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Abstract

Direct access to transition state energies at low computational cost unlocks the

possibility of accelerating catalyst discovery. We show that the top performing graph

neural network potential trained on the OC20 dataset, a related but different task, is

able to find transition states energetically similar (within 0.1 eV) to density functional

theory (DFT) 91% of the time with a 28x speedup. This speaks to the generaliz-

ability of the models, having never been explicitly trained on reactions, the machine

learned potential approximates the potential energy surface well enough to be perfor-

mant for this auxiliary task. We introduce the Open Catalyst 2020 Nudged Elastic

Band (OC20NEB) dataset, which is made of 932 DFT nudged elastic band calcula-

tions, to benchmark machine learned model performance on transition state energies.

To demonstrate the efficacy of this approach, we replicated a well-known, large reac-

tion network with 61 intermediates and 174 dissociation reactions at DFT resolution

(40 meV). In this case of dense NEB enumeration, we realize even more computational
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cost savings and used just 12 GPU days of compute, where DFT would have taken 52

GPU years, a 1500x speedup. Similar searches for complete reaction networks could

become routine using the approach presented here. Finally, we replicated an ammo-

nia synthesis activity volcano and systematically found lower energy configurations of

the transition states and intermediates on six stepped unary surfaces. This scalable

approach offers a more complete treatment of configurational space to improve and

accelerate catalyst discovery.
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Main

As global greenhouse gas emissions continue to raise the earth’s temperature, there is an

urgent need to cut emissions.1 As we look to redesign our chemical and energy infrastructure

to achieve a more sustainable future, while also seeking to meet burgeoning demands, there

is a need to hasten the development of new processes to support our world’s needs. Many of

these processes will involve the reformation of energy and chemicals for which catalysts play

the important role of improving efficiency. Methods to accelerate the discovery of catalysts

will support the execution of our vision for a sustainable future.

Experimental catalyst discovery is a time consuming process of trial and error which relies

on expert domain knowledge.2,3 We envision a future where a step change in the acceleration

of this critical process is realized using computational techniques. Today major gaps exist

between what is treated computationally and what is realized experimentally. One source

of disparity is the difficulty of accessing transition state energies, which are paramount for

determining kinetic information.4 One common method used to calculate the energy of the

transition state is the Nudged Elastic Band (NEB) method, which is very costly computa-
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tionally when performed with sufficiently high accuracy Density Functional Theory (DFT).5,6

For heterogeneous catalysts, there are many possible adsorbate and site configurations that

could be used as input to the NEB calculation. Because of the high computational cost, very

few of these possible configurations are sampled in practice, meaning there is little guarantee

the correct barrier has been considered. We seek to accelerate the calculation of accurate

NEBs using off-the-shelf, pretrained machine learned potentials (MLP), which unlocks three

opportunities to improve the fidelity of computational studies: (1) acceleration and augmen-

tation of reaction mechanism search, (2) acceleration and augmentation of kinetic studies,

and (3) Use of kinetics directly in screening. All of these opportunities will serve to improve

computational treatment of heterogeneous catalyst systems. In addition to these opportu-

nities with acceleration of NEBs, the generalized nature of an MLP opens the possibility of

applying it to NEB alternatives beyond the scope of this work such as the dimer method,7

growing string method,8 and methods that rely on approximating the Hessian.9–11

Acceleration and augmentation of reaction mechanism search. For reaction

networks with significant complexity, it is challenging to elucidate which reaction path-

ways are important. Work has been done to automate the generation of possible reaction

pathways.12–14 This leaves the job of figuring out, among the many possible pathways enu-

merated, which are of consequence to observed rates. To accomplish this, it is typical to rely

on approximations for both thermochemical values and kinetic values.15–17 Because these

approximations only hold true when considering like sites or surfaces in heterogeneous catal-

ysis, it greatly limits the broader applicability of the approach. This work can improve the

approximations of kinetic values making identification of relevant pathways more accurate

and also does not require assertions of surface or site type so it may be extended to varied

materials as needed.

Acceleration and augmentation of kinetic studies. It is common to use DFT

studies to try to explain experimental outcomes to extract a deeper understanding of catalyst

systems.18–21 These studies further our understanding of heterogeneous catalysts and how we
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may design them to be better. This work can accelerate such studies allowing the scope of

studies to be expanded or increase the rate at which they are completed, thereby accelerating

our understanding of heterogeneous catalysts.

Use of kinetics directly in screening. Computational approaches to screen catalyst

materials rely on thermochemical descriptors which can be correlated with figures of merit

like activity and selectivity.22–24 It is, however, a grand outstanding challenge to screen

catalyst candidates using kinetics directly.25 This would be transformative because it would

allow for the reduction of assumptions and reliance on correlations which do not extrapolate

well. As we will show, MLPs are able to perform NEB calculations at a fraction of the

compute cost with reasonable accuracy. This unlocks the opportunity of using kinetics

directly in screening.

There are two categories of approaches to circumnavigate the high computational cost

of accessing transition state energies: approximating the energies and accelerating their cal-

culation. The most foundational method of approximating the transition state energy is

using Brønsted-Evans-Polanyi (BEP) relations. It has been demonstrated, when considering

similar active sites, that the activation energy may be linearly related to the reaction energy

across surfaces.26–28 This is the basis for correlating kinetic values of merit to thermochem-

ical descriptors. Recently, a database of activation energies reported in literature has been

compiled to perform Gradient Boosted Regression for the prediction of unknown activation

energies.29 These approaches are very computationally inexpensive, but they lack extensi-

bility, do not have great accuracies, and do not allow the transition state structure to be

accessed.

For acceleration, the general approach is to use a method that accesses energies and/or

forces at a reduced computational cost to supplement or perform the necessary calculations.

It is natural to turn to MLPs to accelerate NEB calculations because they can offer higher

accuracy than traditional force fields while retaining a reduced computational cost when

compared to sufficiently accurate DFT. Training an MLP to accelerate NEB calculations
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Figure 1: A summary of the work presented here. We demonstrate that models trained on
local adsorbate relaxations perform well in a zero-shot application to NEB calculations. To
do so we created a validation dataset of 932 RPBE NEB calculations. With this dataset
we tested 4 ML approaches to accelerating NEBs. The results of this are shown in the left
panel, where success is the proportion of systems where the ML accelerated approach gives
an activation energy that agrees with the DFT calculated NEB within 0.1 eV.

was first demonstrated for simple systems in 2016 by Peterson.30 Work has also been done

to accelerate NEB calculations using Gaussian Process Regression5,31,32 and using on-the-

fly active learning of a modified Behler-Parrinello neural network.33 Recently, a generalized

framework for training MLPs on the fly has been demonstrated for accessing energy barriers34

and for estimating the free energy of barriers, going beyond the harmonic approximation.35

These prior contributions using machine learning to accelerate NEB calculations required

the development of bespoke models for a specific system, which limits their applicability and

acceleration potential.

