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Direct Numerical Simulations of the injection of a pulsed round liquid jet in a stagnant
gas are performed in a series of runs of geometrically progressing resolution. The Reynolds
and Weber numbers and the density ratio are sufficiently large for reaching a complex
high-speed atomization regime but not so large so that the small length scales of the
flow are impossible to resolve, except for very small liquid-sheet thickness. The Weber
number based on grid size is then small, an indication that the simulations are very
well resolved. Computations are performed using octree adaptive mesh refinement with a
finite volume method and height-function computation of curvature, down to a specified
minimum grid size ∆. Qualitative analysis of the flow and its topology reveals a complex
structure of ligaments, sheets, droplets and bubbles that evolve and interact through
impacts, ligament breakup, sheet rupture and engulfment of air bubbles in the liquid.
A rich gallery of images of entangled structures is produced. Most processes occurring
in this type of atomization are reproduced in detail, except at the instant of thin sheet
perforation or breakup. We analyze droplet statistics, showing that as the grid resolution
is increased, the small-scale part of the distribution does not converge, and contains a
large number of droplets close in order of magnitude to the minimum grid size with a
significant peak at d = 3∆ .
This non-convergence arises from the numerical sheet breakup effect, in which the

interface becomes rough just before it breaks. The rough appearance of the interface is
associated to a high-wavenumber oscillation of the curvature. To recover convergence,
we apply the controlled “manifold death” numerical procedure, in which thin sheets are
detected, and then pierced by fiat before they reach a set critical thickness hc that is
always larger than 6∆. This allows convergence of the droplet frequency above a certain
critical diameter dc above and close to hc. A unimodal distribution is observed in the
converged range.

Key words:

1. Introduction

Atomization simulations have progressed at an amazing rate, however the topic is
still far from mature. As we shall show in this paper the prediction of the breakup
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of liquid masses in a typical large-speed flow is marred by vexing numerical effects
and profound physical uncertainties. New developments, such as better codes, rapidly
increasing processing power and new numerical methods are however poised to mitigate
the difficulties. In this paper, we investigate the pulsed jet, a paradigmatic case of atom-
izing flow inspired by diesel engine jets, although we do not aim at solving a particular
applied problem or even any experimental configuration, but rather to investigate the
potential and limitations of Direct Numerical Simulation (DNS) of atomising flow, and
in particular the ability of such DNS to reveal physically relevant properties of the flow
through statistically converged numerical approaches. The emphasis here is on statistical
convergence, rather than “trajectory” convergence, since only the former is conceivable
in very complex, irregular flows.
The study of such convergence already has a long history, despite rapid progress.

We review specifically the history of round jet atomizing simulations and we refer the
reader to reviews on the general topic of atomization and its simulation (Gorokhovski &
Herrmann 2008; Villermaux 2020). The first attempts at testing the convergence of the
Probability Distribution Function (PDF) of droplet sizes were those of Herrmann (2011).
His simulations of a round jet used a variant of the Level-Set method and showed that
the number of small droplets in the PDF was underestimated by coarse-grid simulations.
This can be understood by the fact the the Level-Set methods tend to eliminate small
droplets by “evaporating” them. On the other hand Volume-Of-Fluid (VOF) methods
keep too many droplets in an intermediate range around the grid size ∆, and in that
range the PDF of droplet sizes is overestimated. This can be seen for example in a study
of the convergence of the droplet size distribution in the round jet by Pairetti et al. (2020)
where coarse grids overestimate the number of large droplets.
A graphical illustration of the contrasting effects of Level-Set and VOF methods on

the droplet sizes in atomization is shown on Figure 1. Despite the inaccuracy of the
distribution for small droplet diameters, both methods may converge as the grid is refined
progressively. There is thus some hope that very large simulations will eventually produce
converged distributions, a hope we want to explore in this paper.

Aside from the two investigations cited above, very few studies address the issue of
PDF convergence, despite detailed analyses of aspects of the flow. Perhaps the first
round, single-jet atomization simulation in the conditions of a diesel jet was that of
Bianchi et al. (2005) using the VOF method, followed by more detailed simulations by
Ménard et al. (2007) using the Combined Level-Set VOF method (CLSVOF). This was
followed by other simulations using CLSVOF by Lebas et al. (2009), Chesnel et al. (2011)
and Anez et al. (2019) and by simulations using the VOF method (Fuster et al. 2009).
The latter studied both the coaxial jet cases in the so-called “assisted atomization”
setup and the conical jet. For the conical jet Fuster et al. (2009) showed that the PDF
changed drastically with grid resolution. The PDF never peaked as the droplet size
was decreased towards the grid size. Until 2022, the most detailed (or highest-fidelity)
published simulations of a round jet were performed by Shinjo & Umemura (2010) using
a combination of Level-Set and VOF techniques with a ratio of jet diameter to grid
size of 286. These simulations, together with those of Herrmann (2011) are the two
outliers above the trend line in Figure 2. In addition to revealing a wealth of details
about ligament and sheet formation, and the perforation of sheets, Shinjo & Umemura
have also shown distributions of droplet sizes, but without investigating explicitly their
convergence. As in earlier simulations of the round jet, the droplet size distribution has
a single maximum close to the small droplet end of the spectrum, almost at the grid size.
Studies by Jarrahbashi & Sirignano (2014); Jarrahbashi et al. (2016) focused on a round,
spatially-periodic jet and analyzed the effect of vortex dynamics on the development of
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Figure 1. An illustration of the outcomes for the numerical simulation of a thinning liquid
sheet. The Volume of Fluid method breaks when the sheet thickness reaches the grid size.
Because of mass conservation fragments larger than the grid size are obtained. The Level-Set
or Diffuse-Interface method on the other hand evaporates the thin parts of the sheet. In reality,
the sheet thinning would continue until the sheet is much thinner, unless extremely fine grids
are used. The final size of some of the droplets would then be much smaller than in the VOF
simulation.

instabilities along with the jet core. Studies by Zhang et al. (2020) and Pairetti et al.
(2020) applied the VOF method with octree Adaptive Mesh Refinement. As already
mentioned the later paper investigated the distribution of droplet sizes showing some
difficulties in reaching statistical convergence. Several authors including Torregrosa et al.
(2020) and Salvador et al. (2018) have focused on the effect of injection conditions and
turbulence. Khanwale et al. (2022) and Saurabh et al. (2023), using a diffusive interface
method with octree Adaptive Mesh Refinement, obtained the most refined simulations
published at time of writing with a special treatment of the refinement in thin regions.
It should be noted that all of the round-jet studies cited above involve a variety of
physical parameters and grid resolutions, despite the fact that they share similarities,
such as moderate density ratios and liquid Reynolds numbers (defined below) in a range
5000 ⩽ Rel ⩽ 13400 that are attainable by Direct Numerical Simulation for single-phase
flow. For example the two octree studies of Zhang et al. (2020) and Pairetti et al. (2020)
have gas-based Weber numbers (defined below) of respectively 177 and 417. As a general
rule, it is better to select relatively small density ratios, Reynolds and Weber numbers
to increase the likelihood of reaching convergence in computation. In this work, we thus
chose the parameters in the lower range of Re, We and density ratio for this type of flow.
Similar attempts at obtaining convergence were realized in the simulations of Ling et al.
(2017), investigating assisted quasi-planar atomization after the experiment of Grenoble
(Ben Rayana et al. 2006; Fuster et al. 2013). Ling et al. (2017) performed computations
on four grids of increasing resolution. Despite the huge computational effort involved in
that latter simulation, convergence was clearly not reached, both quantitatively as droplet
size distributions had a very narrow region of overlap, and qualitatively as clearly under-
resolved structures in thin sheet-like regions were observed. One of our objectives in this
work is to see what happens if ever finer grids are used, until very thin sheets are clearly
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Figure 2. The increase in two-phase round-jet grid resolution in time. The graph includes two
simulations published only on the Gerris and Basilisk websites (and in other channels outside
of academic journals) before 2017. The 2024 simulations are those reported in this paper.

