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Abstract

Local stresses in a tissue, a collective property, regulate cell division and apoptosis. In turn,

cell growth and division induce active stresses in the tissue. As a consequence, there is a feed-

back between cell growth and local stresses. However, how the cell dynamics depend on local

stress-dependent cell division and the feedback strength is not fully understood. Here, we probe

the consequences of stress-mediated growth and cell division on cell dynamics using agent-based

simulations of a two-dimensional growing tissue. We discover a rich dynamical behavior of individ-

ual cells, ranging from jamming (mean square displacement, ∆(t) ∼ tα with α less than unity), to

hyperdiffusion (α > 2) depending on cell division rate and the strength of the mechanical feedback.

Strikingly, ∆(t) is determined by the tissue growth law, which quantifies cell proliferation (number

of cells N(t) as a function of time). The growth law (N(t) ∼ tλ at long times) is regulated by

the critical pressure that controls the strength of the mechanical feedback and the ratio between

cell division-apoptosis rates. We show that λ ∼ α, which implies that higher growth rate leads to

a greater degree of cell migration. The variations in cell motility are linked to the emergence of

highly persistent forces extending over several cell cycle times. Our predictions are testable using

cell-tracking imaging techniques.
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I. INTRODUCTION

Cell growth, proliferation, and apoptosis are ubiquitous in biology, and play a crucial role

in embryogenesis, tumorigenesis, and wound healing [1, 2]. The breakdown of strict control

between cell division and apoptosis rates could lead to fatal diseases like cancer [3]. In

cancer metastasis, the cells develop migratory phenotype and invade the surrounding tissues

and organs [4]. Therefore, to understand the role of cell division and apoptosis numerous

experiments have been performed both in two and three dimensions, which provide the time

traces of cells [5–8]. The cell trajectories could be used to calculate dynamical properties of

cells [9] that may be quantitatively compared with experiments [10].

An interplay between cell division, apoptosis, and biomechanical feedback determines

cell proliferation and the associated dynamics in an evolving tissue. For instance, a grow-

ing tissue exhibits a morphological transition, characterized by contrasting collective cell

dynamics in the pre-and post-transition phases [5]. Cells in the pre-transition phase ex-

hibit fluid-like behavior whereas those in the post-transition phase are more solid-like [5].

The morphological transition, resulting in the contrasting dynamics, was attributed to the

microenvironment-dependent growth and proliferation of cells [5, 11]. The growth of cells

in tissue depends on the local stresses, which in turn depend on the local growth rate. In

other words, there is a feedback between local stress and cell growth, as was pointed out in a

prescient study nearly two decades ago [11]. In addition to fluid and solid-like behavior, the

dynamics could also show glassy behavior in confluent [12] and non-confluent tissues [13].

How the mechanical feedback and cell division affects the observed dramatic variations in

collective cell dynamics as the tissue grows is largely unknown.

Previous studies that considered cell growth and division on the cell collective dynamics
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assumed that the birth rate of cells depends on its coordination number [14]. However,

recent experiments report that mere contact between cells may not be sufficient for inhibiting

mitosis in cells [5]. Here, using an agent-based model introduced previously [13, 15–18] in

which the growth of a cell depends on the local pressure, we establish that the dynamics

of cells is linked to the tissue growth law. We show that tissue growth is controlled by

two parameters-(a) the critical pressure (pc) and (b) the birth rate of cells (kb), which are

intrinsic properties of individual cells. The pc value determines the mechanical feedback

strength [19].

The central results of this work are: (a) Depending on the values of pc and kb, cells exhibit

subdiffusive (the mean-squared displacement, ∆(t) ∝ tα, α ≤ 1), superdiffusive (1 < α ≤ 2)

or even hyperdiffusive (α > 2) dynamics. On increasing the value of pc, the cells transition

from sub-diffusive to hyperdiffusive dynamics. Surprisingly, on decreasing kb, the cells switch

from sub to super-diffusive or super to hyper-diffusive dynamics. (b) The tissue growth law

exhibits a power increase in time (t), N(t) ∝ tλ, where N is the number of cells. Strikingly,

the global growth law is a predictor of the single-cell dynamics. As λ increases, so does α

with α ∼ λ. (c) The emergence of persistent forces due to cell division that extends over

several cell cycle times is the principal reason for the anomalous (super or hyper-diffusive)

cell dynamics. Our work provides a unifying framework for understanding origins of differing

dynamical regimes (sub-diffusive [12], diffusive [14] and super-diffusive [13]) in the collective

movement of cells driven by mechanical feedback arising from apoptosis and division.