Here, we demonstrate that off-the-shelf models which have been pre-trained only on the

OC20 dataset36 are able to perform NEB calculations that arrive at similar energy transition

states 91% of the time. The use of machine learning (ML) provides a 28x speed up across a

variety of reactions on a diverse group of surfaces. The OC20 dataset consists of adsorbate

relaxations only, a relevant but different task, making this a zero-shot application of the MLP.

This speaks to the generalizability of the potential learned. To facilitate the assessment of
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model performance we present the OC20NEB dataset, a dataset composed of 932 revised

Perdew-Burke-Ernzerhof (RPBE) DFT NEB calculations. A summary of these contributions

may be seen in Figure 1.

We propose the CatTSunami framework to facilitate use of OC2036 pre-trained models to

perform high-throughput ML-accelerated NEB calculations. To demonstrate the efficacy of

CatTSunami, we apply it to two problems which address the potential to unlock value for two

of the aforementioned opportunities. To address the opportunity to accelerate and augment

reaction mechanism search, we searched for low energy transition states for 174 possible

dissociation reactions for CO hydrogenation on the close-packed surface of rhodium. We

compare our results to those presented by Ulissi et al.15 and show that our approach achieves

DFT resolution (40 meV) at a low enough computational cost that all reactions could be

considered explicitly. The full study, which considered 19,000 NEBs, would have taken 52

GPU years with DFT, but took just 12 GPU days with ML. This reveals the beneficial low-

cost of ML-acceleration, which allows us to more exhaustively explore what previously relied

on BEP scaling approximations and group additivity to estimate intermediate energies using

a Gaussian Process model. To address the opportunity to accelerate and augment kinetic

studies, we search for transition states in ammonia synthesis on the stepped surfaces of unary

Ru, Fe, Pd, Co, Ni, and Rh to build a microkinetic volcano activity plot. We compare our

results to those found by Vojvodic et al.37 and find systematically lower energies. This again

reveals the beneficial low computational cost of ML-accelerated NEBs, which allowed us to

search more exhaustively for transition states to ultimately find lower energy configurations.

Exhaustive search is particularly important for more complex catalyst surfaces, where it

is difficult to rely on manual placement to find low energy configurations. The approach

presented in this work is scalable and will drive faster insights into heterogeneous catalysts.

The contributions of this work are four-fold: (1) development of CatTSunami, a frame-

work for high-throughput ML-accelerated NEBs, (2) curation of the OC20NEB dataset,

consisting of 932 DFT NEB calculations, (3) assessment of baseline ML model performance
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on the dataset, and (4) demonstration of value added through two case studies.

Results

Dataset and Metrics

The OC20NEB validation dataset consists of desorption, dissociation, and transfer reactions.

Reactions were simulated on randomly generated surfaces containing up to three unique

elements for substantial material diversity. It contains approximately 300 NEB calculations

per reaction class, half of which were placed on materials that were reserved as out of

domain and therefore did not appear in the OC20 training dataset. We have ensured that

the initial and final frames are indicative of the reactant and product states intended (i.e. for

a transfer reaction, over the reaction trajectory a transfer has in fact occurred). We did not,

however, design an approach to determine if the transition state considered was of the type

of interest. If the reaction coordinate contains multiple concerted steps, the step with the

maximum transition state energy was considered. In our approach to enumerating systems,

however, we limited the existence of multiple concerted steps by limiting the reaction path

distance. The dataset is described in more detail in the Methods section.

To evaluate performance, we introduce a success rate as the proportion of ML calculations

which find an energetically similar transition state. We consider the ML NEB a success if

the activation energy found is within 0.1 eV of the DFT activation energy. We consider any

transition state energy within 0.1 eV of the reactant or product state to be barrierless. For

this case, we consider the ML NEB a success if both it and DFT find barrierless transition

states.

Performance Assessment

We assess five pre-trained ML models ability to accelerate NEBs. The five models selected

were: 153M and 31M parameter Equiformer v2 models,38 GemNet-OC,39 PaiNN,40 and
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Figure 2: Baseline performance of five models according to the success metric. The percent
of systems with an activation energy within 0.1 eV of the DFT determined activation is
shown in (a) for systems where ML forces converged for the NEB. The percent of systems
which had converged forces is shown in (b). A parity plot of the DFT calculated activation
energy versus the activation energy determined by an ML NEB with DFT relaxed initial
and final frames, and a DFT single point on the transition state is shown in (c) for the
Eq2 31M38 model. The trade-off between computational speedup (as GPU seconds/ GPU
seconds) and success is shown in (d) for four methods using the Eq2 31M38 model
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DimeNet++.41 The pre-trained checkpoints for these models are available at https://github.com/FAIR-

Chem/fairchem/tree/main/src/fairchem/core. The Equiformer v2 models were selected be-

cause of their state of the art performance on the OC20 dataset36 at the time of data

generation. The others were selected to show the evolution of performance on this task as

models have improved over time. We present the validation of five models using our success

metric in Figure 2a. Models have been ordered by their performance on OC20 training met-

rics. We observe a positive correlation between the OC20 training metrics and performance

on this auxiliary task. In general, desorptions have fewer consequential degrees of freedom

than dissociations, which are simpler than transfers. This trend of complexity corresponds

well with the performance metrics. We find highest success for desorptions (98.8%), inter-

mediate success for dissociations (89.9%), and the lowest success for transfers (83.8%) using

the 153M parameter Equiformer v2 (Eq2 153M) model.

The DFT NEBs compared only include those which converged (i.e., those which achieved

fmax < 0.05 eV/Å within the allowed number of steps). The proportions of ML NEB calcu-

lations which had converged forces (fmax < 0.05 eV/Å) where there exists a corresponding

DFT NEB calculation which converged are shown in Figure 2b. We also observe a posi-

tive correlation between model performance on the OC20 training metrics and convergence.

Models that more accurately predict forces and energies on the OC20 dataset, have a higher

percent of calculations which converge. The one exception to this is the Equiformer v2 153

million parameter model which has a slightly lower convergence rate than less performant

models for dissociations (81% versus 82%) and transfers (68% versus 72%). As is detailed

in the Methods section, we used a fixed number of frames and a single spring constant for

all NEB calculations. Convergence may be improved by adjusting these values or adopting

an alternative optimization scheme.

Figure 2c shows a parity plot of the DFT calculated activation energy and the ML assisted

activation energy using the 31M parameter Equiformer v2 (Eq2 31M) model.38 The results

for desorption, dissociation, and transfers are all shown, but the individual mean absolute

9



errors (MAE) have been annotated. As we would expect from Figure 2a, desorptions have

the lowest MAE (0.03 eV), dissociations have an intermediate MAE (0.06 eV), and transfers

have the highest MAE (0.09 eV). More detailed parity plots for all of the models have been

included in the Supplementary Information.

