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ABSTRACT

The 1:N mean motion resonances with Neptune are of particular interest because they have two asymmetric resonance islands, where
the distribution of trapped objects may bear important clues to the history of the Solar System. To explore the dynamics of these
resonances and to investigate whether the imprints left by the early stage evolution can be preserved in the resonances, we conduct
a comprehensive analyses on the 1:2 and 1:3 resonances. Adopt mainly the frequency analysis method, we calculate the proper
frequencies of the motion of objects in the resonances, with which the secular mechanisms that influence the dynamics are determined.
Use the spectral number as an indicator of orbital regularity, we construct dynamical maps on representative planes. By comparing
the structures in the maps with the locations of the secular mechanisms, we find that the von-Zeipel-Lidov-Kozai mechanism and
the g = 2s mechanism destabilize the influenced orbits and portray the overall structure of the 1:2 and 1:3 resonances. The secular
resonance 2g − s = s8 opens a channel for objects to switch between the leading and trailing resonance islands, which can alter the
population ratio between these two islands. The secondary resonances associated with the quasi 2:1 resonance between Uranus and
Neptune are also detected, and they introduce more chaos to the motion. The fine dynamical structures of the 1:2 and 1:3 resonances
revealed in this paper, combined with knowledge of resonant capture, provide a compelling explanation for the eccentricity distribution
of observed Twotinos. And we anticipate a more complete understanding of the history of planetary migration in the Solar System
can be achieved by comparing the results in this paper with the populations in the 1:N resonances in future when further observations
bring us more objects.
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1. Introduction

Trans-Neptunian objects (TNOs) are precious historical remains
from the formation and evolution of our Solar System. Residing
distantly from the Sun and major planets, they have the longest
dynamical timescale and thus may contain the most primitive
information about the origin of the Solar System. Among all
TNOs, those resonant ones that are in mean motion resonances
(MMRs) with Neptune are of particular interests because of their
unique dynamical properties. The studies on their orbital stabil-
ity and on the structure of resonant region provide valuable in-
sights into the nature of TNOs. So far, nearly one thousand of
resonant TNOs have been discovered, accounting for 20% pop-
ulation of all known TNOs. Plutinos, a subcategory of resonant
TNOs who are in the 2:3 resonance like Pluto, make up about
half of this population. In addition, dozens of resonances have
been found to host small bodies, all the way up to hundreds of
AU from the Sun1.

The Neptunian exterior resonances have been extensively
studied in literature, with their resonance centres, widths, an-
gular libration amplitudes, libration periods, resonance regions
etc being carefully analysed (e.g. Malhotra 1996; Gallardo 2006;
Saillenfest et al. 2016; Lan & Malhotra 2019; Gallardo 2019,
2020). The 1:N resonance has received particular attention. Un-
like other resonances for which the critical resonant angle li-
brates symmetrically around 0◦ or 180◦, a 1:N resonance has
two extra asymmetric resonance islands (around other than 0◦
or 180◦), making them more complex (see e.g. Message 1958;
Frangakis 1973; Beauge 1994; Malhotra 1996; Kotoulas 2005;
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1 https://www.johnstonsarchive.net/astro/tnoslist.html

Voyatzis et al. 2005). The asymmetric islands are known as the
leading and trailing islands, depending on whether their reso-
nance centre is less than or greater than 180◦. The island is
called ‘leading’ (‘trailing’) because an object within it is located
ahead (behind) of Neptune in longitude when it reaches its per-
ihelion, where it is most likely to be discovered. In addition to
the symmetric libration around 0◦ (or 180◦) and asymmetric li-
bration around the leading (or trailing) island, there is another
resonance configuration that the motion wraps both asymmetric
islands with a large libration amplitude. The trajectories of ob-
jects in such configuration are similar to the ‘horseshoe orbit’ in
the 1:1 resonance. Thus in this paper, we refer to this configu-
ration as ‘horseshoe resonance’ to distinguish it from the sym-
metric resonance that evolves around only one stable symmetric
centre.

Among all 1:N resonances, the 1:2 resonance has the low-
est order, nearest distance, and the largest observed population
of objects (known as Twotinos), thus is particularly noteworthy.
The planetary migration of Neptune can break the symmetry be-
tween the leading and trailing islands of the 1:2 resonance (see
e.g. Chiang & Jordan 2002; Murray-Clay & Chiang 2005; Li &
Zhou 2023), and may result in a difference in the population of
objects between the two asymmetric islands. However, due to
the lack of observations and strong observational bias, it is not
yet clear whether there is a significant difference in population
between the leading and trailing islands (Chen et al. 2019).

Tiscareno & Malhotra (2009) found that the long term stabil-
ity of Twotinos is weaker than Plutinos, implying that a smaller
percentage of Twotinos have been preserved since the formation
of the Solar System. Additionally, the primitive population of
Twotinos may also have changed because the resonance might
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capture the scattered objects from Kuiper belt in the 4.5 Gyr’s
evolution (Lykawka & Mukai 2007). Therefore, it is still an open
question how the population in the asymmetric islands obtained
during the era of planetary migration has changed.

The presence of high-inclination objects in resonances is
another interesting issue, because the resonance capture dur-
ing the planetary migration favours strongly in trapping of low-
inclination objects. Some researchers proposed that the scatter-
ing events can account for the existence of high-inclination ob-
jects (e.g. Gomes 2003; Levison et al. 2008). However, Nesvorný
(2015) successfully reproduces the inclination distribution of
small objects in slow migration model, in which the secular reso-
nances (e.g. Milani & Knezevic 1990) are believed to play an im-
portant role in pumping up the inclination. In fact, several secu-
lar mechanisms such as secular resonance, secondary resonance,
and the von-Zeipel-Lidov-Kozai (ZLK) mechanism, may signif-
icantly influence the behaviour of objects inside MMRs (e.g.
Morbidelli 2002; Gallardo et al. 2012; Saillenfest et al. 2016).

Nevertheless, Morbidelli et al. (1995) argued that in outer
resonances such as the 1:2, 2:5, and 1:3 resonances, the presence
of low-order secular resonances was not so evident. This is be-
cause the precession rates of these outer objects are much slower
than those of major planets. However, some secular mechanisms,
e.g. the secular resonance related to the precession of Nep-
tune, three-body resonances associated with Uranus (Nesvorný
& Roig 2001), and the ZLK mechanism (Nesvorný & Roig
2001; Lykawka & Mukai 2007; Tiscareno & Malhotra 2009; Li
et al. 2014), have been found inside the 1:2 resonance. In addi-
tion, even in the absence of low-order secular resonances, 1:N
resonances can still exhibit chaotic diffusion due to the pres-
ence of multiple resonance centres. Small objects moving in the
vicinity of separatrix between different resonance islands may
have somewhat irregular orbits, and such chaotic diffusion can
make the stable region of the 1:2 resonance relatively fragmented
(Melita & Brunini 2000).

To reveal the complex and intriguing structure of the 1:2 res-
onance as well as its significant implications for the evolutionary
history of the Solar System, we carry out a thorough investiga-
tion on the phase space of the 1:2 resonance. And as a compar-
ison, the 1:3 resonance is also analysed. The rest of this paper
is organized as follows. In Section 2, we introduce the meth-
ods and dynamical model applied in this paper. Then the secular
mechanisms inside the 1:2 and 1:3 resonances are figured out
and their dynamical effects are analysed in Section 3. By com-
bining the dynamical features of the 1:2 resonance with previous
knowledge of resonance capture, we explain in Section 4 the ec-
centricity distribution of Twotinos. Finally, our conclusions are
presented in Section 5.

2. Model and Methods

2.1. Resonance centre

The critical angle of an eccentricity-type 1:N resonance is ϕ =
Nλ−λ8− (N−1)ϖ, where λ andϖ represent the mean longitude
and the perihelion longitude of the object, while the subscript
“8” refers to the 8th planet (Neptune) from the Sun as usual. For
symmetric resonance at low orbital inclination, ϕ librates around
the exact solution 0◦ or 180◦. These symmetric resonance solu-
tions lose stability at a certain eccentricity when the asymmetric
solutions appear. In the circular restricted 3-body (CR3B) model,
these solutions correspond to the minima of disturbing function,
and thus can be calculated numerically. The disturbing function
can be expressed as an expansion series (see e.g. Lei 2021), and

we adopted the analytical method introduced by Lei (2021), nu-
merically calculated the average of the short-period terms, and
determined the location of the resonance centre. We note that
the value of ϕ at the resonance centre depends on the eccentric-
ity, the inclination, as well as the argument of perihelion. Here
for simplicity we set the argument of the perihelion ω = 0◦, and
calculate the asymmetric centre in the 1:2 resonance in a CR3B
model consisting of the Sun, Neptune and a massless twotino,
in which the mass ratio (the secondary body’s mass to the total
mass) µ = 5.146 × 10−5.

