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ABSTRACT		 No	 state	 of	matter	 can	 be	 defined	 categorically	 by	what	 it	 is	 not;	 yet	 spin	

liquids1,2,3	are	often	conjectured	to	exist	based	on	the	nonexistence	of	magnetic	order	as	𝑇 →

0.	An	emerging	concept	designed	to	circumvent	 this	ambiguity	 is	 to	categorically	 identify	

each	 spin	 liquid	 type	 by	 using	 its	 spectrum	 of	 spontaneous	 spin	 noise4,5,6,7,8,9.	 Here	we	

introduce	such	a	spectroscopy	to	spin	liquid	studies	by	considering	Ca10Cr7O28.	This	is	a	spin	

liquid,	 but	 whether	 classical	 or	 quantum	 and	 in	 which	 specific	 state,	 are	 unknown.	 By	

enhancing	the	flux-noise	spectrometry	techniques	introduced	for	magnetic	monopole	noise	

studies10,11,12,	here	we	measure	the	time	and	temperature	dependence	of	spontaneous	flux	

𝛷(𝑡, 𝑇)	and	thus	magnetization	𝑀(𝑡, 𝑇)	of	Ca10Cr7O28	samples.	The	resulting	power	spectral	

density	of	magnetization	noise	𝑆!(𝜔, 𝑇)	along	with	its	correlation	function	𝐶!(𝑡, 𝑇),	reveal	

intense	 spin	 fluctuations	 spanning	 frequencies	 0.1	 Hz	 ≤ 𝜔/2𝜋 ≤ 	50	 kHz,	 and	 that	

𝑆!(𝜔, 𝑇) ∝ 𝜔"#(%)	with	0.84 < 𝛼(𝑇) < 1.04.	Predictions	for	quantum	spin	liquids8,9	yield	a	

frequency-independent	spin-noise	spectrum,	clearly	inconsistent	with	this	phenomenology.	

However,	when	compared	to	Monte	Carlo	simulations	for	a	2D	spiral	spin	liquid	state	that	

are	 accurately	 parameterized	 to	 describe	 Ca10Cr7O28,	 comprehensive	 quantitative	

correspondence	 with	 the	 data	 including	𝑆!(𝜔, 𝑇) ,	𝐶!(𝑡, 𝑇) ,	 and	 magnetization	 variance	

𝜎!' (𝑇)	fingerprint	the	state	of	Ca10Cr7O28	as	a	spiral	spin	liquid.	 	
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In	theory,	spin	liquids	can	occur	in	either	classical1	or	quantum2,3	incarnations.	The	

former	exhibits	massive	ground-state	degeneracy	of	its	spin	configurations,	while	the	latter	

exhibits	 quantum	 entanglement	 of	 its	 localized	 spins	 along	 with	 fractionalized	 spin	

excitations.	Candidate	materials	for	either	of	these	states	are	often	designated	based	on	the	

absence	of	long-range	magnetic	order	when	the	energy	scale	of	magnetic	interactions	greatly	

exceeds	that	of	temperature1,2,3.	But	no	spin	liquid	can	be	identified	conclusively	in	this	way,	

meaning	 that	 innovative	 techniques	are	urgently	 required	 to	 specify	each	material’s	 spin	

liquid	state.	A	promising	new	concept	is	 to	measure	the	unique	spectrum	of	spontaneous	

spin	noise	generated	by	quantum	and	thermal	fluctuations,	thereby	‘fingerprinting’	each	spin	

liquid	state4-9.	For	example,	in	fermionic	atomic	vapours,	the	variance	of	magnetization-noise	

𝜎!' ≡ 〈𝑀'(𝑡)〉	distinguishes	the	Bardeen-Cooper-Schrieffer	superfluid	state	from	the	Bose-

Einstein-Condensate	state	and	from	the	antiferromagnetic	state4.	Or,	for	the	case	of	random	

exchange	 coupling	 Heisenberg	 spin- 1/2 	phases,	 theory	 predicts	 magnetization	 noise	

exhibiting	 𝑆!(𝜔) ∝ 𝜔"# 	with	 0.5 < 𝛼 < 1 	due	 to	 finite	 temperature	 many-body-

localization6.	Finally,	for	a	canonical	U(1)	gapless	quantum	spin	liquid	state	with	a	spinon	

Fermi	surface,	theory	predicts	white	magnetization	noise	for	which	𝑆!(𝜔)	is	a	constant8,9.		

	

The	 utility	 of	 this	 approach	 has	 recently	 been	 demonstrated10,11,12	 for	 case	 of	

emergent	magnetic	monopoles13,14,15	in	 spin-ice	 e.g.	 Dy2Ti2O7.	 There,	 thermally	 activated	

spin	 flips	generate	 emergent	magnetic	monopole	 charges	±𝑚 .	 Generation-recombination	

theory	 for	 these	 monopoles	 then	 predicts	 magnetization	 noise	𝑆!(𝜔, 𝑇) 	= 4𝜎!' (𝑇)𝜏(𝑇)/

(1 + (𝜔𝜏(𝑇))') 	where	 𝜔 	and	 𝑇 	are	 angular	 frequency	 and	 temperature,	 𝜎!' (𝑇) 	is	 the	

magnetization	 variance	 and	 𝜏(𝑇)	 is	 relaxation	 time 16 .	 Congruently,	 Monte	 Carlo	 (MC)	

simulations	from	the	realistic	spin-ice	Hamiltonian17	predict	a	closely	related	magnetization	

noise	spectrum	𝑆!(𝜔, 𝑇) ∝ 𝜏(𝑇)/(1 + (𝜔𝜏(𝑇))()	where	𝑏(𝑇) < 2	because	of	correlations	in	

the	monopole	motion10.	Most	recently,	discovery	of	the	dynamical	fractal	nature	of	monopole	

trajectories12	yielded	the	prediction	 that	𝑆!(𝜔, 𝑇) ∝ 𝜏(𝑇)/(1 + (𝜔𝜏(𝑇))(),	with	𝑏(𝑇) = 1.5	

because	there	are	two	different	possible	microscopic	spin-flip	rates.	By	now,	virtually	all	key	

predictions	 of	 spin	 noise	 theories10,12,16	 specific	 to	 the	 monopole	 dynamics	 in	 spin-ice	

pyrochlores	 have	 been	 borne	 out	 directly	 using	 SQUID-based	 noise	 spectrometry10,11	 in	
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measurements	of	both	𝑆!(𝜔, 𝑇)	and	the	correlation	function	𝐶!(𝑡, 𝑇)	of	Dy2Ti2O7.	Evidently,	

these	achievements	motivate	deployment	of	this	technique	more	generally,	for	spin	liquid	

research.		

	

To	 do	 so	we	study	 Ca10Cr7O2818,19,20,21,22,	 a	quasi-2D	material	 consisting	of	weakly	

coupled	bilayers	(Fig.	1a).	Each	is	a	buckled	kagome	lattice	in	which	the	triangular	plaquettes	

have	 alternating	 sizes19.	 The	 magnetic	 Cr5+	 ions	 have	 a	 six-site	 unit	 cell,	 with	 each	 Cr5+	

located	within	a	distorted	CrO4	tetrahedron	and	having	a	singly	occupied	𝑆 = 1/2	state	(Fig.	

1a).	The	isotropic	magnetic	susceptibility	of	Ca10Cr7O28	exhibits	a	Curie-Weiss	temperature	

𝑇)* = +2.35	K	indicative	of	ferromagnetic	interactions	on	the	𝐽 ≲1	meV	energy	scale20.	The	

zero-field	 magnetic	 specific	 heat	 capacity	𝐶(𝑇) 	has	 a	 broad	maximum	 at	𝑇 ≈3	 K	 with	 a	

sharper	peak	followed	by	precipitous	drop	below	𝑇∗ ≈450	mK	18.	For	𝑇 < 𝑇∗	it	exhibits	an	

approximately	linear	temperature	dependence	𝐶(𝑇) ≅ 𝜂𝑇	22.	Zero-field	muon	spin	rotation	

measurements	 exclude	 magnetic	 order	 down	 to	𝑇 ≈20	 mK	 and	 instead	 evidence	 spin	

fluctuations	 which	 slow	 down	 on	 cooling	 and	 become	 persistent	 below	 T*	 18.	 Inelastic	

neutron-scattering	 detects	 a	 spin	 excitation	 spectrum	𝛴(𝒒, 𝐸) 	lacking	 well-defined	 spin-

wave	modes22	but	with	an	 in-plane,	ring-like	 closed	contour	of	scattering	at	 intermediate	

energies18,20,22.		

	

Two	distinct	spin	liquid	scenarios	have	been	envisioned	to	explain	the	𝑇 < 𝑇∗	state.	

The	first	hypothesis	 is	 that	Ca10Cr7O28	 is	a	quantum	spin	 liquid	(QSL).	No	magnetic	order	

whatsoever	 is	 detected	 at	 temperatures	 down	 to	 𝑇 ≈ 20	 mK,	 thermodynamically,	 by	

elastic/inelastic	 neutron	 scattering,	 or	 by	muon	 spin	 precession.	 The	 relaxation	 rates	 of	

muon	polarization	𝑃(𝑡)	demonstrate	that	the	spins	remain	entirely	dynamic	to	the	same	low	

temperature18.	A	continuum	of	dispersionless	spin	excitations	exists	along	with	a	diffuse	𝒒-

space	ring	of	intense	scattering	at	ℏ𝜔~0.3	meV,	all	confined	to	the	kagome	plane.	Further,	

based	 on	 the	 linear	 temperature	 dependence	 of	 magnetic	 specific	 heat,	 a	 QSL	 with	 Z2	

symmetry	 and	 a	 spinon	 Fermi	 surface	 has	 been	 inferred22.	 Finally,	 pseudo-fermion	

functional	 renormalization	 group	 theory18	 or	 tensor	 network	 theory 23 	both	 indicate	 a	

quantum	 magnetic	 ground	 state.	 The	 principal	 consequent	 hypothesis	 has	 been	 that	

Ca10Cr7O28	is	a	QSL18,19,20,21,22,23.	On	the	other	hand,	it	has	been	conjectured	that	Ca10Cr7O28	is	
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a	spiral	spin	liquid	(SSL).	In	this	state24-37	a	spin	density	wave	occurs	at	wavevector	Q,	during	

each	modulation	of	which	the	spin	direction	undergoes	a	spiral	evolution	(Fig.	1b).	In	a	SSL	

the	 vectorial	 direction	Q	 is	 not	 fixed	 but	 occupies	 a	 continuous	 closed	 contour24,32,34	 in	

reciprocal	space	(Fig.	1b).	Such	systems	with	a	sub-extensive	degeneracy	avoid	long-range	

ordering38 	and	 are	 highly	 distinct	 from	 any	 static	 magnetically	 ordered	 state	with	well-

defined	spin	wave	modes.	The	Ca10Cr7O28	model	of	spin-1/2	on	a	distorted	bilayer	kagome	

can	be	mapped	to	interacting	spin-3/2	on	a	monolayer	honeycomb	lattice	(Fig.	1a),	when	3	

spins	 on	 alternative	 triangular	 plaquettes	 form	 a	 S	 =	 3/2	 state	 by	 ferromagnetic	

interactions22,30,31,	 so	 that	 the	expected	 spin	 behavior	 is	 closer	 to	 the	 classical	 limit.	This	

model	 is	 frustrated	 and	 its	 MC	 simulations	 predict	 a	 SSL	 with	 𝒒 -space	 ring-like	

correlations30,31	consistent	with	 the	 experiment18,20,22.	 Generic	 2D	XY	models	 for	 the	 SSL	

state	further	predict	the	existence	of	a	unique	topological	defect	referred	to	as	a	momentum	

vortex34	which	could	dominate	the	low-energy	physics.	This	defect	occurs	at	a	point	around	

which	the	SSL	continuously	occupies	all	possible	Q-vector	states	on	its	manifold	(Fig.	1c).	MC	

simulations	 predict	 that,	 as	 a	 result	 of	 the	 nonlocality	 of	 these	 topologically	 constrained	

momentum	vortices,	dynamics	slows	as	temperature	is	decreased	and	eventually	reaches	a	

metastable	 configuration.	Consequently,	 the	evolution	 is	 from	a	trivial	paramagnet	 into	a	

‘pancake’	liquid	state	and	eventually	into	a	spiral	spin	liquid,	before	freezing	into	a	vortex	

lattice34.	Thus,	on	the	basis	of	a	non-ordered	dynamic	spin	state,	of	diffuse	spin	correlations	

with	 a	 continuous	 closed	 contour	 of	 more	 intense	 neutron	 scattering,	 Ca10Cr7O28	 is	

hypothesized	to	be	a	SSL30,31,34.	Based	on	the	extant	phenomenology	of	Ca10Cr7O28,	however,	

it	has	not	been	possible	to	distinguish	conclusively	between	these	QSL	and	SSL	scenarios.	