resolved. In experiments as well as in some simulations it is clear that thin sheets are
the site of weak spots (Lohse & Villermaux 2020). The presence of these weak spots as
one of the mechanisms leading to atomization forces the following somewhat sobering
conclusion. Numerical simulations of Diffuse-Interface, Level-Set or VOF type can never
be converged if thin sheets break or perforate only when they reach the grid size. Instead
a physical mechanism for weak spots or perforations must be present to nucleate holes in
a manner independent of the numerics. Although such a mechanism may not be known
yet, we suggest as a backstop procedure to define a critical sheet thickness hc beyond
which perforations occur with relatively high frequency, that is at the rate of one or more
perforations per connected thin-sheet region. Chirco et al. (2022) have called manifold
death (MD) this procedure†. It should be noted that bags or membranes are observed
at relatively low velocities in many atomization configurations (droplets, jets etc...) and
that at higher velocities, bags are not visible and perhaps non existent. We note that
the literature (Lasheras & Hopfinger 2000) distinguishes two kinds of atomization, a bag
or membrane-type atomization at Weg < 200 and a fiber-type atomization at higher
values of the Weber number. From the connection between thin sheets and the lack
of statistical convergence one may conjecture that in the fiber-type regime statistical
convergence could be achieved. This is however contradicted by the lack of convergence
observed by Herrmann (2011) at Weg = 500. A definite answer to this argument may
have to wait for a study similar to the one in this paper in the fiber type regime, a study
which would probably be even more expensive.
In what follows we first describe the characteristics of our test case. We then describe

our numerical method, including the manifold death (MD) procedure. Then we continue
with our results, which are both qualitative, revealing new processes of numerical rupture,
and quantitative based on analysis of the droplet size distributions. A sketchy discussion

† This choice of words partially echoes that of Debrégeas et al. (1998).
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of the physical phenomenology of hole expansion in a thin sheet is discussed in Appendix
A. We end with a conclusion including perspectives and discussion.

2. Mathematical model and numerical method

Our mathematical model is based on the mass and momentum-conservation equations
for incompressible and isothermal flow

∇ · u = 0, (2.1)

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · (2µD) + fσ, (2.2)

where u(x, t) is the velocity field and p(x, t) is the pressure field. The tensor D is

defined as 1
2

[
∇u+ (∇u)

T
]
. The density and viscosity of the flow are noted as ρ and

µ respectively. The last term on the right-hand side of the Navier–Stokes Equation (2.2)
represents the surface tension force

fσ = σκnδs, (2.3)

which depends on the surface tension σ and the interface shape, particularly on its
curvature κ and unit normal vector n. The Dirac distribution δs indicates that the force
only acts at the free surface. We consider the phase distribution function c(x, t) that
takes value unity in the reference phase and null outside of it. The transport equation
for this function is:

∂c

∂t
+∇ · (cu) = c∇ · u. (2.4)

In the context of incompressible flow, the right-hand side above is equal to zero. The c
function implicitly defines the interface at its discontinuity surface, defining also the δs,
n, and κ fields, e.g. ∇c = nδs.
The Volume of Fluid method represents the evolution of c using the Piecewise Linear

Interface Capturing (PLIC) method of Hirt & Nichols (1981) and DeBar (1974). In this
context, the mean value of the color function on a cell is

f =
1

|Ω|

∫
Ω

c(x, t) dV, (2.5)

where |Ω| is the volume of the cell Ω. Then f is the volume fraction of the reference
phase in the cell. The mixture properties of the cell may then be computed by arithmetic
averages

ρΩ = fρl + (1− f)ρg, µΩ = fµl + (1− f)µg. (2.6)

Spatial discretization of the above Equation is realized on a network of cubic cells
obtained by a tree-like subdivision of an initial cubic cell of size L0. The subdivision
is realized using a wavelet based error estimate and is adapted dynamically as the
simulation progresses. At all times the maximum subdivision level is a fixed number
ℓ and the smallest grid size is

∆ℓ = 2−ℓL0/3. (2.7)

From now on, we consider the algebraic equations derived from applying the Finite
Volume Method on each cell. In this context, the approximate projection method by
Chorin (1968) can be used to solve the coupling between equations (2.1) and (2.2),
considering that the velocity u is staggered in time with respect to the volume fraction
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f and the pressure p. The discrete set of equations can then be expressed as

ρu∗ − ρun

∆t
+∇ ·

(
ρn+

1
2 un+1/2un+1/2

)
= ∇ · [µn+ 1

2 (Dn +D∗)] + fn+1/2
σ (2.8)

∇ ·
(

∆t

ρn+
1
2

∇pn+
1
2

)
= ∇ · u∗ (2.9)

un+1 = u∗ − ∆t

ρn+
1
2

∇pn+
1
2 (2.10)

In the above the expression ∇ ·
(
ρn+

1
2 un+1/2un+1/2

)
must be interpreted as the use

of a predictor-corrector scheme for advection of the velocity field. Both the predictor
and the corrector use the Bell-Collela-Glaz scheme (Popinet 2003, 2009), and involve
two projections. A full description of the predictor corrector scheme with projection
is best found in the “literate” source code http://basilisk.fr/src/navier-stokes/

centered.h. In addition to these equations, f is advanced in time using the split-volume-
fraction advection scheme of Weymouth & Yue (2010). We use the semi-implicit Crank-
Nicholson scheme to compute the diffusive flux due to the viscous term in Equation (2.8).
An important aspect of the method is the resolution of the surface tension force fσ. We
use the Continuous Surface Force (CSF) well-balanced formulation fσ = σκ∇c for Eq.
2.3. where we discretize ∇c at cell faces with the same scheme employed to compute the
pressure gradient ∇p. This is useful to reduce spurious currents provided curvature is
accurately computed, as explained by Popinet (2018, 2009). The interface curvature is
computed using second-order stencils based on height functions (Popinet 2009; Bornia
et al. 2011). Equations (2.9) and (2.10) are the projection steps that will ensure continuity
for the velocity field at time step n+1. The mesh is adapted dynamically, by splitting the
grid cells to eight smaller cells whenever the estimated local discretization error exceeds
a set threshold (see Appendix B). Details of the procedure can be found on the web site
basilisk.fr, and in particular in the documented free code http://basilisk.fr/src/
examples/atomisation.c.