Fig. 1 shows how the asymmetric centre varies with eccen-
tricity and inclination in the CR3B model. At low inclination, the
ϕ at asymmetric centre depends sensitively on eccentricity. On
the other hand, its variation with inclination at medium eccen-
tricity (0.15 to 0.4) is quite limited, and most observed Twotinos
are found to have eccentricities in this range.
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Fig. 1. Variation of the resonance centre in the leading asymmetric is-
land of the 1:2 resonance with eccentricity (e) and inclination (i). The
argument of perihelion is set as ω = 0◦. The colour indicates the res-
onant angle ϕ at the resonance centre. The blank area in the lower left
corner indicates that the asymmetric resonance does not exist in that re-
gion.

The real resonance motion happens in the Solar System
rather than in the CR3B model. Therefore the ‘resonance cen-
tre’ is no longer the periodic solution but refers to the motion of
which the object experiences the minimal libration amplitude of
the resonance angle compared to adjacent orbits in the orbital el-
ement space. The dynamical model we adopt in this paper is the
outer Solar System that includes the Sun and four major plan-
ets, with the initial orbital elements of these planets given in the
ecliptic coordinate system at MJD 59000.5. Due to perturbations
from other planets, the asymmetric resonance centre cannot be
calculated directly as the minimum of perturbations any longer
as in the CR3B model. Instead, we perform some numerical sim-
ulations in the outer Solar System model to determine the asym-
metric centre statistically.

As an example, we show our calculations of the resonance
centre for objects with eccentricity e = 0.2 as follows. First, we
set test particles in the same plane as Neptune, with their orbital
inclination i, longitude of ascending node Ω and mean anomaly
M being the same as the ones of Neptune, i.e. i = i8, Ω = Ω8 and
M = M8. The rest two orbital elements, the semimajor axis a and
the perihelion argument ω, are then tested in reasonable ranges,
ω ∈ (0◦, 360◦) and a ∈ (47.0, 48.5) au near the resonance. The
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orbits of test particles were integrated in the outer Solar Sys-
tem for 1 Myr. The libration amplitudes of resonance angle ϕ
were monitored during the integration, and the minimum libra-
tion will be defined as the resonance centre. It should be noted
that the above choice of fixed M = M8 is somewhat arbitrary. An
alternative procedure of finding the resonance centre is to vary
the fast angle M but fix ω. Our test runs revealed that these two
methods produce equivalent results.

We plot the libration amplitudes found in the integrations in
the left panel of Fig. 2. Clearly can be seen, the leading and
trailing centres are located at different initial values of a and ω.
The leading centre is near a = 47.4 au while the trailing one
is near 48.2 au. The displacement in the semi-major axis is pri-
marily caused by the short-period oscillations of planets (e.g.
Nesvorný & Roig 2001; Zhou et al. 2009). It is worth noting
that this displacement occurs when the instantaneous orbital ele-
ments are used as the initial conditions, and it does not mean that
the leading and trailing islands have different average nominal
semi-major axes over an extended period of evolution. The min-
imum libration of resonance centres happens correspondingly at
ω ≈ −3◦, 177◦, respectively. It must be emphasized that these
values of ω are specific for fixed M = M8, which is an arbitrarily
choice. In fact, if we fix ω and vary M, we can find the initial M
for any ω to achieve the minimum libration.
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Fig. 2. Libration amplitude of resonant angle ϕ for initial eccentricity
e = 0.2 on (a, ω) plane (left) and (a, i) plane (right). The left panel
is for coplanar configuration (i = i8, Ω = Ω8) and the initial mean
anomaly is fixed as M = M8. The right panel is for the inclined orbits
with fixed initial argument of pericenter ω = −3◦ (see text). The libra-
tion amplitude is indicated by colour. Because the horseshoe resonance
configuration encompasses both asymmetric islands, an abrupt change
in libration amplitude can be seen at the separatrix.

At the leading centre, ω ≈ −3◦ corresponds to an initial res-
onance angle ϕ = 84.4◦. We note that this resonance centre is for
the coplanar orbits with e = 0.2. For orbits with other inclina-
tion and eccentricity, the resonance centres should be calculated
individually following the same method as described above.

Based upon the previous results, we conducted further ex-
ploration on the (a, i) plane. Adopting e = 0.2, ω = −3◦,Ω =
Ω8,M = M8 for test particles and setting their a and i on a
100 × 90 grid on the (a, i) plane with a ∈ (47.0au, 48.0au) and
i ∈ (0◦, 90◦), we integrated and monitored their orbits in the outer
Solar System for 1 Myr. The libration amplitudes of these orbits
are summarized in the right panel of Fig. 2. One may noticed that
the resonance structure shows a curvature and the location of the
minimal libration amplitude skews outward towards larger a as
the inclination increases. The main reason for this deviation of
semimajor axis remains the selection of initial orbital elements
(mainly the semimajor axis). In fact, for all particles, regardless
of their orbital inclinations, the averaged a at the resonance cen-
tre is approximately 47.8 au during the long-term evolution. For

the same reason, the trailing island skews inward as the inclina-
tion increases. It is worth noting that the quasi 1:2 MMR between
Uranus and Neptune may also contribute little (about 0.005 au
in the opposite direction from Fig. 2) to such deviation (Zhou
et al. 2020). After determining the initial conditions for reso-
nance centre, our analyses on the motion in the 1:2 MMR with
Neptune will be carried out all for objects around the resonance
centre.

2.2. Frequency analysis

The frequency analysis is often used in studying the long-term
orbital evolution of celestial objects (see the pioneer work in e.g.
Laskar 1990, 1993; Robutel & Laskar 2001). The basic idea of
the frequency analysis is to obtain the key information about
mechanisms that control the long term evolution of objects by in-
tegrating their orbits over a short timescale. Through frequency
analysis, we can determine the proper frequencies of orbital pre-
cessions, which provide insights into the possible secular reso-
nances that an object may experience. The characteristic of the
power spectrum calculated from the evolution of certain orbital
elements can also tell the regularity of the motion. The effective-
ness of frequency analysis has also been demonstrated in previ-
ous studies of main belt asteroids (e.g. Michtchenko & Ferraz-
Mello 1995; Michtchenko et al. 2002) and Trojan asteroids of
different planets (Zhou et al. 2009, 2011, 2019, 2020, 2021).

2.2.1. Simulation parameters

The four major planets in the Solar System have eigenperiods
ranging from 46 kyr to 1.9 Myr, except for the very slow preces-
sion of Jupiter’s ascending node (∼130 Myr). In the outer Solar
System, two quasi MMRs may influence the motion of objects.
One is the quasi 5:2 resonance between Jupiter and Saturn (also
known as the Great Inequality) and the other is the quasi 2:1 res-
onance between Uranus and Neptune. The eigenperiods of them
are ∼880 yr and ∼4200 yr, respectively. To obtain the informa-
tion about the long term mechanisms that may affect the mo-
tion, the timescale of numerical simulations of the motion should
cover these proper periods as much as possible (see e.g. Nobili
et al. 1989; Zhou et al. 2009). In this paper, we output the sim-
ulation data at an interval of 256 yr and a total integration time
of 225 ≈ 3.4 × 107 yr is adopted. This allows us to distinguish
periods ranging from 512 yr to 17 Myr and covered most of the
eigenperiods in our Solar System, except for the precession of
Jupiter’s ascending node.

