
Highlights

Parameter estimation in ODEs: assessing the potential of local and global
solvers

M. Fernández de Dios, Ángel M. González-Rueda, Julio R. Banga, Julio González-Dı́az,
David R. Penas

• We show that current mathematical programming solvers can be effective for
not-so-small problems.

• Our approach provides insights on the challenges posed by local optimality.

• We assess the impact of different discretization techniques and mathematical pro-
gramming models.

• Our study can be used as a benchmark to assess the performance of specialized
algorithms.

ar
X

iv
:2

40
5.

01
98

9v
1

 [
m

at
h.

O
C

]
 3

 M
ay

 2
02

4

Parameter estimation in ODEs: assessing the potential of local

and global solvers

M. Fernández de Diosa, Ángel M. González-Ruedaa,b, Julio R. Bangac, Julio
González-Dı́aza,b, David R. Penasc

aDepartment of Statistics, Mathematical Analysis and Optimization and MODESTYA Research
Group. University of Santiago de Compostela. Santiago de Compostela Spain

bCITMAga (Galician Center for Mathematical Research and Technology), 15782 Santiago de
Compostela Spain

cComputational Biology Lab, MBG-CSIC (Spanish National Research Council) 36143 Pontevedra
Spain

Abstract

We consider the problem of parameter estimation in dynamic systems described by
ordinary differential equations. A review of the existing literature emphasizes the need
for deterministic global optimization methods due to the nonconvex nature of these
problems. Recent works have focused on expanding the capabilities of specialized de-
terministic global optimization algorithms to handle more complex problems. Despite
advancements, current deterministic methods are limited to problems with a maximum
of around five state and five decision variables, prompting ongoing efforts to enhance
their applicability to practical problems. Our study seeks to assess the effectiveness of
state-of-the-art general-purpose global and local solvers in handling realistic-sized prob-
lems efficiently, and evaluating their capabilities to cope with the nonconvex nature of
the underlying estimation problems.

Keywords: Parameter estimation, Dynamic modelling, Optimization, Mathematical
programming

1. Introduction

Mathematical models play a crucial role in describing and analyzing real-world
phenomena across engineering, natural sciences, and medicine. Here we consider the
problem of parameter estimation in models described by nonlinear ordinary differential
equations (ODEs) (Schittkowski, 2002). That is, given a parametric dynamic model and
experimental data, we seek to identify the parameter values that minimize the mismatch
between model predictions and data. These problems play a key role in many areas,
including systems biology (Mendes and Kell, 1998; Ashyraliyev et al., 2009; Banga and
Balsa-Canto, 2008; Chou and Voit, 2009) and chemical kinetics (Esposito and Floudas,
2000; Singer et al., 2005).

From the mathematical point of view, parameter estimation in ODE-based models
belong to the class of dynamic optimization problems. Existing solution approaches
can be broadly categorized into direct and indirect methods (Biegler, 2010). Indi-
rect methods concentrate on deriving a solution that adheres to the classical necessary
conditions for optimality, manifested as a two-point boundary value problem (Bryson
and Ho, 1969). Direct methods apply discretization schemes to transform the original
infinite-dimensional problem into a finite-dimensional nonlinear programming problem.

Preprint submitted to enter the reviewing process May 6, 2024

Within direct methods, sequential approaches proceed by discretizing the control vari-
ables only, transforming the problem into an outer nonlinear programming (NLP) prob-
lem with an inner initial value problem embedded (Goh and Teo, 1988; Vassiliadis et al.,
1994). Simultaneous approaches (Biegler, 2007) discretize both control and state pro-
files, transforming the ODE system into algebraic equations for optimization. While
the simultaneous approach offers advantages with respect to sequential approaches (e.g.
easier handling of unstable dynamic systems and path constraints, and facilitating au-
tomatic differentiation), it also introduces challenges by potentially leading to large
scale nonlinear programming problems that are difficult to solve.

Even though a number of local optimization methods have been developed to esti-
mate parameters in dynamic models (Schittkowski, 2002; Edsberg and Wedin, 1995),
they typically converge to local solutions due to the nonconvex nature of these problems
(Esposito and Floudas, 2000; Chen et al., 2010; Ljung and Chen, 2013). A common
strategy to surmount this drawback is to use a multi-start strategy with local methods
(Raue et al., 2013; Fröhlich et al., 2017), i.e., to repeat local optimizations from random
initial points inside the parameter’s bounds. Other studies have advocated for the use
of global optimization approaches, i.e., methods with specialized numerical strategies
seeking the globally optimal solution (Esposito and Floudas, 2000; Moles et al., 2003).

During the last two decades, several stochastic and hybrid global optimization meth-
ods have been presented, especially in the area of systems biology (Moles et al., 2003;
Balsa-Canto et al., 2008; Jia et al., 2012; Egea et al., 2010; Sun et al., 2011). Even
though some of these methods have shown good performance even with large-scale
problems (Villaverde et al., 2015; Penas et al., 2017; Villaverde et al., 2018), an in-
trinsic limitation persists: their inability to guarantee global optimality. Consequently,
when these techniques do not yield a satisfactory fit, it remains uncertain whether
this discrepancy arises from the model’s inadequacy to explain the data or from the
method’s inability to locate the global solution.

Given that the problem of parameter estimation in dynamic systems, and more
generally, the problem of dynamic optimization, constitutes a nonconvex program, cer-
tifying global optimality requires deterministic global optimization methods. Pioneering
research in this area commenced in the early 2000s (Esposito and Floudas, 2000; Pa-
pamichail and Adjiman, 2002, 2004; Singer et al., 2005; Chachuat et al., 2006; Lin and
Stadtherr, 2006, 2007; Pérez-Galván and Bogle, 2017). In the area of systems biology,
examples of relevant works include Polisetty et al. (2006); Panning et al. (2008); Miró
et al. (2012); Pitt et al. (2018). Recent and comprehensive overviews of the methods
and challenges involved in rigorously solving these dynamic optimization problems are
given by Wilhelm et al. (2019) and Song and Khan (2022).

However, as noted by Song and Khan (2022), despite all these efforts, specialized
deterministic methods for global dynamic optimization are currently limited to han-
dling problems with a maximum of approximately five state variables and five decision
variables. Consequently, there is an ongoing pursuit to broaden the applicability of
deterministic global optimization to dynamic systems, making them suitable for solv-
ing problems of practical significance. For example, (Sass et al., 2024) have recently
presented a spatial branch-and-bound algorithm that exploits the structure of these
problems when large datasets are considered.

Given the aforementioned limitations, the main goal of this paper is to study the
potential of mathematical programming modeling and state-of-the-art solvers to handle
a set of challenging parameter estimation problems in ODEs. Specifically, we focus on

2

assessing the effectiveness and reliability of contemporary global and local optimization
solvers. Our thorough computational experiments allow to assess to what extent global
solvers can handle realistic-sized problems within acceptable computation times and,
also, if local solvers can effectively tackle the nonconvex characteristics of the underlying
parameter estimation problems without getting stuck at local optima.

Importantly, our numerical results show that state-of-the-art mathematical pro-
gramming solvers can be effective for not-so-small problems in relatively short time
(executions are limited to ten minutes): not only we find that both the local and global
solvers are capable of consistently finding the optimal solutions, but we also show that
the global solvers can certify global optimality. It is worth noting that these results
were obtained with standard discretization schemes and out-of-the-box configurations
of the solvers which, moreover, were not allowed to use any kind of parallelization capa-
bilities. This hints at the potential of tackling even larger problems by relying on finely
tuned solver configurations and high-performance computing. Last, but not least, we
believe our study can serve as a benchmark to assess the potential of present and future
specialized algorithms.

The rest of the paper is structured as follows. In Section 2 we present a detailed
description of the framework for the analysis. In Section 3 we describe the specifics of
the numerical study. Section 4 is devoted to a general overview of the computational
results and, then, we devote Section 5 to discuss the implications of the results for
relevant aspects in parameter estimation such as local optimality, identifiability and
flatness of the objective function. Finally, we conclude in Section 6.