II. METHODS

We briefly explain the off-lattice agent-based computational model used to simulate the

spatio-temporal dynamics of a two-dimensional (2D) growing tissue. The computational
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model is adopted from previous studies [9, 13, 15–18, 20, 21]. The cells are represented as

interacting deformable disks with radius depending on local rules, which assume that cells

grow stochastically, and divide upon reaching a critical mitotic size (Rm). The interaction

between cells is the sum of elastic and adhesive forces. We also assume that the cells are

moving in an overdamped environment in which the inertia is negligible and viscous forces

are large compared to environmental fluctuations.

Forces: The elastic (repulsive) force between two disks of radii Ri and Rj is modeled as,

F el
ij (t) =

h
3/2
ij (t)

3
4
(
1−ν2i
Ei

+
1−ν2j
Ej

)
√

1
Ri(t)

+ 1
Rj(t)

, (1)

where Ei and νi, respectively, are the elastic modulus and Poisson ratio of cell i. The overlap

between the disks, if they interpenetrate without deformation, is hij, which is defined as

max[0, Ri +Rj − |r⃗i − r⃗j|] with |r⃗i − r⃗j| being the center-to-center distance between the two

disks.

Cell adhesion, mediated by receptors on the cell surface, enables the cells to stick together.

For simplicity, we assume that the receptor and ligand molecules are evenly distributed on

the cell surface. Consequently, the magnitude of the attractive adhesive force, F ad
ij , between

two cells i and j scale as a function of their contact line segment, Lij. Keeping the 3D model

as a guide [13], we calculate F ad
ij using,

F ad
ij = Lijf

ad1

2
(creci cligj + crecj cligi ), (2)

where the creci (cligi ) is the receptor (ligand) concentration (assumed to be normalized to the

maximum receptor or ligand concentration so that 0 ≤ creci , cligi ≤ 1). The coupling constant

fad allows us to rescale the adhesion force to account for the variabilities in the maximum

densities of the receptor and ligand concentrations. We calculate the contact length, Lij,

using the length of contact between two intersecting circles, Lij =

√
(|4r2ijR2

i−(r2ij−R2
j+R2

i )
2|)

rij
.
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Here, rij is the distance between cells i and j. As before, Ri and Rj denote the radius of cell

i and j. In the present case, the strength of repulsive interactions is very large compared to

attractive forces which can be seen in Figure 1a.

The the sum of the repulsive and adhesive forces in Eqs.(1) and (2) point along the unit

vector nij from the center of cell j to the center of cell i. The total force on the ith cell is

given by the sum over its nearest neighbors (NN(i)),

Fi = ΣjϵNN(i)(F
el
ij − F ad

ij )nij. (3)

The nearest neighbors satisfy the condition Ri +Rj − |ri − rj| > 0.

Equation of Motion: We used overdamped dynamics of the motion of the ith cell. The

equation of motion is,

ṙi =
Fi

γi
. (4)

Here, γi is the friction coefficient of the ith cell. We assume γi to be equal to cRi(t), where

c is a constant. Note, we neglect temperature effects because the drag forces are high [14]

compared to environmental fluctuations.

Cell growth, division, and apoptosis: In the model, cells are either dormant (D) or in the

growth (G) phase depending on the magnitude of the local pressure of the cell (see Figure

1b for a schematic). Using Irving-Kirkwood’s definition, we calculate the pressure (pi) on

the ith cell due to contact with its neighbors [22] using,

pi =
1

2
ΣjϵNN(i)

Fij · drij
Ai

, (5)

where Ai is local area of influence, equal to θπR2
i . We used θ = 1.5, in our simulations.