We used the Swifter_symba integrator package (Levison &
Duncan 2000) with an on-line low-pass digital filter module (see
e.g. Michtchenko & Ferraz-Mello 1993, 1995; Zhou et al. 2020).
This technique effectively filters out the short-period terms (e.g.
planetary mean motion) and minimizes the interference from
high frequencies. The ecliptic plane is adopted as the refer-
ence plane in our calculation. We focused on three terms that
are tightly related to the long term evolution in our analyses,
i.e. cos ϕ, e cosϖ, and i cosΩ. The proper frequencies of these
terms, denoted by f , g, and s respectively, are just the frequen-
cies of the critical angle of the 1:2 MMR, the perihelion preces-
sion, and the ascending node precession.

For TNOs, the most influential secular resonances are mainly
associated with Neptune. Because of their great distance from
the Sun, TNOs have relatively low proper frequencies. In the 1:2
resonance, the typical libration timescale of the resonance an-
gles is approximately 10 kyr to 100 kyr (see e.g. Lan & Malhotra
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Table 1. Proper frequencies of major planets in references (Nobili et al.
1989; Zhou et al. 2020) and in this paper. The frequencies are given in
10−42π yr−1. The g5,··· ,8 and s5,··· ,8 stand for the precessions of perihelion
and ascending node for planets Jupiter, Saturn, Uranus and Neptune,
respectively. The 2N:1U and 5S:2J are for the quasi MMRs between
two pairs of planets.

Frequency Nobili 1989 Zhou 2020 This paper
g5 0.03285 0.03263 0.03262
g6 0.21794 0.21353 0.21737
g7 0.02382 0.02384 0.02385
g8 0.00519 0.00522 0.00519
s5 0.00008 0.00008 <0.00029
s6 0.20328 0.20355 0.20305
s7 0.02309 0.02325 0.02296
s8 0.00534 0.00536 0.00537

2N:1U 2.3606 2.3238 2.35524
5S:2J N.A. N.A. 11.33012

2019; Gallardo 2020), while the precessing timescales of their
ascending node and perihelion are often on the order of millions
of years. For the 1:3 resonance at larger distance, the preces-
sion timescales can reach up to 10 Myr. Therefore, we quadru-
pled both the output interval and the total integration time when
studying the 1:3 MMR.

Also, for the 1:3 MMR, we ignore the quasi 5:2 resonance
between Jupiter and Saturn. Our integrations have demonstrated
that it does not yield significant effects because its period is
smaller by orders of magnitude than the eigenperiods of TNOs.
The quasi 2:1 resonance between Uranus and Neptune however
is still included in our analyses.

2.2.2. Proper frequencies and spectral number

After integrating the orbits of test particles, we used a fast
Fourier transform (FFT) to obtain the frequency spectra, with
which we were able to determine the proper frequencies and as-
sess the regularity of the corresponding motion. Generally, the
FFT is accurate enough and is very efficient in obtaining power
spectra of time series produced by the numerical integrations of
orbits. To check the accuracy of our methods, we compare the
frequencies of major planets obtained from our calculation with
the ones in literature (Nobili et al. 1989; Zhou et al. 2020) in
Table 1. Our results are in good agreement with that in earlier
references.

After performing an FFT on the data from numerical simula-
tions of the motion, we can identify the strongest peaks in each
frequency spectrum. A ‘dynamical spectrum’ is constructed by
plotting the frequencies of the highest peaks in the power spec-
tra for orbits with fixed initial elements but varying a or i. Since
the proper frequencies generally varies continuously with a or i,
they can be easily recognised in the dynamical spectrum. This
method of picking out the proper frequencies from the dynam-
ical spectrum has been successfully used in our previous work
(see details e.g. in Zhou et al. 2009, 2019, 2020).

It is worth noting that the proper frequencies have not only
the magnitude but also the direction. For a non-resonant TNO,
the overall perihelion precession is positive, while its precession
of ascending node is negative (e.g. Knezevic et al. 1991). For ob-
jects in the 1:2 resonance, although the Ω̇ may sometimes take
positive values for highly inclined polar orbits, and the ϖ̇ can be
positive in extremely chaotic horseshoe resonances, the preces-
sion of both Ω and ϖ is negative for the majority of Twotinos.

The same is true for the ascending nodes of major planets (with
respect to the invariable plane). However, for the planets’ perihe-
lion, the precessions are all positive. Since the perihelion preces-
sion rate g is in the opposite direction to g8, we would not find
the ν8 resonance where (ϖ − ϖ8) librates. For similar reasons,
any other secular resonances involving g5, g6, g7, or g8 are also
unlikely to exist.

Besides the frequencies, the spectrum may also tell us the
stability of the orbits. In fact, we can calculate from a power
spectrum the spectral number (SN) and use it as an indicator
of orbital stability (for more details, see e.g. Michtchenko &
Ferraz-Mello 1995; Zhou et al. 2009, 2019). The SN is defined
as the number of peaks with amplitudes above a certain thresh-
old in a frequency spectrum. Specifically, in this paper we adopt
a threshold of 1% of the highest peak in each spectrum. A small
SN indicates a ‘clean’ spectrum and thus a regular motion, while
a large SN implies a noisy spectrum and thus irregular orbits and
the onset of chaos.

3. Dynamics of 1:2 and 1:3 MMRs

Knowing the location of the resonance centre at given eccentric-
ity and inclination, we can explore the dynamics of the resonance
around the resonance centre. For example, for a given eccentric-
ity e, we can set the initial conditions of test particles on a grid
in the (a, i) plane, and the rest orbital elements except for (a, e, i)
are assigned the values at the corresponding resonance centre.
The orbits of these test particles are integrated in the outer So-
lar System and then analysed. We note that as for the dynamical
properties, the leading resonance island is absolutely identical to
the trailing island, therefore it is enough to analyse only one of
them (the leading one in this paper) arbitrarily.

3.1. 1:2 MMR in (a, i) plane

3.1.1. Maps of proper frequencies

For initial eccentricities e = 0.1, 0.2, 0.3 and 0.4, we set thou-
sands of initial conditions on (a, i) plane and integrated the or-
bits. The proper frequencies, f of the libration of resonance an-
gle (ϕ), g of the precession of perihelion longitude (ϖ) and s
of the precession of the ascending node (Ω), are calculated and
shown in Fig. 3. The boundary between horseshoe resonance
and asymmetric resonance is delineated in the numerical sim-
ulations, and the black lines in the figure represent a polynomial
fitting of such boundary. We note that in Fig. 3 and all subse-
quent dynamical maps, the semi-major axis, eccentricity, and or-
bital inclination are the initial values (osculating elements), and
these orbital elements will change during subsequent evolution.

As the perturbation theory (see e.g. Murray & Dermott 1999)
predicts, for small (e, i) orbits, the proper frequency g (s) de-
creases with increasing eccentricity (inclination). In Fig. 3 we
also see that the proper frequency f increases with increasing
eccentricity, which reflects a stronger resonance strength in the
resonance centre at higher eccentricity. On the other hand, the
fastest precession of perihelion tends to occur in the centre of
the asymmetric island, as long as the eccentricity does not ex-
ceed 0.3. The frequency f is relatively lower near the boundary
between horseshoe and asymmetric resonance islands. In fact,
the period at the (ideal) separatrix is infinite, but in the outer So-
lar System model, various perturbations from other planets blur
the boundary and particles nearby might switch between differ-
ent resonance modes in their evolution.
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Fig. 3. Proper frequencies of test particles’ motion in the 1:2 MMR on
(a, i) plane. From left to right, the panels show the proper frequencies
of the resonance angle ( f ), of perihelion (g), and of ascending node (s),
respectively. From top to bottom, test particles have increasing initial
eccentricities, from 0.1 to 0.4, as labelled in each panel. The colour in-
dicates the logarithm of the proper frequency in 2π yr−1. The black lines
mark the boundary between the horseshoe and asymmetric resonance
islands. In between the lines are the asymmetric resonance island. In
the blank area, orbits initialised there are unstable and cannot survive
the orbital integration of ∼34 Myr.

There are some other interesting structures in Fig. 3, such
as the arch curve in f when e = 0.1 and e = 0.2, and the gap
structure at high inclination in all f , g, s when e = 0.3 and e =
0.4. These structures are related to secular mechanisms that will
be discussed below.