Figure 2d shows the trade-off between compute cost and success for the Eq2 31M model

for four different ML accelerated approaches. To run a NEB, the initial and final frames

must be relaxed. Subsequently, the intermediate frames must be iteratively optimized. At

each optimization step, the forces and energies are evaluated. This provides various avenues

for using an MLP to accelerate NEB calculations. The highest computational cost savings

(2200x speed up) will be realized if ML is utilized for all force and energy evaluations (All

ML). This provides an average success of 70%. The pre-trained MLPs have better accuracy

for assessing forces than energies. A clear supplement to improve accuracy (84% average)

while achieving an 88x speedup is to use the MLP to perform all structure relaxations, but

perform a DFT single point (SP) on the initial, transition state, and final structures (ML

+ 3 DFT SPs) to obtain more accurate energies. To perform a more direct comparison

across models and between the DFT ground truth, we also considered the case where the

initial and final frames were relaxed with DFT so the starting place for the NEB would be

identical. Then the NEB was performed using the MLP and a single point was performed on

the transition state (ML + 2 DFT RXs + 1 DFT SP). This gives 88% accuracy with a

28x speed up. Finally, we considered the case where the initial and final frames are relaxed

with DFT, the NEB is pre-relaxed with ML, and subsequently relaxed with DFT (ML pre-

relaxation + DFT RX NEB), which will have the smallest computational cost savings

(3x speed up) but provide DFT level accuracy. Now that the methods have been introduced,

it is important to note that the results shown in Figure 2a-c use the method of ML + 2 DFT

RXs + 1 DFT SP because, as mentioned, it allows for the most direct comparison of the

ML NEB and the DFT NEB by removing the confounding variability introduced by having

different initial and final states. A visual summary of the four acceleration methods is shown
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in the right side of Figure 1.

The All DFT approach is not assigned 100% success because in some cases a lower energy

transition state along the band was found with DFT by the ML pre-relaxation + DFT RX

NEB approach. Among the transfers, 7% of the ML pre-optimized NEBs found a transition

state more than 0.1 eV lower in energy than the pure DFT NEBs. Among the dissociations,

2% were more than 0.1 eV lower in energy. In these cases, pre-optimizing with ML led to the

discovery of a substantially lower energy transition state using DFT along the same NEB

band. For desorptions and dissociations, there is a small change in performance between ML

+ 3 DFT SPs and ML + 2 DFT RX + 1 DFT SP, while this difference is large for transfers.

Since these methods have different initial and final states, it must be that these differences

have a more substantial impact on the transfer reactions, which is sensible given they have

more consequential degrees of freedom. It is possible that some of the ML transition states

in this case are valid, and even possibly lower in energy than the All DFT counterpart, but

assessment of this was outside of the scope of this work. Tables of the results captured in

Figure 2 are included in the Supplementary Information.

Comparison of Reaction Coordinate

To assess the similarity of the reaction coordinates, we calculated the root mean squared error

integrated over the reaction coordinate using Equation 1. Figure 3 shows a comparison of the

DFT v. ML reaction coordinates and transition state structures for (top) randomly selected

systems and (bottom) selected failure cases for each of the reaction types. A histogram of

RMSE of the Eq2 153M model38 reaction coordinates for the full dataset is included in the

Supplementary Information. It shows the vast majority of systems have very small RMSE,

like the top examples in Figure 3. This speaks to the structural parity between ML and DFT

determined transition states; going beyond the energetic comparison presented in Figure 2.
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Figure 3: A comparison of the transition states and reaction coordinates found by ML and
those found by DFT. The left column shows desorption, center shows dissociation, and left
shows transfer. The top images compare the transition state structures for a randomly
selected system, which correspond to the reaction coordinates below. The lower set have
been selected among those with the highest root mean squared error (RMSE), integrated
over the trajectory, to show a failure case.
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Figure 4: Top, left - BEP relations for dissociation reactions in the CO hydrogenation
reaction network on the close-packed surface of Rh show significant scatter. Top, right - A
parity plot comparing the performance of BEP relations and the ML + 3 DFT SP approach
described in this work. To the right, images of the ML transition states and DFT transition
states for four selected points are shown. Bottom - The CO hydrogenation reaction network.
The nodes are reaction intermediates and the lines are reactions between them. The line
color indicates the difference between the subset of reactions with activation energy less than
0.75 eV by BEP and by our ML accelerated approach.
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Case Studies

To demonstrate the efficacy of using pre-trained Open Catalyst Project (OCP) models to

perform NEBs, we performed two case studies revisiting the works of Ulissi et al.15 and

Vojvodic et al.37 The work of Ulissi et al.15 considers many reaction pathways for the hy-

drogenation of carbon monoxide on the rhodium close-packed surface to four important

products including ethanol. There are approximately 200 reactions which connect the ap-

proximately 2000 pathways in the reaction network considered. To treat this problem, the

authors approximated the energies of intermediate species using a Gaussian Process model

and group additivity. They developed BEP relations to project the activation energy as a

function of the reaction energy, which can be calculated using the energies of the reaction

intermediates. For our work, we avoid approximations to the intermediate and activation

energies by accelerating their acquisition using ML and the CatTSunami framework. Many

local relaxations of reaction intermediates were performed with the Eq2 31M38 model to

find important low energy configurations on the surface. A search for low energy transition

states was also performed for each of the 174 dissociation/ association reactions that appear

in the network with the same model using our high-throughput workflow for enumerating

NEBs with the ML + 3 DFT SPs approach.

Using our automated approach, we were able to find transition states for 162 of the 174

reactions, without any adjustments to our standard parameters. Transition states were not

found in the 12 cases because of (1) a lack of reactant configurations, (2) difficulty with con-

vergence, or (3) removal at post processing because of insufficient frames or erroneous bond

breaking/ forming events. These issues can be resolved with additional effort by increasing

the number of frames, changing the spring constant, adopting and alternative optimization

scheme, adjusting the automated enumeration parameters, or more exhaustively searching

for reactant configurations where necessary.

Figure 4 summarizes the results of explicitly calculating the dissociation/ association

activation energies in the CO hydrogenation reaction network considered. The top, left plot
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shows the calculated activation energy as a function of the reaction energy for the reactions.

In alignment with the prior work, we separated hydrogenations from other reaction classes.