2. Framework for the analysis

In this work we focus on parameter estimation in dynamic models that can be
described by a nonlinear system of differential algebraic equations, DAEs. The system
depends on some parameters that we want to estimate. To this aim, some experimental
data from the process is usually available (observations of the dynamic states over time),
so the goal is to obtain the value of the parameters that delivers the best possible fit
of the experimental data. A general approach to describe the dynamics of the model is
the following:

dxxx(t)

dt
= f(t,xxx(t), ppp), t ∈ [t0, tf]

yyy(t) = g(xxx(t), ppp), t ∈ [t0, tf]

xxx(t0) = x̄xx0,

where xxx ∈ Rns is the vector of state variables, x̄xx0 represents their initial conditions and
ppp ∈ Rnp is the vector of unknown parameters. Furthermore, f is a nonlinear function
describing the dynamics of the problem and g is the observation function that gives the
vector of observed states yyy ∈ Rny predicted by the model.

Let (τ1, ȳyy1),. . .,(τn, ȳyyn) be the input experimental data, where ȳyyi is the measured
value of variable yyy at some time τi ∈ [t0, tf]. Thus, we want to solve the optimization
problem of finding the value of the ppp parameters that minimizes the error between the
model predictions yyy and the observable measurements ȳyy. This leads to the formulation

3

of the following Non Linear Programming (NLP) problem with DAEs:1

min
n∑

i=1

||yyy(τi)− ȳyyi||2

s.t.
dxxx(t)

dt
= f(t,xxx(t), ppp), t ∈ [t0, tf]

yyy(t) = g(xxx(t), ppp), t ∈ [t0, tf]
xxx(t0) = x̄xx0,
ppp ≤ ppp ≤ p̄pp,

(1)

where ppp and p̄pp represent known lower and upper bounds for the parameters.

2.1. Direct transcription approach: Baseline formulation

In order to solve this problem, a direct transcription approach is employed (see Betts
(2020) for details), which consists of discretizing problem (1). More precisely, the time
domain is discretized into M =

tf−t0
h

time steps, being h the step size and M the
size of the mesh. Thus, a finite dimensional approximation of the original problem is
created by discretizing all the variables and constraints at discrete time points tm with
m ∈ {0, . . . ,M}, where tM = tf . Denote by

ξξξ = (xxx0, yyy0,xxx1, yyy1, . . . ,xxxM , yyyM , ppp)

the optimization variables arising from the discretization, where xxxm = xxx(tm) and yyym =
yyy(tm) for all m ∈ {0, . . . ,M}. Further, the ODEs are approximated using a differential
numerical discretization scheme that effectively reformulates them into a system of
algebraic equations. Therefore, the original dynamic problem (1) can be reformulated
as the following standard NLP problem:

Baseline formulation

min
n∑

i=1

||yyym(i) − ȳyyi||2

s.t. H(ξξξ) = 000
yyym = g(xxxm, ppp), ∀m ∈ {0, . . . ,M}
xxx0 = x̄xx0

ppp ≤ ppp ≤ p̄pp,

(2)

where H is the system of algebraic equations obtained after applying the chosen dis-
cretization scheme and m(i) gives the correspondence between the times at which
the observable measures are taken, τi, and the discretization points tm, i.e., for each
i ∈ {1 . . . , n}, m(i) gives the value such that tm(i) = τi.

2 Naturally, the larger M is, the
better (2) approximates problem (1). For our numerical study we implemented five clas-
sic discretization schemes (see Burden and Faires (2001)). For the sake of completeness,
we present below the resulting approximation of the ODEs:

1Different error functions can be used to measure this error. We follow the standard in the field:
the method of least squares.

2Thus, we are implicitly assuming that the discrete time points of the observable measures τi are a
subset of the discretization points tm. If this were not the case, an interpolation approximation could
be applied to recover this property.

4

• The Euler method. For each m ∈ {0, . . . ,M − 1} we have

xxxm+1 = xxxm + hf (tm,xxxm, ppp) . (3)

• The Trapezoid method. For each m ∈ {0, . . . ,M − 1} we have

xxxm+1 = xxxm +
h

2

(
f (tm,xxxm, ppp) + f(tm+1,xxxm+1, ppp)

)
. (4)

• The Adams-Moulton method with step 3. For each m ∈ {0, . . . ,M − 3} we have3

xxxm+3 = xxxm+2 +
h

24

(
9f(tm+3,xxxm+3, ppp) + 19f(tm+2,xxxm+2, ppp)

− 5f(tm+1,xxxm+1, ppp) + f(tm,xxxm, ppp)
)
.

(5)

• The Simpson method. For each m ∈ {1, . . . ,M − 1} we have4

xxxm+1 = xxxm−1 +
h

3

(
f (tm+1,xxxm+1, ppp) + 4f(tm,xxxm, ppp) + f(tm−1,xxxm−1, ppp)

)
. (6)

• The Runge-Kutta method. For each m ∈ {1, . . . ,M − 1} we have

xxxm+1 = xxxm +
h

6
(kkk1

m + 2kkk2
m + 2kkk3

m + kkk4
m), where (7)

kkk1
m = f(tm,xxxm, ppp)

kkk2
m = f(tm +

h

2
,xxxm +

h

2
· kkk1, ppp)

kkk3
m = f(tm +

h

2
,xxxm +

h

2
· kkk2, ppp)

kkk4
m = f(tm+1,xxxm + h · kkk3, ppp).

2.2. Variations of the mathematical programming model

Given the difficulty of the optimization problems to be solved, we also consider two
standard variations of the Baseline formulation, with the goal of assessing the impact
of these alternative formulations in the performance of the state-of-the-art solvers.

First, we define a relaxation of Baseline by introducing a fixed feasibility tolerance
in the algebraic constraints. Specifically, given ϵ > 0, the ExtraTol formulation is given
by

ExtraTol formulation

min
n∑

i=1

||yyym(i) − ȳyyi||2

s.t. −ϵ ≤ H(ξξξ) ≤ ϵ
yyym = g(xxxm, ppp), ∀m ∈ {0, . . . ,M}
xxx0 = x̄xx0

ppp ≤ ppp ≤ p̄pp.

(8)

3Initial conditions for xxx1 and xxx2 are taken from the Trapezoid method.
4Initial conditions for xxx1 are taken from the Trapezoid method.

5

Note that feasibility tolerances can usually be controlled with solver-specific options.
Yet, ExtraTol is solver independent, which enables a direct comparison of the impact
of these tolerances across solvers without having to deal with the particularities of their
respective configuration options.

A second variation of Baseline formulation is to treat all the algebraic constraints of
the model as soft constraints. This is achieved by adding, to each algebraic constraint,
a couple of slack variables, which are then heavily penalized in the objective function.
In this case, we obtain SoftCons formulation given by

SoftCons formulation

min
n∑

i=1

||yyym(i) − ȳyyi||2 + P ·
n1∑
j=1

sj

s.t. −sss ≤ H(ξξξ) ≤ sss
yyym = g(xxxm, ppp), ∀m ∈ {0, . . . ,M}
xxx0 = x̄xx0

ppp ≤ ppp ≤ p̄pp
sss1 ≥ 000,

(9)

where sss ∈ Rn1 are the slack variables added to the algebraic equations of the ODEs
system. Further, P ≥ 0 is the penalization in the objective function for using the slack
variables, i.e., the penalization imposed on the violations of the constraints.

3. Setting up the numerical study

The proposed framework has been implemented in AMPL (Fourer et al., 1990),
using a PERL script (Wall et al., 2000) to automatically generate, for each problem
instance, the AMPL model files for the different NLP formulations and the different
discretization schemes. All numerical experiments have been performed on the super-
computer Finisterrae III, provided by Galicia Supercomputing Centre (CESGA), using
computational nodes powered with two 32-core Intel Xeon Ice Lake 8352Y CPUs with
256GB of RAM and 1TB SSD.5

3.1. Pool of parameter estimation problems

We have applied our framework to a series of well known parameter estimation
problems from the literature, which we outline below (refer to Appendix A for a
deeper description):

• alpha pinene: it represents the mechanism for thermal isomerization of α-pinene
(Fuguitt and Hawkins, 1945). It has 5 parameters and 5 states (fully observed).

• BBG (Biomass batch growth): it describes the microbial growth in a stirred fed-
batch bioreactor (Rodriguez-Fernandez et al., 2007). It has 4 parameters and 2
states (fully observed).

• FHN: the Fitzhugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962). It has
3 parameters and 2 states with only one observed state (partially observed).