3.1.2. Stability maps and secular mechanisms

We use the SN to indicate the regularity of orbits. Although an
irregular orbit is not necessarily unstable, the SN still reveals
the overall stability of orbits. The maps of SN (calculated from
cos ϕ) for four initial eccentricities are illustrated in Fig. 4. Ac-
cording to the stability maps, the most stable orbits in the 1:2
MMR locate around the asymmetric resonance centre. For or-
bits with small eccentricities (0.1, 0.2) the most stable region in
the (a, i) plane extends from i = 0◦ (coplanar with Neptune) to
i = 90◦. A gap of instability at i ∼ 40◦ appears when e = 0.3
and it expands to high-inclination region when e = 0.4. In addi-
tion, the resonance width in semimajor axis is much wider when
e = 0.2, 0.3 than when e = 0.1, and generally the width gets
smaller as the inclination increases. Some other fine structures in
the maps, for example, vertical stripes of less regular orbits (rela-
tively larger SN) in the low inclination region at e = 0.2 and very
regular orbits of low inclination (i ≲ 10◦) when e = 0.2, 0.3, 0.4,
can be seen in Fig. 4. The mechanisms that produce these struc-
tures will be figured out later.

The proper frequencies f , g, s have been calculated (Fig. 3),
and they can be regarded as functions of the orbital parameters
(a, e, i). We fitted the calculated f , g, s as functions of a, e, i by
polynomials, and used these polynomial functions to determine
the locations of specific resonances (simply defined as the equal-
ity between frequencies and/or their combinations) on the rep-
resentative plane, e.g. (a, i) plane. Such technique of detecting
resonances has been applied in our previous work (please refer
to e.g. Zhou et al. 2009, 2019, for details). The contour curves
on Fig. 4 obtained in this way indicate the locations where three
prominent secular mechanisms occur. As labelled in Fig. 4, the
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Fig. 4. Maps of stability of orbits in the 1:2 MMR. The colour repre-
sents the logarithm of the SN calculated from cos ϕ, with blue indicating
regularity and thus stability while red for instability. Lines of different
styles are used to indicate the positions of various secular mechanisms
(see text).

contours indicate the locations where g = s (ZLK mechanism),
g = 2s, and 2g − s = s8.

The primary cause of instability for test particles is the ZLK
mechanism g = s (for a review see Ito & Ohtsuka 2019), which
results in large oscillations in eccentricity through the exchange
of eccentricity and inclination. The high eccentricity brings the
perihelion of test particles too close to the region where planets
may strongly influence, and this is the most immediate reason
for test particles to fall out of MMR. Specifically, for objects
in the 1:2 MMR, the critical eccentricity is approximately 0.37
for a Neptune-crossing orbit and about 0.6 for a Uranus-crossing
orbit.

It should be noted that the actual region affected by ZLK
mechanism extends far beyond the solid line in Fig. 4. Empiri-
cally, if the difference between g and s is less than approximately
10−7 2π yr−1, the ZLK mechanism is very likely to occur. The
actual frequencies of a test particle are not constant but fluctuate
slightly around the nominal values. This phenomenon is referred
to as the ‘frequency drift’, which has previously been observed
in the inner Solar System and been believed to be accountable
for the chaotic nature of the inner Solar System (Laskar 1989,
1990).

At low eccentricity, the ZLK region roughly coincides with
the boundary of horseshoe resonance island. When e = 0.1, al-
most all particles in horseshoe resonance are subject to the ZLK
mechanism. At e = 0.2, the expansion of the horseshoe island
allows some particles deep inside it to remain unaffected by the
ZLK mechanism, corresponding to the blue area at low incli-
nation. As previously mentioned, particles near the boundary
frequently switch between resonance modes under the perturba-
tion of major planets. Superimposed with the separatrix between
horseshoe and asymmetric resonance modes, the ZLK mecha-
nism introduces even more irregularity to the motion and the
corresponding SN gets larger. However, due to their low initial
eccentricity, most particles here do not reach eccentricities high
enough to destabilize their orbits even under the influence of the
ZLK mechanism.

The ZLK mechanism influences much larger area in the (a, i)
plane as the eccentricity increases. When e = 0.3, in addition
to the boundary region between different resonance islands, the
ZLK mechanism also occurs within the asymmetric islands and
forms an unstable gap at i ∼ 40◦, while a stable area remains at
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higher inclinations. When the eccentricity reaches 0.4, the ZLK
region dominates almost the entire resonance region from i =
10◦ to 70◦. The most notable pattern is an unstable gap near i =
60◦, which is so chaotic that few particles survive the numerical
simulation. Gallardo et al. (2012) suggest that for bodies within
resonance, substantial variations in the perihelion distance due to
the ZLK mechanism only occur when the inclination exceeds a
certain minimum value (approximately 15◦), which aligns with
the phenomenon depicted in Fig. 4.

Another interesting feature in Fig. 4 is associated with the
mechanism of g = 2s indicated by the dashed line. Similar to
the ZLK mechanism, g = 2s is not in compliance with the
D’Alembert’s rule and cannot be classified as a secular reso-
nance. In Fig. 4, the most unstable motion (red colour) always
occurs in the region in between the lines of g = s and g = 2s
(where s < g < 2s), although a certain inclination (∼40◦) is
needed to trigger the instability. In this region, g is slightly larger
than s, making it easy for particles to fall into the ZLK mecha-
nism under the influence of frequency drift. The g = 2s can also
be written as ω̇ + Ω̇ = 2Ω̇, so that g = 2s means that the as-
cending node and argument of perihelion precess at the same
rate (ω̇ = Ω̇). The mechanism of g = 2s acts like a weakened
version of the ZLK mechanism, triggering relatively small ex-
changes of eccentricity and inclination. Another potential effect
of the g = 2s is to provide protection for particles with g > 2s
from falling into the ZLK mechanism. As a result, when e = 0.3
(Fig. 4), regions enclosed by the g = 2s line are more stable,
even at very high inclinations.

To show the dynamical effects of the ZLK mechanism and
the mechanism of g = 2s, we illustrate two typical orbits in
Fig. 5. As shown in Fig. 5a, when the ZLK mechanism oc-
curs from ∼5 to ∼35 Myr as indicated by the libration of angle
(ϖ−Ω), the test particle’s eccentricity oscillates largely between
0.3 and 0.5 coupling inversely with inclination between ∼30◦
and ∼23◦. The orbit leaves the ZLK mechanism at ∼35 Myr with
its eccentricity remaining approximately at 0.5 for tens of mil-
lions of years. The high eccentricity, combined with circulation
of the perihelion argument, greatly increases the risk of close en-
counter with Neptune. The test particle escapes the 1:2 MMR at
∼63 Myr and is completely scattered out of the Solar System at
around 78 Myr.

Fig. 5b shows another typical orbit that experiences both the
ZLK mechanism and the g = 2s mechanism. Over 100 Myr,
the particle switches between the ZLK and g = 2s mecha-
nisms several times. When the critical angle of one mechanism
is in libration, the critical angle of the other mechanism is in
circulation. The exchange between inclination and eccentricity
oscillates with large amplitude during ZLK mechanism phase
and it oscillates with moderate amplitude during the phase of
g = 2s mechanism. When g = 2s occurs, its critical angle li-
brates around 180◦ with small amplitude. We note that this does
not imply that 180◦ is the ‘centre’ of this critical angle because
it is in fact related to the selection of coordinate frame. Thanks
to the protection provided by the g = 2s, the particle in Fig. 5b
spends less time in a high eccentricity state over 100 Myr and
has a longer lifetime than the particle in Fig. 5a.