If the local pressure on the ith cell, pi, exceeds a critical value (pc) the cell ceases to grow

and enters the dormant phase. Note that the cell can switch to the growth phase if pi
pc

< 1

at a later time. The critical pressure, pc, serves as a mechanical feedback [11]. The local
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pressure, pi, can easily exceed pc if it is small. In this case, most cells would be dormant

for a long time. In the opposite limit, pc ≫ pi, it is unlikely that the cells would reach

the dormant phase. This would result in cell proliferation. Thus, pc is the strength of the

mechanical feedback. A previous study used pc to control cell growth in confined spaces in a

different context [19]. It was shown there is a growth-driven jamming transition, controlled

by the strength (∝ 1
pc
) of the mechanical feedback. They did not consider cell dynamics,

which is the focus of our investigation.

For growing cells, we assume that the area increases at a constant rate rA as the cell

cycle progresses. The cell radius is updated from a Gaussian distribution with the mean

rate Ṙ = (2πR)−1rA. Over the cell cycle time τ , rA is taken to be,

rA =
π(Rm)

2

2τ
, (6)

where Rm is the mitotic radius. The cell cycle time is related to the growth rate (kb) by

τ = ln 2
kb

. A cell divides once it grows to the fixed mitotic radius (Rm). To ensure the total

area of a cell is conserved upon cell division, we use Rd = Rm2
−1/2 as the radius of the

daughter cells. The mother and daughter cells are placed at a center-to-center distance,

d = 2Rm(1 − 2−1/2) upon cell division. The direction of the new cell location is chosen

randomly from a uniform distribution on the unit circle. One source of stochasticity in the

cell movement is the random choice for the mitotic direction. The cells can also undergo

apoptosis at rate ka. In all the simulations, we vary kb but the apoptosis rate (ka) is fixed

to 10−6s−1. The values of the parameters used in the simulations are given in Table 1.

We initiated the simulations by placing 100 cells on a 2D plane whose coordinates are

chosen from a normal distribution with zero mean, and standard deviation 25 µm. All the

parameters except pc and kb are fixed. All the simulations are terminated when the scaled

time t∗ = (kb − ka)t ∼ 3.74. A representative snapshot of the growing tissue is shown in
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Figure 1c.

Table I: The parameters used in the simulations.

Parameters Values References

Timestep (∆t) 10s This paper

Critical Radius for Division (Rm) 5 µm [13, 16]

Friction coefficient ( γi
Ri
) 0.0942 kg/(µm s) This paper

Cell Cycle Time (τmin) 54000 s [13, 23–25]

Adhesive Coefficient (fad) 10−4µN/µm This paper

Mean Cell Elastic Modulus (Ei) 10−3MPa [13, 26]

Mean Cell Poisson Ratio (νi) 0.5 [13, 16]

Death Rate (ka) 10−6s−1 [13]

Mean Receptor Concentration (crec) 1.0 (Normalized) [13]

Mean Ligand Concentration (clig) 1.0 (Normalized) [13]

III. RESULTS

A. Increasing pc with kb
ka

fixed enhances cell motility

Local stress regulates cell division propensity, and hence, should influence the cell dy-

namics in a growing tissue. To assess the effect of feedback on cell dynamics, we varied pc,

strength of the feedback. The dynamics are probed using the mean squared displacement

(∆(t)),

∆(t) =
1

N

i=N∑
i=0

[ri(t)− ri(0)]
2, (7)
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where ri(t) is the position of the ith cell at time t, and N is the number of cells. We also

calculated the tissue boundary, ∆r(t), an estimate of the tissue size, using,

∆r(t) =
1

Nb(t)

Nb∑
i=1

|ri(t)−R(t)| (8)

where Nb(t) is the total number of boundary cells at time t and R(t) is the center of the

tumor at time t. These quantities can be readily measured using imaging experiments [5, 6].