In addition to the aforementioned model and procedure, we implement the manifold-
death procedure as described by Chirco et al. (2022). This procedure involves two primary
steps: (1) the identification of thin liquid sheets with a thickness of hc or less, achieved
through a local integration of the characteristic function c. This integration results in
the signature of a quadratic form, based on the local main inertia moments; (2) the
creation of holes within the so identified thin sheets, using a probabilistic approach.
This procedure is applied at a given frequency, defined by the user within this method.
From a physical standpoint, this technique aligns with the weak spot model, wherein the
likelihood of hole formation is exceedingly low for h > hc and substantially increases,
rapidly approaching certainty, for h < hc. The complete manifold death code can be
accessed at http://basilisk.fr/sandbox/lchirco/signature.h. In the present case
hole punching is attempted every time interval of τm = 0.01. At these instants 200 holes
are attempted. As we show in Appendix A the characteristic time for sheet thinning is
τc given by

τc =
D

U

(
ρl
ρg

)1/2

. (2.11)

The dimensionless interval between punching attempts is τm/τ0 = 0.01 where the dimen-
sioning factor is τ0 = 3L0/U for all time values in our simulations. The dimensioning

http://basilisk.fr/src/navier-stokes/centered.h
http://basilisk.fr/src/navier-stokes/centered.h
basilisk.fr
http://basilisk.fr/src/examples/atomisation.c
http://basilisk.fr/src/examples/atomisation.c
http://basilisk.fr/sandbox/lchirco/signature.h
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Rel Weg ρ∗ µ∗ Ap ωp L0/D

5800 200 27.84 27.84 0.05 π/5 18

Table 1. The dimensionless numbers characterizing our simulation. The Reynolds number Rel
based on the liquid is rather moderate. The density and viscosity ratios are identical, which
implies that Reg = Rel.

quantities L0 and D/L0 are defined below. Then we have

τm/τc = 0.06

(
ρg
ρl

.

)1/2

(2.12)

The numerical value is τm/τc = 0.011 ensuring that punching attempts are sufficiently
frequent as not to “miss” transient thinning sheets.

Using this numerical method, we analyze the atomization of a circular jet injected
at average velocity U in a gas-filled cubical chamber of edge length L0 considering
incompressible isothermal flow. The dimensionless groups most relevant for this problem
are the gas-based Weber number, the liquid-based Reynolds number and the ratios

Weg =
ρgU

2D

σ
, Rel =

ρlUD

µl
, ρ∗ =

ρl
ρg

, µ∗ =
µl

µg
,

L0

D
, (2.13)

where ρl and ρg are the densities of liquid and gas respectively. The viscosity coefficients
are noted by µl and µg, and σ is the surface tension coefficient. All the numerical values
for time given in the paper are made dimensionless by L0/(3U) and all length values are
dimensioned by L0/3. The boundary condition on the injection plane x = 0 imposes the
no-slip condition everywhere except on the liquid section (y2 + z2 < D2/4) where the
injection velocity is:

ux(t) = U [1 +Ap sin (ωpUt/D)] . (2.14)

On the remaining cube sides, we allow free outflow: ∂nuΓ = 0 and pΓ = 0.

The dimensionless parameters of our simulation are given in Table 1. These numbers
are in the low range of the dimensionless numbers used in the above cited work. They are
much smaller than the numbers of the spray G case of the Engine Combustion Network
(see Duke et al. (2017) used by Zhang et al. (2020). The Reynolds number and density
ratio are identical to those of Ménard et al. (2007) and of the same order as those of
Herrmann (2011). On the other hand the Reynolds number is somewhat larger than
that of Shinjo & Umemura (2010) while the gas Weber number Weg is smaller than
that of all the other papers in the literature. The rationale for selecting such a small
Weber number is twofold. First the simplest prediction for the droplet size, based on the
ratio of Bernoulli pressure ρgU

2 to surface tension, is d = DWe−1
g . Indeed if a purely

inviscid flow with a velocity jump is considered, the cutoff wavelength for the Kelvin-
Helmholtz instability scales as DWe−1

g . The wavelength thus obtained is a natural scale
for the subsequent formation of sheets and ligaments. The number of grid points in the
diameter of a droplet of this diameter d is then We−1

∆ where

Wel = ρgU
2l/σ (2.15)
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Level ℓ D/∆ We∆ Oh∆

11 114 1.75 0.137
15 1820 0.11 0.55

Table 2. Characteristic numbers related to the grid size. The level ℓ is defined in Eq. (2.7).

MD level m D/hc Wehc Ohhc

12 227 0.88 0.194
13 455 0.44 0.27

Table 3. Characteristic numbers based on the critical sheet thickness in our simulations. The
manifold-death level m is defined in the text.

is the Weber number based on length scale l and ∆ is the grid size. Similarly

Ohl = µl(σρll)
−1/2

is the Ohnesorge number based on scale l. The values of We∆ for two of the grids we
use are given in Table 2. We also give the value of the Ohnesorge numbers Oh∆ and
Ohhc

which characterize the interplay of viscous and surface tension effects. In particular
they typify the regime of the Taylor-Culick rims (Song & Tryggvason 1999; Savva &
Bush 2009) occurring at the edge of a sheet of thickness ∆ or hc. The Oh number of
the thin sheets at the moment of hole formation is relatively large, implying a viscous
Taylor-Culick flow and the absence of unsteady fragmentation as in Wang & Bourouiba
(2018) and Kant et al. (2023).
The second important consequence of selecting the relatively small value Weg = 200

is that it makes the simulation sit on the boundary between membrane type and fiber
type defined in Lasheras & Hopfinger (2000). Membrane-type in that later paper refers
to the formation of bags and sheets. Thus the prevalence of thin sheets discussed in this
paper may be less marked at higher Weber numbers, the sheets being replaced by fibers,
and also less important at smaller Weber numbers where the flow may be less unstable.

3. Results

3.1. Uncontrolled perforation: numerical sheet breakup

Figure 3 shows a global view of the jet evolution (see also Movie1, Movie2,
Movie3, Movie4, Movie5 and Supplementary Material. (for the prepublication, see
https://zenodo.org/doi/10.5281/zenodo.11110044 ). The dynamics is initialized
with a slightly penetrated jet at t = 0. At t = 0.1, a mushroom-like structure starts
rolling up. The annular structure stretches and extends in the form of a “corona flap”
that develops behind the mushroom head. A rim forms at the edge of this flap then
detaches. It is visible at t = 0.2 as a corrugated and partially fragmented annular

https://zenodo.org/doi/10.5281/zenodo.11110044
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ligament. As the jet evolves pulsation results in a periodic series of corona flaps seen at
t = 0.8. These flaps interact with the ligaments coming from the mushroom head. At
t = 2, the jet has evolved further and we can identify an interval in the core structure
where the effect of pulsation is lost. Several mechanisms of droplet formation like sheet
rupture, ligament breakup and their interactions with the jet core and corona flaps are
seen. At t = 3, the jet is fully developed and we see long axial ligaments with a marked
velocity gradient made visible by the color change along the axis, circular ligaments,
corona fingers merging and sheet rupture. A large number of droplets and ligaments are
produced in the mushroom tip region. Most of the phenomena illustrated above are also
observed with controlled perforation, except the initiation of sheet rupture and annular
ligament detachment.
Figure 4 shows a contrasting view of the jet with the camera direction aligned with

the jet axis and the view positioned at the inlet. In Figure 4a the objects are colored
by curvature, so small droplets are red and small bubbles, with negative curvature, are
blue. The bubbles have been trapped in the bulk or core of the jet or inside other liquid
masses. The likely mechanism for the formation of a bubble is liquid mass collision, for
example droplet impact on the jet core. Many such droplet or ligament impacts are seen
in Movie1. The surprising aspect of the detection is the relatively large number of droplets
seen. In Figure 4b the objects are colored by axial velocity, as with Movie1 and Movie3.
An interesting aspect of this view is to show the large dispersion in the axial velocities
of the droplets.
We now discuss the statistical properties of the jet, in particular the droplet-size