5It is worth noting that NEOS Server (Czyzyk et al., 1998) was also intensively used during the
initial stages of the project to test and validate different model formulations.

6

• harmonic: it represents a harmonic oscillator (pendulum), as considered in Go
et al. (2023). It has 2 parameters and 2 states (fully observed).

• Lotka Volterra: it is a two species Lotka-Volterra predatory-prey model, with 3
parameters and 2 states, as considered by Go et al. (2023). Two versions of this
problem are considered depending on the number of observed variables considered
when solving it. We denote by Lotka VolterraF the case with 2 observed states
(fully observed) and by Lotka VolterraP the problem with only one observed
state (partially observed).

• daisy mamil: it is based on the examples used in the analysis of DAISY identi-
fiability software (Bellu et al., 2007), and it represents a 3-compartment model.
It has 5 parameters and 3 states. Two versions of this problem are considered:
daisy mamil3F (fully observed) and daisy mamil3P (with partially observable
data: 2 observed states).

• hiv: it is is based on a model of HIV infection dynamics coming from (Wodarz and
Nowak, 1999). It has 10 parameters and 5 states. Two versions of this problem
are considered: hivF (fully observed) and hivP (with partially observable data: 3
observed states and observed data for the sum of the other 2 states).

• Crauste: it is based on the system described in (Crauste et al., 2017), and it has
16 parameters and 5 state variables. Two versions of this problem are consid-
ered: CrausteF (fully observed) and CrausteP (with partially observable data: 3
observed states and observed data for the sum of the other 2 states).

The procedure to generate the noiseless measurement data for the observed variables
of each problem is as follows.6 We take nominal values for the parameters of the
different systems of ODES from past literature and solve the ODE system for those
values of the parameters with the R package pracma (Borchers, 2023) (using Runge-
Kutta). Then, from the results given by pracma, we select a sample of points of the
state variables. As we describe in Appendix A, for most of the problems these points
are uniformly distributed on a given time of the form [0, T], with T ranging from 1
to 20. Table 1 shows, for each problem, the number of i) state variables, ii) observed
variables, iii) parameters7 and iv) sample time points.

It is worth mentioning that, in the literature, most of these problems are solved
under fixed initial conditions. However, for many of our problems (such as harmonic
and the four problems for which we have both fully and partially versions), we assume
these conditions are unknown and need to be estimated as well. This increases the
difficulty for solving them.

3.2. Configurations of the elements of the computational framework

Each parameter estimation problems was tackled with different configurations of the
elements involved in our framework. We now detail all such configurations:

6The only exception is alpha pinene which, given its simplicity, was fed with real (and noisy)
measurements.

7When appropriate, we indicate in parenthesis the number of initial conditions to be estimated.

7

State Var. Observed Var. Parameters Observed times
Problem ns ny np n

alpha pinene 5 5 5 8
BBG 2 2 4 7
FHN 2 1 3 6
harmonic 2 2 2 (2) 10
Lotka VolterraF 2 2 3 (2) 20
Lotka VolterraP 2 1 3 (2) 20
daisy mamil3F 3 3 5 (3) 20
daisy mamil3P 3 2 5 (3) 20
hivF 5 5 10 (5) 20
hivP 5 4 10 (5) 20
CrausteF 5 5 13 (5) 20
CrausteP 5 4 13 (5) 20

Table 1: Number of state variables, observed variables, parameters and time points for measurements.

I. Mathematical formulations: we run the three mathematical programming for-
mulations described in the previous section: Baseline, ExtraTol and SoftCons.
The configurable parameters for ExtraTol and SoftCons are chosen as follows:

• For ExtraTol, two values for the feasibility tolerance ϵ are considered: 10−4

and 10−6.8

• For SoftCons, two values for P are considered: 103 and 105.

II. Discretization numerical schemes: the 5 discretization schemes introduced in
the previous section are considered: Euler, Trapezoid, Adams-Moulton, Simpson
and Runge-Kutta. Further, each problem is run with two different mesh sizes (M),
as specified in Table 2.9

Lotka Volterra Crauste FHN harmonic alpha pinene BBG daisy mamil hiv

100 100 200 230 1230 120 100 100
1000 1000 2000 2300 3690 1200 1000 1000

Table 2: Mesh sizes for each problem.

III. Mathematical programming solvers: given the interest in analyzing whether
the solutions obtained with our framework are global optima, it is pertinent to
distinguish between local and global solvers. Specifically, three global solvers and
five local solvers are employed in the numerical experiments:

Global Solvers: Couenneg 0.5.7 (Belotti et al., 2009), BARONg 21.1.13 (2021.01.13)
(Tawarmalani and Sahinidis, 2005) and Octeractg Engine v4.4.1(Octeract
Optimisation Intelligence, 2023).

8In order to avoid some numerical issues observed in some preliminary runs, slightly different options
are considered for Lotka VolterraP (10−5, 10−6 and 10−8) and Crauste (10−5, 10−7 and 10−9).

9For Lotka VolterraP problem, on top of the mesh sizes of 100 and 1000, a bigger mesh of size
10000 was also tested.

8

Local Solvers: BONMINl 1.8.7 (Bonami et al., 2012), Knitrol 13.2.0 (Byrd et al.,
2006), Ipoptl 3.12.13 (Wächter and Biegler, 2006), CONOPTl 3.17A (Drud,
1985) and SNOPTl 7.5-1.2 (Gill et al., 2005).

Each solver is allowed to use only one thread and a time limit of 10 minutes is
imposed. All other options of the solvers are set to their default values. All the combi-
nations of the above configurations result in a total of 5280 executions. In particular,
we tested at least 400 configurations on each parameter estimation problem: 5 math-
ematical programming formulations, 5 discretization schemes with 2 mesh sizes each
and 8 state-of-the-art solvers.

3.3. Performance metrics

In order to evaluate the quality of the solutions given by our framework, two metrics
are employed. On the one hand, it is important to check if the reference solution is
found. Given a problem, let pppref be the reference solution of the parameters and let
ppp be the estimation obtained with our approach. Then, the maximum of the relative
error is computed as follows:

MaxRE = max
i=1,...,np

∣∣∣∣pi − prefi

prefi

∣∣∣∣ .
Note that, the smaller MaxRE is, the closer of the solution to the reference one. In
the numerical study, the criterion to consider that the solution is acceptably close to
the reference solution is that MaxRE < 0.1. The error showed in the figures of the
computational results corresponds to MaxRE.

On the other hand, since some of the problems can present a potential lack of
identifiability, it could happen that the parameter estimation obtained is not really
close to the reference solution, but the adjustment with respect to the observed state
variables is good. In order to analyze this, we use the following normalized mean squared
error measure:

NRMSEy =

√∑n
i=1 ||yyym(i)−ȳyyi||2

ny ·n

ȳmax − ȳmin

,

where ȳmax = max{max{ȳyy1}, . . . ,max{ȳyyn}} and ȳmin = min{min{ȳyy1}, . . . ,min{ȳyyn}}.

4. Numerical results: general overview

This section focuses on the study of the overall performance of the mathematical
programming solvers and the different modeling choices. The results are illustrated
with a series of tables, each of them containing the following columns:

SolvedS. Proportion of runs in which the solver returned “solved” as its final status.

FoundR. Proportion of runs in which the solver actually found the reference solution
(MaxRE ≤ 0.1).

NearR. Proportion of runs in which the solver did not find the reference solution but
was close to it (0.1 < MaxRE ≤ 0.5).

Altern. Proportion of runs in which the solution was not close to the reference solution
(MaxRE > 0.5) but, still, NRMSEy < 0.0001 (potential lack of identifiability).

9

TimeBFR. Smallest solve time, in seconds, among the runs in which the solver found
the reference solution.

Success. Proportion of runs in which the solver execution was successful, in the sense
of not experimenting numerical issues, having abrupt terminations or failing to
return a feasible solution.

A supplementary Online Appendix (https://bit.ly/ParamEstimODEs) contains
a more comprehensive set of results, including more complete tables and additional
figures.