Figure 2a shows the time dependence of ∆(t) for three values of pc : 10
−5Nm−1, 10−4Nm−1

and 10−3Nm−1 for a fixed kb
ka

= 20. Because the cells undergo apoptosis, we included only

the cells that were present throughout the simulations in calculating ∆(t). In the interme-

diate time limit, t < 1
kb−ka

, the dynamics is subdiffusive ( ∆(t) ∼ tδ, δ < 1) for the three pc

values. The long time ( t > 1
kb−ka

) dynamics depends on the pc. We find that ∆(t) ∼ (t∗)α

is subdiffusive (α = 0.68) for pc = 10−5Nm−1, superdiffusive (α = 1.36) for pc = 10−4Nm−1

and hyperdiffusive (α = 3) for pc = 10−3Nm−1. As the mechanical feedback strength in-

creases, which is realized by decreasing pc, the cells are jammed, resulting in slow dynamics

at small pc. Increased cell proliferation with weaker mechanical feedback (larger pc) gives

rise to superdifussive or even hyperdiffusive dynamics.

The invasion distance increases algebraically with time, ∆r(t) ∼ (t∗)ξ, (the time t∗ =

(kb − ka)t) where ξ characterizes the tissue invasion propensity. Figure 2b shows ∆r(t) for

pc equal to 10−5Nm−1, 10−4Nm−1 and 10−3Nm−1 with kb
ka

= 20. We find (Figure 2b) that

the growing tissue is maximally invasive for pc = 10−3Nm−1 similar to behavior of ∆(t). For

pc = 10−5Nm−1, ξ = 0.34, for pc = 10−4Nm−1, ξ = 0.68 and for pc = 10−3Nm−1, ξ = 1.23.

We surmise from the behavior of ∆(t) and ∆r(t) that the tissue dynamics is enhanced upon

increasing pc at a fixed value of kb
ka
. This is because the probability that the cells are in the

growth phase increases as pc increases.

8



B. Decreasing kb
ka

with pc fixed promotes cell migration

We next varied the cell division rate (kb) at a fixed ka = 10−6s−1. Figure 2c shows ∆(t)

as a function of t for kb
ka

= 20, 8 and 2 at a fixed pc = 10−4Nm−1 . Surprisingly, in the

long time ([kb − ka]t > 1) limit, slower dividing cells have higher motility. For instance,

kb
ka

= 20, the MSD exponent values (∆(t) ∼ (t∗)α at long times), are α = 1.36, for kb
ka

equal

to 8, α = 1.67 and for kb
ka

equal to 2, α = 2.90. We observed similar behavior for ∆r(t) on

decreasing kb
ka
. As before, we expressed ∆r(t) ∼ (t∗)ξ. For kb

ka
equal to 20, ξ = 0.68, for kb

ka

equal to 8, ξ = 0.85 and for kb
ka

equal to 2, ξ = 1.23.

The time dependent changes in ∆r(t) and ∆(t) shows that the degree of migration,

quantified using ξ and α, is enhanced upon decreasing kb
ka

as long as pc is fixed.

C. Growth law dictates the dynamics of cells

What is the unifying explanation for the non-trivial cell dynamics in an evolving cell

colony as pc and kb are varied? The answer lies in the growth law of the tissue. The

experimental growth law is determined by counting the number of cells as a function of

time [5]. The growth law is an emergent property that depends not only on the properties

of individual cells but also the coupling, through the mechanical feedback and adhesive

interactions.

Changing pc: We first calculated the number of cells (N) as a function of time at pc =

10−5Nm−1, 10−4Nm−1 and 10−3Nm−1 with kb
ka

= 20 (Figure 3a). We find thatN(t) increases

as, N(t) ∼ tλ. For pc = 10−5Nm−1, λ = 1, for pc = 10−4Nm−1, λ = 1.31 and for pc =

10−3Nm−1, λ = 2.78. It is clear that growth rate increases as the mechanical feedback

strength decreases (Figure 3a). To determine the origin of the enhanced growth at as pc
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increases, we calculated the average pressure, ⟨p(t)⟩ = 1
N

∑N
i=1 pi (Figure 3b). For pc = 10−5,

the average value of ⟨p(t)⟩ is higher than the critical pressure, which implies that the cells

are predominantly in the dormant phase. For pc = 10−4, ⟨p(t)⟩ exceeds pc after a few cell

cycle times, and thus the cells start entering dormancy. However, for pc = 10−3, ⟨p(t)⟩ is

always smaller than pc, which implies the majority of the cells are in the growth phase,

resulting in increased cell division, and proliferation.