	

To	address	this	challenge	using	techniques	introduced	here,	the	spin	noise	spectra	of	

a	 QSL	 and	 a	 SSL	 state	 are	 required.	 For	 Z2	 and	 U(1)	 QSL,	 Ref.	 8	 predicts	 frequency-

independent	noise	power	spectral	density	𝑆(𝜔) ∝ 𝜔,	in	the	high-temperature	limit	𝜔 ≪ 𝑇	

where	our	studies	are	carried	out	(Methods).	For	SSL	on	the	other	hand	rapid	theoretical	

advances34	have	occurred	recently	using	MC	simulations	based	on	a	generic	XY	model	for	a	

2D	SSL	with	Hamiltonian	

𝐻 = 𝐽- ∑ 𝝑. ∙/.01- 𝝑0 + 𝐽' ∑ 𝝑. ∙/.01' 𝝑0 + 𝐽2 ∑ 𝝑. ∙/.012 𝝑0 		 	 	(1)	
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Here	𝝑. 	represents	XY	spins	constrained	to	lattice	sites	in	a	plane,	and	𝐽-; 𝐽'; 𝐽2	are	the	first,	

second,	and	third	nearest	neighbor	spin	couplings.	For	parameters	𝐽- = −1; 𝐽' > 1 4⁄ ; 𝐽2 =

𝐽' 2⁄ 	this	system	is	a	SSL	exhibiting	a	ground-state	set	of	spiral	density	waves	with	momenta	

Q	 satisfying	 2 cos' 𝑄3 + 2 cos' 𝑄4 + 4cos𝑄3cos𝑄4 = 1 2𝐽''⁄ :	 this	 is	 a	 continuous	 closed	

contour	in	q-space	within	the	first	reciprocal	unit	cell	of	the	lattice	(Fig.	1b).	The	full	details	

of	 our	MC	 simulations	 are	 presented	 in	Methods	 using	 equation	 (1)	with	𝐽- = −1.0; 𝐽' =

0.28; 𝐽2 = 0.14	for	an	array	of	𝑁 = 𝐿 × 𝐿	spins	on	a	square	 lattice	with	periodic	boundary	

conditions.	 Such	 semiclassical	 simulation	 results	 using	 S	 =	 3/2	 for	 Ca10Cr7O28	 are	 well	

supported	 by	 successful	 previous	 studies30,31	 (Methods).	 Equilibration	 of	𝝑(𝒓, 𝑇) ,	 the	 in-

plane	spin	vector	at	each	site	r,	to	temperature	𝑇	uses	an	initial	set	of	𝝑(𝒓)	randomly	selected	

with	uniform	probability.	Examples	of	𝝑(𝒓, 𝑇)	evolution	in	the	equilibration	process	can	be	

visualized	 in	 Supplementary	 Movie	 1	 and	 Movie	 2.	 At	 each	 temperature	 this	 yields	 a	

representative	spin	configuration,	four	typical	examples	of	which	are	shown	for	different	𝑇	

in	Fig.	2a.	This	is	in	excellent	agreement	with	the	evolution	from	a	paramagnet	into	a	pancake	

liquid	state,	thence	to	a	SSL	and	finally	into	a	vortex	lattice	as	first	reported	by	Ref.	34.	

	

Such	 thermalized	 configurations	 (Fig.	 2a)	 subsequently	 initiate	 the	 simulation	 of	

𝝑(𝒓, 𝑡, 𝑇).	 Here,	 the	 system	 is	 evolved	 sequentially	 through	105 	MC	 time-steps	 at	 each	T.	

During	MC	simulations	at	𝑇 ∼ 0.15|𝐽-|	we	find	the	elementary	local	spin	relaxation	process	

occurs	at	a	timescale	∼10	MC	step	(Methods	and	Supplementary	Fig.	3).	High-frequency	AC	

susceptibility	experiments	yield	a	semicircular	Cole-Cole	plot	indicating	a	microscopic	spin	

relaxation	 time	 corresponding	 to	∼ 10	𝜇s 	18.	 Hence	 setting	 each	 MC	 step	 to	 𝜏 = 1	𝜇 s	

simulates	a	microscopic	relaxation	time	consistent	with	empirical	observations;	we	then	use	

a	 total	 MC	 simulation	 run	 time	𝛤 =	10	 s.	 From	 these	 data,	 we	 predict	 the	 spin	 noise	

fingerprint	of	 the	SSL	by	calculating	 the	𝑥,	𝑦-	 components	of	 the	average	spin	�̅�3,4(𝑡, 𝑇) =
-
7
∑ 𝜗3,4(𝒓, 𝑡, 𝑇)𝒓 	versus	time,	with	typical	examples	shown	in	Fig.	2b	and	Supplementary	Fig.	

2a.	 Most	 importantly,	 the	 power	 spectral	 density	 of	 SSL	 spin	 noise	 is	 calculated	 from	

𝑆9:!,#h𝜔0 , 𝑇i =
-
;<
j𝛥𝑡 ∑ 𝑒".=$>%�̅�3,4(𝑡? , 𝑇)@"-

?A, j'	,	where	Δ𝑡	is	time	interval	and	𝐾 = 𝛤/Δ𝑡,	with	

typical	results	shown	in	Fig.	2c	and	Supplementary	Fig.	2b.	With	falling	temperatures	below	

𝑇 = 0.15|𝐽-| ,	 it	 shows	 strong	 low-frequency	 noise	 down	 to	 at	 least	𝜔/2𝜋 = 	1	 Hz	 that	

https://drive.google.com/file/d/1i2IZw-XrWdk9z-XRuwLkqsCnabx9idTr/view?usp=sharing
https://drive.google.com/file/d/1i1BKRHSj4cAH3cxasQDrUQmCA4irl14P/view?usp=sharing
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diminishes	continuously	in	power.	The	correlation	function	of	this	SSL	noise	is	𝐶9:!,#(𝑡? , 𝑇) =

-
B&'(

∑ �̅�3,4(𝑡B , 𝑇)	�̅�3,4(𝑡B + 𝑡? , 𝑇)
B&'("-
BA, 	where	 𝑡? = 𝑘Δ𝑡 	and	 𝑙CDE = 9 × 10F ;	 its	 typical	

temperature	dependence	 is	 shown	 in	Fig.	 2d	 and	Supplementary	Fig.	 2c.	Well	 above	𝑇 =

0.15|𝐽-|,	the	correlations	are	exponential	in	time	indicating	a	single	microscopic	relaxation	

rate.	 As	 temperature	 falls	 further	 this	 crosses	 over	 to	 a	 correlation	 function	 nearly	

𝐶9:!,#(𝑡, 𝑇) ∝ − ln 𝑡.	To	predict	the	temperature	dependence	of	SSL	noise	power-law	𝛼(𝑇),	the	

𝑆9:!,#(𝜔, 𝑇)	is	fitted	by	a	function	𝐴(𝑇)𝜔
"#(%)	in	the	frequency	range	1	Hz ≤ 𝜔/2𝜋 ≤ 500	Hz	

below	𝑇 = 0.15|𝐽-| 	(Supplementary	 Fig.	 1b	 and	 Supplementary	 Fig.	 2d),	 with	 the	 result	

shown	in	Fig.	2e	that	𝛼(𝑇) ≈ 1.2 ± 0.1	at	the	lowest	temperature.	Finally,	the	power-law	𝛽	

of	 the	 SSL	 noise	 variance	𝜎9:!,#
' (𝑇) ∝ 𝑇G 	below	𝑇 = 0.15|𝐽-| 	is	 predicted	 in	 Fig.	 2f	 using	

𝜎9:!,#
' (𝑇) = -

@
∑ �̅�3,4' (𝑡? , 𝑇)@"-
?A, − x-

@
∑ �̅�3,4(𝑡? , 𝑇)@"-
?A, y

'
.	The	noise	variance	rapidly	grows	down	

to	𝑇 = 0.15|𝐽-|,	then	declines	approximately	as	𝑇'.F.	To	summarize,	our	MC	simulation	using	

equation	 (1)	 predicts	 that,	 for	𝑇 ≤ 0.15|𝐽-| ,	 the	 noise	 spectrum	 of	 a	 generic	 2D	 SSL	 has	

powerful	 spin	 fluctuations	at	 least	 from	1	Hz	 to	500	Hz,	a	 scale-invariant	power	spectral	

density	 𝑆9:!,#(𝜔, 𝑇) ∝ 𝜔
"-.'±,.- ,	 correlation	 functions	 𝐶9:!,#(𝑡, 𝑇) ∝ − ln 𝑡 ,	 and	 a	 noise	

variance	𝜎9:!,#
' (𝑇)	diminishing	approximately	as	𝑇'.F.	

	

To	explore	these	predictions,	we	perform	SQUID-based	flux-noise	spectrometry10,11	

achieving	magnetic	field	sensitivity	approaching	𝜇,𝛿𝑀 ≤ 10"-J T √Hz⁄ 	(Fig.	3a),	and	using	

cryogen-free	 ultra-low-vibration	 refrigerators	 in	 the	 range	 10	mK ≤ 𝑇 ≤ 5000	mK	

(Methods).	 The	 time-sequence	 of	 the	 magnetic	 flux	 𝛷(𝑡) 	generated	 by	 the	 sample	

magnetization	𝑀(𝑡) = 𝑐𝛷(𝑡)	within	the	pickup	coil	is	measured	with	microsecond	precision	

via	a	persistent	superconducting	circuit	that	transforms	it	into	the	flux	𝛷K(𝑡)	at	the	SQUID	

input	coil	as	

𝛷K(𝑡) = (ℳi/(𝐿p + 𝐿i))𝛷(𝑡) = (ℳi/(𝐿p + 𝐿i))𝑐"-𝑀(𝑡) ≡ 𝑐K"-𝑀(𝑡)	 	 (2)	

Here	𝐿L 	is	 a	 pickup	 coil	 inductance,	𝐿M 	is	 a	 SQUID-input	 coil	 inductance,	ℳM 	is	 a	 mutual	

inductance	between	the	SQUID	and	its	input	coil,	and	𝑐K	is	a	constant	set	by	the	geometry	of	
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each	 pickup	 coil	 (Fig.	 3a).	 Hence,	 the	 output	 voltage	 of	 the	 SQUID	𝑉K(𝑡) 	is	 related	 to	

magnetization	𝑀(𝑡)	as	

𝑉N(𝑡) = 𝑔𝛷K(𝑡) = 𝑔𝑐K"-𝑀(𝑡) ≡ 𝑎"-𝑀(𝑡)	 	 	 	 	(3)	

where	𝑔	is	 the	total	gain	of	 the	electronics.	For	a	given	experiment,	 the	value	of	𝑎	can	be	

calibrated	 accurately	 (Methods).	 The	 time-sequences	 of	 magnetization	 fluctuations	 are	

recorded	from	𝑉K(𝑡)	at	each	temperature	T	as	𝑀(𝑡, 𝑇) = 𝑎𝑉K(𝑡, 𝑇)	from	whence	 the	power	

spectral	density	of	magnetization	noise	𝑆!(𝜔, 𝑇) ≡ 𝑎'𝑆O)(𝜔, 𝑇)	can	be	derived.	