4.1. Results by problem

Table 3 shows the results disaggregated by problem and sorted by column FoundR.
A first finding that stands out is that, for each and every problem, the reference solution
was found at least once. Moreover, in more than half of the problems, the reference
solution was found by more than one third of the configurations, which shows the
robustness of the mathematical programming formulations, since no fine tuning of the
underlying configurations is needed to found the reference solutions and even certifying
its global optimality. Column TimeBFR shows that running times are also promising
since, with the exception of alpha pinene, for each problem there is at least one
configuration that has found the reference solution in less than one second and, very
often, in less that a tenth of a second. These running times are particularly encouraging,
given that they include problems such as Crauste and hiv, which have more than 10
parameters to estimate. Yet, having quick running times should not come as a surprise,
since many of the configurations involve relatively coarse discretizations. What is truly
interesting is that, despite this coarseness, the reference solution is often found.

Problem SolvedS FoundR NearR Altern TimeBFR Success

daisy mamil3F 0.735 0.885 0.022 0.002 0.029 0.965
Lotka VolterraF 0.743 0.835 0.022 0.000 0.026 0.960
harmonic 0.715 0.733 0.002 0.000 0.032 0.927
hivF 0.820 0.688 0.122 0.082 0.033 0.975
BBG 0.595 0.438 0.052 0.000 0.084 0.802
alpha pinene 0.250 0.365 0.005 0.000 1.786 0.667
daisy mamil3P 0.665 0.342 0.092 0.030 0.028 0.958
CrausteF 0.796 0.298 0.173 0.362 0.054 0.958
hivP 0.792 0.195 0.082 0.490 0.103 0.965
CrausteP 0.781 0.185 0.144 0.375 0.069 0.969
FHN 0.415 0.117 0.007 0.030 0.514 0.802
Lotka VolterraP 0.694 0.024 0.376 0.393 0.033 0.867

Table 3: Summary results by problem.

The results in Table 3 also hint at two other aspects particularly relevant in pa-
rameter estimation problems and that we explore more deeply in Section 5. First, in
some problems the SolvedS value is higher than the value in FoundR, suggesting that
there are multiple local optima in the problem at hand. At the same time, a value in
FoundR higher than the one in SolvedS indicates that global solvers have found the
optimal solution, but failed to certify it. Second, values different from zero in Altern

10

https://bit.ly/ParamEstimODEs

come from the existence of high quality solutions different from the reference one, which
may be the result of a lack of identifiability in the problem at hand; indeed, with the
exception of CrausteF, the largest values in Altern are in partially specified problems.

4.2. Results by solver

We move now to Table 4, which shows the results by solver, again sorted by column
FoundR. The first aspect that stands out is that two of the global optimization solvers
involved in the study come out on top, which is particularly valuable given that they are
often capable of providing global optimality certificates for the discretization at hand.
As expected, local solvers are faster, although BARONg is very competitive.

Solver SolvedS FoundR NearR Altern TimeBFR Success

BARONg 0.667 0.518 0.135 0.168 0.076 0.992
Couenneg 0.691 0.482 0.130 0.089 0.138 0.841
Knitrol 0.961 0.430 0.130 0.156 0.026 0.994
Octeractg 0.524 0.408 0.115 0.182 1.286 0.867
BONMINl 0.897 0.403 0.111 0.117 0.038 0.897
Ipoptl 0.886 0.395 0.124 0.211 0.038 0.933
CONOPTl 0.000 0.306 0.098 0.215 0.044 0.921
SNOPTl 0.752 0.221 0.045 0.212 0.040 0.764

Table 4: Summary results by solver.

4.3. Results by discretization scheme

In Table 5 we present the results by discretization scheme and, although there are
no major differences, Trapezoid seems to perform slightly better than the rest.

Scheme SolvedS FoundR NearR Altern TimeBFR Success

Trapezoid 0.723 0.462 0.104 0.177 0.026 0.951
Adams-Moulton 0.693 0.399 0.104 0.160 0.029 0.891
Simpson 0.691 0.396 0.126 0.149 0.028 0.914
Runge-Kutta 0.604 0.365 0.097 0.166 0.093 0.813
Euler 0.650 0.356 0.125 0.192 0.029 0.937

Table 5: Summary results by discretization scheme.

4.4. Results by mathematical programming formulation

Finally, Table 6 studies the impact of the variations of the mathematical program-
ming models to be solved. Again, the performance seems to be similar across the three
approaches and, if anything, the use of SoftCons may be slightly worse.

4.5. Additional disaggregations of the results

Appendix B studies different disaggregations of the above results, with the goal of
getting further insights, not only of the individual elements involved in the different
configurations, but also of potential interactions. They show sthat daisy mamil3F,
harmonic and Lotka VolterraF are the easiest problems to solve and, moreover, that

11

Form. SolvedS FoundR NearR Altern TimeBFR Success

Baseline 0.643 0.441 0.081 0.146 0.032 0.872
ExtraTol 0.716 0.410 0.141 0.203 0.028 0.911
SoftCons 0.637 0.356 0.092 0.142 0.026 0.904

Table 6: Summary results by mathematical programming formulation.

global optimization solvers seem to be better at finding the reference solution. Interest-
ingly, Table B.9 shows that the choice of the mathematical programming formulation
can have a significant impact. Baseline performs extremely well in hivF and daisy

mamil3F problems, finding the reference solutions in more than 90% of the configura-
tions, whereas the next best performing formulation for hivF is under 65%. On the
other hand, ExtraTol is clearly the best formulation for harmonic, whereas SoftCons
comes out narrowly on top for Lotka VolterraF. Regarding the disaggregation by dis-
cretization scheme and mathematical programming formulation, we see in Table B.12
that the configurations with Trapezoid tend to come out on top, while Euler and
Runge-Kutta are at the bottom. Moreover, for all discretization schemes, the configu-
rations with Baseline seem to dominate those with ExtraTol, which themselves seem
to dominate those configurations with SoftCons.

4.6. Running times by problem

Section 3 in the Online Appendix also provides detailed information about running
times. In particular, it presents, for each problem, the top 10 configurations in terms
of running times among those that have found the reference solution (top 10 among all
solvers and also top 10 among global solvers).

The results show that Knitrol is the fastest solver in most of the problems. Some
exceptions are FHN, where Ipoptl, CONOPTl and BONMINl are also quite fast, and Lotka

VolterraP, daisy mamil3P, CrausteP and CrausteF, where again Ipoptl and BONMINl

are relatively close to Knitrol. Regarding running times, local solvers are very fast, and
alpha pinene is the only problem not solved by any configuration in less than a second
(the top 10 fastest configurations go from 1.8 seconds to 8.9 seconds). Moreover, more
than half of the problems are solved in less than 0.1 seconds by the fastest configuration.

If we restrict attention to global optimization solvers, the results are also quite
promising. Setting again aside alpha pinene, for which no global solver was able
to certify global optimality for the discretization at hand after 10 minutes, all other
problems where solved to global optimality, by at least one configuration, in less than
10 seconds. BARONg is the fastest global optimization solver in most problems and,
for some of them such as BBG and hivP, it is even competitive with the fastest local
solver, Knitrol. On the other hand, Octeractg is the fastest in Lotka VolterraF and
Couenneg is competitive with BARONg in hivP, hivF and CrausteP.

It may seem surprising that alpha pinene, despite coming from a relatively simple
ODE system, has turned out to be relatively challenging, particularly for the certifica-
tion of global optimality. Yet, recall that, differently from the other problems in the
study, alpha pinene was fed with real (and noisy) measurements instead of synthetic
ones. We have observed in some additional experiments with this problem that, with
noiseless synthetic data, global certificates are consistently obtained within the time
limits. The use of real measurements in this particular problem may have led to some

12

practical lack of identifiability driven by the flatness of the objective function. These is-
sues are discussed in the following section and, for the particular case of alpha pinene,
they can be assessed in the figures in Appendix C.1.

5. Numerical results: local optimality, flatness, and identifiability

The approach followed in this paper, in which each problem is tackled with a wide
range of configurations, including different families of local and global optimization al-
gorithms, can be a useful tool to pinpoint structural characteristics of the underlying
parameter estimation problems. In this section we illustrate the potential of our ap-
proach to accomplish this. We do so through a series of examples in which one can
recognize patterns for multiplicity of local optima, flatness of the objective function,
and lack of identifiability (i.e., multiplicity of global optima). Appendix C contains
detailed results for all problems, similar to the selected ones that we discuss below.

5.1. Multiplicity of local optima

Overall, the existence of multiple local optima with significantly different objective
functions (sum of squared errors in the resulting fit) does not seem to be an issue in
the problems under study. In particular, the solutions provided by local optimizers are
predominantly as close to the reference solution as the ones provided (and certified) by
the global optimization solvers.