As can be seen, there is a poor correlation between these two values when considering a

substantial diversity of reactions. This underscores the value of this method, which allows

for the avoidance of reliance on BEP relations. To support this point, we calculated DFT

NEBs on the set of reactions where we successfully found a transition state with ML. A

corresponding plot of the same values, but calculated with DFT rather than ML has been

included in the SI. Of the reactions considered, 102 DFT NEBs converged using our standard

number of frames and spring constant. Eight cases failed for reasons that could be resolved

by rerunning. In Figure 4, the top, right plot shows a comparison of the performance of the

ML + 3 DFT SP approach proposed here and BEP relations. In this case, the BEP relations

are created using all 102 DFT NEBs, so it may be seen as an upper bound on the possible

performance of BEP because it is the case where all of the activation energies are actually

known. Using BEP relations results in a mean absolute error (MAE) of 0.20 eV. Using our

approach with an 1500x speedup, results in an MAE of 0.04 eV, a marked improvement. For

four select reactions, a comparison of the transition states found by ML and DFT are shown

to the right. For A and B, which have ML and DFT activation energies in agreement, the

structures appear identical. For C and D, which have ML and DFT activation energies in

disagreement, the transition state structures are also very different. This brings into question

whether the ML transition states are incorrect or just different from those found by DFT.

The bottom portion of Figure 4 shows the reaction network, where nodes are surface

bound intermediate species and the lines are reactions. For visual simplicity, hydrogen

has been omitted. The color explores the difference between the subset of reactions with

activation energy less than 0.75 eV by BEP and by our ML accelerated approach. This is

meant to explore the change in the network connectivity under a scenario where reactions

with activation energies less than 0.75 eV are considered feasible. Red reaction would have

been considered with BEP, but should not have according to the ML results. Blue reactions
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would not have been considered with BEP, but should have according to the ML results. The

grey reactions agreed. Solid grey indicates that both ML and BEP arrive at an activation

energy less than 0.75 eV. Dotted grey indicates that both ML and BEP arrive at an activation

energy greater than 0.75 eV. We also compared our transition states to those used by Ulissi

et al. to develop BEP relations. Despite the simplicity of the Rh (111) surface, in 4 cases (of

24), we believe we found lower energy transition states, but the prior work used the BEEF-

vdW42 functional, which makes direct energetic comparisons difficult. This is discussed and

supported with a figure in the Supplementary Information.

Figure 5: Left, top - experimental ammonia production rates using potassium promoted
transition metal catalysts from Aiki et al.43 Left, bottom - a comparison of this work with
that presented by Vojvodic et al.37 on K-promoted stepped surfaces. Right, top - The N2

transition state structures found in this work for each of the stepped unary surfaces. Right,
bottom - The centers of mass of the various transition states considered in this work on the
FCC Rh (211) surface. The centers of mass are colored according to the transition state
energies and the lowest energy configuration is annotated with a star.

The work of Vojvodic et al.37 considers the development of an ammonia synthesis mi-

crokinetic model and volcano. This is used to explore the limits of the Haber-Bosch process

16



and the scaling relations which make operation at high temperatures and high pressures a re-

quirement today. For our work, we reproduce the activity volcano developed on the stepped

surfaces of six unary metals. To do this, many local relaxations of reaction intermediates

were performed with the Eq2 31M38 model to find important low energy configurations on

the surface. A search for low energy N2 dissociation transition states was also performed with

the same model using the CatTSunami framework with the ML + 3 DFT SPs approach. The

models used in this work were not trained on data that includes spin polarization, so some

additional refinement for Co and Ni was necessary. For more information, see the Methods.

Figure 5 summarizes the results of reproducing an ammonia synthesis microkinetic model.

The volcano curves for this work and the prior work are juxtaposed in the bottom left.

Overall, there is good agreement between the two. For this work, the volcano is shifted to

the left because lower energy configurations for reaction intermediates and transition states

were found. For this work, ruthenium appears at the apex of the volcano and is more

distinguished from iron and rhodium like we would expect given the experimental results

in the top, left of Figure 5. Excluding the refinement to account for spin polarization, the

work performed here could be completed in less than one day (10 GPU hours). If the same

number of NEBs were performed using all DFT, it would have taken 1.7 GPU years. This

could change the time it takes, and the very framework with which detailed kinetic studies

are performed because transition state energies are so much easier to access by our approach.

The lowest energy transition states for each of the metals is shown in the top-right of

Figure 5. For Co, Rh, Pd, Ru, and Fe we find that the lowest energy transition state

occurs over the four-fold hollow site at the step. For Fe, this is a little obfuscated by

significant adsorbate induced surface changes. For Ni, we find the lowest energy transition

state at the three-fold hollow site atop the step. We did not consider the four-fold site in

our automated enumeration. Still, the scaling relation between the transition state energy

and the adsorption energy of monoatomic nitrogen was consistent with the other metals at

the four-fold site (see Supplementary), so no further investigation was performed. It is likely
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that the transition state energy could have been lowered slightly by considering the four-fold

site, but this would not have a large impact on the overall results. The lower, right figure

shows the rhodium surface considered with centers of mass of every transition state colored

by their energy. This illustrates the more exhaustive search enabled by our approach.

Conclusions

In this work, we demonstrate that an off-the-shelf, zero-shot application of ML models is

able to perform NEB calculations with an average of 91% success and a 28x speed up, when

compared to DFT. This speaks to the generalizability of the potential learned. To facilitate

the assessment of model performance we present the OC20NEB dataset, a dataset composed

of 932 revised Perdew-Burke-Ernzerhof (RPBE) Density Functional Theory (DFT) NEB

calculations. In our assessment, we considered four different approaches to ML acceleration.

None of these approaches require any model training, making inclusion into existing work-

flows facile. Use of our approach of NEB acceleration unlocks opportunities to improve and

expand heterogeneous catalyst studies.

To ground this work, we perform two case studies which reproduce two prior works and

directly explore the opportunity unlocked by this work. We find activation energies for 174

dissociation/ association reactions for the hydrogenation of carbon monoxide on the close-

packed surface of rhodium. BEP relations achieve an MAE of 0.2 eV in the ideal scenario

where all activation energies are known. ML accelerated NEBs achieve an MAE of 0.04 eV,

closing this gap. This demonstrates the value of this work which makes calculating large

numbers of transition states possible, while maintaining reasonable accuracy, where BEP has

been used in the past. We replicated a well-known, large reaction network with 61 interme-

diates and 174 dissociation reactions at DFT resolution with just 12 GPU days of compute.

If this was performed with DFT, it would have taken 52 GPU years. Similar searches for

complete reaction networks could be become routine using the approach presented here.
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With this, we are entering an era where complete reaction networks are enumerated and

simulated quickly for complex surfaces. This will change the way we approach and build

simplified reaction mechanisms.

We also reproduce a microkinetic model of ammonia synthesis on stepped surfaces. We

find good agreement overall between the volcano produced using ML acceleration and that

reported in literature. We do, however, find systematically lower energy intermediates and

transition states. It took less than a day of compute time to perform this study. This

will change the way we approach performing detailed kinetic studies and use computational

techniques to gain fundamental catalyst insights.