	

Our	 Ca10Cr7O28	 samples	 are	 prepared	 by	 the	 traveling-solvent-floating-zone	

method19.	The	lattice	structure	 is	confirmed	by	x-ray	Laue	diffraction,	and	Curie-Weiss	fit	

𝜒 = 	𝜒, +
P*+,-(
%"%*.

	of	the	DC	magnetic	susceptibility	in	the	temperature	range	50-250	K	yields	

the	Curie-Weiss	temperature	𝑇)* = +2.6	K	and	an	effective	magnetic	moment	𝜇EQQ	≈	1.69𝜇R	

(Methods	and	Supplementary	Fig.	4b)	20.	Typical	examples	of	the	mm-scale	Ca10Cr7O28	single	

crystals	studied	are	shown	in	Supplementary	Fig.	4a.	The	experimental	setup	is	integrated	

into	either	a	cryogen-free	3He	refrigerator		or	a	cryogen-free	3He/4He	dilution	refrigerator,	

both	 configured	 for	 ultra-low	 vibrations,	 spanning	 the	 temperature	 range	 10	 mK	≤ 𝑇 ≤	

5000	mK.	Immediately	upon	commencing	these	experiments	we	discovered	that	Ca10Cr7O28	

generates	powerful	magnetization	noise.	Figure	3b	shows	exemplary	time-sequences	of	the	

measured	magnetic	 flux	𝛷(𝑡, 𝑇)	generated	 by	 Ca10Cr7O28	 for	 eight	 selected	 temperatures	

demonstrating	 the	 intense	 magnetization	 amplitude	 fluctuations	 approaching	 nT	

amplitudes.	These	data	are	digitized	by	an	effective	16-bit	analog-to-digital	converter	with	

acquisition	time	interval	of	minimum	𝛥𝑡 = 𝑡?S- − 𝑡? = 1	𝜇s,	yielding	a	sequence	of	values	

𝛷(𝑡?, 𝑇)	over	a	continuous	time	epoch	𝛤.	From	this	we	derive	the	power	spectral	density	

𝑆Th𝜔0 , 𝑇i ≡
-
;<
j𝛥𝑡 ∑ 𝑒".=$>%𝛷(𝑡? , 𝑇)@"-

?A, j'.	 	 	 	 (4)	

and	consequently	𝑆!(𝜔, 𝑇) = 𝑐'𝑆T(𝜔, 𝑇).	Next	we	carry	out	a	 sequence	of	measurements	

consisting	of	varying	the	sample	temperature	from	100	mK	to	800	mK	in	steps	of	50	or	100	

mK	 and	measuring	𝛷(𝑡?, 𝑇)	with	𝛤 =1000	 s	at	 each	 temperature.	 From	 that	 data	 set	 the	

𝑆T(𝜔, 𝑇)	for	the	temperature	range	100	mK	≤ 𝑇 ≤	800	mK	are	derived	using	equation	(4).	

These	𝑆T(𝜔, 𝑇) 	spectra	 at	𝑇 ≤ 𝑇∗ 	are	 shown	 in	 Fig.	 4a	 in	 the	 frequency	 range	 0.1	 Hz	≤

𝜔/2𝜋 ≤	500	Hz.	The	full	temperature	range	and	full	frequency	up	to	50	kHz	are	shown	in	
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Supplementary	Fig.	6a	and	Supplementary	Fig.	7.	The	equivalent	power	spectral	density	of	

magnetization	noise	𝑆!(𝜔, 𝑇)	in	units	of	Tesla	(𝑀 = 𝐵/𝜇,)	is	 shown	at	 right.	Even	at	 this	

elementary	 stage,	 the	 phenomenology	 of	 Ca10Cr7O28	 appears	 quite	 remarkable	 because	

powerful	 fluctuations	 in	 the	 spin-1/2	 magnetization	 of	 a	 mm-scale	 sample	 are	

spontaneously	 generating	magnetic	 fields	 approaching	10"-, 	T	 and	 occur	 in	 a	 frequency	

range	0.1	Hz	≤ 𝜔/2𝜋 ≤	50	kHz.	Most	profoundly,	the	𝑆!(𝜔, 𝑇)	is	obviously	scale	invariant	

𝑆!(𝜔, 𝑇) 	∝ 𝜔"#(%),	and	the	noise	power	diminishes	precipitously	below	𝑇∗	(Fig.	4a).		

	

We	 also	 measure	 the	 Ca10Cr7O28	 magnetic	 susceptibility	 χ(𝜔, 𝑇) ≡ U/!(=,%)
V(=)

=

𝜒W(𝜔, 𝑇) + 𝑖𝜒WW(𝜔, 𝑇)	 simultaneously	 with	 𝑆!(𝜔, 𝑇) 	(Methods).	 The	 primary	

superconductive	coil	applies	homogeneous	axial	AC	magnetic	fields	𝐵(𝜔),	whose	flux	does	

not	reach	the	SQUID	due	to	the	balanced	astatic	pair	of	coils	in	the	flux	pickup	system	(Fig.	

3a).	If	the	fluctuation-dissipation	theorem	holds	for	the	spin	liquid	(as	it	would	not	for	a	spin	

glass)	 then	χWW(𝜔, 𝑇)	should	equal	𝜋𝑉𝜇,𝜔𝑆!(𝜔, 𝑇)/2𝑘R𝑇 	where	𝑉 	is	 the	 sample	 volume39 .	

The	simultaneously	measured	values	of	𝜋𝑉𝜇,𝜔𝑆!(𝜔, 𝑇)/2𝑘R𝑇,	plotted	versus	χWW(𝜔, 𝑇)	over	

the	 range	 100	 mK 	≤ 𝑇 ≤	500	 mK,	 are	 presented	 in	 Fig.	 3c.	 Evidently,	 the	 fluctuation-

dissipation	 theorem	holds	 and	 dynamical	 equilibrium	 is	maintained	 throughout	 the	 spin	

liquid	state	of	Ca10Cr7O28	at	 temperatures	𝑇 ≪ 𝑇∗.	Another	 characterization	technique	 for	

magnetization	noise	is	the	correlation	function	𝐶T(𝑡, 𝑇)	which	is	evaluated	directly	from	

𝐶T(𝑡? , 𝑇) =
-
B&'(

∑ 𝛷(𝑡B , 𝑇)𝛷(𝑡B + 𝑡? , 𝑇)
B&'("-
BA, .	 	 	 	 (5)	

The	 normalized	 correlation	 function	 𝐶T(𝑡, 𝑇)/𝐶T(𝑡 = 0, 𝑇) 	is	 shown	 in	 Fig.	 4b.	 As	

temperature	 is	 lowered,	 the	 enhanced	 spin	 correlation	 grows	 becoming	𝐶T(𝑡, 𝑇)/𝐶T(𝑡 =

0, 𝑇) ∼ − ln 𝑡	below	𝑇∗.	Such	a	logarithmic	decay	of	correlation	function	is	quite	distinct	from	

that	of	any	system	with	a	single	relaxation	time	where	𝐶T(𝑡, 𝑇) 𝐶T(𝑡 = 0, 𝑇)⁄ = exp(−𝑡/𝜏),	

and	can	imply	a	distribution	of	microscopic	relaxation	times	with	probabilities40	𝑝(𝜏) ∝ 1/𝜏.		

	

Figure	 4a	 presents	 the	 measured	 power	 spectral	 density	 of	 flux	 noise	 𝑆T(𝜔, 𝑇)	

generated	by	Ca10Cr7O28	samples	for	the	temperature	range	100	mK	≤ 𝑇 ≤	400	mK.	These	

𝑆T(𝜔, 𝑇) 	data	 may	 be	 compared	 to	 Fig.	 2c.	 The	measured	 correlation	 function	𝐶T(𝑡, 𝑇)/

𝐶T(0, 𝑇)	of	flux	noise	generated	by	Ca10Cr7O28	for	100	mK	≤ 𝑇 ≤	800	mK	in	Fig.	4b	may	be	
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compared	with	Fig.	 2d.	 In	Fig.	 4c,	 the	upper	panel	 shows	contour	 plots	 of	 overall	 power	

spectral	density	of	flux	noise	𝑆T(𝜔, 𝑇)	generated	by	Ca10Cr7O28	samples	for	the	temperature	

range	100	mK	≤ 𝑇 ≤	800	mK	while	the	lower	presents	𝐶T(𝑡, 𝑇)/𝐶T(0, 𝑇)	for	the	same	range.	

The	magnitude	 of	 power	 spectral	 density	 grows	 slowly	 down	 to	𝑇∗and	 then	 diminishes	

rapidly	 below	 that.	 The	 coincidence	 of	 the	 crossover	 temperature	𝑇∗ 	indicates	 that	 the	

observed	spin	noise	and	its	crossover	have	the	same	origin	as	that	of	susceptibility18,	specific	

heat18,22,	 and	muon	spin	 rotation	phenomenology18.	Figure	4d	 shows	 the	measured	noise	

power-law	 index	 𝛼(𝑇) 	obtained	 by	 fitting	 data	 in	 Fig.	 4a	 to	 the	 function	 𝑆T(𝜔, 𝑇) =

𝐴(𝑇)𝜔"#(%)	in	the	range	0.1	Hz	≤ 𝜔/2𝜋 ≤	20	Hz	(Supplementary	Fig.	6b)	and	this	is	to	be	

compared	with	Fig.	2e.	Finally	in	Fig.	4e	we	show	the	measured	temperature	dependence	of	

flux	 noise	 variance	 𝜎T'(𝑇)	 derived	 from	 Fig.	 3b,	 showing	 a	 crossover	 peak	 at	 𝑇∗ 	and	

diminution	 with	 power-law	 index	 𝛽 ≈ 2.3 ± 0.1 ;	 these	 data	 can	 be	 compared	 to	 the	

predicted	temperature	dependence	of	SSL	noise	variance	𝜎9:
'(𝑇)	in	Fig.	2f.		

	

	 There	is	wide-ranging	agreement	between	predictions	of	SSL	noise	phenomena	in	Fig.	

2	and	 the	data	 in	Fig.	4.	Firstly,	magnetic	 field	 fluctuations	near	10"-,	T	occur	 in	a	broad	

frequency	range	at	least	from	1	Hz	≤ 𝜔/2𝜋 ≤	50	kHz.	Secondly,	the	spin	noise	correlation	

function	decays	with	a	distinct	form	𝐶(𝑡) ∼ − ln 𝑡.	Thirdly,	the	frequency	power-law	index	

of	 the	 spectral	 density	𝛼(𝑇) 	reaches	 a	 value	 close	 to	 1	 at	 low	 temperatures.	 Finally,	 the	

magnetization	noise	variance	grows	upon	cooling	but	then	diminishes	below	the	crossover	

T*	with	power-law	index	𝛽 ≈ 2.5.	On	the	other	hand,	the	observed	power	spectral	density	

characteristics	are	quite	distinct	from	the	𝑆(𝜔) ∝ 𝜔,	(𝛼(𝑇) = 0)	as	predicted	for	Z2	and	U(1)	

QSLs8,9.	 Moreover,	 no	 spin	 noise	 theory	 based	 upon	 quenched	 disorder5,6,8	 exhibits	 the	

combined	 phenomenology	 of	 temperature	 and	 frequency	 dependence	 observed	 here	 in	

Ca10Cr7O28	 spin	 noise.	 Thus	 the	 excellent	 quantitative	 correspondence	 between	 the	 SSL	

simulations	and	the	spin	noise	data,	including	for	𝑆!(𝜔, 𝑇),	𝐶!(𝑡, 𝑇)	and	𝜎!' (𝑇)	over	orders	

of	magnitude	in	frequency	evidently	identifies	the	state	of	Ca10Cr7O28	as	a	spiral	spin	liquid.	