distribution in the case of uncontrolled sheet perforation or “no manifold death” case
(no-MD case). As the jet advances, the droplet-size distribution evolves. This is shown
in Figure 5. One can see that the droplet-size distribution has started to converge at
t = 1.8 and is approximately converged at t = 2.8. The histogram thus only shifts in
the vertical direction (the number of droplets), while maintaining the same qualitative
nature. This histogram is bimodal with two peaks or local maxima. There is a large-
amplitude peak corresponding to a smaller droplet size (referred to as peak 1) and a
smaller-amplitude one corresponding to the larger droplet size (referred to as peak 2).
We investigate the statistical convergence of the droplet size distribution by plotting
in Figure 6 the histogram at t = 3.5 when the jet is fully developed. We plot various
grid resolutions or levels on that same Figure. The highest resolution in the no-MD case
corresponds to the ∆14 line. This implies D/∆ = 920 grid points per initial diameter.
Figure 6 has two important characteristics: (i) the histograms at various resolutions are
qualitatively similar, that is bimodal with a major peak 1 at small scales and a minor
peak 2 at large scales, and (ii) despite such high resolution, it is clear that there is no
convergence for the droplet size distribution. However the tail region of the distribution,
to the right of peak 2 shows some degree of convergence. In that tail region a Pareto
distribution n(d) ∼ d−3 is seen reminiscent of such distributions found in other contexts
(Balachandar et al. 2020; Pairetti et al. 2021) .
The dependence of the two peaks with the grid size is shown explicitly in Figure 7b

where we plot the ratios di/∆ℓ corresponding to the peaks as a function of the maximum
level ℓ. We observe that the ratio for peak 1, d1/∆ℓ remains constant around a value of
3, while for peak 2, d2/∆ℓ weakly increases with ℓ. The grid dependence of these two
peaks is synonymous with the absence of statistical convergence. We will discuss possible
explanations for the behavior of these two peaks below, and in particular the relation
between peak 1 and the curvature ripples appearing just before sheet rupture. Since
this behavior is maintained at all resolutions, the constant scaling of the diameter d1 of
peak 1 with the grid size implies that no matter how much we refine the grid, since the
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Figure 3. The advancing pulsed jet at various time instants t and level ℓ = 14. The fluid
interface is colored by the axial velocity and the background is colored by the vorticity. The
background also shows the mesh refinement. (a) The pulsed jet develops a mushroom head and
a rim. In (b) the rim detaches. (c) Development of flaps coming from the sinusoidal pulsation.
(d) Jet entering in a regime where effect of pulsation is lost at the mushroom head. (e) A fully
developed jet and a rich spectrum of droplets and ligaments. Since Reg is rather low at 5800
there is relatively little vorticity away from the interface unlike in the case of Kant et al. (2023).

droplet diameter is scaling with the grid size ∼ 3∆, the distribution of droplet sizes is
grid-dependent.
The mechanism leading to peak 1 is related to the perforation of thin sheets. This

perforation is observed to occur in two contrasted ways. A simple mechanism is the impact
of small droplets on the liquid sheet. The droplets are formed by breakup previously
occurring elsewhere in the simulation. The impacts yield in some cases the formation of
an expanding hole, as shown on Figure 8. We note that such impacts have already been
observed in previous studies such as those of Ménard et al. (2007) and Shinjo & Umemura
(2010). Not all droplet impacts create perforations. In Figure 8, at time t = 2.94, we track
the droplets indicated by arrows. We see that droplet impacts often create holes with a
characteristic finger-like ligament inside the hole. Impacts are shown by arrows at time
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Figure 4. View from the inlet at time t = 3.04 showing the inner region of the central core liquid
jet. Left image is colored by the curvature showing the encapsulation of gas bubbles identified
by the negative curvature (blue) in the liquid core encircled in the black circle. The droplets
have positive curvature (red). The entrained bubbles travel with the core jet velocity and could
also result in the formation of a few compound droplets during atomisation or provide a physical
breakup mechanism for thin sheets. The right image is the same as left one but colored by the
axial velocity. The simulation corresponds to level ℓ = 14 with manifold death method applied
at level m = 13.

(b)(a)

t

Figure 5. (a) The droplet-size number distribution and (b) the probability density function of
the droplet diameter at various time instants. The plot shows that the PDF has converged in
time t ∼ 2.5. This time convergence determines the choice of of the end time of the simulation at
t = 3.5. Both (a) and (b) have 200 bins. The simulation corresponds to level 14 and the vertical
dashed line represents the grid size.

t = 3.10 in Figure 8. In the lower panel at t = 3.12 and t = 3.14 some droplet impacts
do not result in holes but that instead droplets merge with the sheet. This hypothesis
was confirmed by repeated observations of the sheets at various angles and by visioning
Movie4 and Movie5. The red arrow from t = 3.14 and t = 3.16 captures an interesting
moment, where the droplet impact and sheet rupture happen simultaneously and it is
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Figure 6. (a) The droplet-size distribution and (b) the probability density function of the
droplet diameter d at the final time t = 3.5 for various grid resolutions. The grid sizes are shown
with vertical dashed lines and ∆ℓ is defined as in (2.7). The inset in (a) shows the converged
tail region. All the plots are done with 200 bins.
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Figure 7. (a) Schematic of the bimodal droplet size distribution. The arrows indicate the
logarithmic distance from the grid size log di/∆ = log di − log∆ . (b) The values of di/∆ as a
function of the maximum grid refinement level ℓ for the distribution of Figure 6. The dashed
line is at 3∆ implying the droplets at peak 1 have a grid dependent diameter of d1 ∼ 3∆.

unclear if the hole was created by the numerical rupture process discussed below or by
droplet impact.
Another mode of thin sheet perforation, much more complex and purely numerical,

is illustrated on Figure 9 as well as Movie4 and Movie5. The curvature coloring of the
interface helps us identify the perforation spots. We see high frequency oscillations of
the curvature field in form of alternating red and blue colors. These indicate the ripples
originating at the fluid interface before the sheet rupture happens. Finally, at t = 2.82,
we see a dense network of small-diameter ligaments, scaling with grid size. Another
mechanism that may contribute to peaks 1 and 2 is the rupture of ligaments, also shown
on Figure 9. Small diameter ligaments have large curvature and are thus easily identified
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Figure 8. Droplet impacts on the frontal liquid sheet. The points of interest are indicated by
the arrows. Droplet impacts can result in holes with characteristic ligaments as seen at t = 3.10.
In some cases droplets coalesce into the sheet seen at t = 3.12 and t = 3.14. At t = 3.16,
the sheet is ruptured but the droplet is still identifiable. All simulations are for maximum level
ℓ = 13. The manifold death method is not applied. The interface is colored by axial velocity.
The artefacts or corrugated surfaces particularly visible at t=3.02 and t=3.10 at the top right
are not aliasing artefacts (due to an approximate isosurface interpolation) but are representative
of the curvature oscillations seen in the next figures.

by their color. They break physically and not numerically by the Rayleigh-Plateau
instability. The origin of these ligaments themselves if often an expanding hole whose
rim collides into other rims. To investigate the small-scale ligament networks, we zoom
around such a breakup event in Figure 10. We see that a weak spot develops and curvature
ripples appear at t = 2.78 as soon as the sheet reaches a thickness a few times the cell size
as shown in the inset. These curvature ripples then give rise to ligament networks inside
the expanded hole eventually leading to the grid-dependent droplets. To summarise, as
the sheet reaches a thickness of order 3∆, the rupture chronology is as follows: thin sheet
regions > curvature ripples > ligament networks > tiny droplets (d ∼ 3∆). Since this
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Figure 9. Appearance and evolution of the curvature ripples on the interface. The interface is
colored by the interface curvature. These ligaments are colored a darker red and the interfaces
on the thin sheets are closer to white. Ligament rupture is encircled in blue. The rupture or
ligament pinch off appears in a darker red color. Sheet rupture, encircled in green, displays
curvature ripples in the form of red-blue oscillations. At time t = 2.82, the green-circled rupture
region displays a grid-dependent ligament network that has evolved from these ripples. These
images correspond to a level ℓ = 14 simulation. (See also Movie4 and Movie5.)

sequence of events is inherent to the numerical breakup of thin sheets, it is impossible to
escape its occurrence by increasing the grid refinement, although refinement can delay it.
The numerical sheet breakup identified here is the direct cause of the lack of convergence
of peak 1. Indirectly, the formation of droplets and ligaments of a given size in a non-
converged manner leads to all the droplet size counts to be unconverged as these other
size droplets are formed through coalescence and breakup events from the peak 1 droplets
and similarly scaled ligaments.