Changing kb
ka
: We then calculated N(t) at the fixed value of pc = 10−4 for three values of

kb
ka

= 20, 8 and 2. Figure 3c shows N(t) as a function of kb
ka
. The growth exponents (N(t) ∼

tλ) are λ = 1.31, λ = 1.69 and λ = 2.60 for kb
ka

= 20, kb
ka

= 8, kb
ka

= 2, respectively. Strikingly,

tissue growth rate decreases as cell division rate increases, which may be understood in

terms of the dynamic changes in the average pressure, ⟨p(t)⟩, plotted in Figure 3d, as a

function of kb
ka
. Upon decreasing kb

kb
, the generation of pressure in the tissue is suppressed.

For kb
ka

= 2, the ⟨p(t)⟩ is smaller than pc for long times (exceeding the cell division time)

unlike the case for kb
ka

= 20 and 8. Therefore, multiples cell divisions occur in cells that

divide slowly compared to those that divide fast, thus resulting in greater tissue growth.

Our analyses show that for both conditions (changing pc and kb
ka
), the growth law of the

tissue determines the cell dynamics.

D. Emergence of highly correlated force

To gain mechanistic understanding of the emergent anomalous dynamics of individual

cells, we calculated the force autocorrelation function, FAF(t∗) = ⟨F(t+t∗)·F(t)⟩t
⟨F(t)·F(t)⟩t [20]. In an

overdamped system, the FAF encodes the directed nature of motion in individual cells. Here,

F(t) is the force on the cell at time t and ⟨...⟩t is the time average. Figure 4 shows the plot

of FAF for a fixed kb
ka

= 20 for pc = 10−3Nm−1, 10−4Nm−1 and 10−5Nm−1. It shows that
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the FAF decays via a two steps, characterized by short ( γ
ERm

) and long (∼ 1
kb−ka

) times. To

extract the two-time scales, we fit FAF using Ae−
t∗
τc + C in both the regimes.

At short times (see the inset of Figure 4), for pc = 10−3Nm−1, A = 0.5, τc = 1.2γ
ERm

and C = 0.42. For pc = 10−4Nm−1, A = 0.75, τc = 0.97γ
ERm

and C = −0.02. Lastly, for

pc = 10−5Nm−1, A = 0.81, τc = 0.95γ
ERm

and C = 0.1. It is clear that at short times, the

relaxation time is approximately close to the elastic time scale γ
ERm

, which is negligible

compared to 1
kb−ka

.

In the long time limit, the FAF exhibits correlations. For pc = 10−3Nm−1, A = 0.4, τc =

2.2
kb−ka

and C = −0.06. For pc = 10−4, A = 0.12, τc = 2.3
kb−ka

and C = −0.02. Lastly, for

pc = 10−5Nm−1, A = 0.04, τc =
0.2

kb−ka
and C = 0.003. For pc = 10−5Nm−1, A is negligible,

implying the absence of correlations force, which explains the observed subdiffusive dynam-

ics. The value of A for pc = 10−3Nm−1 is four times larger than for pc = 10−4Nm−1. In

addition, the FAF decays over (2-3) cell division times when the feedback strength is high.

Larger magnitude of FAF in the long time regime leads to higher degree of migration for

pc = 10−3Nm−1.

E. Diagram of states

The simulation results in Figure 3 suggest that the cell dynamics is determined by the

tissue growth law. The generality of this result follows from the following arguments. If

the overall shape of the tissue is circular in 2D (see Figure 1c), we expect the exponents α

(∆(t) ∼ tα) and λ (N(t) ∼ tλ) should have similar values with α ≈ λ. From the algebraic

growth of the tissue, it follows that N(t) ∼ tλ ∼ r2, which holds for a circular shape. From

the relation r2 ∼ ∆(t) ∼ tα, expect that α ∼ λ. In addition, the exponents ξ (∆r(t) ∼ tξ)

and λ should be related as λ ≈ 2ξ. The results in Figures 5a show that the relation is
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approximately satisfied.