More	broadly,	the	spin	noise	spectroscopy	technique	introduced	here	can	be	applied	to	the	

identification	of	other	spin	liquids,	opening	a	completely	new	avenue	for	spin	liquid	research.		 	
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FIGURES	
Fig. 1 Ca10Cr7O28 spiral spin liquid and momentum vortex  
a. Left: Schematic of the Ca10Cr7O28 distorted bilayer kagome lattice. Each Cr5+ ion hosts 

spin-1/2 under a tetragonal crystal field. The six Cr5+ spin-1/2 states per unit cell occur 

at the sites shown. Right: Three spins on a triangular plaquette on each layer are 

bound by a strong ferromagnetic interaction, and they form a frustrated spin-3/2 on a 

monolayer honeycomb network with ferromagnetic nearest-neighbor and 

antiferromagnetic next-nearest-neighbor interactions31. 

b. Left: schematic of a spiral spin density wave in which the angle to the 𝑥-axis of the 

spin vector 𝝑  at point 𝒓  is 𝜃(𝒓).  In a SSL, the spin density wave ground-state 

wavevector 𝑸	indicated by a black arrow is free to point at any in-plane angle 𝛩. The 

arrangement shown here is of a unique topological defect referred to as momentum 

vortex, such that the line-integral on any trajectory surrounding the symmetry point is 

∮𝛁𝛩 ∙ 𝑑𝒍 = 2𝜋. Right: contours of degenerate ground-state wavevector 𝑸 in the plane 

for different parameterizations of the Hamiltonian equation (1). 

c. Schematic images of 𝜃(𝒓) for three simple cases. Left: a topological defect-free spiral 

spin density wave. Center: a simple momentum vortex fixed at the origin. Right: a 

simple momentum anti-vortex. 

 

Fig. 2 MC simulations of spiral spin liquid noise for Ca10Cr7O28 relevant parameters  
a. MC simulations of a snapshot of 𝜃(𝒓) on the SSL model of equation (1) and Ref. 34 

using a square lattice with 𝑁	 = 	100 × 100 sites 𝒓, each site with an in-plane spin unit 

vector 𝝑(𝒓). Each snapshot is for a different temperature so that this sequence of SSL 

simulation snapshots is for approximately 𝑇	 =	0.5|𝐽-|, 0.1|𝐽-|, 0.05|𝐽-| and 0.005|𝐽-|. 

While the spins point random directions in a paramagnet state at high temperature, 

they become spatially correlated at 𝑇 =0.1|𝐽-| corresponding to a pancake liquid state. 

At 𝑇 =0.05|𝐽-|, the system is in a spiral spin liquid state with spiral domains and 

momentum vortices, which become clearer and more rigid upon further cooling34. 

Examples of these results are demonstrated in Supplementary Movies 1 and 2. 

b. MC predicted time sequence of average 𝑥-component spin �̅�3(𝑡, 𝑇) =
-
7
∑ 𝜗3𝒓 (𝒓, 𝑡, 𝑇) 

at eight temperatures for 𝑁 = 40 × 40 sites. The average spin fluctuates at a second 
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timescale and the amplitude of low-frequency noise grows as the system is cooled 

down to 𝑇 =0.15|𝐽-|. Below 𝑇 =0.15|𝐽-| the noise amplitude gradually diminishes. We 

take 1 MC time step to be 𝜏 = 1	𝜇s. �̅�3(𝑡, 𝑇) is down sampled for visual clarity to every 

500 MC steps so that time intervals shown here are 500𝜏 = 500	𝜇s. The frequency 

component above 1 kHz is filtered out. The magnitude of magnetization noise 

estimated as described in Methods is indicated by the bar on the right. The simulated 

�̅�4(𝑡, 𝑇) results are statistically equivalent as shown in Supplementary Fig. 2a. 

c. From the time sequences �̅�3(𝑡, 𝑇)  described in b, the power spectral density of 

simulated SSL noise 𝑆9:!(ω, 𝑇)	is derived as a function of temperature 𝑇 and shown 

for seven selected temperatures. Again we take 1 MC time step to be 𝜏 = 1	𝜇s. Here 

the error bars are the standard error of the independent MC simulation runs. The 

anticipated power spectral density of magnetization noise 𝑆!(ω, 𝑇)	is shown on the 

right-hand axis as estimated from calculations described in Methods. The spectrum 

shows a powerful low-frequency noise down to 𝜔/2𝜋 = 1 Hz with a diminishing power 

below 𝑇 = 0.15|𝐽-|. An example of fitted 𝜔"# 	 line (gray) is drawn and obtained 𝛼 

values are plotted in e. 

d. From the time sequences �̅�3(𝑡, 𝑇) described in b, the correlation function of simulated 

SSL noise 𝐶9:!(𝑡, 𝑇)/𝐶9:!(0, 𝑇) is derived. The gray dashed lines are an exemplary 

− ln 𝑡 curve (1 − 0.15 ln(𝑡	(ms))) and e"> curve (𝑒",.-2(>	(YZ))). 

e. By fitting the power spectral density of simulated SSL noise to 𝑆9:!,#(ω, 𝑇) ∝ 	𝜔
"#(%), 

the SSL noise power-law 𝛼(𝑇) is derived and found to be 𝛼(𝑇) ≈ 1.2 at the lowest 

temperature. 

f. From the time sequences �̅�3,4(𝑡, 𝑇)  in b, the variance of simulated SSL noise 

𝜎9:!,#
' (𝑇) is presented. The variance peaks around 𝑇 = 0.15|𝐽-|  and diminishes 

approximately as 𝑇'.F (blue line). 

 
Fig. 3 Spin noise measurements in Ca10Cr7O28  
a. Conceptual design of our spin noise spectrometer based on high-precision and high-

bandwidth SQUID sensing of time dependent flux 𝛷(𝑡) generated by the Ca10Cr7O28 
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sample in the compensated superconductive pickup coil connected persistently to the 

SQUID input coil.   

b. Eight typical time-sequences of the measured magnetic flux 𝛷(𝑡)  generated by 

Ca10Cr7O28 at 100	mK ≤ 𝑇 ≤ 800	mK. The plotted datapoints are down sampled to 

every 500 𝜇s  for visual clarity. The frequency above 1 kHz is filtered out. The 

equivalent spontaneous magnetization noise at the sample 𝜇,𝑀(𝑡) is very intense, 

reaching almost the nT scale.  

c. Simultaneously measured magnetization noise power spectral density 𝑆!(𝜔, 𝑇) and 

imaginary part of AC susceptibility 𝜒WW(𝜔, 𝑇) of Ca10Cr7O28 plotted as 𝜋𝑉𝜇,𝜔𝑆!(𝜔, 𝑇)/

2𝑘R𝑇  versus 𝜒WW(𝜔, 𝑇)  over the frequency range 0.1	Hz ≤ 𝜔/2𝜋 ≤ 100	Hz  and 

temperature range 100	mK ≤ 𝑇 ≤ 500	mK . This indicates that the fluctuation-

dissipation theorem χWW(𝜔, 𝑇) = 𝜋𝑉𝜇,𝜔𝑆!(𝜔, 𝑇)/2𝑘R𝑇 is predominantly valid, and that 

the spin liquid state in Ca10Cr7O28 remains in dynamical equilibrium throughout.  

 

Fig. 4 Spiral spin liquid noise of Ca10Cr7O28 
a. Typical measured power spectral density of flux noise 𝑆T(𝜔, 𝑇)  generated by 

Ca10Cr7O28 samples for the temperature range 100	mK ≤ 𝑇 ≤ 400	mK. Here the error 

bars are the standard error of separated segments (Methods). The noise spans a 

broad frequency range of at least 0.1 Hz ≤ 𝜔/2𝜋 ≤ 500 Hz. The equivalent power 

spectral density of magnetization noise at the sample 𝑆!(𝜔, 𝑇) is presented in units of 

Tesla on right hand axis. An example of fitted 𝜔"#	line (gray) is shown and obtained 

𝛼 is plotted in d. These data may be compared to the expected SSL spin noise spectra 

predicted in Fig. 2c. 

b. Measured normalized correlation function 𝐶T(𝑡, 𝑇)/𝐶T(0, 𝑇)  of flux noise 𝛷(𝑡) 

generated by Ca10Cr7O28 for the temperature range 100	mK ≤ 𝑇 ≤ 800	mK. The gray 

dashed line is an exemplary − ln 𝑡 curve (1	 − 0.14 ln(𝑡 	(ms))). This may be compared 

with the expected temperature dependence of SSL correlation functions predicted in 

Fig. 2d. 

c. Top: overall power spectral density of flux noise 𝑆T(𝜔, 𝑇) generated by Ca10Cr7O28 

samples for the temperature range 100	mK ≤ 𝑇 ≤ 800	mK. The noise power is the 

strongest at 𝜔/2𝜋 = 0.1 Hz around 400 mK and gradually declines as the temperature 
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gets away and frequency gets higher. Bottom: evolution of 𝐶T(𝑡, 𝑇)/𝐶T(0, 𝑇) for the 

magnetic flux noise 𝛷(𝑡) generated by Ca10Cr7O28 at 100	mK ≤ 𝑇 ≤ 800	mK. 

d. Measured noise power-law index 𝛼(𝑇)  obtained by fitting power spectral density 

𝑆T(𝜔, 𝑇) = 𝐴(𝑇)𝜔"#(%) in the range 0.1	Hz	 ≤ 𝜔/2𝜋 ≤ 	20	Hz. This is to be compared 

with the expected temperature dependence of SSL noise power law index predicted 

in Fig. 2e. 

e. Temperature dependence of measured flux noise variance 𝜎T'(𝑇)  calculated from 

time-series in Fig. 3b showing a crossover peak around 𝑇∗ ∼ 450 mK. The equivalent 

magnetization noise variance 𝜎!' (𝑇)	is on the right axis. The noise diminishes for 𝑇 ≤

300 mK with an approximate power law 𝑇'.2 (blue line). These data can be compared 

to the expected temperature dependence of SSL noise variance 𝜎9:
'(𝑇) as predicted 

in Fig. 2f.	 	
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Methods:	
	

Quantum	spin	liquid	noise	theory	

‘Fingerprinting’	 quantum	 spin	 liquids	 may,	 in	 theory,	 be	 achieved	 using	 their	 unique	

spectrum	of	spontaneous	spin	noise.	For	example,	Ref.	8	of	the	main	text	predicts	spin	noise	

spectra	 of	 various	 quantum	 spin	 liquids	 in	 different	 parameter	 regimes.	 A	 separate	

prediction	is	made	for	𝜔 ≪ 𝑇	and	𝜔 ≫ 𝑇	,	and	the	𝜔 ≪ 𝑇	regime	is,	at	present,	more	relevant	

for	 our	 SQUID-based	 spin	 noise	 spectrometry.	 Another	 parameter	 controlling	 the	 noise	

spectrum	 is	𝑑𝜔/𝑣 ,	 where	𝑑 	and	𝑣 	are	 the	 measured	 length	 scale	 and	 spinon	 velocity,	

respectively.	 	 In	 the	𝜔 ≪ 𝑇 	and	𝑑𝜔/𝑣 ≪ 1	regime	more	 relevant	 for	 our	 experiment,	 the	

power	spectral	density	𝑆(𝜔, 𝑇)	is	predicted	 to	be	 frequency-independent	𝑆(𝜔, 𝑇) ∝ 𝜔, 	for	

both	Z2	Dirac,	Z2	Fermi	surface,	and	U(1)	Fermi	surface	quantum	spin	liquids,	with	different	

temperature	dependences8,9.		

	

Simulating	time	evolution	of	spins	𝜽𝒊(𝒕)	in	a	spiral	spin	liquid	model	

A	classical	Monte	Carlo	(MC)	simulation,	based	on	a	generic	XY	model	for	a	2D	spiral	spin	

liquid	(equation	(1))	with	𝐽- = −1; 𝐽' = 0.28; 𝐽2 = 0.14,	was	performed	for	𝑁 = 𝐿 × 𝐿	spins	

on	a	square	lattice	with	a	periodic	boundary	condition.	The	equilibrated	spin	configuration	

at	each	temperature	was	prepared	by	annealing	from	high	temperature.	The	initial	direction	

of	the	spins	was	randomly	selected	with	a	uniform	probability.	The	system	was	cooled	down	

from	𝑇 = 	2|𝐽-| 	to	 0.005|𝐽-| 	via	 a	 step-by-step	 equilibration	 at	 selected	 temperatures	𝑇 =

2 × 0.95\|𝐽-|	where	0 ≤ 𝑟 ≤ 117	(exponential	cooling	protocol).		