In addition to the aforementioned two mechanisms, the sec-
ular resonance 2g − s = s8 with the critical angle (2ϖ −Ω −Ω8)
occurs within the asymmetric island of the 1:2 MMR. Its location
(Fig. 4) coincides with the arch structure in the stability maps of
e = 0.1, 0.2, but it is hardly visible at e = 0.3 and it does not
appear at e = 0.4. To show the effect of this secular resonance,
we show in Fig. 6 an orbit affected by it. Superimposed over the
relatively short term (∼2.5 Myr) variation of inclination (and ec-

centricity) that is obviously correlated with the variation of criti-
cal angle (4λ − 2λ8 − 2Ω), we can find in Fig. 6 a relatively long
term (a little longer than the integration time of 34 Myr) variation
of inclination and eccentricity, which is correlated with the crit-
ical angle (2ϖ − Ω − Ω8) of this secular resonance. Specifically
in this example, the libration of this critical angle is interrupted
by the switching of the mean motion resonances (eccentricity-
type to inclination-type, and leading island to trailing island), but
such libration of (2ϖ − Ω − Ω8) and its correlation with the be-
haviour of (e, i) can be easily found in neighbouring orbits, from
which we know the complete libration period is about 40 Myr.
This is consistent with the results in Nesvorný & Roig (2001,
Figure 9). Similar to the ZLK mechanism, 2g − s = s8 increases
the amplitude of exchange between eccentricity and inclination.
When the particle’s eccentricity is reduced to as low as 0.02, the
asymmetric islands of the 1:2 eccentricity-type resonance fade
out, and the system recovers the symmetric configuration. Mean-
while, as the inclination increases (∼20◦), an inclination-type 2:4
resonance takes place. This process lasts for millions of years
centring around t = 15 Myr in Fig. 6. It is not until the eccen-
tricity value is restored that the 1:2 eccentricity-type resonance
resumes the asymmetric islands, by which time the particle has
moved from the leading island to the trailing island.

3.1.3. Minimal resonance angle and lifespan

So far, we adopt the SN as the indicator of orbital stability, which
is found to be tightly related to the libration amplitude of the res-
onance angle. Additionally, the libration amplitude can directly
reflect which resonance configuration (symmetric, asymmetric,
or horseshoe libration) the test particle is in. However, consid-
ering the abrupt jump in amplitude when a particle switches be-
tween different libration modes, instead of the amplitude we use
the minimum of the resonance angle ϕmin as a new indicator of
orbital stability. The ϕmin is defined as the minimal value that can
be reached by ϕ in the integration of 34 Myr. We note that this
definition of ϕmin works well for both the asymmetric librator on
tadpole-like orbits around the leading resonance island and the
librator on horseshoe-like orbits. But for the motion around the
trailing island, which is not considered in this paper, the min-
imum of (360◦ − ϕ) is the equivalence to ϕmin. Theoretically,
when the eccentricity is very small, there are symmetric orbits
that exhibit small-amplitude libration around 180◦, while at high
eccentricities, symmetric orbits librating around 0◦ with small
amplitude exist (see e.g. Lan & Malhotra 2019). But these or-
bits occur so rarely in our simulations that we ignore them here.
Under this definition of ϕmin, a librator with large amplitude will
have a small ϕmin, and on the contrary a particle close to the
resonance centre with small libration amplitude will possess a
relatively large ϕmin.

The lifespan of a test particle staying inside the 1:2 MMR
is a straight measure of the orbital stability. To further explore
the dynamics of the resonance, as well as to check the reliability
of the stability indicators, we conducted a long term simulations
for particles of e = 0.2 initialized on the (a, i) plane. The orbits
of these particles are integrated in the outer Solar System model
up to the Solar System’s age (5 Gyr). Together with the ϕmin of
these orbits calculated in the short-term integration of 34 Myr,
we summarise the lifespans obtained from the 5 Gyr’s integra-
tion in Fig. 7.

The minimum of resonance angle (ϕmin) in Fig. 7 reveals
the resonance amplitude very well. Meanwhile, indicating by
ϕmin, the change from asymmetric resonance to horseshoe res-
onance is smooth, and the abrupt change in amplitude (as shown
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in Fig. 2) is avoided. Apparently, ϕmin deep inside the asymmet-
ric island is larger, implying relatively stable motions therein.
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Fig. 7. The minimum of resonant angle (ϕmin) and the lifespan of test
particles (see text). Both ϕmin (in degrees) and lifespan (in logarithm of
years) are indicated by colour. The locations of secular mechanisms are
plotted as in Fig. 4.

And interestingly, the ϕmin around the location of secular reso-
nance 2g − s = s8 decreases noticeably because this secular res-
onance oscillates the eccentricity and triggers switches between
asymmetric islands as we have shown in Fig. 6.

The lifespan map in Fig. 7 also shows the structure associ-
ated with secular mechanisms. The bluest points represent parti-
cles that survive the orbital integration up to the age of the So-
lar System. Generally, after 5 Gyr’s evolution, the area in which
particles still retain is significantly reduced. The loss of particles
along the edge of stability region can be attributed to chaotic dif-
fusion, while the loss of particles along the ZLK and g = 2s
mechanisms is due to the frequency drift as we mentioned be-
fore. Within the asymmetric islands, particles escape from the
resonance on a gigayear timescale, mainly from the region with
inclination 30◦–70◦. This might be a result of the combined dy-
namical effects of the secular resonances like the 2g− s = s8 and
the frequency drift.

We have used the SN as an indicator of orbital regularity, and
the regularity to some extent is believed to be equivalent to sta-
bility. Since we have obtained the lifespan of particles in the (a, i)
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plane of e = 0.2, we can verify such equivalence by comparing
the lifespan with corresponding SN value. We select randomly
two cross sections in the (a, i) plane, one with fixed semi-major
axis a = 47.5 au and the other one with fixed inclination i = 40◦,
and plot the SN and lifetime in Fig. 8. Overall, particles with
higher SN have shorter lifetimes. This demonstrates that the SN
can be used to estimate the lifetimes of small objects (see previ-
ous similar calculation Zhou et al. 2009).
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Fig. 8. The lifetime and the SN of test particles. Initial conditions are
selected from two cross lines in the (a, i) plane, one with fixed a (top)
and the other with fixed i (bottom). The colour indicates the value of
SN, with those gray dots representing those orbits that are destabilized
within the 34 Myr’s integration and therefore the SN cannot be calcu-
lated (but the lifetime can still be calculated).

To estimate the dynamical lifetime of small objects is very
important for understanding the evolution of the Solar System,
but it requires massive computational resources to do so through
direct integration. It is always of particular interest to find suit-
able indicators that can be obtained by orbital integration as short
as possible. As we have shown above, both the ϕmin and the SN
can serve as stability indicators, and they overall agree with each
other. We will use these indicators below in this paper.

3.2. 1:2 MMR in (a, e) plane

We have shown the stability map on the (a, i) plane with 4 spe-
cific eccentricities. To check the dependence of the orbital sta-
bility on the eccentricity, we construct three dynamical maps on
the (a, e) plane, with initial inclinations of i = i8 (coplanar case),
i = 20◦ and i = 40◦, respectively. The values of a and e are
chosen to cover the resonance region in steps of 0.01 au (for a)
and 0.01 (for e), respectively. The rest orbital elements are set
as before, Ω = Ω8, M = M8 and ω are determined in test runs
using a similar approach as described in Section 2.1, to place the
test particles near the resonance centre. It is worth noting that
we also tried to assign specific initial values of ω according to
each initial eccentricity and found this change of initial condition
brought no qualitative difference in the results.

Adopt the ϕmin and SN as indicators, we present maps of
stability on the (a, e) plane in Fig. 9. Some secular mechanisms
as discussed in the (a, i) plane are also plotted.

Since the proper frequency s is almost exclusively related to
the orbital inclination, in the (a, e) planes of i = i8 ≈ 0◦ and

i = 20◦, the locations of mechanisms g = 2s and 2g − s = s8
almost coincide with each other. In fact, this is a natural result
of the almost constant value of the proper frequency s that sat-
isfies 3s ≈ s8. We note that the SN increases slightly due to the
combined effect of g = 2s and 2g − s = s8.

The effect of 2g− s = s8 on ϕmin cannot be easily recognised
at i = i8, while at i = 20◦ and i = 40◦, many particles with
e ≲ 0.2 have smaller ϕmin. This is because their eccentricity is
reduced to very low value by 2g − s = s8, which subsequently
triggers the switching between resonance islands, as explained
previously. Regardless of the inclination, 2g− s = s8 brings little
change in the SN, implying that its effect on the orbital stability
is very limited.

On the contrary, the effect of the ZLK mechanism increases
significantly with increasing inclination. As we can see in Fig. 9,
it slightly increases the SN at i = i8, but significantly excites it
at i = 20◦. At i = 40◦, the ZLK mechanism effectively clears
nearly all the test particles in the high eccentricity region, espe-
cially those between ZLK mechanism and the g = 2s. At this
inclination, the g = 2s acts as a wall delineating the boundary of
the stable region.