Based on the findings in Figures 5a we are able to predict a diagram of states as a function

of pc and kb
kb
. Recent works probing the effect of cell division and apoptosis have reported

subdiffusive [12], diffusive [14], and superdiffusive motion [13]. However, the regime in which

these values emerge is unclear. Furthermore, time traces of cell positions maybe be recorded

using particle tracking techniques. In anticipation of such experiments, we characterized

single-cell dynamics by calculating the mean squared displacement over a broad range of pc

and kb
kb
. We extracted the α exponent in the long time limit. The value of α could be used

to determine the nature of dynamics in the time regime of interest. Figure 5b shows the

two-dimensional diagram of states. Interestingly, we observe all three regimes of motion,

subdiffusive, superdiffusive, and hyperdiffusive, by varying kb
ka

and pc.

Figure 5b reveals three interesting characteristics of cell dynamics driven by cell division

and apoptosis: (a) Upon increasing pc, thare is a transition from subdiffusive to superdiffu-

sive, and finally hyperdiffusive diffusive behavior. At a fixed kb
ka

= 20, for pc = 5×10−6Nm−1

dynamics is subdiffusive, for pc = 10−4Nm−1 cells exhibit superdiffusive motion. Upon fur-

ther increasing pc to 10−3Nm−1, hyperdiffusive dynamics is observed. (b) Surprisingly, upon

decreasing kb
ka
, α increases. For smaller (higher) pc values, on decreasing kb

ka
, the dynamics

change from subdiffusive (superdiffusive) to superdiffusive (hyperdiffusive) behavior. For

fixed pc = 10−5Nm−1, at kb
ka

= 20 ( kb
ka

= 2), we observe subdiffusion (superdiffusion). For a

higher value of pc = 10−4Nm−1, at kb
ka

= 20 ( kb
ka

= 2), the dynamics is superdiffusive ion (hy-

perdiffusive). The diagram of states (Figure 5b) was created using a smoothing procedure

where the values of the MSD exponents at unknown values of kb
ka

and pc were interpolated

using the known MSD values (obtained via simulations). The interpolation is logarithmicaly

(linearly) scaled in pc (
kb
ka
) axis. The two-dimensional phase diagram predicts the emergence
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of different dynamical regimes, from subdiffusive to hyperdiffusive, which can be tested in

imaging experiments [5, 6].

IV. CONCLUSION

Using a two-dimensional off-lattice model, we have provided a comprehensive picture of

the variations in the dynamics as the strength of the mechanical feedback and cell division

rates are altered. The dynamics change from subdiffusive to superdiffusive to hyperdiffusive,

as the kb
ka

and pc are varied. We also showed that in growing tissue, highly persistent forces

emerge as the strength of the mechanical feedback increases, whose decay exhibits two

relaxation time scales: one short (elastic time scale, γ
ERm

) and one long (division-apoptosis

time scale, 1
kb−ka

). The presence of persistent forces determines variations in the dynamics as

cell division rates and the strength of the feedback are varied. Strikingly, the cell dynamics

are controlled by the growth law of the tissue, which depends primarily on the strength of the

mechanical feedback. Interestingly, the three exponents α, λ and ξ from cell dynamics and

tissue growth are related as α ≈ λ ≈ 2ξ. Therefore, we can estimate the values of the other

two exponents if one of them is obtained in experiments. The phase diagram summarizing

our findings provides a unified picture of the disparate dynamics found in several theoretical

studies. [12–14]
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Foundation (Phy 23-10639) and the Welch Foundation (F-0019).
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Figure 1: The 2D model. (a) Inter-cellular force as a function of distance between two

cells with identical radii, Ri = Rj = 4µm. The repulsive and attractive parts of the force

are given by Eqs. (1) and (2), respectively. The inset is the zoomed-in view that highlights

the region in which the force is predominantly attractive. (b) Illustration of the role of