3.2. Controlled perforation by the manifold death method

We now present the results of atomization when we apply the manifold death method.
Here we adopt the following conventions.

(i) The octree maximum refinement level ℓ defines finest grid size as given in Equation
(2.7).
(ii) The manifold death level m implies that the critical thickness for punching holes

is given by hc = 3∆m.
As an example, the notation (ℓ,m) = (13, 12) would mean that the finest cell size in
the simulation is ∆13 and the critical thickness at which holes are being punched is
hc = 3∆12 = 3 × (2∆13) = 6∆13. This convention for the definition of the “manifold
death level m” maintains consistency with the comments in the code http://basilisk.
fr/sandbox/lchirco/signature.h. The extent of the integrated region in the quadratic
form computation leads to the correspondence hc = 3∆m.
The overall evolution of the jet shows important variations with the no-MD case.

Comparing Figure 11 to Figure 10 i) the mist of very small droplets near the mushroom
head has disappeared ii) the mushroom-head corona-flap sheet is more affected by holes
and breakups and iii) the dark blue droplets at mid-length are of smaller size in the MD

http://basilisk.fr/sandbox/lchirco/signature.h
http://basilisk.fr/sandbox/lchirco/signature.h
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Figure 10. The fully-developed jet at t = 2.8. The inset shows a zoom-in at the sheet rupture
spot showing the curvature ripples in the weak spot about to be punctured and the resulting
ligament network. This ligament network eventually produces grid-dependent droplets. The
simulation shown here is at level ℓ = 14.

case of the current figure. This last fact can also be seen in Figure 13 where one can see
that the peak of droplets near log10 d = −2 for the no-MD case (black curve) has been
shifted to smaller droplets in the MD case (red curve).

Figure 12 shows the evolution of the probability density function of the droplet size
distribution with time. Similar to the no-MD plots, we see that here also the statistics
are converged in time as soon as t = 2.5 . When compared to Figure 6, we see that
the peak corresponding to the smaller droplet size has a smaller amplitude. At this
point in the exposition it may be useful to recall the connection between the number
distribution and the probability density function (PDF). We consider a fixed instant of
time t0. We partition the interval of droplet sizes (0, dM ) into a discrete set of M intervals
[di, di+1 = di+δi). The index i varies from 0 to im. The number of droplets with diameter
in the interval [di, di + δi) is nd,iδi. The probability density function p(d) is proportional
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Figure 11. The jet at t = 3.1 at level ℓ = 14 with Manifold Death (MD) applied. The MD level
is 13. Comparing with the no-MD Figure 10 several qualitative changes are seen. An important
one is that the tick blue droplets (blue means negative axial velocity) are definitely smaller in
this MD case. The insets and the boxes indicate droplets that are near the maximum size of the
distribution in the converged region.

to the expected value ⟨nd,i⟩ as follows

p(di) =
1

N
⟨nd,i⟩,

where the normalising factor is

N =

M∑
i=0

⟨nd,i⟩δi.

We are plotting the number frequency of droplet counts nd(d, t) = ⟨nd,i⟩ instead of
the PDF p(d, t). The pulsed jet process is both deterministic and transient, so the
value of nd,i obtained at t = t0 in a simulation is well defined. The expected value
⟨nd,i⟩ differs very little from the numerically obtained value nd,i . Moreover in such
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(b)(a)
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Figure 12. The probability density function at various times t for the droplet size distribution
when manifold death is applied. The PDF has converged in time at t = 2.5. (a) PDF at maximum
level ℓ = 13 and MD level m = 12 and (b) the PDF at maximum level ℓ = 14 and MD level
m = 12. The critical hole punching thickness hc = 3∆m=12 is shown as the black dashed line
and is the same for both plots.

a deterministic process no difference is expected between two realizations, that is two
identical simulations should yield identical droplet counts. On the other hand in a jet
with a random upstream injection condition instead of a pulsed injection condition, the
simulation is not deterministic and the value of nd,i obtained in a simulation at some
time t is fluctuating. The transient nature of the jet is also important. In a steady
state simulation (which should be obtained some time after the jet starts flowing out of
the simulation domain) initial perturbations are amplified chaotically and the system is
again probabilistic. Thus our pulsating initial condition simplifies somewhat the analysis
by yielding a deterministic instead of a probabilistic number density.

We show the number density n(d) in Figure 13. Figure 13a shows the histograms at
various grid resolutions for a fixed manifold death threshold hc = 3∆12. The distribution
is again bimodal, but the peak corresponding to the smaller droplets is weaker. We
also observe a clear converged region in the interval [dc, dim+1). where dc is the minimum
converged equivalent droplet diameter or “converged diameter” for simplicity. The extent
of the converged region increases, that is dc decreases as the grid size ∆l decreases. In
Figure 13a the vertical line marks dc for two consecutive grid sizes. We have shaded the
onset of the non-converged region between two consecutive grid refinements for clarity.
In practice the “converged diameter” dc is determined from the comparison of a pair of

distributions from simulations of two different grid sizes∆l . We note this pair {∆l1−∆l2}.
In Figure 13a the orange vertical line marks dc for the pair {∆14 −∆13}. Similarly, the
purple vertical line marks dc for the pair {∆15 − ∆14}. Some additional information
may be obtained by investigating a no-MD case. In such a case, there is a typical sheet
thickness at breakup he that is comparable to the controlled breakup for hc ≃ he. Indeed
the critical breakup film thickness he for no-MD is he ≃ 1.5∆, Then the above case
hc = 3∆12 with manifold death has a critical sheet thickness equal to, per expression
(2.7) to he = 1.5∆11 in the no-MD case at level 11. Thus the no-MD simulation at ℓ = 11
is a rough equivalent to the three simulations with MD level m = 12. The vertical black
line is the converged thickness dc for the pair {∆13, ∆11} where the first simulation is MD
and the second is no-MD. One sees on Figure 13a that the converged diameters, indicated
by the solid vertical lines decrease and tend to approach the critical sheet thickness hc
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Figure 13. The droplet size distribution at various resolutions with the manifold death method
applied. The curves with legend ∆ℓ − ∆MD=m imply that basilisk level is ℓ and the MD level
is m. The dashed black vertical line represents hc = 3∆m, that is the critical thickness of
punching holes. The solid vertical lines correspond to the values of the converged diameter dc
. This diameter marks the smallest diameter above which the number distribution is converged
(see the main text). All curves in (a) have fixed hc = 3∆12 and all curves in (b) have fixed
hc = 3∆13. Note that the ∆11 curve in (a) and the ∆12 curve in (b) indicate the no-MD method
and roughly correspond to respectively hc = 3∆MD=12 and hc = 3∆MD=13 due to implicit VOF
breakup. The shading is done to emphasize the departure from the converged region. We see
that dc approaches hc as the grid size is reduced. The inset shows the important change in the
typical sizes of droplets in the first peak above hc as MD is applied. Peak A corresponds to peak
2 in the no-MD distributions of Figure 6 while peak B, with much smaller droplets, to droplets
seen in the MD Figure 11.