Figure 1 focuses on problem daisy mamil3F. The two plots represent the distance
to the reference solution on the x-axis and the error on the y-axis, for the different
configurations run for this problem. On the left, we represent the solutions provided
by global solvers in configurations where they were able to certify global optimality on
the discretized problem at hand. On the right we represent all the solutions provided
by local solvers (just ensuring some local optimality condition).

lo
g
(e

rr
o
r
+

1
)

distance

(a) Global solvers: Distance vs error when “solved”.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Local solvers: Distance to ref. solution vs error.

Figure 1: Studying local optimality in daisy mamil3F.

We can see that, although the solutions provided by the global solvers tend to be
closer to the reference solution, the ones provided by the local solvers are not far away
and the associated errors are typically very small as well. In this case, the fact that
the solutions of the local solvers are slightly more spread than the ones provided by the
global solvers may be an indication of having a relatively flat objective function near
the global optimum (which we discuss below), but there is no problem of getting stuck
at local optima of very poor quality in terms of the error in the resulting fit.

13

5.2. Flatness of the objective function

If the objective function is very flat near the reference solution, convergence becomes
harder and one might need to specify more demanding stopping criteria in order to get
better solutions. One example of this can be seen in Figure 2 for problem hivP.

ti
m
e

distance

(a) Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Distance to ref. solution vs error when “solved”.

Figure 2: Studying flatness in problem hivP.

The two plots represent, for global optimization solvers, the distance to the reference
solution on the x-axis. On the left we have running time on the y-axis and, on the right,
the y-axis represents the error for the instances in which global optimality was “certi-
fied”. The plot of the left shows that most of the configurations successfully terminated
within the time limit certifying global optimality of the final solution. Differently from
the situation for daisy mamil3F in Figure 1, many of the obtained solutions are still
relatively far from the reference solution. Yet, the plot on the right shows that all of
these solutions still provide very small errors, and so imposing more strict termination
criteria for the optimizers might mitigate this behavior for such a problem.

5.3. Lack of identifiability

Lack of identifiability can be an important challenge for parameter estimation prob-
lems. It arises when different parameter configurations deliver fits with the same quality.
In other words, lack of identifiability corresponds to situations in which the underlying
optimization problem has multiple global optima. It seems that lack of identifiability
is not present in any of the problems we have studied since, as can be seen in all sub-
figures (e) in Appendix C, it is never the case that global solvers provide very different
solutions for a given problem beyond what we have classified above as flatness in the
discussion of hivP in Figure 2. This result is in agreement with the findings of (Go
et al., 2023), where several of the problems considered here were shown to be globally
identifiable.

6. Conclusions

The main goal of this paper was to study the potential of mathematical program-
ming modeling and state-of-the-art solvers to handle well known parameter estimation
problems. The results are very promising, significantly surpassing the capacity to solve
these problems reported in past literature. Our study has also helped to assess different
modeling aspects such as the chosen discretization scheme or different variants on the
formulation of the different optimization problems.

A natural direction for future research is to explore the robustness and scalability of
the analysis, systematically introducing noisy measurements and studying significantly

14

larger problems. In this respect, it is worth emphasizing that in our numerical analysis
we have not relied on any sort of parallelization, which could definitely be exploited by
solvers with these kind of capabilities such as Octeractg and Knitrol. Further, it is
also worth noting that all the analysis developed in this paper has been done using the
default settings of each solver and, thus, fine tuning these settings for each pair solver-
problem might enable the solution of significantly larger problems. A related approach
would be to develop some methodology to determine the most promising configura-
tions to attack a given problem: discretization scheme, mathematical programming
formulation, solver,. . .

The analysis we have developed here can also serve as a benchmark for evaluating
the performance of new specialized algorithms, specially global optimization ones, since
they can now be compared to solvers such as Couenneg, BARONg, and Octeractg.

Authors’ contributions

M. Fernández de Dios implemented the different solution methodologies as well as
their adjustment to the different problems under study. M. Fernández de Dios also
carried out the computational study and collected the numerical results.

All five authors participated in the selection of the target problems, the design of
the mathematical programming formulations, the design of the computational study,
and the analysis, interpretation and discussion of the numerical results.

Acknowledgements

The authors thank Eliseo Pita Vilariño for his contribution to the automation of
the filtering and the processing of the computational results.

This work is part of the R&D projects PID2021-124030NB-C31 and PID2021-
124030NB-C32 funded by MICIU/AEI/10.13039/501100011033/ and by ERDF/EU.
This research was also funded by Grupos de Referencia Competitiva ED431C-2021/24
from the Conselleŕıa de Cultura, Educación e Universidades, Xunta de Galicia. JRB
acknowledge financial support from grant PID2020-117271RB-C22 (BIODYNAMICS)
funded by MCIN/AEI/10.13039/501100011033. The authors acknowledge CESGA
(Centro de Supercomputación de Galicia) for providing access to its FinisTerrae III
supercomputer.

References

Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J.A., Blom, J.G., 2009. Systems
biology: parameter estimation for biochemical models. FEBS Journal 276, 886–902.

Balsa-Canto, E., Peifer, M., Banga, J.R., Timmer, J., Fleck, C., 2008. Hybrid opti-
mization method with general switching strategy for parameter estimation. BMC
Syst. Biol. 2, 1–9.

Banga, J.R., Balsa-Canto, E., 2008. Parameter estimation and optimal experimental
design. Essays in Biochemistry 45, 195–210.

Bellu, G., Saccomani, M.P., Audoly, S., D’Angiò, L., 2007. Daisy: A new software
tool to test global identifiability of biological and physiological systems. Computer
methods and programs in biomedicine 88, 52–61.

15

Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A., 2009. Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Software
24, 597–634.

Betts, J.T., 2020. Practical Methods for Optimal Control Using Nonlinear Program-
ming, Third Edition. Society for Industrial and Applied Mathematics, Philadelphia,
PA.

Biegler, L.T., 2007. An overview of simultaneous strategies for dynamic optimization.
Chemical Engineering and Processing: Process Intensification 46, 1043–1053.

Biegler, L.T., 2010. Nonlinear programming: concepts, algorithms, and applications to
chemical processes. SIAM.

Bonami, P., Kilinç, M., Linderoth, J., 2012. Algorithms and software for convex mixed
integer nonlinear programs, in: Lee, J., Leyffer, S. (Eds.), Mixed Integer Nonlinear
Programming, Springer New York, New York, NY. pp. 1–39.

Borchers, H.W., 2023. pracma: Practical Numerical Math Functions. URL: https:
//CRAN.R-project.org/package=pracma. r package version 2.4.4.

Bryson, A.E., Ho, Y.C., 1969. Applied Optimal Control. Blaisdell.

Burden, R.L., Faires, J.D., 2001. Numerical analysis (7th). Prindle Weber and Schmidt,
Boston .

Byrd, R.H., Nocedal, J., Waltz, R.A., 2006. Knitro: An integrated package for nonlinear
optimization.

Chachuat, B., Singer, A.B., Barton, P.I., 2006. Global methods for dynamic optimiza-
tion and mixed-integer dynamic optimization. Industrial & Engineering Chemistry
Research 45, 8373–8392.

Chen, W.W., Niepel, M., Sorger, P.K., 2010. Classic and contemporary approaches to
modeling biochemical reactions. Genes & Development 24, 1861–1875.

Chou, I.C., Voit, E.O., 2009. Recent developments in parameter estimation and struc-
ture identification of biochemical and genomic systems. Mathematical biosciences
219, 57–83.

Crauste, F., Mafille, J., Boucinha, L., Djebali, S., Gandrillon, O., Marvel, J., Arpin, C.,
2017. Identification of nascent memory CD8 T cells and modeling of their ontogeny.
Cell systems 4, 306–317.

Czyzyk, J., Mesnier, M.P., Moré, J.J., 1998. The NEOS Server. IEEE Journal on
Computational Science and Engineering 5, 68 —– 75.

Drud, A., 1985. CONOPT: A GRG code for large sparse dynamic nonlinear optimiza-
tion problems. Mathematical Programming 31, 153–191.

Edsberg, L., Wedin, P.Å., 1995. Numerical tools for parameter estimation in ode-
systems. Optimization Methods and Software 6, 193–217.