mechanical feedback. On the left, the “red” cell is dormant (cannot grow and divide)

because the pressure exerted by the neighbors exceeds pc. The “green” cell is in the growth

phase (G) (p < pc). The green cell from the left gives birth to two daughter cells (cyan and

green) when the radius exceeds the mitotic radius Rm. (c) A snapshot of the 2D growing

tissue consisting of approximately 4,750 cells at t∗ = 3.74, with pc = 10−3MPa and

kb
ka

= 20. The global shape is approximately circular.
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a b

c d

Figure 2: Cell dynamics is regulated by pc and kb
ka
: (a) Mean squared displacement,

∆(t), as a function of time. From top to bottom, the curves are for

pc = 10−3Nm−1, 10−4Nm−1 and 10−5Nm−1. The inset focuses on the long time limit

(t > 1
kb−ka

). The x-axis is scaled by kb − ka. The dashed lines are power law fits

(∆(t) ∼ tα). The α values are given in the upper left box. (Continued on the next page)
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Figure 2: (b) Invasion distance, ∆r(t) as a function of time for different pc values. The

dashed lines are power-law fits (∆r ∼ (t∗)ξ). The ξ values are given in the upper left box.

(c) ∆(t), as a function of time. From left to right, curves correspond to kb
ka

= 20, 8 and 2.

The inset focuses on the long time regime (t > 1
kb−ka

). The dashed lines are the power law

fits ( ∆(t) ∼ (t∗)α). The α values are given in the upper left box. (d) Invasion distance,

∆r(t) as a function of time for changing kb
ka
. The dashed line is the power law fit

(∆r ∼ (t∗)ξ). The ξ values are given in the upper left box.
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Figure 3: Growth law governs the cell dynamics: (a) Number of cells, (N(t)), as a

function of time at three values of pc, labeled in the figure. The dashed lines with the

power the power law fits ( N(t) ∼ (t∗)λ) are shown. (b) Average pressure, ⟨P (t)⟩, as a

function of time. The curves correspond to pc = 10−3Nm−1(top), 10−4Nm−1 (middle), and

10−5Nm−1 (bottom). The dashed lines mark the pc values; blue - pc = 10−3Nm−1, orange

- pc = 10−4Nm−1, and green - pc = 10−5Nm−1. (Continued on the next page).
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Figure 3: (c) N(t), as a function of time. From bottom to top, curves correspond to

kb
ka

= 20 (blue), 8 (orange) and 2 (green). The dashed lines are the power law fits. The λ

values are mentioned in the upper left box. (d) Average pressure, ⟨P (t)⟩, as a function of

time for the three kb
ka

values. From bottom to top, curves correspond to kb
ka

= 20 (blue), 8

(orange) and 2 (green). The dashed line corresponds to a pressure equal to 10−4Nm−1.
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Figure 4: Correlation in force: Force autocorrelation function (FAF) as a function of

time. From top to bottom, FAF corresponds to pc = 10−3, 10−4 and 10−5. The dashed lines

are the fits. Inset is the zoomed of the initial times. The figure shows the emergence of

FAF with two-time scales: long (∼ 1
kb−ka

) and short (elastic time scale = γ
ER

).
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Figure 5: Dynamical phase diagram : (a) The MSD exponent α as a function of the

growth law exponent λ. The slope of the dashed line is approximately unity. In the inset

we plot the relationship between λ and ξ. The fit of the line is λ ≈ 2ξ. (b) Dynamical

regimes as a phase diagram in the plane of pc and
kb
ka
. The color bar on the right shows the

value of α. Sub-diffusion (α ≤ 1), superdiffusion (1 < α ≤ 2), and hyper-diffusion (α > 2)

in the long-time cell dynamics ( (kb − ka)t > 1). The black (blue) lines correspond to α = 1

(α = 2).
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Figure 5: The two-dimensional phase diagram predicts the emergence of subdiffusion,

superdiffusion, and hyperdiffuison, depending on the values of pc and
kb
ka
. The phase

diagram was obtained via a smoothing procedure (details in the text)
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