Following	Ref.	34,	two	types	of	Monte	Carlo	updates	were	used	to	equilibrate	the	system.	

The	first	update	is	the	standard	Metropolis	algorithm.	A	randomly	selected	spin	attempts	to	

flip	to	a	new	direction	that	is	chosen	with	a	uniform	probability,	and	the	flip	is	accepted	with	

a	probability	of	min(1, 𝑒"]^/%)	where	Δ𝐸	is	the	change	of	total	energy	caused	by	the	flip.	The	

second	used	update	is	the	over-relaxation	update.	A	randomly	selected	spin	𝝑. 	is	reflected	

about	a	local	exchange	field	𝑯. = ∑ 𝐽.00 𝝑0 ,	which	is	an	energy	conservation	process	that	is	

empirically	known	to	accelerate	the	equilibration	process41.	One-third	of	 the	Monte	Carlo	
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updates	are	carried	out	by	the	Metropolis	update,	each	of	which	is	 followed	by	two	over-

relaxation	updates.	

	One	 MC	 step	 consists	 of	𝑁 	MC	 updates.	5 × 10J 	MC	 steps	 are	 performed	 at	 each	

temperature,	amounting	to	a	total	of	6 × 10`	MC	steps.	We	performed	equilibration	for	two	

system	sizes	L	=	100	and	L	=	40.	In	Supplementary	Movie	1	(L	=	100)	and	Movie	2	(L	=	40),	

the	 equilibration	 process	 from	 𝑇 = 	2 |𝐽-| 	to	 0.005 |𝐽-| 	is	 visualized.	 The	 final	 spin	

configuration	at	each	temperature	is	recorded	as	an	equilibrated	state.		

Starting	 from	 the	 obtained	 equilibrated	 spin	 configuration	 at	 each	 temperature,	 we	

simulated	the	time	evolution	of	the	spins.	107	MC	steps	consisting	only	of	Metropolis	updates	

are	performed	for	the	L	=	40	system	at	each	temperature.	We	set	one	MC	step	to	𝜏 = 1	𝜇s	as	

discussed	in	the	section	’Comparing	the	simulation	to	a	realistic	system’,	making	the	total	

time	of	simulation	𝛤 = 10	s.		

The	time	evolution	of	average	spin	x-	and	y-components	�̅�3(𝑡? , 𝑇) =
-
7
∑ 𝜗.3. (𝑡? , 𝑇)	and	

�̅�4(𝑡? , 𝑇) =
-
7
∑ 𝜗.

4
. (𝑡? , 𝑇)	are	recorded	for	every	10	MC	steps	so	that	the	time	interval	of	the	

data	 is	Δ𝑡	 = 10𝜏 = 10	𝜇s.	The	number	of	data	points	 is	𝐾 = 10`	with	0 ≤ 𝑡? ≤ (𝐾 − 1)Δ𝑡.	

�̅�3(𝑡? , 𝑇)	and	�̅�4(𝑡? , 𝑇)	are	statistically	equivalent	to	each	other.	

	

Predicting	physical	quantities	from	the	simulation	

We	 calculated	 the	 one-sided	 power	 spectral	 density	 (PSD)	 𝑆9:!,#h𝜔0 , 𝑇i 	and	 correlation	

function	𝐶9:!,#(𝑡? , 𝑇)	from	�̅�3,4(𝑡? , 𝑇).	

To	increase	the	signal-to-noise	ratio	of	PSD,	we	split	the	total	time	𝛤	into	𝑃	segments	

�̅�3,4
a (𝑡? , 𝑇)	of	duration	𝛾 = 𝐾aΔ𝑡	h𝛤 = 𝑃𝛾, 0 ≤ 𝑝 ≤ 𝑃 − 1, 0 ≤ 𝑡? ≤ h𝐾a − 1iΔ𝑡i.	 The	PSD	 is	

calculated	for	each	segment.	

𝑆9:!,#0 h𝜔0 , 𝑇i =
1
𝜋𝛾 ¥𝛥𝑡 ¦ 𝑒".=$>%�̅�3,4

a (𝑡? , 𝑇)

@0"-

?A,

¥

'

, (M1)	

where	𝜔0 =
';
b
𝑗	(0 ≤ 𝑗 ≤ @0

'
).	PSD	is	obtained	as	the	average	of	𝑃	segments.	

𝑆9:!,#h𝜔0 , 𝑇i =
1
𝑃¦𝑆9:!,#0 h𝜔0 , 𝑇i
c"-

aA,

(M2)	
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Averages	 are	 further	 taken	 over	 10	 independent	 MC	 runs.	We	 take	 as	 an	 error	 bar	 the	

standard	error	from	independent	runs.	We	used	𝑃	values	of	10, 10', 102	to	calculate	PSDs	of	

resolution	Δ𝜔/2𝜋 = 	1, 10, 100 	Hz.	 The	𝑥 -component	𝑆9:!h𝜔0 , 𝑇i 	for	𝑇 ≤ 0.15|𝐽-| 	and	𝑇 ≤

0.30|𝐽-|	are	plotted	in	Fig.	2c	and	Supplementary	Fig.	1a,	respectively.	Supplementary	Fig.	2b	

shows	the	𝑦-component	𝑆9:#h𝜔0 , 𝑇i	equivalent	to	𝑆9:!h𝜔0 , 𝑇i.	

The	PSD	𝑆9:!,#h𝜔0 , 𝑇i	is	 fitted	by	a	 function	𝐴(𝑇)𝜔
"#(%)	in	 the	 frequency	range	1	Hz ≤

𝜔/2𝜋 ≤ 500	Hz	as	shown	in	Supplementary	Fig.	1b	and	Supplementary	Fig.	2d.	The	obtained	

𝛼(𝑇)	is	plotted	in	Fig.	2e.	

To	address	the	low-frequency	fluctuations,	measured	in	the	experiments,	fluctuations	

above	1	kHz	are	filtered	out	from	the	time	sequence	�̅�3,4(𝑡? , 𝑇).	In	order	to	do	this,	Fourier	

components	 �̅�3,4h𝜔0 , 𝑇i = Δ𝑡 ∑ 𝑒".=$>%�̅�3,4(𝑡? , 𝑇)@"-
?A, 	with	𝜔0 =

';
<
𝑗 x0 ≤ 𝑗 ≤ @

'
y 	are	 set	 to	

zero	 for	𝜔0/2𝜋 > 1	kHz 	and	 brought	 back	 to	 time	 domain	 �̅�3,4W (𝑡? , 𝑇) 	by	 inverse	 Fourier	

transform.	�̅�3,4W (𝑡? , 𝑇)	is	plotted	in	Fig.	2b	and	Supplementary	Fig.	2a.	

The	correlation	function	𝐶9:!,#(𝑡? , 𝑇)	in	Fig.	2d	and	Supplementary	Fig.	2c	are	calculated	

from	�̅�3,4W (𝑡? , 𝑇)	using	the	standard	formula.	

𝐶9:!,#(𝑡? , 𝑇) =
1
𝑙CDE

¦ �̅�3,4W (𝑡B , 𝑇)	�̅�3,4W (𝑡BS? , 𝑇),
B&'("-

BA,

	 (M3)	

where	𝑙CDE = 9 × 10F .	 Averages	 are	 taken	over	10	 independent	MC	 runs.	The	normalized	

correlation	is	calculated	as	𝐶9:!,#(𝑡? , 𝑇)/𝐶9:!,#(0, 𝑇).	

The	variance	of	the	noise	in	Fig.	2f	is	calculated	as		

𝜎9:!,#
' (𝑇) =

1
𝐾¦ �̅�3,4W

'(𝑡? , 𝑇)
@"-

?A,

− ª
1
𝐾¦ �̅�3,4W (𝑡? , 𝑇)
@"-

?A,

«

'

. (M4)	

Averages	are	taken	over	10	independent	MC	runs.	

	

Comparing	the	simulation	to	a	realistic	system	

The	correspondence	between	the	MC	time	step	and	the	actual	time	is	decided	as	follows.	In	

Supplementary	Fig.	3,	we	show	the	rate	of	a	spin	flip	by	an	angle	larger	than	5	degrees	at	

each	temperature.	The	rate	is	calculated	by	counting	the	occurrence	of	such	a	spin	flip	in	the	
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first	5 × 10J	MC	steps	of	the	time	evolution	of	the	spins	in	equilibrium.	The	rate	of	a	spin	flip	

larger	 than	 5	 degrees	 is	 0.1	 (MC	step)"-	 around	 𝑇 ∼ 0.15|𝐽-| .	 The	 elementary	 local	

relaxation	 process	 occurs	 at	 a	 timescale	 of	 the	 order	 𝜏EdEe = 	10	 (MC	 step)	 at	 low	

temperature.	Ref.	18	reports	AC	susceptibility	of	Ca10Cr7O28	in	the	form	of	Cole-Cole	plot	in	

the	frequency	range	from	100	Hz	to	20	kHz.	Despite	the	deviation	at	low	frequency,	the	Cole-

Cole	plot	is	on	a	semicircle.	This	suggests	a	relatively	sharp	distribution	of	relaxation	time	at	

high	frequency,	say	𝜔/2𝜋 =10	kHz	corresponding	to	∼ 10	𝜇s.	From	this	we	estimate	𝜏EdEe	

to	be	at	the	order	of	10	𝜇s,	namely	1	MC	step	=	1	𝜇s.	

Magnetization	 fluctuation	 is	estimated	 from	the	average	spin	 fluctuation.	Consider	𝑁	

spins	with	magnitude	𝑠	in	a	volume	𝑉.	For	large	𝑁,	the	fluctuation	amplitude	of	average	spin	

Δ�̅�	and	magnetization	Δ𝐵 = 𝜇,Δ𝑀	will	be	

Δ�̅� ∝
𝑠√𝑁
𝑁 =

𝑠
√𝑁

	, (M5)	

Δ𝐵 ∝ 𝜇,(2𝜇R)
𝑠√𝑁
𝑉

= 2𝜇,𝜇R
𝑁
𝑉
Δ�̅�. (M6)	

In	 the	 simulation,	 we	 used	𝑁ZMY = 1600 	spins	 of	 𝑠ZMY = 1 .	 This	 can	 be	 related	 to	 the	

experimental	sample	with	𝑁EfL	spins	of	𝑠EfL	in	volume	𝑉EfL.	

Δ�̅�EfL =
𝑠EfL

𝑠ZMY
√𝑁ZMY

√𝑁EfL
Δ�̅�ZMY. (M7)	

Δ𝐵EfL = 2𝜇,𝜇R
𝑁EfL

𝑉EfL Δ�̅�
EfL = 2𝜇,𝜇R

𝑠EfL

𝑠ZMY
√𝑁ZMY𝑁EfL

𝑉EfL Δ�̅�ZMY. (M8)	

With	𝑁ZMY = 1600, 𝑠ZMY = 1,𝑁EfL = 6.2 × 10-g, 𝑠EfL = 3/2, 𝑉EfL = 2	mm2 ,	 the	 conversion	

factor	to	estimate	𝐵EfL	from	�̅�ZMY	is	

2𝜇,𝜇R
𝑠EfL

𝑠ZMY
√𝑁ZMY𝑁EfL

𝑉EfL = 1.7 × 10"h	T. (M9)	

The	 scale	 of	 temperature	 can	 also	 be	 compared.	 By	 setting	𝐽- = −0.15	meV	and	𝐽' =

0.042 	meV,	 𝐽'/|𝐽-| = 0.28 	and	 𝐽' 	is	 within	 the	 two	 error	 bars	 of	 the	 antiferromagnetic	

exchange	 energy	 0.028±0.008 	meV	 in	 the	 empirical	 Hamiltonian	 of	 Ca10Cr7O28	 20.	 This	

renders	 the	 variance	 peak	 temperature	𝑇 = 0.15|𝐽-| =	260	mK,	 comparable	 to	∼ 400	mK	

observed	in	the	experiment.	
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Classical	Monte	Carlo	simulations	in	Ca10Cr7O28	

As	shown	 in	Fig.	1a,	 the	dominant	 intralayer	 ferromagnetic	 interaction	 in	Ca10Cr7O28	

bundles	 up	 three	 spins	 on	 alternative	 plaquettes	 to	 form	 spin-3/2	 state.	 Below	 the	

temperature	scale	set	by	the	magnitude	of	these	ferromagnetic	interactions,	a	fairly	accurate	

description	of	the	low-energy	properties	can	be	obtained	by	working	with	effective	S	=	3/2	

spins30.	S	=	3/2	magnets	can	be	described	to	a	good	approximation	in	classical	terms	so	that	

(semi)classical	simulations30,31	are	effective.	Indeed,	classical	Monte	Carlo	simulations	and	

semiclassical	simulations	applied	to	Ca10Cr7O28	30,31	have	very	successfully	reproduced	the	

liquid-like	structure	factors	observed	in	experiments.	