for MD breakup, represented by the dashed vertical line. We now show the droplet size
distribution and converged region for a smaller critical sheet thickness hc = 3∆13. In
Figure 13b we see similar results but with only two instead of three levels l = 14 and
15. Since a simulation at ∆15 is already quite expensive (it implies an equivalent of 35
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Figure 14. (a) Schematic of the comparison of two simulations and how it allows to define the
“converged diameter” dc. It is seen that dc approaches hc as the simulations are refined. (b)
Plot of dc/hc versus hc corresponding to the dc values of Figure 13. Along a fixed hc, the dc/hc

points move closer to unity as the maximum level is increased. The black squares corresponds
to the No MD case while all circles are for the cases with MD.

trillion cells for a uniform grid with ∆15), we did not perform a third simulation at l = 16
in that case. A zoomed-in view for the converged region dc for each consecutive pair is
shown in Appendix E.
The variation of the converged diameter dc as a function of hc and∆ℓ is shown explicitly

in Figure 14. Figure 14a illustrates schematically how the converged diameter approaches
hc as ∆ℓ is reduced. Figure 14b shows the data in the dc/hc, hc plane. Each data point
in that plane corresponds to a simulation pair discussed above such as {∆14−∆13}, and
to a vertical line in Figure 13. Following a vertical line in Figure 14b, one can see dc
tending to hc as the grid is refined for a fixed hc.

Figure 15 shows a zoom-in at a hole expansion that was initiated by the manifold
death method. The phase modification region is a cube but in less than 5-10 timesteps
the hole takes a rounded shape due to surface tension and starts expanding. When these
holes expand, we do not see the noisy curvature ripples that resulted in grid-dependent
droplets in the no-MD simulation of Figure 10. This qualitative improvement in sheet
collapse helps to obtain grid convergence.

The manifold death procedure we use is tuned to a relatively large frequency of hole
formation. This results in features such as those shown in Figure 16. We see that once
we detect a thin sheet and the MD process generates holes, these expand. However,
it often happens that before the holes have expanded over the entire sheet more holes
are punched just outside the rim. These kind of holes are identified in black circles in
Figure 16. Experimental photographs and the reasoning in Appendix A point to a smaller
number of holes. This smaller number could be achieved by an improved MD algorithm
that would involve a more realistic model of the physical process of hole formation.

The final result of our manifold-death-enhanced study of droplet sizes is summarized
on Figure 17. In this Figure we select two distributions of droplet sizes at two MD levels,
m = 12 and m = 13 and we keep the ratio of the grid size to the MD threshold hc/∆ℓ

constant so the level difference is always ℓ − m = 2. The two obtained distributions
are similar to each other, with a sudden increase in droplet number at the edge of the
converged region.
Moreover, these plots show that a sufficiently thin grid produces a bump-shaped
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Figure 15. Sheet perforation when the manifold death method is applied. Unlike Figure 10, the
holes do not contain large regions containing curvature ripples. Holes are punched at t = 3.01
and expand with time as shown. The interface in the left part is colored by curvature and on the
right is colored by the axial velocity. The simulation shown here corresponds to (ℓ,m) = (14, 13)

Figure 16. Further evolution of the holes of Figure 15 . The image is colored by axial velocity.
We see that near the rims of the main expanding holes, additional holes are punched, encircled
in black. (Manifold death is applied.)

distribution with a clear maximum (this is the case at m = 13 but not at m = 12).
This maximum is located at dmax/D = 4.3 10−2 in our case. It is interesting to try to
understand the origin of this bump. By dimensional analysis the maximum should be
expressed as

dmax = Df(hc/D,N1, · · · , Nn). (3.1)

where Ni are the dimensionless numbers of the problem other than hc/D. It is quite
tempting to assume that in some range of hc/D and of the dimensionless numbers a
proportionality relation holds. From the existing data it would be

dmax = 4.3hc. (3.2)
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Figure 17. Two distributions of droplet sizes at two MD levels, m = 12 and m = 13, with
the same ratio of the grid size to the MD threshold hc/∆ℓ. We only plot the converged region,
that is d > dc(hc). The most refined simulation (l,m) = (15, 13) yields a distribution somewhat
but not exactly similar to the less refined. Both distributions show a sudden increase in droplet
number (a “ridge”) as the droplet size is decreased at the edge of the converged region. The
vertical line shows the limit of convergence dc. The left plot shows the un-rescaled number
distribution, while the right plot shows the PDFs. The right plot is clipped to show the PDFs
p(d) for d > dc(m = 12), where dc is the edge of the converged region for m = 12.

We finally note that this is to our knowledge the only example of a converged bump-
shaped (unimodal) distribution in simulations of jet atomization at large Weber number.

4. Conclusions

We have studied an atomizing, pulsed round jet at a succession of grid sizes with
unprecedented resolution. Visual inspection of the resulting interface topology reveals a
new numerical phenomenon preceding hole formation in the VOF method: high frequency
curvature oscillations followed by the appearance of a small-scale network of ligaments.
The inspection of droplet size frequency distributions reveals the presence of two large
peaks tied to the grid size. It is clear that the small-d peak and probably the second
one are related to the unphysical breakup. Although convergence of the distribution of
droplet sizes is not achieved in the whole range, a partial convergence is observed at large
scales. We thus recover the convergence properties observed in another context by Chirco
et al. (2022) and by Tang et al. (2023).
To mitigate this effect we apply the manifold-death procedure of Chirco et al. (2022).

The procedure forces hole formation when sheets reach a set thickness hc. Number
frequency plots show convergence in a range of droplet sizes starting at a critical diameter
dc. The extent of this converged range increases when either the grid size∆ℓ or the critical
thickness hc are decreased. For a fixed hc, when we reduce ∆ℓ, the converged diameter dc
approaches the critical thickness hc. We thus recover the convergence properties observed
by Chirco et al. (2022) and by Tang et al. (2023). We characterize them in the hc-dc plot
of Figure 14b. We note that the statistical accuracy is much stronger in the present
case since our pulsed jet produces three orders of magnitude more droplets than the
phase inversion case of Chirco et al. (2022). We do not have a definite explanation for
the lack of convergence below the diameter hc, that is we are not sure why dc does not
decrease below hc as ∆ℓ is decreased. We can however offer several avenues for future
exploration. One is the smoothness of the manifold death procedure itself and the choice
of its parameters such as the number of holes punched or the punching frequency 1/τm.
For the first time in VOF simulations of atomization, a bump-shaped, converged droplet
size distribution is obtained. Even without convergence, bump shaped distributions are
harder to obtain in VOF simulations than in Level-Set or Diffuse-Interface simulations
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where they are common Herrmann (2010); Khanwale et al. (2022); Saurabh et al. (2023)
because these two other methods tend to“evaporate” small droplets, as shown on Figure
1. A scaling relation for the position of the bump is suggested. The bump only appears
at the highest level. Whether the proposed scaling (3.2) for the bump would persist if
yet more refined simulations are performed is an interesting open question.
Beyond the physics of hole formation and expansion, the simulations reveal a rich

spectrum of elementary phenomena that are the building blocks of atomization. These
include networks of well resolved ligaments in and around holes, ligaments detached from
the main liquid core and either aligned or at an angle with it, bubbles trapped in liquid
regions, droplets impacting on sheets etc. This rich physics is seen in increasing detail
as grid resolution is increased. For example, the sharpness and apparent realism of the
various expanding holes, with attached ligaments or networks of ligaments inside, was not
seen in previous simulations, for example in Ling et al. (2017). Moreover a large number
of each type of object or “building block” is visible at each instant of time, leading to
more significant and converged statistics.
A tantalizing question is that of the physical, as opposed to numerical, origin of the

perforations. We attempt some discussion of this issue in Appendix A. Two types of
rate processes for heterogeneous nucleation are postulated, one based on in-sheet germs
or nuclei, such as small bubbles, the other on external perturbations such as floating
droplets or particles. Our simulations do not allow to decide at present between these
two processes for hole formation. However they may in the future help understand how
to discriminate between them. Moreover, the presence of a large number of bubbles in
the jet core shown in Figure 4 shows one possible origin of the distribution of bubbles
in liquids. Interestingly, in some atomisation experiments such as the one of Grenoble
(Matas et al. 2011) the previously atomised water is recycled into the atomising liquid
sheet which is then more bubble-rich.
Unlike most of the other round jet simulations in the literature, ours is bimodal and

even trimodal after the application of manifold death. It seems that a mode emerges
from the best resolved MD simulations, indicating that the appearance of a maximum
of droplet size well in the converged region is possible only if the physics is correctly
captured down to scales much smaller than the integral scales such as the jet diameter
D.

