and
the block-Jacobi preconditioner Mgb, that are defined as follows

1&11 0
MBGS = and MBJ = dia’g(Allv '-'7Ann)7
Aln e Ann

to precondition GMRES. For more information on these two preconditioner we refer to [22]
Chapter 4.1.2]. In the tests we compare GMRES equipped with a left preconditioner M;GS or
Mglj to GMRES without any preconditioning.

In all cases we used the constant kernel v; on €1 and the fractional kernel v on s of Section
[3l Moreover, we set the boundary data ¢ = 0 on Z and the forcing term f = 10 on Q. In
every test the convergence tolerance of GMRES is chosen to be 10710, Additionally, we denote
by kgmrEs the condition number of the finite element matrix A, by kgymreEs+ s the condition
number of M;IA and by kgymRrES+BGS the condition number of MJ?GSA7 respectively.

h GMRES GMRES+BJ GMRES+BGS KgMRES KGMRES+BJ KGMRES+BGS

0.1 177 39 15 2715.41 39.79 18.85
0.05 365 30 15 4649.59 42.46 20.15
0.025 580 32 13 8110.49 45.72 20.53

Table 7.1: For § = 0.1 and s = 0.5 we tested different mesh sizes h and documented the number
of required iterations as well as the condition number of the (preconditioned) matrices.

S GMRES GMRES+BJ GMRES+BGS kgMmRES KGMRES+BJ KGMRES+BGS

0.2 118 25 12 483.18 35.22 18.68
0.5 580 32 13 8110.49 45.72 20.53
0.8 2509 37 14 11687.19 59.13 22.18

Table 7.2: In these experiments we set § = 0.1 and the mesh size h = 0.025 was chosen. Then,
we tested different values for the parameter s of the singular kernel and recorded the condition

number of the (preconditoned) system matrix and the number of iterations that each version of
GMRES needed.
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02 GMRES GMRES+BJ GMRES+BGS KgMRES KGMRES+BJ KCGMRES+BGS

0.1 580 32 13 8110.49 45.72 20.53
0.05 1089 35 14 18862.67 57.83 22.24
0.025 1675 36 14 39848.76 63.35 21.58

Table 7.3: In these tests we set the horizon §; = 0.1 for the constant kernel and varied the
parameter Jo of the singular kernel. Moreover, we chose h = 0.025 and s = 0.5 and noted the
number of iterations that each GMRES variation required as well as the condition number of the
accompanying (preconditioned) matrices.

As we can see in all tests of Tables [.1] - the number of required iterations and the condition
number reduce significantly, if we use the block-Jacobi or block-Gauf-Seidel preconditioner in-
stead of GMRES with no preconditioning. For the block-Gauf-Seidel preconditioner the number
of iterations as well as the condition number even stay roughly the same.

8 Conclusion

We have shown in this paper how the multiplicative and additive Schwarz method can be ap-
plied to nonlocal Dirichlet problems and how they can be utilized to solve nonlocal problems
with Neumann boundary condition. In the first case we showed the convergence of the multi-
plicative version of the Schwarz algorithm for two widely used classes of symmetric kernels and
in the second case we only needed symmetric kernels to prove that the multiplicative Schwarz
approach converges. Additionally, coupling nonlocal operators with the Schwarz method fulfills
trivially nonlocal patch tests. In the last section we provided examples for all discussed problems
in this work. Additionally, we observed in the patch test experiments in Chapter [Z3] that the
Schwarz approach can also work for nonsymmetric kernels in practice. Further, we investigated
preconditioned GMRES variants that resulted from the multiplicative or additive Schwarz al-
gorithm in the finite element setting, where we noticed, that especially the block-Gauf3-Seidel
preconditioned GMRES version only needs a small amount of iterations.
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