Methods

The CatTSunami framework

We built tools to facilitate the generation of NEB calculations in a high-throughput fashion.

These tools rely on the work presented by Lan et al.,44 which demonstrates the efficacy of

OCP models for local relaxation and discovery of low energy sites. In alignment with the

work of Lan et al.,44 the reactant(s) and product(s) are placed separately on the surface

in many different configurations and local relaxations are performed using an ML model.

The locally relaxed configurations are used to make initial and final frames for the NEB

calculations with priority given to lower energy (by ML) configurations and proximity of

adsorbates to one another and/ or to their initial position. The proposed final frames, are

relaxed with an ML model and checks are performed to ensure the adsorbate connectivity is

as expected. For more details about enumeration for the individual reaction types, see the

Supplementary Information.

From the initial and final frames, a reaction trajectory is interpolated across the desired

number of frames. Iterative corrections are made to the linearly interpolated positions to

avoid atomic overlap in a manner similar to IDPP.45 Ideally, the adsorbates should tra-
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verse the shortest path possible over the NEB. To do this, the absolute positions of the

adsorbates in the initial and final frames are chosen so they are most proximate to one an-

other. Care is taken to ensure issues interpolating over periodic boundary conditions would

be avoided, which is important for making reasonable NEBs at high-throughput. Because

the linear interpolation does not include the minimum image convention, the adsorbates

are unwrapped to minimize euclidean distance over their bonds. This is done as a depth

first search starting with the atom that is bound to the surface in the adsorbate. It is also

enforced that the portions of the adsorbate(s) that maintain connectivity from the initial

to the final frame move as a single moiety. This avoids the failure case where the mini-

mum path for one atom in an adsorbate crosses a periodic boundary while another does

not. Rather the minimum path of the binding atom is the path taken by the whole ad-

sorbate. This still leaves the possibility of some poor NEB initializations, namely collisions

across the trajectory, but the vast majority of initializations are reasonable. All the code

that was used to generate NEB frames is available on GitHub: https://github.com/FAIR-

Chem/fairchem/tree/main/src/fairchem/applications/CatTSunami.

The OC20NEB dataset

The OC20NEB dataset consists of approximately 300 NEBs per reaction class. It was neces-

sary to curate a database of reactions. This was done by hand for each of the reaction cate-

gories. The dissociation, transfer, and desorption databases contain 54, 25, and 19 reactions

respectively. A full table of reactions has been provided in the Supplementary Information.

Half of the NEBs were performed on materials that are reserved as out of domain (OOD)

and the other half were on in domain (ID) materials in the OC20 dataset.36 There was not

a significant difference in success between calculations performed on ID materials and OOD

materials. Full results including these splits have been included in the Supplementary In-

formation. For generation, a bulk was randomly selected from the desired domain among

the 12k materials that appear in the OC20 dataset. These materials span 55 elements and
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contain up to 3 elements each. Although oxides have been excluded, other non-metals such

as nitrides and sulfides are included along with interesting 2D materials. Next, a random

Miller index, up to a maximum of 2, was selected. All distinct slabs for that miller index

were enumerated, and one was randomly chosen. Finally, a reaction was chosen at random

to be combined with the slab. If the number of atoms in the first reactant-surface configura-

tion exceeded 100 atoms, then the combination was discarded to avoid very computationally

expensive calculations. The CatTSunami framework was used to initialize the NEB frames

for DFT relaxation using the Eq2 31M38 model for all reactant and product system initial

relaxations. Ten frames were used for all NEBs.

Running NEB calculations

To run NEB calculations, we leveraged the existing precedent46–48 provided by the Atomic

Simulation Environment (ase),49 with a Broyden–Fletcher–Goldfarb–Shanno (BFGS) opti-

mizer. To run ML NEBs in a more efficient manner we wrote a custom child class of the

ase NEB class, which allows force evaluations to be made in a batched fashion. For all DFT

NEBs and ML validation, calculation was considered converged if the maximum force per-

pendicular to the reaction coordinate was less than 0.05 eV/Å. A climbing image46 scheme

was imposed, where initially climbing image was turned off, but once the force was below

0.45 eV/Å or 200 steps had been taken, climbing image was turned on. NEB relaxations

were allowed to run for up to 300 steps. For all calculations, a fixed spring constant of 1

eV/Å2 was used.

DFT calculation settings

In alignment with the high-throughput nature of this work and required continuity with the

training data, all DFT settings were algorithmically set in the same manner as the OC20

dataset.36 All calculations were performed with the Vienna Ab Initio Simulation Package

(VASP)50–53 with the revised Perdew-Burke-Ernzerhof (RPBE) functional.54,55 For more
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details, please see the Supplementary Information.

Reaction coordinate analysis

To compare reaction coordinates between ML and DFT we employed Equation 1, inspired

by the work comparing equation of state models by Lejaeghere et al.56 Here, E(p) is the

difference in the fitted energy profiles (between DFT and ML) over the reaction coordinate

and P is the reaction path.

RMSE =

√∫ P

0
E2(p)dp

P
(1)

Case study - reaction mechanism elucidation

We enumerated many NEBs to find low energy transition states. 14% of the calculations

that converged were otherwise incorrect. The two failure modes we observed were (1) the

NEB had insufficient frames and did not sample the transition state and (2) there was an

erroneous loss/gain of connectivity in bonds not intended to be broken or formed. We filtered

out these calculations by implementing two checks (1) there exists a frame where the bond

intended to be broken is elongated between 1.25x and 1.63x the initial bond distance and

(2) ensuring the connectivity is the same throughout the NEB except the bond that is being

broken.

Case study - exploring catalyst trends across materials

For both the local relaxations of reaction intermediates and the NEBs, the Eq2 31M38 model

was used. For each of the lowest energy ML relaxed structures (i.e. the reaction intermediates

and transition states) a DFT single point was performed to obtain the energy (ML + 3 DFT

SPs). The same functional and referencing scheme was used in the prior work and this work,

so energies should be directly comparable. One small difference between these works is the
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use of the stepped surface of the Im3m bulk of Fe here rather than the P63/mmc, but these

stepped surfaces are very similar.

In the original work, spin polarization was considered for Co and Ni, but it was assumed

that the under reaction conditions, high coverages would lead to magnetic quenching on

iron. In alignment with this we considered spin only for Co and Ni. Spin polarization is not

included within the OC20 dataset36 and therefore is absent from the models. We performed

single points with spin polarization for the Co and Ni systems and noticed that in some

cases the residual forces were substantially higher than the other metals (> 0.5 eV/Å). This

was the case for both the Co and Ni transition states and all Co intermediates. To treat

this, we performed local relaxations for the Co intermediates with spin polarization turned

on starting from the ML relaxed structures. We also performed dimer calculations on the

Co and Ni transition states starting from the NEB determined TS. In this case where the

model was ill suited to address our problem, it still allowed the identification of low energy

configurations for further refinement.