Another important characteristic of simulations and experiments are the state of the
fluids at the inlet. The primary mixing-layer instability in our simulations is initiated
not by upstream turbulence as in most round jet simulations in the literature but by a
pulsating flow. As far as we could see by comparing the visual aspect of the fragmenting
interface as well as comparing the obtained number distributions and PDFs, we do not
see marked qualitative differences with simulations without noisy or turbulent inflow
conditions.

The perspectives opened by this work are numerous. Clearly, simulations of com-
parable quality at higher Weber number may allow investigation of the “fiber-type”
regime observed in many experiments. Currently our simulations sit on the boundary
between membrane type and fiber type. Simulations of comparable resolution should
also be performed in the planar mixing-layer case investigated experimentally by the
Grenoble group (Ben Rayana et al. 2006; Fuster et al. 2013) and numerically by Jiang
& Ling (2021). The latter authors performed very high resolution simulations with hole
formation, and interestingly obtained a bimodal distribution, but they did not apply a
controlled perforation scheme as in this paper. Simulations of secondary atomization,
that is the atomization of a droplet suddenly plunged in a high speed flow has already
been performed together with controlled perforation by Tang et al. (2023) achieving
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convergence of the PDF. The secondary atomization case is probably the most promising
for an eventual comparison of the distribution of droplet sizes obtained by simulation
with the rich experimental data reviewed and modelled for example by Jackiw & Ashgriz
(2022).
More distant perspectives, or more difficult problems remaining to solve are in our

opinion twofold. One is clearly the improvement of the manifold death procedure, to
have a better control of the number of holes punched in each thin sheet region, and
a smoother manner to “cut-out” the initial hole. Another challenging future task is
to use this type of simulation to infer, by careful matching of simulation results and
experiments, the physical roots for weak spots and sheet perforations. Given the wide
variety of mechanisms that have been advanced, this is a formidable enterprise for which
we hope this paper could provide partial guidance.
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Appendix A. A phenomenological theory for hole nucleation and
expansion

Independently of the physical mechanism for hole nucleation, and only on the basis
of a model where the nucleation probability increases as the sheet h(t) decreases it is
possible to predict the effective number of holes that will be observed. First consider
the typical size L(t) of an expanding bag. Experimental observations (Kant et al. 2023;
Opfer et al. 2014) show that bags inflate exponentially. We consider only large scale bags
governed by the large scale properties of the flow that thus inflate at a rate ω = 1/τc.
Then L(t) ∼ L0 exp(ωt) and the bag thickness decreases as h(t) ∼ h0 exp(−2ωt). Theory
and experimental observations (Villermaux & Bossa 2009; Opfer et al. 2014; Marcotte &
Zaleski 2019; Kant et al. 2023) indicate the scaling

τc =
D

U

(
ρl
ρg

)1/2

. (A 1)

Once weak spots are activated in such a bag they expand at the Taylor-Culick velocity
(Taylor 1959; Culick 1960)

VT =

(
2σ

ρlhc

)1/2

. (A 2)

If N holes are activated in a typical bag of size L, the average distance between hole
nuclei positions scales like λ = LN−1/2. This distance is covered by the expanding hole
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Figure 18. The droplet size frequency for maximum level ℓ = 13 and no manifold death at
various error thresholds for the velocity.

edges in a time τ1 = λ/VT and

τ1(N,h) = LN−1/2

(
2σ

ρlh

)−1/2

. (A 3)

We now distinguish between two extreme cases. In the first case τ1(1, hc) ≪ τc. This
means that after the first hole has formed, it will expand to the whole bag size before
the sheet has significantly thinned. Another way of expressing this is to say that the hole
expansion time is much shorter than the sheet thinning time.
In the other extreme case, the hole expansion time for a single hole is much longer

than the sheet thinning time. It is then likely that many more holes shall nucleate.
One then needs to consider the expansion time τ1(N) for a large number of holes N .
We now borrow an argument from the theory of bifurcations or instabilities in time-
varying environments. The Kibble-Zurek theory (Kibble 1976; Zurek 1985) argues that
the time scale of the environment variation is equal to the time scale of the growth of
the instability. We accordingly posit that the multi-hole expansion time τ1(N) scales like
the characteristic bag expansion time τc that is

τ1(N) = τc. (A 4)

Then from the balance of time scales (A 4) the number of holes in a bag of size L can be
obtained as

N1(hc) ∼
hcρgL

2U2

D2σ
=

hc

D
Weg. (A 5)

There is a degree of uncertainty for the ratio L/D, however L and D are both integral
scales of the turbulent flow and can be considered of the same order of magnitude.
(We disregard the possible case where eddies of smaller scale than the integral scale of
turbulence are sufficiently energetic to generate smaller scale bags.) The number of holes
per bag in this mechanism is then the ratio of two typically large numbers, D/hc and
Weg. Equation (A 5) is valid in the second extreme case when the right hand side is much
larger than unity. A very rough extrapolation between the two extreme cases is then

N(hc) ∼ Max [1, N1(hc)] . (A 6)

In most cases one expects L to be of the same order of magnitude as D which leads to
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 Before rupture 

 After rupture 

Figure 19. Thin structure detection and manifold death perforation in an example 2D case.
The cells tagged as thin structure at the MD level are filled by red color. The upper image
corresponds to the fluid structure right before perforation when a thin sheet is detected and
the lower part shows the fluid structure after perforation. Note that the images are at same
timestamp to explicitly show the perforation process. The image is done for case (ℓ,m) = (9, 8).
Adaptive mesh refinement can be seen in background.

the simplified prediction

N1(hc) = Wehc
. (A 7)

Table 2 gives some typical values for Wehc
and We∆, allowing a prediction of the expected

number of holes in the corresponding simulations.

Appendix B. Grid adaptation

As discussed in the main text, the mesh is adapted dynamically, by splitting the
parent cells whenever the local discretization error estimated by a wavelet approximation
exceeds a threshold. This threshold is set at ϵc = 0.01 for the error on the volume fraction
variable c and to ϵu = 0.1 for the error on the velocity field. To investigate the influence
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of the relatively large error level on the velocity we plot the histograms of droplet sizes
at various error thresholds in Figure 18. On that Figure it is seen that although the
total number of droplets changes significantly when ϵu decreases from 0.1 to 0.01, the
position of the relative maxima and hence the typical droplet sizes vary relatively little.
It is interesting to illustrate how grid adaptation interacts with ligament detection and
perforation in the signature and manifold death methods. The signature method (Chirco
et al. 2022) typifies the phase distribution with an index is. This index is is determined
by the signature of the quadratic form of Chirco et al. (2022). In summary, is can take
four values. The index is = −1 designates gas phase, the index is = 2 designates a liquid
phase while the index is = 0 designates an interface. The fourth value that the index
takes is is = 1 which designates a thin film region. Note that this detection is performed
at the manifold death level and is later prolonged to the maximum level. Moreover the
thin structure detection procedure acts without affecting the existing mesh refinement.
Hence the mesh refinement is controlled only by the thresholds on the volume fraction
and velocity field and in no way depends on the thin-sheet detection procedure. We
illustrate the process of controlled sheet perforation using the manifold death method in
Figure 19. We see that we have detected a thin region (red) in the upper image and a
part of this region is eventually punctured in the lower image.