For	Ca10Cr7O28,	we	turned	to	the	simplest	generic	model	of	spiral	spin	liquid	as	has	been	

established	by	Ref.	34.	The	simulation	and	 the	real	Ca10Cr7O28	both	share	 the	continuous	

contour	 of	 a	 spiral	wave	 vector	with	 an	 approximate	U(1)	 symmetry18,20,22,	 which	 is	 the	

essence	of	the	spiral	spin	liquid	physics	that	renders	two	phases	essentially	the	same34.	This	

observation,	together	with	the	impressive	wide-ranging	agreement	between	the	predicted	

SSL	noise	phenomenology	in	Fig.	2	and	the	measured	Ca10Cr7O28	noise	data	in	Fig.	4,	strongly	

indicates	 that	 our	 simulation	 captures	 the	 essence	 of	 spiral	 spin	 liquid	 dynamics	 in	

Ca10Cr7O28.	

In	 our	 simulation,	 spins	 are	 evolved	 via	MC	updates,	 and	 the	 dynamics	 due	 to	 an	

equation	of	motion	is	not	considered.	This	is	because	the	Hamiltonian	(equation	(1))	does	

not	give	rise	to	a	z-direction	exchange	field	that	will	cause	precession	of	the	XY	spins.	Even	

if	a	z-direction	field	existed,	it	would	only	generate	a	very	fast	periodic	precession	of	spins	at	

0.1	meV	∼	10	ps	that	will	be	averaged	out	at	the	timescale	of	our	MC	simulation.	We	finally	

note	that	spiral	spin	liquid	phase	exhibiting	momentum	vortices	is	found	in	both	2D	XY	spins	

on	a	square	lattice34	and	3D	Heisenberg	model	on	a	honeycomb	lattice42,	irrespective	of	the	

spin	dimension	and	the	underlying	lattice	symmetry.	

	

Design	of	Noise	Spectrometer/AC	Susceptemometer	

A	3He/4He	dilution	refrigerator	(Proteox	MX)	and	a	cryogen−free	3He	refrigerator	(DRY	ICE	

300mK	TERTIA)	were	used	to	carry	out	our	experiments.	

The	spectrometer	on	the	dilution	refrigerator	consists	of	a	superconducting	pickup	coil	

that	is	enclosed	in	a	superconducting	excitation	coil	and	connected	to	the	SQUID	(SP550).	
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The	pickup	coil	 is	wound	on	a	macor	sample	holder	with	an	 inner	diameter	1.6	mm	and	

length	10	mm.	A	single	NbTi	wire	forms	two	in-series	counter-wound	10-turn	pickup	coils	

with	a	total	inductance	𝐿L = 0.75	𝜇H	so	that	the	external	uniform	flux	is	cancelled	out.	The	

SQUID	input	coil	has	an	inductance	of	𝐿M = 1.74	𝜇H	and	a	mutual	inductance	to	the	SQUID	of	

1/ℳM = 0.19	𝜇A/Φ,,	as	reported	by	the	manufacturer	(Quantum	Design).	The	excitation	coil	

is	10	mm	long	and	has	101	turns	of	a	NbTi	wire.	The	whole	circuitry	is	contained	within	two	

Nb	cylinders	covered	by	a	mu-metal	cylinder	for	magnetic	flux	shielding	and	is	mounted	on	

the	mK-plate	of	the	refrigerator.	The	first	Nb	cylinder	is	provided	by	the	SQUID	manufacturer	

(Quantum	Design),	 the	 second	Nb	 shield	 has	 an	 inner	 diameter	 of	 48	mm	 and	 2	mm	 in	

thickness,	and	the	mu-metal	cylinder	has	an	inner	diameter	of	58	mm	and	1	mm	in	thickness.	

The	whole	dilution	refrigerator	is	built	on	a	6-ton	table	that	is	mechanically	isolated	from	

external	vibration.	To	accelerate	the	thermalization	of	the	sample,	a	0.1	mm	diameter	silver	

wire	is	attached	to	the	sample	by	GE	varnish	and	the	other	end	is	thermalized	to	the	SQUID	

holder.	The	temperature	of	the	sample	and	spectrometer	is	measured	by	a	RuO	thermometer	

which	is	mounted	on	the	plate	close	to	the	SQUID	assembly.	

The	spectrometer	on	the	3He	refrigerator	is	a	superconducting	pickup	coil	connected	to	

the	SQUID	(SQ1200).	10	turns	of	NbTi	wire	with	inductance	𝐿L = 0.25	𝜇H	is	wound	directly	

around	a	mm-scale,	bar-shaped	sample	and	fixed	with	GE	varnish.	This	pickup	coil	circuitry	

is	mounted	on	the	SQUID	chip	with	GE	varnish.	The	SQUID	input	coil	has	an	inductance	of	

𝐿M = 1.3	𝜇H	and	 a	mutual	 inductance	 to	 SQUID	of	1/ℳM = 0.13	𝜇A/Φ, .	 For	magnetic	 flux	

shielding,	the	pickup	coil	and	SQUID	are	all	contained	within	a	Nb	cylinder	covered	by	a	mu-

metal	cylinder.	The	spectrometer	is	mounted	on	a	mechanical	vibration	isolator,	hung	under	

the	bottom	plate	of	the	refrigerator.	To	accelerate	thermalization	of	the	sample,	four	0.2	mm	

diameter	brass	wires	are	attached	to	the	pickup	circuitry	by	GE	varnish	and	their	other	ends	

are	 in	 contact	with	 a	 copper	wire	 that	 exits	 the	 shielded	 region.	 The	 temperature	 of	 the	

sample	 and	 spectrometer	 is	measured	by	 a	CX-1030	Cernox	 thermometer	mounted	on	 a	

vibration	isolator,	close	to	the	SQUID	circuitry.	
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Spectrometer	calibration	

The	magnetic	flux	picked	up	from	the	sample	𝛷(𝑡)	and	the	output	voltage	of	the	SQUID	𝑉K(𝑡)	

are	related	by	a	simple	constant	

𝛷(𝑡) =
𝐿p + 𝐿i
ℳi

1
𝑔
𝑉K(𝑡). (M10)	

𝑔 = 𝑔Kijkl𝑔LmECYL	consists	of	the	conversion	factor	from	flux	to	voltage	in	the	SQUID	𝑔Kijkl	

and	subsequent	gain	from	the	preamplifier	𝑔LmECYL.	𝑔Kijkl	is	determined	from	the	voltage	

jump	 due	 to	 a	𝛷, -flux	 jump	 of	 the	 SQUID.	 For	 the	 highest	 sensitivity	 setting,	𝑔Kijkl =

0.73	V/𝛷,	for	the	SP550	SQUID	and	𝑔Kijkl = 9.85	V/𝛷,	for	the	SQ1200	SQUID.	Using	these	

values,	𝑉K(𝑡)	is	converted	to	𝛷(t).	

𝛷(𝑡)	is	further	converted	to	the	magnetization	𝜇,𝑀(𝑡)	with	the	relation	

𝜇,𝑀(𝑡) =
1
𝑁𝐴𝛷

(𝑡), (M11)	

where	𝑁	is	the	number	of	turns	of	the	pickup	coil	and	𝐴	is	the	area	of	sample	cross	section.	

𝑁	 = 	10	for	all	setups.	𝐴	 = 	1	mm'	for	Sample	1	in	the	dilution	refrigerator.	

	

Ca10Cr7O28	Sample	Preparation	

As	described	in	Ref.	19,	Ca10Cr7O28	crystals	are	synthesized	in	a	two-step	process,	including	

a	solid-state	reaction	of	Ca10Cr7O28	powder	and	a	 travelling-solvent-floating-zone	method	

for	the	single	crystal	growth.	First,	powder	of	CaCO3	and	Cr2O3	was	mixed	with	a	molar	ratio	

of	3:1,	sintered	at	1000	°C	 for	24	hours,	and	rapidly	quenched	to	room	temperature.	The	

sintering	process	was	repeated	after	grinding	and	the	addition	of	Cr2O3	powder	until	phase	

pure	powder	of	Ca10Cr7O28	was	obtained.	This	powder	was	packed	in	a	rod	that	is	sintered	

at	1020	°C	for	12	hours	followed	by	a	rapid	quench	to	room	temperature.	This	rod	was	used	

as	a	feed	rod	of	the	floating-zone	growth,	while	a	solvent	was	separately	prepared	following	

the	 same	procedure	 from	 the	powder	 of	 CaCO3	 and	Cr2O3	with	 a	molar	 ratio	 of	 5:2.	 The	

growth	was	carried	out	in	a	0.22	MPa	oxygen	pressure	at	1	mm/hr	using	an	optical	floating	

zone	 furnace.	The	resulting	single	crystal	was	washed	with	HCl	and	then	with	H2O.	X-ray	

diffraction	on	a	ground	small	piece	confirms	the	phase	purity.	Supplementary	Fig.	4b	shows	

the	DC	susceptibility	of	a	typical	single	crystal	measured	in	MPMS	(Quantum	Design).	Fitting	
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by	𝜒 = 	𝜒, +
P*+,-(
%"%*.

	in	the	temperature	range	50	K	 ≤ 𝑇 ≤	250	K	yields	𝑇)* = +2.6	K	and	an	

effective	magnetic	moment	𝜇EQQ	≈	1.69𝜇R	that	are	comparable	to	the	existing	literature20.	

Photos	of	the	three	Ca10Cr7O28	samples	are	shown	in	Supplementary	Fig.	4a.	The	long	

direction	of	the	bar	is	identified	to	be	the	c-axis.	Sample	1’	and	Sample	2	are	from	the	same	

growth	while	Sample	3	is	from	a	separate	growth.	Sample	1	is	obtained	by	later	polishing	

down	 Sample	 1’	 to	 fit	 into	 the	 spectrometer	 of	 our	 dilution	 refrigerator.	 The	 measured	

magnetic	noise	from	these	three	samples	are	consistent	with	each	other,	as	described	in	the	

section	‘Repeatability	of	spin	noise	spectrum	in	different	Ca10Cr7O28	samples’.			

	

Noise	measurement	

The	results	 in	 the	main	 text	were	measured	 in	both	 the	dilution	refrigerator	and	the	3He	

refrigerator.	 In	 the	dilution	 refrigerator,	 the	 temperature	of	Ca10Cr7O28	Sample	1	 and	 the	

spectrometer	was	controlled	by	heaters	from	100	mK	to	500	mK	in	steps	of	50	mK	with	the	

temperature	stability	of	1	mK.	In	the	3He	refrigerator,	the	temperature	of	the	Sample	2	and	

the	spectrometer	was	controlled	by	heaters	from	300	mK	to	800	mK	in	steps	of	100	mK	with	

the	stability	of	1	mK.	In	both	setups,	samples	were	thermalized	for	at	least	15	minutes	after	

the	 thermometer	 reading	 got	 stabilized	 at	 the	 target	 temperature.	 The	 overall	 circuit	

diagram	for	the	noise	measurement	is	shown	in	Supplementary	Fig.	5a.	The	output	voltage	

of	 the	 SQUID	𝑉K(𝑡) 	was	 recorded	 by	 an	 effective	 16-bit	 ADC	 (Moku:Pro)	 for	 1000	 s	 at	 a	

sampling	 rate	 of	 20	 kSa	 (a	 time	 interval	 of	50	𝜇s).	 Between	 the	 SQUID	 and	 the	 ADC,	 a	

preamplifier	(SR560)	was	used	to	amplify	the	SQUID	output	signal	by	an	appropriate	gain	

and	to	apply	a	0.03	Hz	6	dB/Oct	high-pass	and	30	kHz	6	dB/Oct	low-pass	filter.	For	the	SQUID	

output	of	the	3He	refrigerator	setup,	there	was	further	filtering	by	a	5	kHz,	4-pole	low-pass	

filter.	With	an	identical	setup,	the	SQUID	background	noise	was	measured	for	a	nonmagnetic	

nylon	sample	at	800	mK.	