In the original work, the calculations were repeated for ruthenium with potassium pro-

motion. The difference in the energies with and without K-promotion were applied to the

remaining metals. We applied these same corrections to energies so they could be more

directly compared to the experimental results which include K-promotion. A volcano plot

without K-promotion for this work and the prior work has been included in the SI. We also

used the Gibbs energy corrections for the prior work for our work.
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(5) Koistinen, O.-P.; Ásgeirsson, V.; Vehtari, A.; Jónsson, H. Nudged Elastic Band cal-

culations Accelerated with Gaussian Process Regression Based on Inverse Interatomic

Distances. Journal of Chemical Theory and Computation 2019, 15, 6738–6751.

(6) Schlegel, H. B. Geometry optimization. Wiley Interdisciplinary Reviews: Computational

Molecular Science 2011, 1, 790–809.

(7) Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimen-

sional potential surfaces using only first derivatives. The Journal of Chemical Physics

1999, 111, 7010–7022.

26



(8) Jafari, M.; Zimmerman, P. M. Reliable and efficient reaction path and transition state

finding for surface reactions with the growing string method. Journal of Computational

Chemistry 2017, 38, 645–658.

(9) Zeng, Y.; Xiao, P.; Henkelman, G. Unification of algorithms for minimum mode opti-

mization. The Journal of Chemical Physics 2014, 140 .

(10) Hermes, E. D.; Sargsyan, K.; Najm, H. N.; Zádor, J. Accelerated Saddle Point Refine-
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Nudged Elastic Band Calculations Accelerated with Gaussian Process Regression. The

Journal of Chemical Physics 2017, 147 .

29



(32) Torres, J. A. G.; Jennings, P. C.; Hansen, M. H.; Boes, J. R.; Bligaard, T. Low-

scaling algorithm for nudged elastic band calculations using a surrogate machine learn-

ing model. Physical review letters 2019, 122, 156001.
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Supplementary Information

DFT settings

DFT calculations were performed with the Vienna Ab Initio Simulation Package (VASP)50–53

with periodic boundary conditions and the projector augmented wave (PAW) pseudopoten-

tials.53,57 The external electrons were expanded in plane waves with kinetic energy cut-offs

of 350 eV. Exchange and correlation effects were taken into account via the generalized

gradient approximation and the revised Perdew-Burke-Ernzerhof (RPBE)54,55 functional,

because of its improved description of the energetics of atomic and molecular bonding to

surfaces.58 Bulk and surface calculations were performed considering a K-point mesh for the

Brillouin zone derived from the unit cell parameters as an on-the-spot method, employing

the Monkhorst-Pack grid.59
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Reaction Network Elucidation

Figure 6: BEP relations for hydrogenations and other reactions across the CO hydrogenation
reaction network.

Figure 6 shows the BEP relation developed using DFT calculated NEBs. There were only

102 calculations that converged by our standard approach, which are pictured. Higher

convergence could have been obtained by adjusting the spring constant, number of frames,

and climbing image approach. Figure 7 - left shows the parity between the activation energy

determined via our ML + 3 SPs approach and the values reported in the prior work.15 There

is a functional difference, so we would expect there to be some scatter and making direct

energetic comparisons is challenging. To the right are the 4 transition states which have

a residual greater than 0.2 eV. In these cases, we believe that we have found lower energy

transition states.
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Figure 7: Left - A parity plot of the activation energy determined by our approach and the
activation energy reported in the prior work.15 Right - images of the transition states for the
4 cases where the residual is greater than 0.2 eV

Vibration calculations on DFT relaxed transition states

Table 1: Summary of the quantity of DFT calculations that were found to have imaginary
vibrational modes.

Reaction Type n Barrierless n Imaginary Frequency n No Imaginary Frequency

desorption 249 11 0
dissociation 32 215 6
transfer 27 174 6

To check the validity of our force convergence criteria, we performed vibration calculations

on a subset of our DFT NEB calculations. For cases where the reaction is not barrierless,

and therefore the transition state is well defined, we find an imaginary vibrational mode the

majority of the time as summarized in Table 1. Here barrierless as defines as being within

0.1 eV of the reactant or product state.
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Ammonia synthesis microkinetic model

Figure 8: The scaling relation between N adsorption energy and N-N transition state energy
as determined by our ML accelerated approach.

Figure 9: The activity volcano developed here and presented by Vojvodic et al.37 without
K-promotion. The points are the microkinetic rates using the raw energies, rather than the
correlated activity.

Figure 9 shows activity volcano developed here and presented by Vojvodic et al.37 There are

two key differences between the one presented here and that presented in the main paper
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(1) K-promotion has been excluded and (2) the points are the microkinetic rates using the

raw energies, rather than the correlated activity. Because the rates are plotted explicitly,

the effect of the slightly suboptimal Ni N-N transition state energy determined by this is

noticeable. It is likely that if we would have calculated an energy at the four-fold hollow on

the step this would be corrected. It can also be seen that in the prior work, Ru has a lower

computationally determined rate, than Rh.

RMSE in Reaction Coordinate Histograms

Figure 10: The distributions of observed RMSE between the DFT reaction coordinate at
that which is obtained using ML.
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Model Performance

All Models (ML + 2 DFT RX + 1 DFT SP)

Table 2: Summary of model performance on the OC24NEB dataset. Here a calculation is
successful if the activation energy falls within δ or is less than the DFT determined activation
energy and has an imaginary vibrational mode on the transition state.

Reaction Type Model Name % Converged
% within δ of converged % within δ of all
δ = 0.1 eV δ = 0.05 eV δ = 0.1 eV δ = 0.05 eV

desorption Eq2 (153M) 98% 98.8% 98.8% 96.8% 96.4%
dissociation Eq2 (153M) 81% 89.9% 83.6% 82.3% 75.9%
transfer Eq2 (153M) 68% 83.8% 78.9% 66.4% 60.3%

desorption Eq2 (31M) 98% 97.2% 97.2% 94.6% 94.6%
dissociation Eq2 (31M) 82% 85.1% 73.2% 76.5% 64.8%
transfer Eq2 (31M) 72% 82.4% 70.2% 67.6% 55.6%

desorption GemNet-oc 98% 95.6% 94.4% 94.1% 92.9%
dissociation GemNet-oc 80% 82.5% 66.5% 71.5% 57.4%
transfer GemNet-oc 71% 76.9% 57.7% 60.3% 45.3%

desorption PaiNN 98% 95.0% 93.3% 93.2% 91.6%
dissociation PaiNN 74% 27.9% 14.2% 24.0% 11.8%
transfer PaiNN 66% 13.1% 6.3% 10.9% 5.3%

desorption DimeNet++ 95% 94.4% 93.2% 89.5% 88.4%
dissociation DimeNet++ 68% 15.2% 10.3% 12.7% 9.4%
transfer DimeNet++ 52% 12.4% 7.5% 8.6% 5.3%

Single Model (ML + 3 DFT SPs)

Table 3: Success assessment for an approach where only ML is used to relax the initial and
final frames, then a NEB calculation is performed using the MLP, and finally DFT single
points are performed on the initial, final, and transition state frames.