Appendix C. Estimates of the mass loss due to the manifold death

In the manifold death method, we artificially punch holes in thin structures. This
results in some fluid disappearance and hence mass loss. Here we give an estimate of the
mass loss for the case (l,m) = (14, 13), that is the simulation corresponding to the red
line in Figure 13b. Figure 20a shows how the total mass behaves as a function of time. It
is a linear rise in time with a tiny sinusoidal pulsation caused by the injection condition.
Since we punch holes in these structures every t += 0.01, a tiny decrease from this linear
rise is expected every += 0.01 interval. The inset zoomed at t = 1.35 shows this decrease
in mass. The decrease is so small that it is not visible on the scale of the outer plot. To
quantify this decrease, we calculate two quantities illustrated in the schematic of Figure
20b. The ∆M is the difference in the total mass at the timestamp just before punching
a hole and the timestamp just after punching the hole. The plot as a function of time is
shown in 20c, where the ∆M values are indicated every t += 0.01. Note that as mass
is constantly being injected, this implies the number of thin structures shall increase
with time and hence the ∆M is seen increasing with an oscillating behaviour. To get a
non-dimensional estimate, we calculate the DIFF defined as

DIFF = 2M(i)−M(i− 1)−M(i+ 1)

(see also the sketch in Fig. 20b) and calculate the percentage mass loss as

Mass loss (%) =
DIFF

M [i]
× 100. (C 1)

The rationale of using DIFF over ∆M is that since we are injecting some liquid
constantly, we want to estimate how the mass differs not only from the value just before
punching holes, but from the expected value that it was supposed to have. The percentage
loss is shown in Figure 20d, where we can see an exponential decrease in time. The plots
20c and 20d, together indicate that although the total mass of thin structures is increasing
in time, the mass lost relative to the total mass is going to zero as the jet advances.
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Figure 20. Estimates of the mass loss with manifold death performed at levels (ℓ,m) = (14, 13).
(a) Total mass as a function of time. Inset shows the tiny droplet at time t = 1.35 due to artificial
punching of thin structures every t += 0.01. (b) schematic of the data points and the procedure
to estimate the mass loss. The value at i represents the mass just before punching the holes and
the value at i+1 represents the value just after punching the holes. ∆M and DIFF are used to
do mass loss estimates. (c) ∆M at every t += 0.01. (d) Mass loss in percentage calculated as
DIFF

M [i]
× 100.

Appendix D. Evolving initial mushroom: manifold death in action

Figure 21 shows the evolution of the initial mushroom jet and the first sheet rupture.
Figure 21a shows the no-MD case at ℓ = 14. We can see in the inset at t = 0.15,
numerical sheet rupture happens in the flap connecting the rolled-up mushroom rim
with the mushroom head. The inset shows how a spectrum of tiny droplets forms along
with a circular ligament rim at t = 0.17. Figure 21b shows the first sheet rupture for the
case with manifold death method applied, corresponding to (ℓ,m) =(15, 13), that the one
corresponding to the blue line in Figure 13b. One can see the sheet rupture at t = 0.11 is
much more clear now and the curvature oscillations are not present. In this case too we
see detachment of the rolled up tip in form a circular ligament at t = 0.17. Simple analysis
suggests that sheet thickness near the tip at the moment of rim formation should scale as
D/Weg (see for example Marcotte & Zaleski (2019)). The condition D/Weg ≫ ∆ is then
necessary for proper resolution of the sheet. This condition is equivalent to We∆ ≫ 1
which is verified only for ℓ = 15 and perhaps 14 according to Table 2. At lower levels, it
is clear that numerical breakup may appear soon behind the rim in no-MD simulations.
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Figure 21. Evolution of the initial mushroom and the first breakup in (a) no manifold death
and (b) with manifold death. The interface is colored by the curvature field in both cases.
Image (a) shows a detailed view of the first numerical sheet rupture for an ℓ = 14 simulation.
Image (b) corresponds to the simulation with manifold death method applied corresponding
to (ℓ,m) = (15, 13). The images shown in (b) are at time t = 0.1, 0.11, 0.12, ... , 0.17. The
detachment of a circular ligament rim is seen in both cases at t = 0.17.

Appendix E. Determination of dc for manifold death statistics

The determination of dc, that is the diameter marking the lower bound of the converged
region is done by visual inspection of the histogram showing the droplet size distribution.
Figure 22 shows a zoom-in explaining how we determine dc for each consecutive level.
Note that the black curve in the no-MD case is not overlapping in the converged region
of the various MD simulations. This is an important fact since it means that an MD
simulation is not “equivalent” to a no-MD simulation with a similar “effective” critical
thickness hc. Hence it makes more sense to compare the MD plots to each other and
treat the black no-MD curves only for the purpose of analyzing the properties of classical
non-converging simulations.

Appendix F. Forensics of the Chirco et al. (2022) study

The manifold death method appeared first in the work of Chirco et al. (2022). Here we
revisit this previous study with the droplet size distribution comparison method described
above. In Chirco et al. (2022) a region of convergence was identified at 8∆9 where ∆9

was the grid size of the coarsest simulation, also used as the manifold death level. In our
study, we have shown that the region of statistical convergence can be reached up to the
critical sheet thickness of the manifold death threshold hc, given that the mesh is refined
sufficiently. In Figure 12 of Chirco et al. (2022), the authors argue that above dc = 8∆9,
the simulations seem to converge, where the coarsest mesh had the equivalent of 5123

cells (ℓ = 9) and the finest mesh was the equivalent of 20483 cells (ℓ = 11). The case that
the authors simulated was a phase inversion case which produces a much smaller number
of droplets than our pulsed jet case does. This implies that the number frequencies are
affected by a large statistical error. Hence, the conclusions presented in Chirco et al.
(2022) are qualitative: they demonstrate the rupture of the sheet by manifold death in
a clear manner. To attempt a more quantitative analysis in line with our analysis of the
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(a)

(b)

Figure 22. A zoom-in for the converged region corresponding to Figure 13 showing how dc is
obtained. Figures (a) and (b) correspond to a zoom-in for Figure 13a and 13b respectively.

hc = 3Δ512

Δ512

512
1024
2048

Droplet diameter (m)

dc (512 − 1024)
dc (1024 − 2048)

Figure 23. Replotting Figure 12 of Chirco et al. (2022) with additional vertical lines showing
the critical thickness for manifold death sheet perforation threshold hc, along with two vertical
lines for dc. The shaded regions illustrate the departure of the measured distribution from each
other below dc
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pulsed jet, we re-plot Figure 12 of Chirco et al. (2022) in our Figure 23 . There we mark
the MD threshold hc = 3∆9 and two values of dc. We see that dc again moves towards
hc. This movement is in line with our results. Due to computational cost, Chirco et al.
(2022) stopped at the 20483 mesh and concluded that the boundary of the converged
region lies at dc ∼ 8∆9. It is likely that the converged region cCharould be pushed more
towards hc with increased resolution.
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