16

https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=pracma

Egea, J.A., Mart́ı, R., Banga, J.R., 2010. An evolutionary method for complex-process
optimization. Computers & Operations Research 37, 315–324.

Esposito, W.R., Floudas, C.A., 2000. Global optimization for the parameter estimation
of differential-algebraic systems. Industrial & Engineering Chemistry Research 39,
1291–1310.

FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve
membrane. Biophysical journal 1, 445–466.

Fourer, R., Gay, D.M., Kernighan, B.W., 1990. AMPL: A mathematical programing
language. Management Science 36, 519–554.

Fröhlich, F., Kaltenbacher, B., Theis, F.J., Hasenauer, J., 2017. Scalable parameter
estimation for genome-scale biochemical reaction networks. PLoS computational bi-
ology 13, e1005331.

Fuguitt, R.E., Hawkins, J.E., 1945. The liquid phase thermal isomerization of α-
pinene1a, 1b. Journal of the American Chemical Society 67, 242–245.

Gill, P.E., Murray, W., Saunders, M.A., 2005. SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM review 47, 99–131.

Go, S., Hong, H., Ilmer, I., Ovchinnikov, A., Soto, P., Yap, C., 2023. Symbolic-numeric
parameter estimation software package in Julia. arXiv 2303.02159v1 .

Goh, C., Teo, K.L., 1988. Control parametrization: a unified approach to optimal
control problems with general constraints. Automatica 24, 3–18.

Jia, G., Stephanopoulos, G., Gunawan, R., 2012. Incremental parameter estimation of
kinetic metabolic network models. BMC Syst. Biol. 6, 1–12.

Lin, Y., Stadtherr, M.A., 2006. Deterministic global optimization for parameter esti-
mation of dynamic systems. Industrial & Engineering Chemistry Research 45, 8438–
8448.

Lin, Y., Stadtherr, M.A., 2007. Deterministic global optimization of nonlinear dynamic
systems. AIChE Journal 53, 866–875.

Ljung, L., Chen, T., 2013. Convexity issues in system identification, in: 2013 10th
IEEE International Conference on Control and Automation (ICCA), IEEE.

Mendes, P., Kell, D., 1998. Non-linear optimization of biochemical pathways: appli-
cations to metabolic engineering and parameter estimation. Bioinformatics (Oxford,
England) 14, 869–883.

Miró, A., Pozo, C., Guillén-Gosálbez, G., Egea, J.A., Jiménez, L., 2012. Determinis-
tic global optimization algorithm based on outer approximation for the parameter
estimation of nonlinear dynamic biological systems. BMC Bioinformatics 13.

Moles, C.G., Mendes, P., Banga, J.R., 2003. Parameter estimation in biochemical
pathways: A comparison of global optimization methods. Genome Research 13,
2467–2474.

17

Nagumo, J., Arimoto, S., Yoshizawa, S., 1962. An active pulse transmission line simu-
lating nerve axon. Proceedings of the IRE 50, 2061–2070.

Octeract Optimisation Intelligence, 2023. Octeract Engine.

Panning, T.D., Watson, L.T., Allen, N.A., Chen, K.C., Shaffer, C.A., Tyson, J.J., 2008.
Deterministic parallel global parameter estimation for a model of the budding yeast
cell cycle. Journal of Global Optimization 40, 719–738.

Papamichail, I., Adjiman, C., 2004. Global optimization of dynamic systems. Comput-
ers & Chemical Engineering 28, 403–415.

Papamichail, I., Adjiman, C.S., 2002. A rigorous global optimization algorithm for
problems with ordinary differential equations. Journal of Global Optimization 24,
1–33.

Penas, D.R., González, P., Egea, J.A., Doallo, R., Banga, J.R., 2017. Parameter esti-
mation in large-scale systems biology models: a parallel and self-adaptive cooperative
strategy. BMC Bioinformatics 18.

Pérez-Galván, C., Bogle, I.D.L., 2017. Global optimisation for dynamic systems using
interval analysis. Computers & Chemical Engineering 107, 343–356.

Pitt, J.A., Gomoescu, L., Pantelides, C.C., Chachuat, B., Banga, J.R., 2018. Critical
assessment of parameter estimation methods in models of biological oscillators. IFAC-
PapersOnLine 51, 72–75.

Polisetty, P.K., Voit, E.O., Gatzke, E.P., 2006. Identification of metabolic system
parameters using global optimization methods. Theoretical Biology and Medical
Modelling 3, 1–15.

Raue, A., Schilling, M., Bachmann, J., Matteson, A., Schelke, M., Kaschek, D., Hug,
S., Kreutz, C., Harms, B.D., Theis, F.J., Klingmüller, U., Timmer, J., 2013. Lessons
learned from quantitative dynamical modeling in systems biology. PLoS ONE 8,
e74335.

Rodriguez-Fernandez, M., Kucherenko, S., Pantelides, C., Shah, N., 2007. Optimal ex-
perimental design based on global sensitivity analysis, in: Computer Aided Chemical
Engineering. Elsevier. volume 24, pp. 63–68.

Sass, S., Mitsos, A., Bongartz, D., Bell, I.H., Nikolov, N.I., Tsoukalas, A., 2024. A
branch-and-bound algorithm with growing datasets for large-scale parameter estima-
tion. European Journal of Operational Research .

Schittkowski, K., 2002. Numerical Data Fitting in Dynamical Systems. Springer US.

Singer, A.B., Taylor, J.W., Barton, P.I., Green, W.H., 2005. Global dynamic optimiza-
tion for parameter estimation in chemical kinetics. The Journal of Physical Chemistry
A 110, 971–976.

Song, Y., Khan, K.A., 2022. Optimization-based convex relaxations for nonconvex
parametric systems of ordinary differential equations. Mathematical Programming
196, 521–565.

18

Sun, J., Garibaldi, J.M., Hodgman, C., 2011. Parameter estimation using metaheuris-
tics in systems biology: a comprehensive review. IEEE/ACM transactions on com-
putational biology and bioinformatics 9, 185–202.

Tawarmalani, M., Sahinidis, N., 2005. A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming 2, 101–112.

Vassiliadis, V.S., Sargent, R.W., Pantelides, C.C., 1994. Solution of a class of multistage
dynamic optimization problems. 1. problems without path constraints. Industrial &
Engineering Chemistry Research 33, 2111–2122.

Villaverde, A.F., Fröhlich, F., Weindl, D., Hasenauer, J., Banga, J.R., 2018. Bench-
marking optimization methods for parameter estimation in large kinetic models.
Bioinformatics 35, 830–838.

Villaverde, A.F., Henriques, D., Smallbone, K., Bongard, S., Schmid, J., Cicin-Sain, D.,
Crombach, A., Saez-Rodriguez, J., Mauch, K., Balsa-Canto, E., Mendes, P., Jaeger,
J., Banga, J.R., 2015. BioPreDyn-bench: a suite of benchmark problems for dynamic
modelling in systems biology. BMC Systems Biology 9.

Wall, L., Christiansen, T., Orwant, J., 2000. Programming Perl. O’Reilly Media, Inc.

Wilhelm, M.E., Le, A.V., Stuber, M.D., 2019. Global optimization of stiff dynamical
systems. AIChE Journal 65, e16836.

Wodarz, D., Nowak, M.A., 1999. Specific therapy regimes could lead to long-term
immunological control of hiv. Proceedings of the National Academy of Sciences 96,
14464–14469.

Wächter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming
106, 25–57.

Appendix A. Detailed description of the problems

This appendix contains the detailed description of the parameter estimation prob-
lems used in the numerical experiments.

Problem: alpha pinene

ODE system: dx1

dt
= −(p1 + p2)x1

dx2

dt
= p1x1

dx3

dt
= p2x1 − (p3 + p4)x3 + p5x5

dx4

dt
= p3x3

dx5

dt
= −p4x3 + p5x5

Initial conditions: x1(0) = 100, x2(0) = x3(0) = x4(0) = x5(0) = 0.

19

Observed states: yi(t) = xi(t), i = 1, . . . , 5.

Measurements for each observed variable: The time interval considered is
[0, 36900], with 8 measurements at time points 1230, 3060, 4920, 7800, 10680,
15030, 22620, and 36420.