Reaction Type Model Name % Converged
% within δ of converged % within δ of all
δ = 0.1 eV δ = 0.05 eV δ = 0.1 eV δ = 0.05 eV

desorption Eq2 (31M) 98 96.5% 96.5% 95.4% 95.4%
dissociation Eq2 (31M) 83 84.6% 75.8% 76.4% 65.8%
transfer Eq2 (31M) 71 70.9% 62.0% 56.9% 49.6%
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Single Model (ML pre-relaxation + DFT RX NEB)

Table 4: Success assessment for an approach where first the initial and final frames are
relaxed with DFT, then an NEB calculation is performed with the 31 million parameter
Equiformer v238 model. Finally an NEB calculation is performed with DFT starting from
the ML relaxed NEB

Reaction Type Model Name % Converged
% within δ of converged % within δ of all
δ = 0.1 eV δ = 0.05 eV δ = 0.1 eV δ = 0.05 eV

desorption Eq2 (31M) 98 99.5% 99.5% 98.4% 98.4%
dissociation Eq2 (31M) 88 92.9% 91.0% 85.7% 84.1%
transfer Eq2 (31M) 79 91.6% 89.4% 71.9% 70.0%

Single Model (All ML)

Table 5: Success assessment for the approach where the million parameter Equiformer v238

model is used for all force and energy calls.

Reaction Type Model Name % Converged
% within δ of converged % within δ of all
δ = 0.1 eV δ = 0.05 eV δ = 0.1 eV δ = 0.05 eV

desorption Eq2 (31M) 98 95.3% 93.7% 94.2% 92.7%
dissociation Eq2 (31M) 83 59.6% 38.3% 52.7% 33.9%
transfer Eq2 (31M) 71 58.2% 39.2% 44.2% 25.0%

Single Model - Speedup v. Success

Table 6: The cost v. success tradeoff assessed for the 31 million parameter Equiformer v2
model

Case
% Success Speed up

desorption dissociation transfer desorption dissociation transfer

All ML 95.3 59.6 55.2 2539.0 1936.0 1985.0

ML + 3 DFT SPs 96.5 84.6 70.9 49.0 96.0 119.0

ML + 2 DFT RXs + 1
DFT SP

97.2 85.1 82.4 17.0 32.0 36.0

ML pre-relaxation +
DFT RX NEB

99.5 92.9 91.6 1.9 2.8 3.4

All DFT 100.0 97.5 93.2 1.0 1.0 1.0
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Model performance with split information (ML + 2 DFT RX + 3 DFT SPs)

Roughly half of the NEB calculations performed were performed on materials which had been

reserved for validation and are out of domain for the training set as defined in the OC20

dataset.36 The results segmented along these splits are shown in the table below. There is

not an appreciable difference between calculations performed on in domain (ID) versus out

of domain (OOD) materials.

Type Model Name ID Converged
ID within δ converged ID within δ all

OOD Converged
OOD within δ converged OOD within δ all

δ=0.1 eV δ=0.05 eV δ=0.1 eV δ=0.05 eV δ=0.1 eV δ=0.05 eV δ=0.1 eV δ=0.05 eV

desorption Eq2 (153M) 98% 97.7% 97.7% 96.2% 95.5% 98% 100.0% 100.0% 97.5% 97.5%

dissociation Eq2 (153M) 80% 87.4% 83.9% 81.8% 77.3% 81% 92.2% 83.3% 82.7% 74.8%

transfer Eq2 (153M) 66% 87.9% 85.0% 68.3% 63.4% 69% 79.4% 72.2% 64.3% 56.6%

desorption Eq2 (31M) 99% 96.2% 96.2% 94.1% 94.1% 97% 98.3% 98.3% 95.1% 95.1%

dissociation Eq2 (31M) 81% 87.0% 78.7% 77.8% 68.9% 82% 83.5% 68.5% 75.3% 61.4%

transfer Eq2 (31M) 71% 83.2% 70.1% 66.0% 53.3% 73% 81.6% 70.4% 69.5% 58.2%

desorption GemNet-oc 100% 93.9% 92.4% 93.9% 92.4% 97% 97.4% 96.6% 94.3% 93.4%

dissociation GemNet-oc 79% 89.0% 75.8% 75.2% 63.2% 81% 77.7% 59.5% 68.6% 52.9%

transfer GemNet-oc 73% 81.4% 63.6% 66.2% 50.3% 68% 71.7% 50.8% 53.9% 39.9%

desorption PaiNN 98% 92.2% 89.1% 90.8% 87.8% 98% 98.2% 98.2% 95.8% 95.8%

dissociation PaiNN 74% 30.1% 11.8% 24.2% 9.4% 74% 26.1% 16.2% 23.8% 13.9%

transfer PaiNN 66% 15.7% 6.3% 11.6% 5.1% 66% 10.0% 6.4% 10.2% 5.6%

desorption DimeNet++ 95% 93.7% 92.9% 89.0% 88.2% 94% 95.4% 93.5% 90.2% 88.5%

dissociation DimeNet++ 65% 18.2% 10.6% 13.4% 8.4% 71% 12.7% 10.1% 12.2% 10.1%

transfer DimeNet++ 59% 13.5% 7.3% 8.1% 5.1% 45% 10.8% 7.7% 9.1% 5.7%
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Desorption Reactions

Figure 11: Details of desorption initial and final frame generation.

Starting from many ML relaxed configurations of the reactant adsorbed to the surface,

the five lowest energy configurations of the reactant were selected NEB frames. Building the

proposed final frame is shown in Figure 11. The adsorbate is simply translated 3Å along the

surface normal for each of the product frames. The translated adsorbates are then allowed

to relax using an MLP. Any frames where the product re-adsorbs or some other anomaly

occurs were discarded. Among the remaining final frames, one is randomly selected to be

interpolated with the reactant frame to run a DFT NEB. This process is facilitated with

the AutoFrameDesorption class. All reactions used for dataset generation are shown in the

table below.

index reaction

0 *CO → CO(g)

1 *N2 → N2(g)

2 *NH3 → NH3(g)

3 *OH2 → H2O(g)

4 *CH4 → CH4(g)

5 CH2*CO → CH2CO(g)
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6 *CHO*CHO → CHOCHO(g)

7 *COH*COH → COHCOH(g)

8 *CH2*CH2 → CH2CH2(g)

9 *CH*CH → CHCH(g)

10 *CHOHCH2 → CHOHCH2(g)

11 *NHNH → NHNH(g)

12 *NH2NH2 → NH2NH2(g)

13 *NO → NO(g)

14 *OHNH2 → HONH2(g)

15 *ONOH → ONOH(g)

16 *OHCH2CH3 → CH3CH2OH(g)

17 *OCHCH3 → CH3CHO(g)

18 *OHCH3 → CH3OH(g)
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Dissociation Reactions

Figure 12: Details of dissociation initial and final frame generation.