In addition to the three secular mechanisms mentioned
above, at i = i8 we can also find secondary resonances related to
the quasi 2:1 MMR between Uranus and Neptune and the proper
frequency f , including 4 f − 3g = f2N:1U and 5 f − 4g = f2N:1U ,
where f2N:1U is the frequency of 2λ8−λ7. These resonances may
increase the SN and lower the value of ϕmin, with the effect of
4 f − 3g = f2N:1U being more pronounced due to its lower order.

3.3. 1:2 MMR in (e, i) plane

We further explore the 1:2 resonance in the (e, i) plane for a com-
prehensive understanding of its structure. Fixing Ω = Ω8 and
M = M8 and regarding a and ω as the functions of e and i, we
take the initial eccentricity and inclination from a grid on the
(e, i) plane, and the values of a and ω are calculated through test
runs to put the initial orbits in the corresponding centre of the 1:2
MMR. Then thousands of orbits from these initial conditions are
numerically integrated and the stability maps are constructed, as
in Fig. 10.

Fig. 10 corroborates our results presented in previous sec-
tions. Since all test particles are placed along the resonance cen-
tre, the region of instability on the (e, i) plane is mainly in the
area with high eccentricity and high inclination. The ZLK mech-
anism appears in the high eccentricity region, and it strongly
destroys the stability of orbits with high inclination. The com-
bined effects of the ZLK mechanism and the g = 2s dominate
the high inclination region and forms the most unstable area be-
tween these two mechanisms.

The asymmetric resonance is hardly to retain for long time
when the eccentricity is less than 0.1, even if the test particles
have been carefully placed at the resonance centre. The secular
resonance 2g−s = s8 prominently influences the regions with ec-
centricity smaller than 0.2, and may cause particles to switch be-
tween two asymmetric islands and reduce the proper frequency
f . Its effect becomes less pronounced at higher eccentricities be-
cause it influences the motion mainly by causing oscillation of
eccentricity. We might expect that 2g − s = s8 will play a sig-
nificant role in altering the population ratio between the leading
and trailing asymmetric islands, because the switches between
these two asymmetric resonance islands will certainly mix and
finally equally divide the population at low eccentricity. We note
that the position of small value of ϕmin in the left panel of Fig. 10
aligns well with the regions of high ‘fragility’ observed in Gal-
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Fig. 9. Stability map of the 1:2 resonance in the (a, e) plane. The ϕmin and the SN are indicated by colour in the left and the right column,
respectively. The locations of the secular mechanisms (see text), and the boundary between horseshoe resonance and asymmetric resonance
islands are plotted as lines of different types.
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Fig. 10. The same as Fig. 9, but in the (e, i) plane.

lardo (2020, Figs. 13 & 26 therein), suggesting that the fragility
in the 1:2 resonance may be associated with the secular reso-
nances discovered in our paper. In addition, the upper left cor-
ner (low eccentricity and high inclination) of very small ϕmin in
Fig. 10 agrees very well with the fact that the observed Twotinos
are absent in this region, implying that ϕmin is a good indicator
of orbital stability.

3.4. 1:3 MMR

We applied the similar methods and techniques to the 1:3 MMR
to obtain a comparison and a reference for the 1:2 MMR. To
achieve a high resolution in the frequency analyses especially
for low frequency domain, we extended both the integration time
and output interval by a factor of four, so that the integration
time is ∼134 Myr. The set of initial conditions is similar to that
for the 1:2 resonance. We briefly summarise the results for the
1:3 MMR in two sets of dynamical maps on the (a, i) and (a, e)
planes. As before, the important secular mechanisms have been
figured out.

In Fig. 11, we show the dynamical maps on the (a, i) plane.
Compared to the 1:2 MMR, the 1:3 MMR maintains a relatively
intact structure due to its larger distance from the planet. Com-
pared to the results in the CR3B model (e.g. Fig. 3 of Gallardo
2020, for initial eccentricity e = 0.6), the resonance island in
(a, i) plane has the similar shape (for prograde orbits, as we have
only calculated orbits with i < 90◦), but the motion in Fig. 11
seems less stable. In addition to the boundary between horse-
shoe and asymmetric islands where the SN is relatively high,
the most remarkable structure arises from the ZLK mechanism
(g = s), which can be seen easily in both ϕmin and SN. In the
low inclination region, the ZLK mechanism appears in the inner
part of the asymmetric islands, which differs from the situation
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in 1:2 MMR. In the region with inclinations larger than 40◦, the
ZLK mechanism significantly empties the neighbourhood area.
The g = 2s mechanism only presents in the high inclination re-
gion and is somewhat different from the case in 1:2 resonance.
However, similar to the 1:2 MMR, the area where the g = 2s and
ZLK mechanisms overlap is the most unstable region.
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Fig. 11. Dynamical maps of the 1:3 resonance on the (a, i) plane. Two
indicators, the ϕmin (left column) and the SN (right column), have been
adopted. Two initial eccentricity values, e = 0.3 (top panels) and
e = 0.4 (bottom panels), have been used to indicate the stability of
orbits. Recognised secular mechanisms and the separatrix between the
horseshoe and asymmetric resonances are plotted in lines.

In the 1:3 MMR, the location of ZLK mechanism and the
boundary of the asymmetric resonance island no longer coin-
cide, allowing us to better observe the effect of ZLK mechanism.
From Fig. 11, it can be seen that the ZLK mechanism extends to
lower inclination region, where both ϕmin and the SN reveal its
influences. Even when the inclination is almost 0◦ (i = i8) in
the (a, e) plane (Fig. 12), an increase in SN can be observed,
implying it’s taking effect. Nevertheless, the ZLK mechanism’s
influence becomes weaker toward low inclination region, as we
can see in Fig. 11.

In Fig. 12 of dynamical maps on the (a, e) plane with given
inclinations i = i8, 20◦, 40◦, we see that the most stable orbits
with small SN values can be found at relatively high eccentricity
region (e ∼ 0.4), and this is the reason why only two dynami-
cal maps with eccentricity e = 0.3, 0.4 have been presented in
Fig. 11. The small SN value of some orbits at low eccentricity
region (e ≲ 0.1) seemingly implies that they are stable (regu-
lar) orbits. But in fact, with such small eccentricity, these near
circular orbits are not locked in the 1:3 MMR, thus not in the
scope of this paper. In the CR3B model, the 1:3 resonance ex-
hibits a resonance width close to zero when e ∼ 0, and there are
no asymmetric resonance islands for e ≲ 0.1 (Lan & Malhotra
2019; Gallardo 2020). It is possible that by selecting carefully
the appropriate initial parameters we might find some orbits in
the 1:3 resonance at such low eccentricity. However, in the outer
Solar System model, stable orbits in such low eccentricity region
are relatively rare. Since these low eccentricity particles are not
in the resonance, their ϕmin may approach zero, and this explains
the apparent ‘discrepancy’ between the ϕmin and SN in the low
eccentricity region in Fig. 12. We note that this can also be found
in Fig. 9 for the 1:2 MMR.

The secular resonances associated with the quasi 1:2 MMR
between Uranus and Neptune becomes higher in order because
the libration period of the resonance angle becomes longer in
the 1:3 MMR. Thus, few effect associate with these secular res-

onances can be seen. However, in the region of e ≲ 0.3 where
the resonance angle librates particularly slowly, the frequency f
approaches s6, resulting in an increase in the SN. It should be
noted that the 2 f = 2s6 also exists (but is not shown) in Fig. 11
at e = 0.3, which appears around the resonance separatrix and
does not have a significant effect.

In summary, the libration and precessions in the resonances
as distant as the 1:3 MMR are generally very slow, and thus the
simple integer ratios between these frequencies and those of ma-
jor planets are rare. As a result, the dynamic map of distant res-
onances ought to be simpler and cleaner. It can be speculated
that in more distant 1:N resonances, the secular mechanisms that
play a role in the dynamics of resonant orbits should be limited
to mechanisms like the ZLK and g = 2s mechanisms, rather than
2g − s = s8 or 4 f − 3g = f2N:1U .