Parameter bounds: 0 ≤ pi ≤ 1, i = 1, . . . , 5..

Problem: BBG

ODE system: dCb

dt
= µmax

CsCb

Ks + Cs

− kdCb

dCs

dt
= −µmax

yield

CsCb

Ks + Cs

Initial conditions: Cb(0) = 2 and Cs(0) = 30.

Observed states: y1(t) = Cb(t) and y2(t) = Cs(t).

Measurements for each observed variable: 7 measurements uniformly dis-
tributed in the interval [0, 12].

Parameter bounds: 0.0001 ≤ pi ≤ 100, i = 1, . . . , 4, where (p1, p2, p3, p4) =
(µmax, Ks, kd, yield).

Problem: FHN

ODE system:
dV

dt
= g

(
V − V 3

3
+R

)
dR

dt
=

1

g
(V − a+ bR)

Initial conditions: V (0) = −1 and R(0) = 1.

Observed states: y1(t) = V (t).

Measurements for each observed variable: 6 measurements uniformly dis-
tributed in the interval [0, 20].

Parameter bounds: 10−5 ≤ pi ≤ 105, i = 1, . . . , 3, where (p1, p2, p3) = (g, a, b).

Problem: harmonic

ODE system: dx1

dt
= −p1x2

dx2

dt
=

1

p2
x1

Initial conditions: 0 ≤ xi(0) ≤ 1.5, i = 1, 2.

20

Observed states: yi(t) = xi(t), i = 1, 2.

Measurements for each observed variable: 10 measurements uniformly dis-
tributed in the interval [0, 2.3].

Parameter bounds: 0.0001 ≤ pi ≤ 10, i = 1, 2.

Problem: Lotka Volterra

ODE system: dr

dt
= k1r − k2rw

dw

dt
= k2rw − k3w

Initial conditions: 90 ≤ r(0) ≤ 110 and 90 ≤ w(0) ≤ 110.

Observed states: Lotka VolterraF Lotka VolterraP

y1(t) = r(t) y1(t) = r(t)
y2(t) = w(t)

Measurements for each observed variable: 20 measurements uniformly dis-
tributed in the interval [0, 1].

Parameter bounds: 0.0001 ≤ pi ≤ 1, i = 1, . . . , 3, where (p1, p2, p3) = (k1, k2, k3).

Problem: daisy mamil

ODE system: dx1

dt
= −(a21 + a31 + a01)x1 + a12x2 + a13x3

dx2

dt
= a21x1 − a12x2

dx3

dt
= a31x1 − a13x3

Initial conditions: −1 ≤ x1(0) ≤ 2

−1 ≤ x2(0) ≤ 2

−1 ≤ x3(0) ≤ 2

Observed states: daisy mamil3F daisy mamil3P

y1(t) = x1(t) y1(t) = x1(t)
y2(t) = x2(t) y2(t) = x2(t)
y3(t) = x3(t)

Measurements for each observed variable: 20 measurements uniformly dis-
tributed in the interval [0, 1].

Parameter bounds: −1 ≤ pi ≤ 2, i = 1, . . . , 5, where (p1, p2, p3, p4, p5) =
(a21, a31, a01, a12, a13).

21

Problem: hiv

ODE system: dx

dt
= −λ− dx− βxv

dy

dt
= βxv − ay

dv

dt
= ky − uv

dw

dt
= cxyw − cqyw − bw

dz

dt
= cqyw − hz

Initial conditions:
0.001 ≤ x(0) ≤ 2

0.001 ≤ y(0) ≤ 2

0.001 ≤ v(0) ≤ 2

0.001 ≤ w(0) ≤ 2

0.001 ≤ z(0) ≤ 2

Observed states: hivF hivP

y1(t) = x(t) y1(t) = x(t)
y2(t) = y(t) y2(t) = y(t) + v(t)
y3(t) = v(t) y3(t) = w(t)
y4(t) = w(t) y4(t) = z(t)
y5(t) = z(t)

Measurements for each observed variable: 20 measurements uniformly dis-
tributed in the interval [0, 10].

Parameter bounds: 0.0001 ≤ pi ≤ 1, i = 1, . . . , 10, where (p1, p2, . . . , p10) =
(λ, d, . . . , h).

Problem: Crauste

ODE system: dN

dt
= µNN − δNENP

dE

dt
= δNENP − µEEE

2 − δELE + ρEEP

dS

dt
= δELS − SδLM − µLLS

2 − µLEES

dM

dt
= δLMS − µMM

dP

dt
= ρPP

2 − µPP − µPEEP − µPLSP

22

Initial conditions: −1.1 ≤ N(0) ≤ 1.1

−1.1 ≤ E(0) ≤ 1.1

−1.1 ≤ S(0) ≤ 1.1

−1.1 ≤ M(0) ≤ 1.1

−1.1 ≤ P (0) ≤ 1.1

Observed states: CrausteF CrausteP

y1(t) = N(t) y1(t) = N(t)
y2(t) = E(t) y2(t) = E(t)
y3(t) = S(t) y3(t) = S(t) +M(t)
y4(t) = M(t) y4(t) = P (t)
y5(t) = P (t)

Measurements for each observed variable: 20 measurements uniformly dis-
tributed in the interval [0, 1].

Parameter bounds: −2 ≤ pi ≤ 2, i = 1, . . . , 13, where (p1, p2, p3, . . . , p13) =
(µN , δNE, µEE, . . . , µPL).

Appendix B. Numerical results: Digging deeper

The goal of this section is to get additional insights from the computational analysis
by by studying different disaggregations of the numerical results. The objective here
is to get a better understanding, not only of the individual elements involved in the
different configurations, but also of any potential interactions between them. For the
sake of exposition, here we only present the top performing configurations, with respect
to FoundR, for each considered disaggregation level.10

The results highlight once again that there is no need to fine tune a specific con-
figuration to be able to successfully solve a given problem, since in most of them the
reference solution is solved with a wide variety of solvers and configurations.

Problem — solver SolvedS FoundR NearR Altern TimeBFR Success

daisy mamil3F — BARONg 0.880 1.000 0.000 0.000 0.076 1.000
daisy mamil3F — Couenneg 1.000 1.000 0.000 0.000 0.220 1.000
harmonic — Octeractg 0.720 0.980 0.020 0.000 1.286 1.000
harmonic — BARONg 0.760 0.960 0.000 0.000 0.143 1.000
daisy mamil3F — BONMINl 1.000 0.960 0.000 0.000 0.046 1.000
daisy mamil3F — CONOPTl 0.000 0.920 0.080 0.000 0.072 1.000
daisy mamil3F — Ipoptl 1.000 0.920 0.000 0.000 0.056 1.000
Lotka VolterraF — BONMINl 1.000 0.900 0.000 0.000 0.038 1.000
Lotka VolterraF — Ipoptl 0.980 0.880 0.000 0.000 0.038 0.980
Lotka VolterraF — BARONg 0.580 0.860 0.000 0.000 0.097 1.000

Table B.7: Summary results by problem and solver.

Table B.7 confirms that daisy mamil3F, harmonic and Lotka VolterraF are the
easiest problems to solve and, moreover, that global optimization solvers seem to be
better at finding the reference solution.

10The full tables are available in the Online Appendix.

23

Problem — scheme SolvedS FoundR NearR Altern TimeBFR Success

Lotka VolterraF — Simpson 0.775 0.988 0.013 0.000 0.028 1.000
Lotka VolterraF — Trapezoid 0.775 0.975 0.025 0.000 0.026 1.000
daisy mamil3F — Euler 0.700 0.925 0.025 0.000 0.029 1.000
daisy mamil3F — Trapezoid 0.750 0.925 0.025 0.000 0.031 1.000
Lotka VolterraF — Adams-Moulton 0.863 0.900 0.013 0.000 0.029 0.912
daisy mamil3F — Simpson 0.725 0.887 0.013 0.000 0.038 0.938
daisy mamil3F — Runge-Kutta 0.750 0.875 0.025 0.013 0.093 0.938
Lotka VolterraF — Runge-Kutta 0.725 0.825 0.050 0.000 0.102 0.900
daisy mamil3F — Adams-Moulton 0.750 0.812 0.025 0.000 0.055 0.950
harmonic — Trapezoid 0.787 0.800 0.000 0.000 0.039 0.950

Table B.8: Summary results by problem and discretization scheme.