Starting from many ML relaxed configurations of the reactant and products individually

placed on the surface, the lowest energy configuration of the reactant was selected to propose

NEB frames. Building the proposed final frame is shown in Figure 12. Product 1 is defined as

the product with the same binding atom as the reactant. First, five placements for product

1 were selected as the 5 lowest energy (by ML) configurations within r1 = 2Å. Next, for each

of the 5 placements of product 1, we consider 5 proximate placements for product 2, giving

a total of 25 final frames. Similarly, the 5 lowest energy configurations are chosen, within a

shell of inner and outer radii of r2 = 1Å and r3 = 3Å, respectively. Then the adsorbate atoms

of product 1 and product 2 are concatenated into the same frame and relaxed with ML. Any

frames where the products react or some other anomaly occurs were discarded. Among the

remaining final frames, one is randomly selected to be interpolated with the reactant frame

to run a DFT NEB. This process is facilitated with the AutoFrameDissociation class. All

reactions used for dataset generation are shown in the table below.

index reaction

0 *OH → *O + *H

1 *CO → *C + *O

2 *CH → *C + *H

3 *OOH → *O + *OH

4 *CH2 → *CH + *H
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5 *CHO → *CO + *H

6 *CHO → *CH + *O

7 *COH → *C + *OH

8 *CH3 → *CH2 + *H

9 *CH2*O → *CH2 + *O

10 *CH2*O → *CHO + *H

11 *CHOH → *CHO + *H

12 *CHOH → *COH + *H

13 *CHOH → *CH + *OH

14 *CH4 → *CH3 + *H

15 *OHCH3 → *OH + *CH3

16 *OHCH3 → *OCH3 + *H

17 *C*C → *C + *C

18 *CCO → *C + *CO

19 *CCH → *C + *CH

20 *CHCO → *CH + *CO

21 *CHCO → *CCO + *H

22 *CHCO → *CCH + *O

23 *CCHO → *C + *CHO

24 *CCHO → *CCH + *O

25 *COCHO → *CHCO + *O

26 *COCHO → *CO + *CHO

27 *CCHOH → *C + *CHOH

28 *CCHOH → *CCH + *OH

29 *CCH2 → *C + *CH2

30 *CCH2 → *CCH + *H

31 *CH*CH → *CH + *CH

32 CH2*CO → *CO + *CH2

33 CH2*CO → *CCH2 + *O

34 *CHCHO → *CH + *CHO

35 CH*COH → *CHCO + *H

36 CH*COH → *COH + *CH

37 *COCH2O → *CO + *CH2*O
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38 *CHO*CHO → *CHO + *CHO

39 *COHCHO → *COH + *CHO

40 *COHCOH → *COH + *COH

41 *CCH3 → *C + *CH3

42 *CHCH2 → *CH + *CH2

43 *COCH3 → *CO + *CH3

44 *OCHCH2 → *CHO + *CH2

45 *N2 → *N + *N

46 *NH → *N + *H

47 *NO → *N + *O

48 *CN → *C + *N

49 *NONH → *NO + *NH

50 *NH2 → *NH + *H

51 *NH3 → *NH2 + *H

52 CO*COH → *COH + *CO

53 *H2 → *H + *H

46



Transfer Reactions

Figure 13: Details of dissociation initial and final frame generation.

Starting from many ML relaxed configurations of the reactants and products individually

placed on the surface, all combinations of reactant 1 and reactant 2 are considered. Building

the proposed final frame is shown in Figure 13. The 5 reactant 1 - reactant 2 combinations

with the lowest pseudo-adsorption energy (the sum of the individual reactant adsorption

energies) which satisfy the following criteria are selected: (1) The minimum interstitial

distance between any atom in reactant 1 and any atom in reactant two is no less than r1 =

1 Å, (2) The minimum interstitial distance between any atom in reactant 1 and any atom

in reactant 1 is no greater than r2 = 2 Å, (3) upon relaxing the concatenated reactant 1 -

reactant 2 system with ML, it does not react or have other anomalous behavior. Next, for

each of the reactant combinations, the 5 product 1 - product 2 combinations with the lowest

pseudo-adsorption energy (the sum of the individual product adsorption energies) which

satisfy the following criteria are selected: (1) The minimum interstitial distance between

any atom in product 1 and any atom in product 2 is no less than r1 = 1 Å, (2) The

distance traversed by each of the adsorbate moities is no greater than r3 = 3 Å, (3) upon

relaxing the concatenated product 1 - product 2 system with ML, it does not react or
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have other anomalous behavior. Among the frame sets, one is randomly selected to be

interpolated with the reactant frame to run a DFT NEB. This process is facilitated with the

AutoFrameTransfer class. All reactions used for dataset generation are shown in the table

below.

index reaction

0 *OH + *CH2 → *O + *CH3

1 *OH + *CH → *O + *CH2

2 *C + *CH2 → *CH + *CH

3 *CH3 + *CH → *CH2 + *CH2

4 *OH2 + *CH → *OH + *CH2

5 *CHO + *CH → *CO + *CH2

6 *COH + *CH → *CO + *CH2

7 *N + *CH2 → *NH + *CH

8 *OCH2CH3 + *CH → *OCHCH3 + *CH2

9 *NH + *CH2 → *NH2 + *CH

10 *CH2CH2OH + *C → *CH2*CH2 + *COH

11 *NH2NH2 + *NO → *NH2 + *ONNH2

12 *NO + *CH2 → *ONH + *CH

13 *COCH3 + *COH → *CO + *COHCH3

14 *CH2*CH2 + *CH3 → *CH2CH3 + *CH2

15 *CH2*O + *C*C → *CH2 + *CCO

16 *CHO*CHO + *CO → *CHO + *COCHO

17 *NO2NO2 + *NO → *NO2 + *ONNO2

18 *C + *OHCH3 → *CCH3 + *OH

19 *N + *NHNH → *N*NH + *NH

20 *CH2OH + *H → *CH2 + *OH2

21 *H + *C*C → *CH+ *C

22 *CH4 + *C → *CH3 + *CH

23 *CCH3 + *C → *CCH2 + *CH

24 *OOH + *C → *O + *COH
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Parity and Residual Plots

Figure 14: Residual distributions for all models across the three reaction types
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Figure 15: Parity plots with MAE for all models across the three reaction types
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