4. Distribution of Observed Twotinos

Many studies have attempted to predict the population ratio of
small objects (Twotinos) locked in the two asymmetric islands
of the 1:2 MMR by simulating planetary migration (e.g. Chiang
& Jordan 2002; Murray-Clay & Chiang 2005; Li et al. 2014;
Pike & Lawler 2017; Li & Zhou 2023). However, as we have
shown, the secular resonance 2g − s = s8 exists widely inside
the 1:2 MMR and can drive objects’ eccentricities to oscillate.
A very low eccentricity can eliminate the asymmetric resonance
islands or even cause a temporary break of the 1:2 MMR, re-
sulting in the switching of Twotinos between leading and trail-
ing islands. Because of the existence of such switches between
resonance configurations via the low eccentricity channel, it is
particularly difficult (if not impossible) to trace back the evolu-
tion of the Solar System billions of years ago by simply examin-
ing the population ratio between asymmetric resonance islands.
Even worse, observational evidence now tends to suggest that
there is no asymmetry in population in the 1:2 MMR (Chen et al.
2019).

Li & Zhou (2023) show that Neptune’s outward migration
can result in different distributions of eccentricities in the two
asymmetric islands, specifically particles in the leading island
may have higher eccentricities. As we have shown, the secu-
lar resonance 2g − s = s8 works profoundly in low eccentric-
ity region, mixing the low-eccentricity populations from the two
asymmetric islands. More importantly, since the eccentricities of
objects in the leading island captured during the planets’ migra-
tion are higher than the ones in the trailing island (Li & Zhou
2023), this switching and mixing of low-eccentricity particles
aided by the 2g − s = s8 will effectively drive particles from the
trailing island to the leading island, and consequently increase
the population ratio between these two islands.

A list of observed Twotinos, now consisting of 107 con-
firmed objects and 24 candidates, can be found on the website
List of Known Trans-Neptunian Objects2. We downloaded the
orbital elements of these objects from the Asteroids-Dynamic
Site3 (AstDyS) and then determined their orbit configuration by
numerically simulating their motion. Among the 131 objects in
the list, except for 11 objects that cannot be calculated due to
inadequate observations or unavailable data, we finally found 15
objects that are not in the 1:2 MMR, and the rest 105 objects
reside in the resonance. Among them, more than 80 objects visit
both asymmetric resonance islands in various time during the
integration of 34 Myr. An object is classified as an asymmetric

2 https://www.johnstonsarchive.net/astro/tnoslist.html
3 https://newton.spacedys.com/astdys
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Fig. 12. The same as Fig. 9 but for the 1:3 MMR.

Twotino only if it resides in one of the asymmetric islands and
has never undergone an island switching. According to this rigor-
ous criterion, we found 43 Twotinos in the leading island (lead-
ing Twotinos), 14 trailing Twotinos, and 48 horseshoe Twotinos.
Surely, by this definition, those objects that experience the island
switching are classified as ‘horseshoe Twotinos’. We plotted in
Fig. 13 the eccentricities and the libration amplitudes of these
objects.

The median of amplitude in Fig. 13 is calculated as follows.
The total integration time (34 Myr) is divided into 20 ‘windows’.
We then calculated the libration amplitude of the resonance an-
gle in each window, and the median value was obtained from
these 20 amplitudes. The mean eccentricity in Fig. 13 is simply
the algebraic mean value during the integration.

In Fig. 13, none of the particles in the asymmetric islands
has eccentricity below 0.1. This is consistent with the results in
Fig. 10, where the lower limit of eccentricity required to main-
tain the asymmetric resonance is approximately 0.09. It is worth
noting that due to the perturbations from major planets, the crit-
ical eccentricity for maintaining the resonance in the outer Solar
System model is higher than the ideal value (∼0.04) in the planar
CR3B model (Malhotra 1996; Lan & Malhotra 2019). The high-
est eccentricity for Twotinos in Fig. 13 is approximately 0.42,
agreeing with Fig. 9 and Fig. 10, where the upper limit of eccen-
tricity is approximately 0.45.

The most interesting feature in Fig. 13 is that the leading
Twotinos have relatively higher eccentricities than the trailing
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Fig. 13. Mean eccentricities and median of libration amplitudes (see
text for the definition of median of amplitude) of observed Twotinos.
The solid circles, crosses and solid triangles represent the leading, trail-
ing, and horseshoe Twotinos, respectively. Objects that experience the
secular resonance 2g − s = s8 are circled.

ones, a finding that is consistent with the predictions by Li &
Zhou (2023). Specifically, the 10 Twotinos with the highest ec-
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centricities are all located in the leading island, while the high-
est eccentricity among the trailing Twotinos is about 0.33. Chen
et al. (2019) have shown that the distribution of eccentricity for
both asymmetric islands conforms to a Gaussian distribution
with a centre of 0.275 and a width of 0.06. However, we ob-
tain from the observational data a difference of 0.0233 between
the mean eccentricities of the leading and trailing Twotinos. It
does not necessarily mean that the result in this paper contradicts
to the findings of Chen et al. (2019). In fact, the difference in
mean eccentricity found by them (0.0394) between the 17 lead-
ing Twotinos and 8 trailing Twotinos is even larger. It is impor-
tant to note that both our sample of 57 Twotinos and their sample
of 25 Twotinos are not large enough to draw very solid conclu-
sion, and to confidently reject the hypothesis that ‘the asymmet-
ric islands have identical eccentricity distributions’.

The effect of the 2g − s = s8 is found to be significant in the
motion of Twotinos. In Fig. 13, 28 Twotinos that are found to ex-
perience the 2g − s = s8 in the numerical integrations have been
indicated. According to their dynamical behaviour, we broadly
classify these objects into three groups. The 10 Twotinos with
eccentricity above 0.3 belong to the first group. All of these 10
particles, 9 in the leading island and 1 in the trailing island, stay
invariably in the respective asymmetric islands without expe-
riencing island switching. This implies a limited effect of the
2g − s = s8 in this (relatively) high eccentricity region.

The second group comprises 15 horseshoe Twotinos affected
by the 2g − s = s8. A majority of these objects have under-
gone island switching during the integration. Among them, 5
Twotinos exhibit relatively low median amplitudes (< 160◦),
indicating that they predominantly experience the asymmetric
resonance throughout the simulation, despite having larger am-
plitudes compared to objects consistently residing within either
one of the asymmetric islands. Additionally, there are 10 objects
with relatively large amplitudes (> 200◦), suggesting a higher
likelihood of being always in the horseshoe resonance, i.e. in the
horseshoe-like orbits surrounding both the asymmetric islands.

The third group consists of only three Twotinos. They have
relatively low eccentricities ranging from 0.21 to 0.25, and re-
main in the asymmetric resonance (2 in leading and 1 in trailing
island). These objects have median amplitudes > 100◦, suggest-
ing that while they maintain themselves in the asymmetric reso-
nance during the 34 Myr simulation, the island switching is still
likely to occur over longer timescales. Empirically, objects with
median amplitudes ranging from 100◦ to approximately 290◦ are
predominantly influenced by the 2g − s = s8, indicating a strong
association between the 2g− s = s8 and the occurrence of island
switching.

Therefore, the presence of the 2g − s = s8 secular reso-
nance may influence the distribution of eccentricities and the
population ratio of Twotinos in the two asymmetric resonance
islands of the 1:2 MMR, particularly for those objects with low
to medium eccentricities. Twotinos in either resonance modes of
the 1:2 MMR in the low eccentricity region (e ≲ 0.2) may have
been mixed up by the 2g − s = s8. Any analysis aiming to re-
construct the planetary migration history using the information
of Twotinos in the asymmetric islands of the 1:2 MMR should
take into account the influence of the 2g − s = s8. Although the
number of Twotinos with low eccentricity is still relatively small,
it is recommended to exclude those objects that undergo island
switching (largely due to 2g − s = s8) from the statistics, as they
are likely not in the original resonance islands, and any informa-
tion related to planetary migration within them may have been
distorted.

Besides the eccentricity and libration amplitude, we also
checked Twotinos’ inclinations as well as their evolutions dur-
ing the integration. We found that the highest inclination of ob-
served Twotinos is ∼30◦, lower than the critical inclination at
which the ZLK mechanism is expected to have a significant ef-
fect, as shown in Fig. 4 and Fig. 10. This suggests that all the
observed Twotinos are in a safe range of inclinations and are not
subject to strong ZLK oscillations, even if their proper frequen-
cies meet the conditions of the ZLK mechanism.