To	confirm	the	reproducibility,	the	noise	signal	of	Sample	1’,	Sample	2,	and	Sample	3	

was	measured	in	the	3He	refrigerator.	At	temperatures	from	275	mK	to	800	mK	in	steps	of	

25	mK,	the	output	voltage	was	recorded	for	100	s	at	1	MSa	(a	time	interval	of	1	𝜇s)	and	1.6	

Hz	AC	coupling	filter	at	the	ADC	input	was	used.	A	nonmagnetic	nylon	block	of	a	comparable	

size	was	measured	in	the	same	condition	in	temperature	steps	of	100	mK.	



26 
 

An	 extended-bandwidth	 measurement	 was	 performed	 for	 Sample	 2	 in	 the	 3He	

refrigerator.	The	SQUID	sensitivity	was	 changed	 to	medium	𝑔Kijkl = 0.985	V/𝛷, 	and	 the	

frequency	 cutoff	 of	 the	 SQUID	was	 extended	 to	𝑓2nR ∼	300	 kHz	 by	 changing	 the	 internal	

capacitor	of	the	SQUID	feedback	loop.	At	temperatures	from	300	mK	to	800	mK	in	steps	of	

100	mK,	 the	 output	 voltage	 of	 SQUID	𝑉K(𝑡)	was	 recorded	 for	100	 s	 at	 1	MSa.	The	 SQUID	

background	noise	was	measured	for	a	nonmagnetic	nylon	sample	at	275	mK	for	10	s	at	1	

MSa.	

	

Noise	analysis	

In	the	main	text,	one-sided	power	spectral	density	(PSD)	𝑆Th𝜔0 , 𝑇i	and	correlation	function	

𝐶T(𝑡? , 𝑇)	are	calculated	from	the	experimental	noise	data	𝛷(𝑡? , 𝑇).	

To	increase	the	signal-to-noise	ratio	of	the	PSD,	𝛷(𝑡? , 𝑇)	with	a	total	time	𝛤 =1000	s	and	

a	 time	 interval	Δ𝑡 = 50	𝜇s 	is	 split	 into	𝑃 	segments	𝛷a(𝑡? , 𝑇) 	of	 duration	𝛾 = 𝐾aΔ𝑡 	h𝛤 =

𝑃𝛾, 0 ≤ 𝑝 ≤ 𝑃 − 1, 0 ≤ 𝑡? ≤ h𝐾a − 1iΔ𝑡i.	The	PSD	for	each	segment	is	calculated	from	

𝑆T0h𝜔0 , 𝑇i =
1
𝜋𝛾 ¥𝛥𝑡 ¦ 𝑒".=$>%𝛷a(𝑡? , 𝑇)

@0"-

?A,

¥

'

, (M12)	

where	𝜔0 =
';
b
𝑗	(0 ≤ 𝑗 ≤ @0

'
).	In	a	next	step,	the	PSD	is	obtained	as	the	average	of	𝑃	segments.	

𝑆Th𝜔0 , 𝑇i =
1
𝑃¦𝑆T0h𝜔0 , 𝑇i,
c"-

aA,

(M13)	

with	the	standard	error	used	as	an	error	bar.	𝑃 = 10', 102, 10J, 10F	was	used	to	calculate	the	

PSD	of	resolution	Δ𝜔/2𝜋 = 	10"-, 10,, 10-, 10'	Hz.	The	resulting	PSD	is	plotted	in	Fig.	4a	for	

100	mK ≤ 𝑇 ≤ 400	mK	and	in	Supplementary	Fig.	6a	for	100	mK ≤ 𝑇 ≤ 800	mK.	

In	Supplementary	Fig.	6b,	 the	PSD	𝑆Th𝜔0 , 𝑇i	is	 fitted	by	a	 function	𝐴(𝑇)𝜔"#(%) 	in	 the	

frequency	range	0.1	Hz ≤ 𝜔/2𝜋 ≤ 20	Hz.	The	obtained	𝛼(𝑇)	is	plotted	in	Fig.	4d.	

To	get	rid	of	the	partial	contribution	of	the	electronic	noise	at	high	frequency	and	the	

slow	temperature	fluctuation	at	low	frequency,	the	fluctuation	below	0.05	Hz	and	that	above	

1	kHz	are	filtered	out	from	the	time	sequence	𝛷(𝑡? , 𝑇).	The	filtering	was	done	by	setting	the	

Fourier	components	𝛷h𝜔0 , 𝑇i = Δ𝑡 ∑ 𝑒".=$>%𝛷(𝑡? , 𝑇)@"-
?A, 	below	0.05	Hz	and	above	1	kHz	to	
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zero,	 and	 then	 transforming	 the	 remaining	 signal	𝛷h𝜔0 , 𝑇i 	back	 into	 the	 time	 domain	

𝛷W(𝑡? , 𝑇)	using	an	inverse	Fourier	transform.	The	filtered	data	is	shown	in	Fig.	3b.	

The	 correlation	 function	 𝐶T(𝑡? , 𝑇) is	 calculated	 from	 𝛷W(𝑡? , 𝑇) 	using	 the	 standard	

formula	

𝐶T(𝑡? , 𝑇) =
1
𝑙CDE

¦ 𝛷W(𝑡B , 𝑇)	𝛷W(𝑡BS? , 𝑇)
B&'("-

BA,

, (M14)	

where	𝑙CDE = 1.9 × 105.	The	normalized	correlation	is	calculated	as	𝐶T(𝑡? , 𝑇)/𝐶T(0, 𝑇)	and	

shown	in	Fig.	4b.	

The	variance	of	the	noise,	shown	in	Fig.	4e,	is	calculated	as		

𝜎T'(𝑇) =
1
𝐾¦𝛷W'(𝑡? , 𝑇)
@"-

?A,

− ª
1
𝐾¦𝛷W(𝑡? , 𝑇)
@"-

?A,

«

'

. (M15)	

The	fitting	by	𝜎T'(𝑇) ∝ 𝑇G 	is	performed	in	the	temperature	range	of	100	mK	≤ 𝑇 ≤ 300	mK	

to	give	𝛽 = 2.3 ± 0.1.	

The	noise	data	of	Sample	1’,	Sample	2,	and	Sample	3,	measured	with	a	total	time	𝛤 =100	

s	and	a	time	interval	Δ𝑡 = 1	𝜇s,	is	used	to	calculate	the	PSD	with	𝑃	 = 	102	that	is	shown	in	

Supplementary	Fig.	4c.	The	variance	is	calculated	after	filtering	the	fluctuation	below	0.05	

Hz	and	above	10	kHz,	as	shown	in	Supplementary	Fig.	4d.	

In	Supplementary	Fig.	7,	we	show	the	PSD	of	Sample	2	and	Nylon	in	the	full	frequency	

range	from	0.1	Hz	to	50	kHz.	The	frequency	range	𝜔/2𝜋	below	3	kHz	is	calculated	from	the	

noise	 data	 with	𝛤 =1000	 s	 and	Δ𝑡 = 50	𝜇s 	using	𝑃	 = 10', 102, 10J, 10F .	 The	 frequency	

range	above	3	kHz	is	calculated	from	the	extended-frequency	measurement	data	of	Sample	

2	 (Nylon)	with	𝛤 =100	s	 (10	s)	and	Δ𝑡 = 1	𝜇s	using	𝑃	 = 	10F, 10`	(10J, 10F).	The	noise	of	

Nylon	 corresponding	 to	 the	 background	 noise	 level	 is	 enhanced	 by	∼10	 times	 for	 the	

extended-frequency	measurement.	In	Supplementary	Fig.	7,	the	PSD	of	Sample	2	above	3	kHz	

is	plotted	after	subtraction	of	the	Nylon	noise.	The	PSD	of	Sample	2	below	and	above	3	kHz	

smoothly	connects	to	each	other.	

	

Noise	data	from	different	spectrometers	

The	experimental	noise	data	𝛷(𝑡, 𝑇)	in	Fig.	3b	was	measured	in	two	different	samples	

Sample	1	and	Sample	2	for	different	temperature	ranges.	The	amplitude	of	magnetization	
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noise	𝐵(𝑡)	is	dependent	on	a	measured	sample	volume,	and	the	amplitude	of	𝛷(𝑡)	is	further	

dependent	on	the	area	of	the	sample	cross	section.	Thus,	a	scale	factor	is	naturally	required	

to	patch	up	the	results	for	two	samples	with	different	geometry.	In	principle,	one	can	only	

match	 the	 scale	 of	 either	𝛷(𝑡) 	or	𝐵(𝑡) .	 Throughout	 the	 paper,	 the	 matching	 of	𝛷(𝑡) 	is	

prioritized,	 and	𝐵(𝑡) 	is	 converted	 from	𝛷(𝑡) 	using	 the	 geometry	 of	 Sample	 1	 for	 both	

samples.	

Supplementary	Fig.	8	shows	 the	comparison	of	power	spectral	density	 from	the	 two	

samples	at	an	overlapping	temperature	300	mK.	Here,	the	𝛷(𝑡)	of	Sample	2	is	scaled	from	

an	original	value	by	a	factor	of	0.95	(i.e.	𝑆T(𝜔)	by	0.95')	so	that	two	data	coincide.	

	

Repeatability	of	spin	noise	spectrum	in	different	Ca10Cr7O28	samples	

The	noise	measurement	was	repeated	in	3He	refrigerator	for	three	Ca10Cr7O28	samples	and	

a	 nonmagnetic	 nylon	 block	 of	 a	 comparable	 size	 shown	 in	 Supplementary	 Fig.	 4a.	 In	

Supplementary	Fig.	4c,	we	show	the	power	spectral	density	of	each	sample	at	temperatures	

of	300	mK,	500	mK,	700	mK,	 and	800	mK.	All	 Ca10Cr7O28	 samples	have	 a	 scale-invariant	

power	spectral	density.	The	nylon	noise	floor	barely	changes	over	temperature	and	remains	

much	smaller	than	the	signal	of	Ca10Cr7O28.	Supplementary	Fig.	4d	shows	the	temperature	

dependence	of	variance.	All	Ca10Cr7O28	samples	show	a	peak	around	𝑇 ∼ 400	mK.	Thus,	the	

reported	behavior	of	Ca10Cr7O28	noise	is	robust.	