Table B.8 shows that, although Euler seems to be the worst performing discretiza-
tion scheme overall, it can be particularly effective for specific problems. In particular,
it is the best performing scheme in daisy mamil3F, tied with Trapezoid.

Problem — form. SolvedS FoundR NearR Altern TimeBFR Success

daisy mamil3F — Baseline 0.725 0.938 0.000 0.000 0.032 0.975
hivF — Baseline 0.838 0.925 0.000 0.000 0.056 0.938
daisy mamil3F — ExtraTol 0.738 0.875 0.056 0.006 0.029 0.956
daisy mamil3F — SoftCons 0.738 0.869 0.000 0.000 0.040 0.969
harmonic — ExtraTol 0.812 0.863 0.000 0.000 0.034 0.981
Lotka VolterraF — SoftCons 0.738 0.844 0.038 0.000 0.026 0.975
Lotka VolterraF — ExtraTol 0.769 0.838 0.019 0.000 0.030 0.963
Lotka VolterraF — Baseline 0.700 0.812 0.000 0.000 0.044 0.925
harmonic — SoftCons 0.619 0.650 0.000 0.000 0.120 0.894
hivF — ExtraTol 0.856 0.644 0.150 0.206 0.033 1.000

Table B.9: Summary results by problem and mathematical programming formulation.

Interestingly, Table B.9 shows that the choice of the mathematical programming
formulation can have a significant impact. Baseline performs extremely well in hivF

and daisy mamil3F problems, finding the reference solutions in more than 90% of the
configurations, whereas the next best performing formulation for hivF is under 65%.
On the other hand, ExtraTol is clearly the best formulation for harmonic, whereas
SoftCons comes out narrowly on top for Lotka VolterraF.11

Table B.10 shows that Trapezoid and is the best performing configuration for global
optimization solvers solvers.

Table B.11 shows that Baseline is often the best performing formulation for the
different optimization solvers, although ExtraTol comes out on top for BARONg and
Ipoptl, for instance.

Finally, regarding the disaggregation by discretization scheme and mathematical
programming formulation, we see in Table B.12 that the configurations with Trapezoid

tend to come out on top and Euler and Runge-Kutta are at the bottom. Moreover, for
all discretization schemes, the configurations with Baseline seem to dominate those
with ExtraTol, which themselves seem to dominate those configurations with SoftCons.

11The Online Appendix contains the full tables.

24

Solver — scheme SolvedS FoundR NearR Altern TimeBFR Success

Couenneg — Trapezoid 0.795 0.591 0.144 0.098 0.138 0.917
BARONg — Trapezoid 0.758 0.576 0.114 0.182 0.078 1.000
BARONg — Adams-Moulton 0.758 0.568 0.129 0.144 0.102 0.985
Knitrol — Trapezoid 0.977 0.530 0.098 0.174 0.026 1.000
Octeractg — Trapezoid 0.568 0.523 0.106 0.167 1.286 0.939
Couenneg — Simpson 0.780 0.523 0.182 0.083 0.148 0.894
BARONg — Simpson 0.689 0.500 0.159 0.167 0.095 1.000
BARONg — Runge-Kutta 0.667 0.485 0.121 0.136 0.306 0.977
Couenneg — Adams-Moulton 0.720 0.477 0.121 0.106 0.236 0.924
BARONg — Euler 0.462 0.462 0.152 0.212 0.076 1.000

Table B.10: Summary results by solver and discretization scheme.

Solver — form. SolvedS FoundR NearR Altern TimeBFR Success

Knitrol — Baseline 0.888 0.576 0.096 0.128 0.032 0.984
BARONg — ExtraTol 0.786 0.572 0.182 0.133 0.076 0.996
Couenneg — Baseline 0.664 0.536 0.096 0.040 0.212 0.784
BONMINl — Baseline 0.856 0.504 0.120 0.024 0.046 0.856
Couenneg — ExtraTol 0.705 0.491 0.158 0.109 0.138 0.849
BARONg — Baseline 0.624 0.488 0.096 0.264 0.134 1.000
BARONg — SoftCons 0.552 0.472 0.100 0.160 0.097 0.984
Octeractg — Baseline 0.616 0.456 0.056 0.176 1.563 0.856
Knitrol — ExtraTol 0.975 0.449 0.168 0.186 0.028 0.993
Ipoptl — ExtraTol 0.902 0.449 0.154 0.175 0.056 0.937

Table B.11: Summary results by solver and mathematical programming formulation.

Scheme – form. SolvedS FoundR NearR Altern TimeBFR Success

Trapezoid — Baseline 0.715 0.530 0.065 0.145 0.032 0.950
Trapezoid — ExtraTol 0.750 0.474 0.125 0.206 0.028 0.950
Adams-Moulton — Baseline 0.700 0.445 0.075 0.145 0.093 0.870
Simpson — Baseline 0.635 0.430 0.105 0.130 0.046 0.870
Adams-Moulton — ExtraTol 0.724 0.425 0.149 0.189 0.041 0.897
Simpson — ExtraTol 0.741 0.419 0.140 0.193 0.037 0.925
Trapezoid — SoftCons 0.695 0.415 0.100 0.160 0.026 0.953
Runge-Kutta — Baseline 0.545 0.405 0.055 0.140 0.106 0.760
Euler — Baseline 0.620 0.395 0.105 0.170 0.032 0.910
Runge-Kutta — ExtraTol 0.664 0.371 0.138 0.189 0.093 0.840

Table B.12: Summary results by discretization scheme and mathematical programming formulation.

25

Appendix C. Graphical representations of the results

Appendix C.1. alpha pinene
ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

Figure C.3: Results for problem alpha pinene.

26

Appendix C.2. harmonic
ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.4: Results for problem harmonic.

27

Appendix C.3. daisy mamil3F

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.5: Results for problem daisy mamil3F.

28

Appendix C.4. daisy mamil3P

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.6: Results for problem daisy mamil3P.

29

Appendix C.5. hivF

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.7: Results for problem hivF.

30

Appendix C.6. hivP

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.8: Results for problem hivP.

31

Appendix C.7. Lotka VolterraF

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.9: Results for problem Lotka VolterraF.

32

Appendix C.8. Lotka VolterraP

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.10: Results for problem Lotka VolterraP.

33

Appendix C.9. FHN
ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.11: Results for problem FHN.

34

Appendix C.10. CrausteF

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.12: Results for problem CrausteF.

35

Appendix C.11. CrausteP

ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.13: Results for problem CrausteP.

36

Appendix C.12. BBG
ti
m
e

distance

(a) Global solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(b) Global solvers: Distance to ref. solution vs error.

ti
m
e

distance

(c) Local solvers: Distance to ref. solution vs time.

lo
g
(e

rr
o
r
+

1
)

distance

(d) Local solvers: Distance to ref. solution vs error.

lo
g
(e

rr
o
r
+

1
)

distance

(e) Global solvers: Distance to ref. solution vs error when
“solved”.

Figure C.14: Results for problem BBG.

37

	1 Introduction
	2 Framework for the analysis
	2.1 Direct transcription approach: Baselineformulation
	2.2 Variations of the mathematical programming model

	3 Setting up the numerical study
	3.1 Pool of parameter estimation problems
	3.2 Configurations of the elements of the computational framework
	3.3 Performance metrics

	4 Numerical results: general overview
	4.1 Results by problem
	4.2 Results by solver
	4.3 Results by discretization scheme
	4.4 Results by mathematical programming formulation
	4.5 Additional disaggregations of the results
	4.6 Running times by problem

	5 Numerical results: local optimality, flatness, and identifiability
	5.1 Multiplicity of local optima
	5.2 Flatness of the objective function
	5.3 Lack of identifiability

	6 Conclusions
	Appendix A Detailed description of the problems
	Appendix B Numerical results: Digging deeper
	Appendix C Graphical representations of the results
	Appendix C.1 alpha pinene
	Appendix C.2 harmonic
	Appendix C.3 daisy mamil3F
	Appendix C.4 daisy mamil3P
	Appendix C.5 hivF
	Appendix C.6 hivP
	Appendix C.7 Lotka VolterraF
	Appendix C.8 Lotka VolterraP
	Appendix C.9 FHN
	Appendix C.10 CrausteF
	Appendix C.11 CrausteP
	Appendix C.12 BBG