5. Conclusions

In the trans-Neptunian region, the 1:N mean motion resonances
with Neptune are of particular interest, because in these MMRs
the symmetric resonance configuration (with the resonance an-
gles librating around 180◦ or 0◦), the asymmetric configuration
and the horseshoe resonance coexist. And important clues to the
early history of the Solar System may be found in the popu-
lations of TNOs trapped in these MMRs. In this paper, we con-
ducted systematic analyses on two Neptunian resonances, the 1:2
MMR and 1:3 MMR.

Our investigation on these two resonances are basically
based on the numerical simulations of test particles’ motion in
the outer Solar System model. To find the representative orbits
in the resonances, we chose carefully the initial orbital elements
of test particles through test runs to put all the initial conditions
in the centre of the resonance (Figs. 1, 2).

Using the method of frequency analysis, we determined the
proper frequencies in the motion of test particles (Fig. 3), in-
cluding the frequency of the resonance angle’s libration ( f ), the
precession rates of perihelion (g) and of the ascending node
(s). With these proper frequencies, we then identified the sec-
ular mechanisms that may occur and influence the motion in
the MMRs. Also by frequency analysis, we obtained the power
spectrum of the critical angles, from which the spectral number
(SN) was calculated. Adopt the SN as the indicator of regularity
(stability) of orbits, we constructed dynamical maps on different
representative planes, both for the 1:2 MMR (Figs. 4, 9, 10) and
for the 1:3 MMR (Fig. 11, 12). The locations of those identified
secular mechanisms were found to match the structures in the
dynamical maps. The behaviours of some typical orbits confirm
directly the effects of these secular mechanisms (Figs. 5, 6).

To better distinguish the resonance modes of orbits, we also
define the minimum of resonance angle (ϕmin) in this paper, and
it was found to be able to tell the stability of an orbit in some
sense (Fig. 7). The lifespan is the most straight measure of the
orbital stability, but generally it is very expensive to compute the
lifespan. Fortunately, both the ϕmin and the SN can be calculated
easily from numerical simulations of motion for relatively short
time, and they are tightly related to the lifespan (Fig. 8).

As have been plotted over the dynamical maps (Figs. 4, 9,
10, 11, 12), the most significant mechanisms we detected in
the 1:2 and 1:3 MMRs include the ZLK mechanism and the
g = 2s mechanism. Since their critical angles do not satisfy
the D’Alembert’s rule, they are just referred as ‘mechanisms’
rather than ‘resonances’. The ZLK mechanism is the main cause
of instability and takes place in a large region. The exchange of
eccentricity and inclination during the orbital evolution is a com-
mon phenomenon and the ZLK mechanism increases the magni-
tude of this exchange. The increase in eccentricity of small ob-
jects during oscillation causes their perihelion to approach Nep-
tune, finally resulting in destabilization of the orbits. The g = 2s
mechanism behaves like a weakened version of the ZLK mecha-
nism. In our simulations, the region of high inclination between
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the g = 2s and the ZLK mechanisms is the least stable region
and would be rapidly evacuated in tens of millions of years.

The existence of TNOs with high inclination has always been
a puzzling issue. The oscillation of the ZLK mechanism inside
1:2 or 1:3 MMR is on the order of ten million years, which makes
it possible for TNOs to obtain the high inclination by trading
their eccentricities through the ZLK mechanism over millions
of years. On the other hand, it is easy for objects locked in the
MMRs to obtain high eccentricities as planets migrate outward
(Malhotra 1993). Thus, objects leaking from the 1:2 and 1:3
MMRs might have contributed a considerable fraction of high-
inclination population.

The 2g − s = s8 resonance is the only one classical secular
resonance that is related with the proper frequency of major plan-
ets. It causes a long-period oscillation in the eccentricity and its
long-term influence can be observed in the low eccentricity re-
gion (e ≲ 0.2) of the 1:2 MMR. When the eccentricity drops to a
very low level, the asymmetric resonance islands disappear and
the protection of the 1:2 MMR is weakened, leading objects to
switch between asymmetric islands. Thus, the 2g− s = s8 opens
the channel for switching between leading and trailing islands.
Except this, it brings only little influence on the overall orbital
stability, as we can hardly observe any effect of the 2g−s = s8 on
the SN in Fig. 4 and Fig. 10. Therefore, we expect that it may in-
troduce considerable influences on the population ratio between
two asymmetric resonance islands, and on the eccentricity dis-
tribution in the relatively low eccentricity region (e ≲ 0.2).

The secondary resonances associated with the quasi 2:1 reso-
nance between Uranus and Neptune are found to present in both
the 1:2 and 1:3 MMRs. The relatively strong ones include the
4 f − 3g = f2N:1U and 5 f − 4g = f2N:1U resonances. These reso-
nances tend to appear in the region of high eccentricity and large
libration amplitude where the proper frequency f is relatively
high. Although not significantly, these secondary resonances in-
troduce more perturbations and thus contribute to the instability
of influenced orbits.

Several previous studies have shown that there are no secular
mechanisms other than the ZLK mechanism in the 1:2 resonance
(e.g. Lykawka & Mukai 2007; Tiscareno & Malhotra 2009; Li
et al. 2014). This is in rough agreement with our results as we
found that the ZLK mechanism is indeed the main reason for
destabilizing the orbits of objects in the 1:2 MMR. Other secular
mechanisms such as the g = 2s and 2g − s = s8, and the sec-
ondary resonances such as 4 f−3g = f2N:1U and 5 f−4g = f2N:1U ,
have been found in this paper, but their effects as revealed by the
SN and/or ϕmin in the dynamical maps, are weak.

Nesvorný & Roig (2001) discovered in the 1:2 MMR several
secular resonances, e.g. 2g = 2s8 at e ∼ 0.2 and 2g − s = s8
at e ∼ 0.3. We found in our calculations that although the fre-
quency condition of the former secular resonance (2g = 2s8)
may be satisfied in a very narrow area at e ∼ 0.2, i ∼ 0◦, the ef-
fect of this mechanism can hardly be recognized on the dynam-
ical maps either of ϕmin or of SN. As the proper frequencies of
Twotinos are often lower than the precession frequencies of ma-
jor planets, only in the area where g reaches its maximum can it
barely match s8. As for the latter secular resonance 2g − s = s8,
its presence in a wider range (i: 0◦–70◦, e: 0.05–0.3) is found in
this paper (dotted line in Fig. 10). It is even more influential in
lower eccentricity region when the inclination is relatively higher
(see Figs. 4, 7, 9). We note that the libration of the critical an-
gle of this secular resonance (like Figure 9 in Nesvorný & Roig
(2001)) might be easier to be observed at moderate eccentricity
(∼0.3) than at lower eccentricity, because in the latter case the
complete libration of the critical angle might be destroyed by

the asymmetric island switching which is in turn aided by this
secular resonance.

For real Twotinos currently known, the 2g − s = s8 is the
most influential secular resonance. Out of the 105 observed ob-
jects that are confirmed to be in the 1:2 MMR by our calcula-
tions, 28 Twotinos are found to be affected by this secular res-
onance (Fig. 13). It forces the eccentricity of Twotinos to oscil-
late largely, and in the outer Solar System model it may tem-
porarily weaken the protection from the MMR when the eccen-
tricity is brought to its minimum, where a Twotino may switch
from one asymmetric resonance island to the other. Therefore,
in the relatively small eccentricity region (e ≲ 0.2), Twotinos
originally from either asymmetric island have lost their original
identity and have been mixed up in the evolution of the Solar
System’s age. However, some dynamical properties of the pri-
mordial Twotinos may still be preserved in the current popula-
tion. Combining the results in this paper with the knowledge of
planet migration and resonance capture in previous work (e.g.
Li & Zhou 2023), we can understand very well the eccentric-
ity distribution of current Twotinos, and we expect more evident
clues to the Solar System’s history to be found in this population,
which has been continuously increasing.

Besides the 1:N resonances, the 2:3 and 2:5 MMRs contain a
significant number of TNOs (e.g. Gladman et al. 2012; Nesvorný
2015; Malhotra et al. 2018), but the distribution of TNOs in these
non-1:N resonances is less informative since they have only one
symmetric resonance island. Other 1:N MMRs than the 1:2 and
1:3 currently might be of less interest because their dynamical
structures could probably be relatively simpler due to the great
distance from major planets. In addition, observations of these
resonances are also much fewer.
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