	

AC	susceptibility	measurement	

We	performed	the	AC	susceptibility	measurement	of	Sample	1	in	the	dilution	refrigerator	for	

temperatures	from	100	mK	to	500	mK	in	50	mK	steps	with	the	stability	of	1	mK.	At	each	

target	 temperature,	 the	 sample	 was	 thermalized	 for	 20	 minutes	 after	 the	 thermometer	

reading	got	stabilized.	The	overall	circuit	diagram	for	the	AC	susceptibility	measurement	is	

shown	in	Supplementary	Fig.	5b.	An	AC	magnetic	field	with	a	root-mean-square	magnitude	

of	𝐵Efo = 	60	 nT	 in	 the	 frequency	 range	 0.1	 Hz	≤ 𝜔/2𝜋 ≤ 	101	 Hz	 was	 applied	 using	 the	

reference	 output	 of	 the	 lock-in	 amplifier	 (SR830)	 in	 series	 of	 a	 20	 kΩ	 resistor	 and	 the	

excitation	coil	circuitry.	The	output	voltage	of	the	SQUID	at	the	lowest	sensitivity	𝑔Kijkl =	

7.3	mV/𝛷, 	was	 fed	 into	 the	 lock-in	 amplifier	 to	measure	 the	 in-phase	 and	 out-of-phase	
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components.	At	 each	 frequency,	 10	measurements	were	performed	and	 the	 results	were	

averaged.	 The	 zero	 phase	 was	 set	 by	 performing	 a	 calibration	 experiment	 with	 a	

superconducting	indium	wire	of	the	size	comparable	to	the	sample.	The	time	constant	of	the	

lock-in	amplifier	was	set	at	30	s,	10	s,	3	s,	300	ms	for	frequencies	0.1-0.3	Hz,	0.5-0.9	Hz,	1-11	

Hz,	and	21-101	Hz,	respectively.	The	low-pass	filter	was	set	at	18	dB/oct	for	all	frequencies.	

The	sensitivity	of	the	lock-in	amplifier	was	set	to	an	appropriate	value	between	10	mV	and	

50	mV	for	different	temperatures.		

	

AC	susceptibility	analysis	

The	 out-of-phase	 output	 of	 the	 lock-in	 amplifier	𝑉p(𝜔) 	was	 converted	 to	 magnetization	

𝑀p(𝜔)	using	equation	(3)	and	then	to	the	imaginary	susceptibility	by	

𝜒WW(𝜔) = −
𝜇,𝑀p(𝜔)
𝐵Efo

. (M16)	

The	 fluctuation-dissipation	 theorem	 relates	 the	 imaginary	 part	 of	 the	 susceptibility	

𝜒WW(𝜔, 𝑇)	with	the	one-sided	power	spectral	density	of	magnetization	noise	𝑆!(𝜔, 𝑇)	as	

𝜒WW(𝜔, 𝑇) = 𝜇,𝑉
𝜋𝜔𝑆!(𝜔, 𝑇)

2𝑘R𝑇
, (M17)	

where	𝑇	is	the	temperature	and	𝑉	is	the	measured	volume	of	the	sample	that	is	set	to	2	mm2	

here39.	In	Fig.	3c,	the	right-hand	side	is	plotted	against	the	left-hand	side.	11-101	Hz	data	of	

𝜒WW(𝜔, 𝑇)	is	matched	to	10-100	Hz	data	of	𝑆!(𝜔, 𝑇)	with	Δ𝜔/2𝜋 = 10	Hz.	
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Supplementary	Fig.	1	The	simulated	spin	noise	power	spectral	density	𝑺𝝑:𝒙(𝛚, 𝑻)	fit	by	
𝑨(𝑻)𝝎"𝜶(𝑻).	
a.	 The	 power	 spectral	 density	 of	 simulated	 spiral	 spin	 liquid	 noise	𝑆9:!(ω, 𝑇)	 for	 eleven	
selected	temperatures	 in	 the	range	of	0.04|𝐽-| ≤ 𝑇 ≤ 0.30|𝐽-|.	1	MC	time	step	 is	set	at	𝜏 =
1	𝜇s .	 Error	 bars	 are	 the	 standard	 error	 of	 the	 independent	 MC	 simulation	 runs.	 The	
anticipated	power	spectral	density	of	magnetization	noise	𝑆!(ω, 𝑇)	is	shown	on	the	right-
hand	axis	as	estimated	from	calculations	described	in	this	document.	
b.	 Fitting	of	 the	 simulated	power	 spectral	density	𝑆9:!(ω, 𝑇) = 𝐴(𝑇)ω"#(%) 	in	 the	 range	of	
1	Hz ≤ 𝜔/2𝜋 ≤ 500 	Hz	 for	 seven	 selected	 temperatures	 in	 the	 range	 of	0.04|𝐽-| ≤ 𝑇 ≤
0.15|𝐽-|.	 	
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Supplementary	Fig.	2	𝒚-component	of	the	average	spin	from	MC	simulations	of	spiral	
spin	liquid	noise.		
a.	MC-predicted	 time	sequence	of	 average	𝑦-component	 spin		�̅�4(𝑡, 𝑇) =

-
7
∑ 𝜗4𝒓 (𝒓, 𝑡, 𝑇)	at	

eight	temperatures	for	𝑁 = 40 × 40	sites,	equivalent	to	�̅�3(𝑡, 𝑇)	in	Fig.	2b.	We	take	1	MC	time	
step	to	be	𝜏 = 1	𝜇s.	�̅�4(𝑡, 𝑇)	is	down	sampled	for	visual	clarity	to	every	500	MC	steps	so	that	
time	intervals	shown	are	500𝜏 = 500	𝜇s.	The	frequency	component	above	1	kHz	is	filtered	
out.	
b.	 The	 power	 spectral	 density	 of	 simulated	 average	𝑦 -component	 spin	𝑆9:#(ω, 𝑇) 	for	 the	
eleven	selected	temperatures,	comparable	to	𝑆9:!(ω, 𝑇)	in	Fig.	2c	and	Supplementary	Fig.	1a.	
1	 MC	 time	 step	 is	𝜏 = 1	𝜇 s.	 Error	 bars	 are	 the	 standard	 error	 of	 the	 independent	 MC	
simulation	runs.	The	anticipated	power	spectral	density	of	magnetization	noise	𝑆!(ω, 𝑇)	is	
shown	on	the	right-hand	axis	as	estimated	from	calculations	described	in	this	document.	
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c.	The	correlation	function	of	average	𝑦-component	spin	𝐶9:#(𝑡, 𝑇)/𝐶9:#(0, 𝑇)	comparable	to	
𝐶9:!(𝑡, 𝑇)/𝐶9:!(0, 𝑇)	in	Fig.	2d.	
d.	 Fitting	of	 the	 simulated	power	spectral	density	𝑆9:#(ω, 𝑇) = 𝐴(𝑇)ω"#(%) 	in	 the	 range	of	
1	Hz ≤ 𝜔/2𝜋 ≤ 500 	Hz	 for	 seven	 selected	 temperatures	 in	 the	 range	 of	0.04|𝐽-| ≤ 𝑇 ≤
0.15|𝐽-|.	
	
	

	
Supplementary	Fig.	3	The	rate	of	a	spin	flip	by	an	angle	larger	than	5	degrees	in	the	
Monte	Carlo	simulation.	
The	rate	of	a	spin	flip	by	an	angle	larger	than	5	degrees	at	each	temperature	counted	in	the	
first	5 × 10J	MC	steps	of	the	time	evolution	of	𝑁 = 40 × 40	spins	in	equilibrium.	The	rate	is	
0.1	 (MC	step)"-	around	𝑇 ∼ 0.15|𝐽-| ,	 suggesting	 an	 elementary	 local	 relaxation	 process	
timescale	of	the	order	𝜏EdEe =	10	(MC	step).	 	
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Supplementary	 Fig.	 4	 Single	 crystals	 of	 Ca10Cr7O28	 and	 comparison	 of	 their	 noise	
signals.	
a.	Photos	of	the	three	Ca10Cr7O28	samples	and	a	nonmagnetic	nylon	block	of	a	comparable	
size.	Sample	1	is	obtained	by	polishing	down	Sample	1’.	
b.	DC	susceptibility	of	Sample	3	measured	by	MPMS.	The	Curie-Weiss	 fitting	by	𝜒 = 	𝜒, +
P*+,-(
%"%*.

	(red	 line)	 yields	 𝑇)* = +2.6 	K	 and	 𝐶)tmME = 2.1 	K•emu/mol	 corresponding	 to	

𝜇EQQ =1.69𝜇R.	
c.	 Comparison	 of	 the	 flux	 noise	 power	 spectral	 density	𝑆T(𝜔, 𝑇) 	of	 the	 three	 Ca10Cr7O28	
samples	and	 the	nylon	block	at	 four	 temperatures.	All	 the	Ca10Cr7O28	 samples	generate	a	
strong	magnetic	noise	above	the	Nylon	signal	corresponding	to	a	background	noise.	
d.	Comparison	of	the	flux	noise	variance	𝜎T'(𝑇)	of	the	three	Ca10Cr7O28	samples	and	the	nylon	
block.	All	the	Ca10Cr7O28	samples	show	a	peak	at	𝑇 ∼ 400	mK.		 	
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Supplementary	Fig.	5	Schematic	circuit	diagrams	of	the	experiment.	
a.	Circuit	diagram	of	the	noise	measurement.	
b.	Circuit	diagram	of	the	AC	susceptibility	measurement.	 	
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Supplementary	Fig.	6	Experimental	spin	noise	power	spectral	density	of	Ca10Cr7O28	
𝑺𝜱(𝝎, 𝑻)	and	fitting	by	𝑨(𝑻)𝝎"𝜶(𝑻).	
a.	 Experimental	 power	 spectral	 density	 of	 Ca10Cr7O28	 𝑆T(𝜔, 𝑇) 	in	 the	 full	 measured-
temperature	 range	 of	100	mK ≤ 𝑇 ≤ 800 	mK.	 The	 equivalent	 power	 spectral	 density	 of	
magnetic	field	noise	at	the	sample	𝑆!(𝜔, 𝑇)	is	presented	on	right	hand	axis.	
b.	Fitting	of	experimental	power	spectral	density	𝑆T(𝜔, 𝑇) = 𝐴(𝑇)𝜔"#(%)	in	 the	 frequency	
range	0.1	Hz	 ≤ 𝜔/2𝜋 ≤ 	20	Hz	for	100	mK	≤ 𝑇 ≤	800	mK.	 	
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Supplementary	Fig.	7	Experimental	spin	noise	power	spectral	density	of	Ca10Cr7O28	in	
an	extended	frequency	range.	
Experimental	 power	 spectral	 density	 of	 Ca10Cr7O28	 in	 an	 extended	 frequency	 range	 of	
0.1	Hz	 ≤ 𝜔/2𝜋 ≤ 	50	kHz 	for	 six	 temperatures.	 The	 background	 noise	 measured	 for	 a	
nonmagnetic	Nylon	is	plotted	as	a	black-dotted	line.	The	frequency	range	𝜔/2𝜋	above	3	kHz	
is	 from	an	extended-frequency	measurement	 that	enhances	 the	noise	 floor.	Above	3	kHz,	
Ca10Cr7O28	noise	is	plotted	after	a	subtraction	by	the	background	noise.	 	
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Supplementary	 Fig.	 8	 Comparison	 of	 experimental	 power	 spectral	 density	 from	
Sample	1	and	Sample	2.	
The	comparison	of	power	spectral	density	𝑆T(𝜔, 𝑇)	from	Sample	1	and	Sample	2.	𝑆T(𝜔, 𝑇)	
of	Sample	2	is	scaled	by	0.95'	so	that	the	value	of	two	flux	power	spectral	densities	agrees.	
The	 equivalent	 spontaneous	magnetization	 noise	𝑆!(ω, 𝑇)	on	 the	 right	 axis	 is	 converted	
using	the	geometry	of	Sample	1.	 	
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Supplementary	Movie	1	Visualization	of	the	spin	equilibration	process	in	an	𝑳 = 𝟏𝟎𝟎	
system.	
The	 evolution	 of	 spin	 configuration	 as	 the	𝐿 = 100 	system	 is	 equilibrated	 by	 a	 total	 of	
6 × 10`	MC	steps.	The	color	of	the	pixel	represents	the	direction	of	the	spin	with	the	same	
color	code	as	Fig.	2a.	10J	MC	steps	are	performed	between	each	picture	frame.		
	
Supplementary	Movie	2	Visualization	of	the	spin	equilibration	process	in	an	𝑳 = 𝟒𝟎	
system.	
The	evolution	of	spin	configuration	as	the	𝐿 = 40	system	is	equilibrated	by	a	total	of	6 × 10`	
MC	steps.	The	color	of	the	pixel	represents	the	direction	of	the	spin	with	the	same	color	code	
as	Fig.	2a.	10J	MC	steps	are	performed	between	each	picture	frame.	
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